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The coronavirus disease 2019 (COVID-19) pandemic has caused a major outbreak
around the world with severe impact on health, human lives, and economy globally.
One of the crucial steps in fighting COVID-19 is the ability to detect infected patients at
early stages and put them under special care. Detecting COVID-19 from radiography
images using computational medical imaging method is one of the fastest ways to
diagnose the patients. However, early detection with significant results is a major
challenge, given the limited available medical imaging data and conflicting performance
metrics. Therefore, this work aims to develop a novel deep learning-based
computationally efficient medical imaging framework for effective modeling and early
diagnosis of COVID-19 from chest x-ray and computed tomography images. The
proposed work presents “WEENet” by exploiting efficient convolutional neural network
to extract high-level features, followed by classification mechanisms for COVID-19
diagnosis in medical image data. The performance of our method is evaluated on three
benchmark medical chest x-ray and computed tomography image datasets using eight
evaluation metrics including a novel strategy of cross-corpse evaluation as well as
robustness evaluation, and the results are surpassing state-of-the-art methods. The
outcome of this work can assist the epidemiologists and healthcare authorities in
analyzing the infected medical chest x-ray and computed tomography images,
management of the COVID-19 pandemic, bridging the early diagnosis, and treatment
gap for Internet of Medical Things environments.

Keywords: medical imaging, COVID-19 diagnosis, machine learning, Internet of Medical Things, deep learning,
x-ray imaging, cancer categorization
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1 INTRODUCTION

In the beginning of December 2019, a novel infectious acute
disease called coronavirus disease 2019 (COVID-19) caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has emerged and caused severe impact on health, human lives,
and global economy. This COVID-19 disease originated in
Wuhan city of China and then spread in several other
countries and become a global pandemic (1). This virus is
easily transmitted between two persons through petite drops
caused by coughing, sneezing, and talking during close contact.
The infected person usually has certain symptoms after 7 days
that include high fever, continuous cough, shortness of breath,
and taste loss. According to the statistical report of the World
Health Organization (WHO) (2), COVID-19 affected around
192 countries with 199 million confirmed active cases and 4.2
million confirmed deaths till August 4, 2021. Considering the fast
spread and its high contiguous nature, it is essential to diagnose
COVID-19 at an early stage to greatly prevent the outbreak by
isolating the infected persons, thereby minimizing the
possibilities of infection to healthy people. Till date, the most
common and convenient technique for diagnosing COVID-19 is
the reverse transcription polymerase chain reaction (RT-PCR).
However, this technique has very low precision, high delay, and
low sensitivity, making it less effective in preventing the spread of
COVID-19 (3).

Besides the RT-PCR testing system, there are several other
medical imaging-based COVID-19 diagnosing methods such as
computed tomography (CT) (4–6) and chest radiography (x-ray)
(7, 8). Diagnosis of COVID-19 is typically associated with both
the symptoms of pneumonia and medical chest x-ray tests (9,
10). Chest x-ray is the first medical imaging-based technique that
plays an important role in the diagnosis and detection of
COVID-19 disease. Some attempts have been made in the
literature to detect COVID-19 from medical chest x-ray images
using machine learning and deep learning approaches (11, 12).
For instance, Narin et al. (13) evaluated the performance of five
pretrained Convolutional Neural Network (CNN)-based models
for the detection of coronavirus pneumonia-infected patients
using medical chest x-ray images. Ismail et al. (14) utilized deep
feature extraction and fine-tuning of the pretrained CNNs to
classify COVID-19 and normal (healthy) chest x-ray images.
Tang et al. (15) used chest x-ray images with effective screening
for the detection of COVID-19 cases. Furthermore, Jain et al.
(16) used transfer learning for the COVID-19 detection using
medical chest x-ray images, and they compared the performance
of medical imaging-based COVID-19 detection methods.

