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Abstract

The subseasonal predictability of surface temperature and precipitation is examined using two global ensemble prediction 

systems (ECMWF VarEPS and NCEP CFSv2), with an emphasis on the week 3–4 lead (i.e. 15–28 days ahead) fortnight-

average anomaly correlation skill over the United States, in each calendar season. Although the ECMWF system exhibits 

slightly higher skill for both temperature and precipitation in general, these two systems show similar geographical varia-

tions in the week 3–4 skill in all seasons and encouraging skill in certain regions. The regions of skill are then interpreted 

in terms of large-scale teleconnection patterns. Over the southwest US in summer, the North American monsoon system 

leads to higher skill in precipitation and surface temperature, while high skill over northern California in spring is found to 

be associated with the seasonal variability of the Arctic Oscillation (AO). During winter, in particular, week 3–4 predict-

ability is found to be higher during extreme phases of the El Niño–Southern Oscillation, Pacific-North American (PNA)/

Tropical-Northern Hemisphere mode, and AO/North Atlantic Oscillation (NAO). Both forecast systems are found to predict 

these teleconnection indices quite skillfully, with the anomaly correlation of the wintertime NAO and PNA exceeding 0.5 

for both models. In both models, the subseasonal contribution to the PNA skill is found to be larger than for the NAO, where 

the seasonal component is large.

1 Introduction

The prospect of substantial subseasonal to seasonal (S2S) 

climate predictability (2 weeks to a season ahead) has drawn 

increasing attention in recent years (Brunet et al. 2010), 

especially for the week 3–4 forecast range (i.e. 15–28 days 

ahead) where many operational weather forecast centers have 

started to issue experimental forecasts (Vitart et al. 2017). 

Great advances have been achieved in the past few decades 

in medium-range (i.e., 4–10 days) weather forecasts (Bauer 

et al. 2015) and seasonal (3–6 months) climate predictions 

(Kirtman et al. 2014), whereas the subseasonal forecast 

range that lies in between has, until recently, received much 

less attention. A recent joint initiative of the World Weather 

and World Climate Research Programmes (WWRP/WCRP), 

the Subseasonal to Seasonal (S2S) Prediction Project, aims 

to bridge this gap (Vitart et al. 2012) and has organized a 

database of subseasonal forecasts from 11 operational cent-

ers around the world (Vitart et al. 2017).

Short and medium-range weather forecast skill comes 

mostly from atmospheric initial conditions, while seasonal 

forecast skill stems from slow-varying boundary condi-

tions such as sea surface temperature (SST), snow and sea 

ice (e.g., Cohena nd Entekhabi 1999; García-Serrano et al. 

2015), and soil moisture (e.g., Koster et al. 2010), as well as 

persistent stratospheric circulation features (e.g., Baldwin 

and Dunkerton 2001; Scaife et al. 2016). The subseasonal 

time scale is, however, influenced by both initial and bound-

ary conditions, which makes it challenging to predict. On 

one hand, information in the atmospheric initial conditions is 

mostly lost beyond about 10 days and play a role only occa-

sionally, as observational and systematic errors may amplify 

to a pronounced level at this lead time in numerical mod-

els. On the other hand, the stronger coupling between the 

atmosphere and boundary conditions takes place on longer 
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timescales and subseasonal forecasts may only marginally 

benefit from such processes. For example, the coupling at 

time scales of 2–3 weeks appears as high-frequency sto-

chastic forcing by the atmosphere on the ocean mixed layer, 

while the ocean feedback on the atmosphere is still fairly 

weak, at least in midlatitudes (e.g., Deser and Timlin 1997). 

Li and Robertson (2015) examined week 1–4 forecast skill 

of boreal summer precipitation from three global prediction 

systems and found very little skill outside the tropics beyond 

2 weeks of lead time. However, this could be due to the rela-

tively small ensemble size in the reforecasts they analyzed, 

together with the limited number of reforecast start times. 

In this study, we revisit the subseasonal forecast skill for all 

calendar seasons over the United States from an updated set 

of reforecasts with more frequent starts and larger ensemble 

size (or using lagged ensembles); increased ensemble size 

often leads to better skill (e.g., Murphy 1988; Kumar 2009).

Subseasonal predictability in the extratropics is expected 

to be strongly modulated by planetary-scale teleconnection 

modes, and in particular the El Niño–Southern Oscillation 

(ENSO), North Atlantic Oscillation (NAO), Arctic Oscilla-

tion (AO), Pacific-North America (PNA) mode, Tropical-

Northern Hemisphere (TNH) mode, and the Madden–Julian 

Oscillation (MJO); see the recent review of Stan et  al. 

(2017). For example, the subseasonal variability of winter-

time surface air temperature anomalies over North America 

has been found to be more predictable during certain phases 

of strong MJO events (Zhou et al. 2012; Rodney et al. 2013). 

Certain combinations of ENSO and MJO phases may boost 

subseasonal predictability over North America creating time 

windows of opportunity for more skillful forecasts (John-

son et al. 2014). By examining weekly boreal summer pre-

cipitation anomalies over a part of the Maritime Continent 

(Borneo Island), Li and Robertson (2015) found clear MJO 

modulation of precipitation during ENSO-neutral years, but 

that this may be overridden by strong ENSO events. Here 

we attempt to explore links between subseasonal predict-

ability over the contiguous United States (CONUS) domain 

and these teleconnection modes, with a focus on week 3–4 

predictability.