More recently, several other deep learning-based approaches
(17) are presented to overcome the limitations of previous
imaging-based COVID-19 detection methods. For instance,
Minaee et al. (18) proposed a transfer learning strategy to
improve the COVID-19 recognition rate in medical chest x-ray
images. They investigated different pretrained CNN
architectures on their newly prepared COVID-19 x-ray image
datasets and claimed reasonable results. However, their newly
created dataset is not balanced and has a smaller number of
Frontiers in Oncology | www.frontiersin.org 2
COVID-19p images compared with non-COVID-19 images.
Aniello et al. (19) presented ADECO-CNN to classify infected
and noninfected patients viamedical CT images. They compared
their CNN architecture with pretrained CNNs including VGG19,
GoogleNet, and ResNet50. Yujin et al. (20) suggested a patch-
based CNN approach for efficient classification and segmentation
of COVID-19 chest x-ray images. They first preprocessed medical
chest x-ray images and then fed them into their proposed network
for infected lung area segmentation and classification in medical
images. However, their attained performance is relatively low due
to the small number of images in their used dataset. Similarly, Yu-
Huan et al. (21) presented a joint classification and segmentation
framework called JCS for COVID-19 medical chest CT diagnosis.
They trained their JCS system on their newly created COVID-19
classification and segmentation dataset. They claimed real-time
and explainable diagnosis of COVID-19 in chest CT images with
high efficiency in both classification and segmentation. Afshar
et al. (22) proposed a deep uncertainty-aware transfer learning
framework for COVID-19 detection in medical x-ray and CT
images. They first extracted CNN features from images of chest
x-ray andCT scan dataset and then evaluated by differentmachine
learning classifiers to classify the input image as COVID or
non-COVID.

The current COVID-19 pandemic situation greatly
overwhelms the health monitoring systems of even developed
countries, leading to an upward trend in the number of deaths on
a daily basis. Also, the inaccessibility of healthcare system and
required medication to the rural areas caused increase in the loss
of human lives. Therefore, an intelligent AI-driven healthcare
system is necessarily needed for combating with COVID-19
pandemic and rescuing hospitals and other medical staff.
Thanks to the Internet of Things (23–26) and Internet of
Medical Things (IoMT) (27, 28) for offering powerful features
(i.e., online monitoring, high-speed communication, and remote
checkups) that can greatly assist healthcare system of a country
against COVID-19 pandemic (29). Also, Healthcare 5.0 with 5G-
enabled IoMT environment can effectively improve the
accessibility of doctors and nurses to their patients in remote
areas, enabling COVID-19 patients to control their health based
on daily recommendations from doctors.

Undoubtedly, the deployment of 5G-enabled IoMT protocols
can greatly enhance the performance of smart healthcare system
by connecting hospitals and patients, transmitting their health-
related data between both parties. However, such a smart IoMT
healthcare environment demands computationally efficient yet
accurate AI algorithms (including both machine learning and
deep learning algorithms) (30). Most of the existing deep
learning approaches use computationally complex CNN
architectures that require high network bandwidth and
computational requirements and cannot be employed on
resource constrained devices. Thus, the architecture of AI
Algorithm (i.e., CNN architecture) to be deployed must meet
the requirements of the executional environment (the device
used in IoMT environment).

To alleviate the shortcomings of pervious approaches and
design energy-efficient model for IoMT-enabled environment,
February 2022 | Volume 11 | Article 811355
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we propose a computationally efficient, yet accurate CNN
architecture called WEENet. The proposed architecture is
designed to efficiently detect COVID-19 in medical chest x-ray
images, requiring limited computational resources. More
precisely, the key contributions of this study are summarized
as follows:

1. Deep learning-based models require huge amount of medical
imaging data to train effectively, but COVID-19 benchmarks
have relatively limited number of samples especially for
COVID class. To increase the number of images for
effective training of the proposed WEENet framework, we
applied offline data augmentation techniques on available
medical chest x-ray images such as rotation, flipping,
zooming, etc. that brought improvements in the
performance as evident from the results.

2. WEENet is developed to detect COVID-19 in medical
chest x-ray images and support the management of
IoMT environments. WEENet uses EfficientNet (31)
model as a backbone for feature extraction from chest x-
ray images, followed by stacked autoencoding layers to
represent the features in more abstract form before the
final classification decision.

3. The performance of several deep learning-based models is
evaluated using benchmark medical chest x-ray images
datasets and eight evaluation metrics including a novel
strategy of cross-corpse and robustness evaluation for
COVID-19 detection in chest x-ray images. Furthermore,
we also compared the performance of our WEENet with
other state-of-the-art (SOTA) methods, where it surpassed in
terms of several evaluation metrics.

The remainder of the article is organized as follows: Section 2
covers the proposed IoMT-based WEENet framework with a
discussion on datasets. In Section 3, we discuss the experimental
setups, the experimental results, and their analysis. Finally, Section
4 concludes this paper and suggests future research directions.
2 PROPOSED IOMT-BASED
WEENET FRAMEWORK

This section discusses the overall workflow of our WEENet
framework in IoMT environment for efficient and timely
detection of COVID-19 in x-ray images over edge computing
platforms. For better understanding, the proposed WEENET
framework is divided into three phases including Data
Acquisition, Preprocessing, and WEENet. The first phase
presents the detail of data collection from different sources,
followed by the second phase which performs extensive data
augmentation on the data collected in the first phase to prevent
underfitting/overfitting problems. The third phase contains the
WEENet architecture which is responsible for COVID-19
detection in x-ray images. The overall graphical overview of
our proposed framework with all phases is given in Figure 1 and
explained in the following subsections.
Frontiers in Oncology | www.frontiersin.org 3
2.1 Data Acquisition and Preprocessing
During the pandemic, hospitals around the world produced
image data related to COVID-19 (such as medical x-ray and
CT images), and some of them are publicly available for research
purposes in medical imaging. However, the available COVID-19
image datasets are either not well organized or have lack of
balance between positive and negative class samples, which often
lead network to model overfitting during the training process.
Therefore, the research community is working to organize the
available COVID-19 image data and make it usable before
utilizing it for early diagnosis of COVID-19. To achieve data
diversity and balance between positive and negative class
samples, we actively used data augmentation approaches,
which not only increase the volume of data but can also
significantly improve the classification performance of deep
learning models as evident from our experiments.

In this research, we have used three different COVID-19
image datasets namely chest x-ray images (CXI) (18), x-ray
dataset COVID-19 (XDC) (32), and COVID-19 radiography
database (CRD) (33), where each dataset contains medical
chest x-ray images of positive and negative patients. To
alleviate the chances of model overfitting and class biasness, we
performed extensive data augmentation by equalizing the
number of positive and negative class samples in each of the
abovementioned datasets. Considering the number of images per
class in the dataset, we performed data augmentation with
different augmentation ratio for each dataset so that we can
obtain balance training data. Following this strategy, we
augmented the COVID-19 images of CXI (18) dataset with
augmentation ratio of 1:15 such that each image is reproduced
in 15 different variants. Similarly, for XDC (32), we used the data
augmentation ratio of 1:10 for both positive and negative classes.
For CRD (33) dataset, we only augmented the COVID-9 class
with the augmentation ratio of 1:3, where each image is
reconstructed with its 3 different variants. The proposed data
augmentation strategy analyzed different augmentation
approaches and then selected the most suitable eight distinct
operations on each image of the dataset that include Rotation,
Zoom, Width shift, Height shift, Shear, Fill mode, Flip, and
Brightness operations before forwarding to our proposed
WEENet for training. The details of augmentation operations
used in our method are listed in Table 1.

It can be noticed that images in original XDC dataset are
insufficient for training a deep learning algorithm. Also, the
number of positive samples in the CXI dataset is comparatively
lesser than negative samples prior to data augmentation process.
Similarly, the CRD dataset has also a huge difference between the
number of positive and negative samples. On the other hand, the
augmented version of the listed datasets can be found well
balanced and rich in terms of data diversity, thus more suitable
for deep learning-based methods.