2  Data and methods

The subseasonal predictability of four key meteorological 

variables, surface (2 m) temperature (T2m), total precipi-

tation (Prcp), mean sea level pressure (SLP), and 500 hPa 

geopotential height (Z500), are evaluated for the European 

Centre for Medium-Range Weather Forecasts (ECMWF) 

Variable Resolution Ensemble Prediction System monthly 

forecast system (VarEPS-monthly; Vitart et al. 2008) and 

National Centers for Environmental Prediction (NCEP) Cli-

mate Forecast System, version 2 (CFSv2; Saha et al. 2010) 

reforecasts prepared for the WWRP/WCRP S2S project 

database (Vitart et al. 2017). The atmospheric component 

of the ECMWF model (version CY41R1) has 91 vertical 

levels and a horizontal resolution of TCO639 (~ 16 km) 

up to day 10 and TCO319 (~ 32 km) after day 10. Semi-

weekly reforecasts of the ECMWF model over the 20-year 

(1995/6–2014/5) reforecast period are analyzed, correspond-

ing to real-time forecast start dates every Monday and Thurs-

day from June 2015 to May 2016 (105 reforecast cycles). For 

example, a real-time forecast is initialized on Monday June 

1, 2015 (a Monday start date), and 20 reforecasts are initial-

ized for all June 1’s between 1995 and 2014 (which do not 

necessarily all fall on Mondays). The ECMWF reforecasts 

consist of one control and 10 perturbed forecast ensemble 

members on each start date. More model details are given 

in Vitart et al. (2017).

The resolution of the NCEP model is 64 vertical levels 

and T126 (~ 100 km) in the horizontal. The NCEP model 

provides reforecasts with a small ensemble size (4) that 

are made every day at 00/06/12/18Z. Lagged ensembles 

of NCEP reforecasts are thus composed using three daily 

starts on and prior to the date of each ECMWF semi-weekly 

reforecast start, to match the ensemble sizes (11 for ECMWF 

and 12 for NCEP). Taking the above June 1 example, the 

12 NCEP reforecasts from May 30 to June 1 (3 days and 4 

realizations per day) are used to generate a lagged ensem-

ble mean to compare with the ECMWF ensemble mean 

reforecast of June 1. The lagged ensemble skill is usually 

positively influenced by increasing ensemble size and nega-

tively influenced by the drop in longer lead skill (e.g., Chen 

et al. 2013). DelSole et al. (2017) showed that the lagged 

ensemble skill for the large-scale components of NCEP T2m 

saturates around 4 days. Therefore, the 3-day lagged ensem-

ble seems a reasonable choice for all four variables to be 

analyzed here.

The Global Precipitation Climatology Project (GPCP) 

version 1.2 (Huffman and Bolvin 2012) daily precipitation 

estimates on a 1° grid are used as the observational precipi-

tation dataset, and ERA-Interim reanalysis on a 1.5° grid 

(Dee et al. 2011) is used for observational estimates of T2m, 

SLP, and Z500. The common period for the two models and 

observations is 1999–2010 (12 years in total), constrained 

by the NCEP reforecast availability; the results for ECMWF 

over the longer 1995–2014 period are also included in some 

comparisons to illustrate temporal robustness. Since the 

model data are provided on a 1.5° grid (~ 150 km) in the 

S2S database, the total precipitation reforecast is interpo-

lated from 1.5° into 1° resolution so as to compare with the 

GPCP dataset, whereas the other variables are validated with 

ERA-Interim reanalysis at the 1.5° resolution.

The skill metrics include the temporal correlation of 

anomalies (CORA) and spatial correlation of anomalous 

patterns (CORP), each computed using the ensemble means 
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of fortnight week 3–4 (i.e., day 15–28) averages. The proba-

bilistic evaluation of the skill for these two models has been 

documented by Vigaud et al. (2017), whereas the determin-

istic skill is primarily used in this study to explore possible 

sources of predictability. The anomalies are calculated by 

removing the observational climatological mean, and the 

models’ week 3–4 reforecast climatology, in order to exclude 

the mean bias and model drift. Note that the skill is not 

cross-validated as the main purpose is not to evaluate the 

forecast accuracy but to explore the subseasonal predictabil-

ity of the physical system. The forecast skill is evaluated in 

four seasons separately: winter (DJF), spring (MAM), sum-

mer (JJA), and fall (SON), to examine possible seasonal 

dependence of subseasonal predictability (e.g., Becker 

and Van Den Dool 2016; Vigaud et al. 2017; DelSole et al. 

2017). More specifically, ECMWF reforecasts from all the 

semi-weekly start dates that fall in each 3-month season are 

lumped together as a time series to compare with observed 

time series. For example, the JJA time series are formed 

as 06/01/1999, 06/04/1999, 06/08/1999, …, 08/24/1999, 

08/27/1999, 08/31/1999, 06/01/2000, 06/04/2000, …, 

08/27/2010, 08/31/2010. DJF and JJA have 27 start dates 

each, while MAM and SON have 26 each. The seasonal fore-

cast skill is evaluated with start dates that fall in each season, 

whereas some of the week 3–4 forecasts may fall in the first 

month of the next season. For example, the DJF week 3–4 

skill actually refers to the skill of the forecasts ranges from 

mid-December to late-March.