2.2 EfficientNet: The Backbone
Architecture
Several CNN architectures have been explored before choosing
the appropriate model that are extensively used in different
February 2022 | Volume 11 | Article 811355
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domain studies such as time series prediction, classification,
object detection, and crowed estimation. These architectures
include VGG16 (34), VGG19 (34), ResNet18 (35), ResNet50
(35), and ResNet101 (35) that are used by researchers for
COVID-19 detection in chest x-ray images, but each CNN
model has its own pros and cons. However, researchers
investigate these architectures to boost their accuracy by using
different scaling strategies to adjust the network depth, width, or
resolution. Most of the networks are based on single scaling, that
scales only a single dimension from depth, width, and size.
Though, scaling two or three dimensions will yield efficiency
and suboptimal accuracy. To this end, we investigate EfficientNet
that scales all the dimensions through compound scaling
technique. This network is developed through leveraging
multiobjective architecture search, which optimizes both
floating point operations (FLOPs) and accuracy. EfficientNet
Frontiers in Oncology | www.frontiersin.org 4
uses the search space of (36) and ACC (m) × [FLOPS (m)/T]w as
an optimization tool. The ACC (m) and FLOPS (m) represent the
accuracy and FLOPs of model m while T and w are the FLOPs
target and hyperparameters, respectively. These terms control
the tradeoff between the accuracy and FLOPs. This network
comprises several convolutional layers where different-sized
kernels are equipped in each layer. The input frame having three
channels (R, G, B) corresponds to size such as 224 × 224 × 3.
The subsequent layers are scaled down in a resolution that reduces
the size of featuremaps while the width is scaled up to increase the
accuracy. This tool ensures the collection of important features
from the input frame. For example, the second layer consists of
Width = 112 kernels, and the number of kernels by next
convolution is Width = 64. The total maximum kernels used are
Depth = 2,560 in the last layer, where the resolution is 7 × 7 which
represents the most discriminative features. At the end, we added
max pooling layer that is followed by encoding layers and a
SoftMax layer for the final classification.
2.3 The Proposed WEENet
The proposedWEENet is based on EfficientNet model followed by
encoding layers. EfficientNet is used to extract important features
from the input data and then the output is feed forward to stacked
encoding layers. The stacked encoding layers are based on
autoencoder (37) used to compress the data from high dimension
into low dimension, while preserving the salient information from
the input data.Autoencoders are a typeofdeepneural networks that
TABLE 1 | The operational details of our proposed data augmentation strategy.

No. Technique Parameter range

1 Rotation −25~25
2 Zoom 0.10
3 Width shift 0.01
4 Height shift 0.01
5 Shear 0.1
6 Fill mode Nearest
7 Flip Right and left
8 Brightness 0.50, 1.50
FIGURE 1 | Overview of the proposed WEENet-assisted framework for COVID-19 diagnosis using chest x-ray images with the support of 5G technology and
efficient management for IoMT environments.
February 2022 | Volume 11 | Article 811355
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map the data to itself through a process of (nonlinear)
dimensionality reduction, followed by dimensionality expansion.
The autoencoder models include three layers: input, hidden, and
output layer as shown in Figure 2. The encoder part is used tomap
the input data into lower dimension followed by decoding layers to
reconstruct it. Let us suppose the input data (Xn)

N
n=1, where Xn

belongs toRm x 1, hn is the low-dimensionmap (hidden state) which
is calculated from Xn, and “On” is the output decoder. The
mathematical representation of encoding and decoding layer is
shown in Eq. (1).

?n = F(W1Xn + )?1) (1)

here, F represents the encoding function, W1 is the weight
metrics, and ?1 is the bias term. The mathematical
representation of the decoding layer is shown in Eq. (2).

On = G(W2Xn + ?2) (2)

In this equation, G is the decoding function, W2 is the weight
metrics, and ?2 is the bias term of decoding layer. In our WEENet,
we used the encoding part of the autoencoder to represent the
features in more abstract form. In these layers, the high-dimension
EfficientNet features is encoded to low-dimension features. In the
proposed model, two encoding layers are incorporated with
EfficientNet architecture. The output of EfficientNet is 2,560
dimension feature vector which is encoded to 1,280 dimension
feature vector. Furthermore, 1,280 dimension feature vector is
then encoded to 640 dimension feature vector is then 320. The
proposed model is trained for 50 epochs, using SGD optimizer
with 0.0001 learning rate, and its performance is tested against
SOTA as given in Section 3.
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3 EXPERIMENTAL RESULTS
AND DISCUSSION

In this section, we evaluated our WEENet on three publicly
available COVID-19 datasets and compared the classification
performance with other methods. For this, we first provide the
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details of experimental settings of this research study, followed
by information about datasets and metrics for performance
evaluation. Subsequently, we compare the proposed WEENet
with other SOTA CNN architectures used for COVID-19
classification. Finally, we close this section by emphasizing on
the feasibility of our proposed WEENet framework for COVID-
19 diagnosis in 5G-enabled IoMT environments.