Caution needs to be taken in estimating the statistical 

significance of the CORAs. The actual number of degrees 

of freedom (DOF) for the week 3–4 CORA is much smaller 

than the total number of starts for each season in 12 years 

(324 or 312 starts, except for 264 starts in 11 years for DJF), 

because of overlaps between adjacent fortnight averages. 

The number of independent reforecasts can be estimated as 

the total number of days in 12 seasons divided by 14, which 

is about 77 (71 for DJF). The equivalent DOF for the week 

3–4 CORA is thus 75 (69 for DJF). Any week 3–4 CORA 

value greater than 0.2 (0.3) is considered statistically sig-

nificant at the 5% (1%) level by a one-tailed t-test (as only 

positive CORA is considered skillful). Since all the variables 

examined here are serially and spatially correlated, the above 

estimation might be overly simplified and may not apply to 

all regions. Therefore, a permutation method (as in DelSole 

et al. 2017) is used to determine the significance levels and 

to compare with the t-test based estimation. A permuted 

ensemble is constructed by shuffling the yearly blocks in 

order to account for subseasonal serial correlation in the 

data. For example, the reference time series is organized as 

a series of 1-year blocks as follows: 1999/2000/2001/2002/

2003/2004/2005/2006/2007/2008/2009/2010 and each block 

consists of a sub time series with the same number of start 

dates (see also the JJA example shown above). One example 

of the shuffled time series appears as 2007/2006/2008/200

1/2010/2003/2009/2002/2004/1999/2000/2005. The above 

permutation or shuffling is repeated 10,000 times to form an 

empirical distribution of CORA and the 99(95)th percentile 

of the resulting samples then defines the 1(5)% significance 

threshold value for CORA (corresponding to the 99(95)% 

confidence interval). The 1% threshold for CORA over the 

CONUS is mostly between 0.2 and 0.3 for all variables and 

all seasons (not shown), which is smaller than the estimated 

value of 0.3 based on the t-test with the equivalent DOF. In 

the following, we thus make the conservative assumption 

that CORA values greater than or equal to 0.3 are statisti-

cally significant, while the permutation significance levels 

are indicated by stippling the figures.

In order to better capture large-scale features, the 

model and observed precipitation fields are both spatially 

smoothed in spectral space, using a Fourier transform and 

an exponential weighting function exp[−(k/40)2], where 

k = sqrt(kx
2 + ky

2) is the total wave number, prior to calcu-

lating the CORA and CORP. The truncation wavenumber 

40 is chosen to remove small-scale noise while retaining 

physically relevant scales, where the equivalent wave-

length is about 1000 km in the tropics and 700 km in the 

mid-latitudes. The spatial smoothing does not significantly 

improve the overall significant threshold of CORA but 

rather mainly extract the large-scale pattern of the CORA 

for the total precipitation (not shown).

Teleconnection indices are calculated from ERA-

Interim reanalysis and the two models to examine their 

predictability. The AO index is calculated by projecting 

the first EOF mode of the ERA-Interim northern hemi-

sphere (20–90°N) SLP field onto the reanalysis and refore-

cast data. The NAO index is defined as the difference of 

SLP between the domains (50°W–10°E, 25–55°N) and 

(40°W–20°E, 55–85°N), following Wang et al. (2017), 

which is very close to other definitions and is convenient to 

use. The PNA index is computed using the NOAA Climate 

Prediction Center (CPC) modified pointwise definition, 

an update of Wallace and Gutzler (1981). The TNH mode 

was originally defined pointwise as the difference between 

(55–65°N, 80–100°W) and (50–60°N, 145–165°W) on the 

700 hPa pressure level (Robertson and Ghil 1999) and is 

calculated using the 500 hPa geopotential height because 

of the availability of the data. A sensitivity test using 

ERA-Interim data shows very little difference between 

the TNH indices computed from the two levels, as their 

temporal correlation is about 0.97 for 1995–2014. The 

statistical significance of these teleconnection indices is 

also estimated using the two methods above and again the 

one-tailed t-test gives stricter thresholds: week 3–4 CORA 

value greater than 0.2 (0.3) is significant at the 5% (1%) 

level, while the permutation method gives slight lower 

thresholds.



5864 L. Wang, A. W. Robertson 

1 3

3  Results

3.1  Temporal correlation

The week 3–4 precipitation CORA shows fairly pro-

nounced seasonal variations over the CONUS for both 

models, with highest overall skill in winter (DJF) and 

poorest overall skill in fall (SON) for the ECMWF model 

and in spring (MAM) for the NCEP model (Fig. 1). The 

spatial distribution of CORA shows qualitative similarity 

between the two models except for slightly higher skill 

for the ECMWF model. The highest winter precipitation 

-0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a)                          (b)                         

(c)          (d)

(e)           (f)                         

(g)          (h)

Fig. 1  Week 3–4 correlation of anomaly (CORA) skill maps for total 

precipitation, for ECMWF (left) and NCEP (right) models. Contour 

interval is 0.1 and any CORA marked with a dot/square symbol is 

significant at the 5/1% level based on a permutation method repeated 

for 10,000 times (hereafter for all CORA maps)
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skill (CORA > 0.3 for ECMWF) in the US resides in the 

northeast US and Florida (Fig. 1a). The spring precipi-

tation is difficult to predict in most regions of the US, 

especially for the NCEP model (Fig. 1d). However, the 

ECMWF model shows promising skill in the western US, 

around the borders between Idaho, Oregon, California and 

Nevada (Fig. 1c). This region of relatively high skill also 

appears in winter and summer, albeit with reduced skill 

and spatial coverage (Fig. 1a, e). The southern part of 

Arizona and New Mexico shows relatively high skill that 

increases from winter to summer, shifting to SE Texas and 

Louisiana in fall (Fig. 1a, c, e, g), which corresponds with 

the seasonal evolution of the North American Monsoon 

(e.g., Higgins et al. 1997).

The CORA of week 3–4 T2m is higher than for precip-

itation and is generally larger in the eastern and extreme 

-0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a)                          (b)                         

(c)          (d)

(e)           (f)                  

(g)          (h)

Fig. 2  Week 3–4 CORA skill maps for 2 m temperature
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southern US than in the western part for both mod-

els (Fig. 2). The spatial distribution of T2m CORA is in 

good agreement between the two models, while again the 

ECMWF model shows slightly higher skill. The T2m skill 

is much higher over the oceans (and often over the Great 

Lakes) than over the land, consistent with the contrast in 

heat content. Higher skill can be found in the Pacific basin 

in all seasons compared with that in the Atlantic basin, sug-

gesting upstream influence from teleconnection modes such 

as the ENSO and PNA. This difference in skill may also be 

related to the different inherent persistence of ocean heat 

content due to differences in the mixed-layer depth in the 

coastal waters of these two ocean basins offshore of the 

United States (e.g., Deser et al. 2003). Both models exhibit 

highest skill in winter (DJF) and lowest skill in transitional 

seasons (MAM and SON). Similar to the precipitation, T2m 

forecast skill also suggests the influence of North American 

Monsoon on temperatures and shows a local maximum in 

southern Arizona and New Mexico in summer (Fig. 2e).

The above large-scale spatial structures of near-surface 

temperature and precipitation skill are mostly dynamically 

driven as they are generally consistent with the Z500 CORA 

maps in the corresponding seasons (Fig. 3). For example, 

the winter Z500 CORA maps show a southeast-northwest 

dipole structure over the US with high values (> 0.4) in 

the southern and eastern US (Fig. 3a, b), while the win-

ter Prcp and T2m CORA maps show a similar structure to 

first order (Figs. 1a, b, 2a, b). In the other seasons (spring 

to fall), most regions of the US exhibit relatively low skill 

(Z500 CORA < 0.3) except for a tongue of high skill in the 

North American Monsoon regions extended from the trop-

ics where high skill associated with tropical moisture surges 

and associated evaporative and cloud-induced cooling (e.g., 

Hales 1972; Adams and Comrie 1997). The NCEP winter 

and summer large-scale spatial structures (Fig. 2a, b, e, f) are 

consistent with those extracted using Laplacian eigenvec-

tors by DelSole et al. (2017), albeit with different sampling 

methods. The very low skill of the NCEP model in MAM 

stands out in both the Z500 and T2m fields.

3.2  Sources of week 3–4 predictability

Since the high skill regions are usually of large spatial scale, 

the skill may be associated with large-scale low-frequency 

modes of variability in the atmosphere. At this lead time, the 

climate and variability of model forecasts is quite similar to 

that in the observations, where the models’ teleconnection 

modes and their connection with the variables studied here 

are faithfully reproduced (not shown). As a result, the high 

skill regions in the model variables (Prcp/T2m/SLP/Z500) 

often show relatively high correlations between the vari-

ables and teleconnection indices in observations. For exam-

ple, the observed winter precipitation in the southern and 

eastern US is well correlated with the Nino3.4, NAO, and 

PNA indices (Fig. 4), where the modeled winter precipita-

tion skill is relatively high (Fig. 1a). In particular, the high 

skill over Florida is an extension of high skill over the Gulf 

of Mexico that is primarily driven by these three teleconnec-

tion modes. The high skill of the winter temperature in the 

models is also consistent with high correlations between the 

observed temperature and the Nino3.4, NAO, and PNA indi-

ces in the southern and eastern US (Fig. 5). And again, the 

high skill in these surface variables is dynamically consistent 

with the high skill in Z500 in the southern and eastern US 

where the observed correlations are high (Fig. 6). Note that 

these teleconnection modes are not entirely independent, for 

example, both PNA and NAO are believed to be strongly 

influenced by ENSO (e.g., Straus and Shukla 2002; Moron 

and Gouirand 2003).

Skill levels in precipitation are relatively lower than those 

in temperature, and geopotential height (Figs. 1 vs. 2, 3). An 

exception is the high week 3–4 skill over the northwest US, 

in the region of the borders between California, Nevada, 

Oregon, and Idaho in spring (MAM; Fig. 7a), where T2m 

and Z500 skill is relatively low (Fig. 7c, e). Among the 

Nino3.4, AO, NAO, and PNA indices, only the AO index 

shows significant correlation with the total precipitation 

in observations, but poor correlation with T2m and Z500 

(Fig. 7b, d, f). The AO index is also well correlated with SLP 

in this region (Fig. 7h) where the ECMWF model shows 

fairly good skill in SLP (Fig. 7g). Therefore, the high skill 

of precipitation and SLP in this region is likely associated 

with the AO (it is shown in Fig. 9; Table 1 below that the 

modeled AO skill is also high in this season). Interestingly, 

the precipitation skill over the northwest US peaks in spring 

for both models (Fig. 8), unlike the skill of other variables 

that usually peaks in winter (Figs. 1, 2, 3). The subseasonal 

component of the skill, computed by subtracting the sea-

sonal average of each year separately before calculating the 

CORA, is less than half of the total in spring but dominates 

in the other seasons (Fig. 8a). Less than 1/3 of the total vari-

ance is explained by the subseasonal component in MAM 

(Fig. 8b). These features also hold true for a longer period, 

i.e., 1995–2014 for the ECMWF model (grey bars in Fig. 8), 

and indicates a sizeable interannual component of the week 

3–4 skill in spring precipitation over the western US asso-

ciated with the AO. This is consistent with a previously 

reported good correlation between the JFM-mean AO and 

the FMA-mean precipitation over the western US (McAfee 

and Russell 2008).