3.1 Implementation Details
This section provides the detail of experimental settings and the
execution environment used for implementing our proposed
WEENet framework. The proposed method is purely
implemented in Python (version 3.5) language using Visual
Studio Code (VSCode)-integrated development environment.
The WEENet concepts are implemented by utilizing a very
prominent deep learning framework called Keras on Intel Core
i7 CPU equipped with a GPU of Nvidia GTX having 6 GB
onboard memory. The proposed WEENet architecture is trained
on three different datasets including CXI, XDC, and CRD with the
same configuration of hyperparameters, i.e., number of epochs,
batch size, learning rate, weight decay, etc. The training and
validation performances of our WEENet on CXI, XDC, and
CRD datasets are visually depicted in Figures 3–5, respectively.

3.2 Details of the Datasets
For experimental evaluation, we have used three publicly available
datasets (18, 32, 33) to validate the performance of our proposed
method compared with other SOTA CNN architectures. These
datasets contain chest x-ray images of positive and negative
COVID-19 patients assigned with corresponding labels, i.e.,
COVID-19 and normal. The statistical details of the
abovementioned datasets are listed in Table 2. Besides these
datasets, there are several other publicly available datasets
commonly used for COVID-19 classification. However, most of
them are either imbalance or have weak diversity leading to poor
performance. Therefore, we selected CXI, XDC, and CRD datasets
from the publicly available listed datasets in Table 3. The detail of
each dataset is given in Table 3 including publishing year, name of
the dataset, number of samples in COVID class and non-COVID
class, methods of evaluation, and experimental outcomes in terms
of sensitivity, specificity, and accuracy.

3.2.1 CXI Dataset
It is one of the most used datasets for COVID-19 diagnosis in
medical image analysis community. This dataset contains a total
of 184 COVID-19 infected and more than 5,000 normal chest x-
ray images. Clearly, the original CXI (18) dataset has imbalance
class samples that significantly affect a model’s performance
during training. Considering the chances of overfitting during
training, we augmented the dataset and balanced the number of
images for both COVID-19 and normal class. The number of per
class images for both original and augmented CXI dataset is
listed in Table 2.

3.2.2 XDC Dataset
This dataset is created by collecting a small number of chest x-ray
images of positive and negative COVID-19 patients. Overall, this
FIGURE 2 | General overview of autoencoder architecture.
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dataset is very small and cannot be used for training large CNN
networks. Also, such a lesser amount of image data often leads to
model underfitting where model struggles to learn from the data
under observation. To avoid such kind of hurdles during
training, we augmented the XDC (32) dataset and increased
the number of images from 94 to 940 for both COVID-19 and
normal class as given in Table 2.
Frontiers in Oncology | www.frontiersin.org 6
3.2.3 CRD Dataset
The COVID-19 radiography dataset is the large-scale chest x-ray
image dataset released in different versions. In the first release,
they publicly share 219 COVID-19 infected and 1,341 normal
chest x-ray images. In the second release, they increased the
number of COVID-19 infected chest x-ray images to 1,200.
Following this, in the third release, the number of COVID-19
infected chest x-ray images is increased to 3,616 and normal
chest x-ray images to 10,192. In this paper, we used the final
release of the CRD (33) dataset, whose statistical details are
presented in Table 2.

3.3 Evaluation Metrics
In image classification problem, the performance of trained CNN
model is mostly evaluated by conducting quantitative assessment
via commonly used classification performance metrics. These
FIGURE 3 | Training and validation performance of our proposed WEENet over medical CXI image dataset.
FIGURE 4 | Training and validation performance of our proposed WEENet over medical XDC image dataset.
TABLE 2 | Number of samples per class in original and augmented datasets.