A natural follow-up question to ask is how well the mod-

els predict the teleconnection modes themselves, including 

the AO, NAO, PNA, and TNH. The TNH is included here 

because it has been argued to represent the ENSO response 

in the NH extratropics better than the PNA, whose time-

scales are more intraseasonal (Barnston and Livezey 1987; 
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Robertson and Ghil 1999). The week 1 forecast skill is very 

high (about 0.9 or higher), for all four indices and for both 

models in all seasons, with decreases in week 2 and beyond 

that are larger in the transition and summer seasons. How-

ever, it is remarkable that the week 3–4 fortnight-average 

skill mostly exceeds 0.4 in winter in both models (Table 1), 

as this skill is higher than the 1% significance threshold 

value and the persistence skill (generally between 0.2 and 

0.3 for different seasons; not shown). All four indices show 

highest week 3–4 skill in winter and lowest in summer 

(Fig. 9a). In general, Table 1 indicates that the skill in the 

week 3–4 fortnight average of the teleconnection indices 

derives from the week 3, but with week 4 skill significant 

in winter. Using earlier versions of the ECMWF and NCEP 

models, Johansson (2007) found only marginal skill in NAO 

and PNA at week 3 and week 4 (< 0.3). Younas and Tang 

-0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a)                          (b)                         

(c)          (d)

(e)           (f )                         

(g)          (h)

Fig. 3  Week 3–4 CORA skill maps for 500 hPa geopotential height
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(2013) showed that the PNA week 3–4 forecast skill is fairly 

modest (about 0.4 in CORA) in the ensemble mean of a 

suite of state-of-the-art seasonal forecast models but did not 

separate the seasons due to limited samples. The ECMWF 

and NCEP models exhibit similar week 3–4 skill in most 

cases except for higher fall NAO and spring PNA skill for 

the ECMWF model (Fig. 9).

Removing the seasonal contribution to the skill (by 

calculating CORA with respect to the seasonal averages 

of individual years), we find that the high winter skill for 

the AO and NAO indices contains an important seasonal 

component that contributes about 2/3 of the total variance 

explained (Table 2a, b vs. 1a, b; Fig. 9b). This is con-

sistent with recent model findings of significant seasonal 

forecast skill of winter NAO and AO (e.g., Scaife et al. 

2014; Dunstone et al. 2016; Wang et al. 2017). In con-

trast, the PNA winter skill mostly comes from its sub-

seasonal components (Table 2c vs. 1c; Fig. 9b). Perhaps 

surprisingly, about half of the variance explained by the 

TNH winter skill can also be attributed to subseasonal 

scales (Table 2d vs. 1d; Fig. 9b). The contrast between 

the AO/NAO and PNA/TNH predictability indicates that 

the seasonal time scale sources of week 3–4 predictability, 

such as ENSO and the Quasi-Biennial Oscillation (QBO), 

are more substantial in the Atlantic sector in winter, than 

over the Pacific. On the other hand, in the transition and 

summer seasons the skill for all four indices is dominated 

by the subseasonal components. These conclusions are 

fairly robust against the period tested, as the longer period 

ECMWF 1995–2014 skill shows very similar attribution 

between seasonal and subseasonal components (bracketed 

numbers in Tables 1, 2; grey bars in Fig. 9).

- 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 00.1 0.2 0.3 0.4 0.5

(a) 

(b)

(c)

Fig. 4  Observational correlation maps between DJF dekadal (10-day 

mean) GPCP total precipitation and a Nino3.4 index, b NAO index, 

and c PNA index. Only the correlations significant at the 10% level 

by a two-tailed t-test are shown and any correlation marked with a 

dot/square symbol is significant at the 5/1% level (hereafter for all 

dekadal correlation maps)

- 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 00.1 0.2 0.3 0.4 0.5

(a)

(b)

(c)

Fig. 5  ERA-Interim correlation maps between DJF dekadal 2 m tem-

perature and a Nino3.4 index, b NAO index, and c PNA index
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3.3  Pattern correlation

Here we address subseasonal predictability in terms of pat-

tern correlations (CORP) between the fields of observed and 

forecasted week 3–4 averaged anomalies. This is performed 

for the US domain (70–130°W, 20–50°N) to investigate the 

role of ENSO teleconnections in week 3–4 forecast skill 

(Fig. 10), before examining the role of the atmospheric tel-

econnections in Fig. 11. Composites of monthly-mean week 

3–4 CORP from the semi-weekly reforecasts for the nega-

tive (Nino3.4 index < − 1), neutral (between − 0.5 and 0.5), 

and positive (> 1) phase of ENSO are plotted in Fig. 10 for 

each variable. As in the CORA, the ECMWF model (blue 

bars) generally has slightly higher CORP than NCEP (red 

bars). The composites on the negative and positive ENSO 

phases are visibly higher than that on the neutral phase for 

all four variables, especially for the surface temperature skill 

where both models show statistically significant differences 

between neutral and extreme phases (Fig. 10b). The con-

trast between the negative and neutral phases is statistically 

significant for both models and all four variables, whereas 

the contrast between the positive and neutral phases is much 

weaker. The small number and relatively weak amplitude 

of El Niño events in the 1999–2010 period may be partly 

responsible for this asymmetry between ENSO phases. 

Analogous histograms of pattern correlations calculated for 

extreme phases of the AO/NAO/PNA/TNH yield less clear 

results (not shown). Nevertheless, relatively high skill in the 

US domain can be found in particular years during extreme 

phases of these teleconnection modes (see the highlighted 

periods in Fig. 11). For example, 2009/2010 winter was a 

particularly extreme case for all indices: Nino3.4 SST ≈ 1, 

AO ≈ − 5, NAO ≈ − 3, and PNA/TNH ≈ 4 (standardized 

values), when the T2m CORP was also quite high for the US 

domain. The high CORP during 1997/1998 winter also cor-

responds to high values in the Nino3.4 and PNA/TNH indi-

ces. On the other hand, the high CORP during 2006/2007 

winter is primarily accompanied with extreme AO/NAO 

phases. The predictability is usually low when teleconnec-

tion modes are quiet (in neutral phases; e.g., 2003/2004 

winter).

4  Summary and discussion

The week 3–4 forecast skill of surface temperature and pre-

cipitation is evaluated in the domain of the United States 

for the ECMWF VarEPS and NCEP CFSv2 global ensem-

ble prediction systems for the period of 1999–2010, firstly 

in terms of temporal correlation of anomalies (CORA) for 

standard meteorological seasons (Figs. 1, 2). The ECMWF 

model shows slightly higher skill in general, which might be 

due to finer horizontal resolution than the NCEP model and 

improved physical parametrizations from earlier versions 

(Wheeler et al. 2017). The difference in skill might also be 

a result of the lead-time difference inherent in the lagged 

ensemble construction for the NCEP model. Nevertheless, 

the large-scale patterns of the anomaly correlation are fairly 

similar between these two systems, especially for relatively 

high skill regions over the northeast US and Florida in DJF, 

the western US in MAM precipitation, and the southwest 

in JJA. Most of these high skill regions are associated with 

the high skill of mid-tropospheric (500 hPa) geopotential 

height (Fig. 3), except in spring over the North American 

Monsoon regions which are more influenced by tropical air 

surges (e.g., Hales 1972; Adams and Comrie 1997). It is 

worth noting that the NCEP model achieves comparable skill 

to the ECMWF model with a three times coarser resolution.

The high skills in the surface weather and atmospheric 

circulation are shown to be qualitatively attributable to 

ENSO, NAO, and PNA teleconnections in winter over the 

- 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 00.1 0.2 0.3 0.4 0.5

(a)

(b)

(c)

Fig. 6  ERA-Interim correlation maps between DJF dekadal 500 hPa 

geopotential height and a Nino3.4 index, b NAO index, and c PNA 

index
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southern and eastern US (Figs. 4, 5, 6), and to the AO in 

spring over the western US (Fig. 7) which appears to be 

dominated by the interannual component of variability 

(Fig. 8). The two ensemble prediction systems both show 

good week 3–4 forecast skill in predicting the teleconnec-

tion modes themselves (Fig. 9), especially in winter. This 

skill is found to be dominated by subseasonal timescale vari-

ations, except for the winter AO and NAO. By inference, 

this indicates an important seasonal time scale contribution 

to week 3–4 forecast skill in the Atlantic sector in winter. 

Nevertheless, the relatively short periods (12 years and 

20 years) considered here, are not sufficient to sample the 

interannual and decadal variations of these teleconnection 

modes (e.g. Weishemeir et al. 2017; O’Reilly et al. 2017). 

Consequently, caution is required in extrapolating the sea-

sonal skill estimated for these periods to other periods or to 

the future.

These results underscore the overlap of intraseasonal and 

interannual sources of predictability in the week 3–4 time 

range, leading to the prospect of enhanced predictability 

- 0 . 3 - 0 . 2 - 0 . 1 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 - 0 . 5 - 0 . 4 - 0 . 3 - 0 . 2 - 0 . 1 00.1 0.2 0.3 0.4 0.5

(a)                                         (b)                         

(c)                                         (d)

(e)                                         (f)                         

(g)                                         (h)

Fig. 7  Maps of a MAM CORA skill for ECMWF week 3–4 total precipitation, and b MAM correlation maps between dekadal GPCP total pre-

cipitation and observed AO index. Same as a, b but for c, d 2 m temperature, e, f 500 hPa geopotential height, and g, h sea level pressure
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Table 1  CORA for 1999–2010 (1995–2014) (a) AO index, (b) NAO index, (c) PNA index, (d) TNH index

Bold numbers (CORA > 0.3) are statistically significant at the 99% confidence interval by a one-tailed t-test, while CORA > 0.2 corresponds to 

the 95% interval (hereafter for all tables)