Dataset Original dataset Augmented dataset

COVID-19 Normal COVID-19 Normal

CXI (18) 200 5,000 3,000 3,000
XDC (32) 94 94 940 940
CRD (33) 3,616 10,192 10,848 10,848
February 2022 | Volume 11 | Article 811355
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metrics can be easily computed with the help of confusion matrix
by forwarding the actual class labels and predicted labels.
Following this strategy, in this paper, we used eight commonly
used performance evaluation metrics that include true positive
(TP), false positive (FP), false negative (FN), true negative (TN),
sensitivity, specificity, accuracy, and receiver operating
characteristics (ROC) for validating the classification
performance of our WEENet. The values of TP, FP, FN, and
TN are retrieved from the confusion matrix and the sensitivity,
specificity, accuracy, and ROCmetrics are computed accordingly
as Eq. (3) to Eq. (6).
Frontiers in Oncology | www.frontiersin.org 7
Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

ROC = Sensitivity ∼ R ∼ Specificity (6)
FIGURE 5 | Training and validation performance of our proposed WEENet over medical CRD image dataset.
TABLE 3 | Detailed information of the collected SOTA including techniques and their other important remarks.

Ref. Year Dataset COVID Non-COVID Technique Inclusion Performance (%)

(18) 2020 CXI 200 5,000 ResNet18, ResNet50, SqueezeNet, and
DenseNet121

✔ Sensitivity = 98 ( ± 3)
Specificity = 90

(19) 2021 SARS-COV-2 CT scan dataset 1,252 1,230 ADECO-CNN ✘ Accuracy = 98.99
(21) 2021 COVID-CS 68,626 75,541 Novel joint classification and segmentation

along fine-grained pixel-level labels of
opacifications

✘ Sensitivity = 95
Specificity = 93

(22) 2021 CT scan dataset 349 397 Four models for feature extraction and
machine learning classifiers for classification

✘ Accuracy = 87.9

(32) 2021 XDC 94 94 Centralized-VGG16 + data augmentation. ✔ Sensitivity = 95.1
Specificity = 93.0

Centralized-ResNet50 + data augmentation. Sensitivity = 96.8
Specificity = 96.2

(33) 2021 CRD 3,616 10,192 U-Net ✔ Accuracy = 98.21
Modified U-Net Accuracy = 98.63

Ours 2021 CXI 200 5,000 WEENet ✔ Sensitivity = 85.0
Specificity = 100
Accuracy = 99.5

XDC 94 94 ✔ Sensitivity = 100
Specificity = 95.7
Accuracy = 97.8

CRD 3,616 10,192 ✔ Sensitivity = 98.6
Specificity = 99.6
Accuracy = 99.3
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Here, sensitivity indicates the number of correctly classified
positive samples over the total number of positive samples.
Similarly, specificity represents the number of correctly
classified negative samples over the total number of negative
samples. Accuracy is a generic classification metric that indicates
the total number of correct classifications over the total number
of samples. Finally, ROC metric represents the relationship
(indicated by symbol ~R~) between specificity and sensitivity.

3.4 Cross-Corpse Evaluation and
Robustness Analysis
The generalization of a system plays an important role especially
when dealing with uncertain computational environment, where
data under the observation is semantically different from the data
used for training the algorithm. Bearing this in mind, we proposed
a new evaluation strategy called cross-corpse evaluation for
validating the generalization and robustness of our proposed
system in uncertain environment. In this new evaluation strategy,
first, we evaluated the performance of our method against other
SOTA on test sets of the same datasets used for training. While in
the second round of experiments, we assessed the performance of
the proposed approach compared with the underlined investigated
CNNs on test sets of the datasets other than training datasets,
which is termed as cross-corpse evaluation. The obtained
quantitative results for both the same dataset and cross-corpse
evaluation strategy are presented in Tables 4, 5. It can be easily
perceived that the obtained accuracy score for cross-corpse
evaluation is comparatively lower than that of the original
dataset, yet the accuracy scores indicate the better generalization
performance. Furthermore, the reported quantitative results in
Tables 4, 5 verify the overwhelming performance of our method
Frontiers in Oncology | www.frontiersin.org 8
by obtaining the highest accuracy across each dataset in both the
same dataset and cross-corpse evaluation. We also evaluated the
qualitative performance of our method against SOTA by doing
classification on randomly collected images from the test sets of
each experimented dataset. The prediction results for randomly
selected images from each experiment dataset are shown in
Figure 6, where it can be noticed that our method provides the
best prediction results compared with other SOTA methods for
COVID-19 classification.