Lead (week) ECMWF NCEP

1 2 3 4 3&4 1 2 3 4 3&4

(a) AO index

DJF 0.93 (0.96) 0.68 (0.71) 0.34 (0.40) 0.25 (0.33) 0.35 (0.43) 0.90 0.61 0.41 0.28 0.41

MAM 0.94 (0.96) 0.59 (0.65) 0.40 (0.39) 0.27 (0.30) 0.39 (0.41) 0.89 0.50 0.35 0.12 0.30

JJA 0.91 (0.93) 0.43 (0.48) 0.12 (0.12) 0.02 (− 0.01) 0.07 (0.06) 0.86 0.40 0.13 − 0.08 0.01

SON 0.92 (0.95) 0.55 (0.55) 0.27 (0.30) 0.16 (0.23) 0.25 (0.32) 0.87 0.41 0.14 0.17 0.17

(b) NAO index

DJF 0.94 (0.96) 0.71 (0.74) 0.52 (0.53) 0.43 (0.44) 0.52 (0.54) 0.93 0.67 0.51 0.37 0.51

MAM 0.94 (0.95) 0.55 (0.61) 0.31 (0.33) 0.14 (0.20) 0.26 (0.31) 0.91 0.45 0.35 0.05 0.29

JJA 0.91 (0.93) 0.47 (0.51) 0.20 (0.17) 0.09 (0.03) 0.15 (0.10) 0.87 0.38 0.11 0.06 0.09

SON 0.93 (0.95) 0.54 (0.56) 0.31 (0.32) 0.14 (0.15) 0.27 (0.29) 0.86 0.38 0.14 0.04 0.10

(c) PNA index

DJF 0.98 (0.97) 0.86 (0.83) 0.60 (0.57) 0.39 (0.41) 0.54 (0.53) 0.96 0.77 0.55 0.36 0.49

MAM 0.96 (0.96) 0.66 (0.66) 0.33 (0.31) 0.16 (0.08) 0.28 (0.23) 0.92 0.53 0.21 0.07 0.15

JJA 0.96 (0.95) 0.55 (0.55) 0.05 (0.18) 0.12 (0.18) 0.10 (0.21) 0.90 0.45 0.19 0.07 0.12

SON 0.96 (0.95) 0.64 (0.63) 0.26 (0.31) 0.12 (0.14) 0.22 (0.25) 0.90 0.49 0.22 0.15 0.20

(d) TNH index

DJF 0.96 (0.96) 0.74 (0.74) 0.47 (0.46) 0.23 (0.29) 0.40 (0.44) 0.92 0.66 0.45 0.26 0.42

MAM 0.96 (0.95) 0.61 (0.61) 0.32 (0.28) 0.13 (0.13) 0.27 (0.27) 0.93 0.56 0.29 − 0.01 0.18

JJA 0.92 (0.92) 0.50 (0.47) 0.08 (0.13) 0.01 (0.04) 0.02 (0.10) 0.84 0.30 0.16 0.08 0.15

SON 0.94 (0.94) 0.62 (0.62) 0.34 (0.32) 0.21 (0.20) 0.31 (0.29) 0.88 0.54 0.27 0.08 0.22

Fig. 8  a 110–125°W, 35–45°N 

mean week 3–4 CORA skill and 

its subseasonal component for 

1999–2010 ECMWF and NCEP 

total precipitation. b Same 

as a but for the correspond-

ing squared CORA, which is 

proportional to the variances 

explained by each component. 

The 1995–2014 ECMWF 

counterparts are also included 

for comparison. The horizontal 

line in a represents the 95% 

confidence interval by a one-

tailed t-test

(a)                                                             

(b)                         
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(a)                                                             

(b)                         

Fig. 9  a Week 3–4 CORA skill and the subseasonal components for 

ECMWF and NCEP AO, NAO, and PNA indices. b Same as a but for 

the corresponding squared CORA. Any CORA greater than 0.3 (0.2) 

is statistically significant at the 99% (95%) confidence interval by a 

one-tailed t-test

Table 2  Subseasonal CORA for 1999–2010 (1995–2014) (a) AO index, (b) NAO index, (c) PNA index, (d) TNH index

Lead (week) ECMWF NCEP

1 2 3 4 3&4 1 2 3 4 3&4

(a) AO index

DJF 0.91 (0.95) 0.57 (0.63) 0.12 (0.22) 0.02 (0.14) 0.08 (0.21) 0.86 0.48 0.23 0.10 0.19

MAM 0.93 (0.95) 0.51 (0.57) 0.31 (0.31) 0.20 (0.25) 0.29 (0.33) 0.87 0.40 0.25 0.02 0.18

JJA 0.89 (0.92) 0.38 (0.41) 0.05 (0.05) 0.01 (− 0.03) 0.02 (0.00) 0.84 0.36 0.11 − 0.04 0.01

SON 0.92 (0.94) 0.55 (0.50) 0.29 (0.24) 0.18 (0.17) 0.29 (0.25) 0.86 0.41 0.15 0.18 0.19

(b) NAO index

DJF 0.91 (0.95) 0.58 (0.63) 0.30 (0.35) 0.20 (0.28) 0.26 (0.35) 0.89 0.52 0.30 0.14 0.26

MAM 0.93 (0.95) 0.50 (0.57) 0.27 (0.38) 0.11 (0.15) 0.20 (0.25) 0.90 0.40 0.30 − 0.05 0.21

JJA 0.91 (0.93) 0.47 (0.47) 0.19 (0.13) 0.08 (0.02) 0.13 (0.06) 0.86 0.38 0.13 0.06 0.10

SON 0.93 (0.94) 0.54 (0.55) 0.32 (0.32) 0.14 (0.13) 0.29 (0.28) 0.85 0.34 0.12 0.05 0.10

(c) PNA index

DJF 0.98 (0.97) 0.83 (0.81) 0.54 (0.50) 0.26 (0.27) 0.44 (0.40) 0.95 0.75 0.49 0.21 0.38

MAM 0.96 (0.95) 0.62 (0.61) 0.28 (0.25) 0.12 (0.06) 0.21 (0.16) 0.90 0.47 0.15 0.05 0.09

JJA 0.95 (0.95) 0.52 (0.54) 0.06 (0.20) 0.11 (0.17) 0.09 (0.22) 0.89 0.41 0.18 0.06 0.09

SON 0.96 (0.95) 0.64 (0.61) 0.25 (0.27) 0.10 (0.10) 0.20 (0.19) 0.90 0.49 0.23 0.14 0.21

(d) TNH index

DJF 0.96 (0.95) 0.72 (0.71) 0.40 (0.37) 0.11 (0.12) 0.27 (0.28) 0.91 0.62 0.37 0.15 0.29

MAM 0.94 (0.94) 0.54 (0.54) 0.23 (0.21) 0.07 (0.08) 0.17 (0.19) 0.90 0.49 0.23 − 0.15 0.04

JJA 0.91 (0.92) 0.47 (0.45) 0.05 (0.11) 0.04 (0.03) 0.02 (0.08) 0.83 0.27 0.12 0.09 0.12

SON 0.93 (0.94) 0.61 (0.60) 0.34 (0.30) 0.18 (0.17) 0.28 (0.25) 0.87 0.52 0.26 0.08 0.22
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during certain episodes when multiple teleconnection modes 

are strong and interfere constructively. For example, high 

skill in temperature in the 2009/2010 winter is attributable to 

large excursions in both Atlantic and Pacific teleconnection 

indices, while the high temperature skill in 1997/1998 and 

2006/2007 was mostly attributable to the Pacific and Atlan-

tic teleconnections respectively (Fig. 11). Wang and Chen 

(2010) illustrated the role of AO in driving the cold tempera-

ture in the northern extratropics in 2009/2010 winter. On the 

other hand, Lin (2014) found significant influences of the 

PNA on the North American surface temperature in winter.

While week 3–4 predictability in precipitation and tem-

perature over the US is not large, the results in this paper 

demonstrate that it is robust between two different ensemble 

prediction systems and that its spatial structure and season-

ality can be interpreted physically in terms of well-known 

teleconnection patterns. The highly seasonal nature of mid-

latitude teleconnections, which have largest amplitudes in 

winter (e.g., Hurrell et al. 2003), helps explain the seasonal-

ity of precipitation and temperature skill which also peaks 

in winter. An interesting exception is found in spring, where 

precipitation (but not temperature) has a predictable com-

ponent seen in both models in the northwestern US. This 

appears to be associated with interannual variability of the 

AO and a possible physical interpretation is that the storm 

track movement driven by the AO variability may influence 

the spring onset in the western US (McAfee and Russell 

2008). A more recent study revealed impacts of the Arctic 

stratospheric ozone variability on the April precipitation in 

this region through a series of feedbacks that involve the 

winter AO variability (Ma et al. 2018), which may explain 

the seasonal component of the skill. Nevertheless, there exist 

shifts in teleconnection modes and their correlation with 

precipitation over decadal or longer time scales (e.g., Cole 

and Cook 1998; Cook et al. 2011). A further exception is 

found in summer over the southwest monsoon region, seen 

most clearly in the ECMWF model, but also visible in the 

NCEP model.

Returning to the question of the sources of week 3–4 pre-

dictability beyond ENSO, the PNA is notable for the large 

subseasonal fraction of its skill, and how this clearly con-

trasts with the NAO where the interannual fraction domi-

nates. Recent studies have found that interannual NAO pre-

dictability is fairly high in winter, which arises primarily 

from the variability of Arctic sea ice, Atlantic ocean heat 

content, and stratospheric circulation that might further 

Fig. 10  Composite of monthly-

mean CORP on the negative 

(Nino3.4 index < − 1; 28 

sample months), neutral 

(between − 0.5 and 0.5; 45 

sample months), and positive 

(> 1; 24 sample months) ENSO 

phases for ECMWF (blue) and 

NCEP (red) models over the US 

domain (70–130°W, 20–50°N) 

for 1999–2010 reforecasts of (a) 

total precipitation, b 2 m tem-

perature, c 500 hPa geopotential 

height, and d sea level pressure. 

The ECMWF 1995–2014 

results are marked with grey 

edges. The errorbars represent 

the standard error (spread) of 

the composites
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link to ENSO and QBO (e.g., Scaife et al. 2014; Wang et al. 

2017). Therefore, the subseasonal predictability might be 

masked by the interannual component, even when a strong 

MJO-NAO teleconnection exists (e.g., Cassou 2008). 

Another possibility is the model deficits that degrade the 

models’ subseasonal skill, such as the too slow MJO propa-

gation in the NCEP model (Wang et al. 2014) and the dry 

bias in the lower tropospheric moisture that affects the MJO-

NAO teleconnection in the EMCWF model (Kim 2017).
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