3.5 Comparison With Other CNN Models
for COVID-19 Classification
This section presents the comparative analysis of our proposed
WEENet with other SOTA methods for COVID-19 classification
on test sets of CXI, XDC, and CRD datasets. For comparative
analysis, we evaluated the performance of our method and
compared it with SOTA including MobileNet (38), NASNet-
Mobile (39), VGG16 (34), ResNet101 (35), RestNet50 (35),
VGG19 (34), and EfficientNet (31). To investigate the
performance of our method and validate the effectiveness of
the proposed data augmentation strategy, we conducted
experiments on both original datasets and augmented datasets
and compared the results with the SOTA methods. The obtained
results for the original dataset are given in Table 4, where it can
be perceived that our proposed WEENet outperforms all
comparative CNNs on original datasets across each evaluation
metric except NASNet-Mobile (39) that performs comparatively
better than our method in terms of TP and FP on the CXI
dataset. On the other hand, the obtained results on augmented
datasets are given in Table 5, where it can be noticed that our
proposedWEENet achieved the best results by overwhelming the
TABLE 4 | Performance comparison of several deep learning-based models over benchmark datasets.

Dataset name Model Original dataset Cross-corpse evaluation

CXI (18) TP↑ FP↓ FN↓ TN↑ Sensitivity↑ Specificity↑ Accuracy↑ ROC↑ Accuracy↑
MobileNet (38) 12 24 485 515 0.024 0.955 0.508 0.424 0.435
NASNet-Mobile (39) 26 10 254 746 0.092 0.986 0.745 0.734 0.714
VGG16 (34) 17 19 380 620 0.042 0.970 0.614 0.546 0.597
ResNet101 (35) 21 15 402 598 0.049 0.975 0.597 0.591 0.557
ResNet50 (35) 19 17 341 659 0.052 0.974 0.654 0.593 0.604
VGG19 (34) 16 20 258 742 0.058 0.973 0.731 0.593 0.710
EfficientNet (31) 24 12 179 811 0.118 0.985 0.813 0.743 0.847
WEENet 25 11 97 903 0.200 0.988 0.895 0.799 0.887

XDC (32) MobileNet (38) 11 9 8 12 0.578 0.571 0.585 0.575 0.553
NASNet-Mobile (39) 14 6 4 16 0.777 0.727 0.750 0.750 0.782
VGG16 (34) 13 7 9 11 0.590 0.611 0.600 0.600 0.574
ResNet101 (35) 16 4 6 14 0.723 0.777 0.750 0.750 0.745
ResNet50 (35) 15 5 7 13 0.681 0.722 0.700 0.700 0.617
VGG19 (34) 12 8 6 14 0.666 0.636 0.650 0.650 0.592
EfficientNet (31) 18 2 4 16 0.818 0.888 0.850 0.850 0.817
WEENet 19 1 2 18 0.904 0.947 0.925 0.925 0.894

CRD (33) MobileNet (38) 231 132 466 554 0.331 0.807 0.567 0.590 0.517
NASNet-Mobile (39) 309 54 274 746 0.530 0.930 0.762 0.791 0.698
VGG16 (34) 244 119 436 584 0.358 0.830 0.598 0.622 0.578
ResNet101 (35) 251 112 464 556 0.451 0.833 0.583 0.618 0.514
ResNet50 (35) 223 140 499 521 0.308 0.788 0.538 0.563 0.482
VGG19 (34) 187 176 238 782 0.440 0.816 0.700 0.641 0.697
EfficientNet (31) 329 34 138 882 0.704 0.962 0.875 0.886 0.837
WEENet 329 34 84 936 0.796 0.964 0.914 0.912 0.894
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SOTA CNNs across each evaluation metric, thus showing its
superiority and efficiency for COVID-19 classification in medical
chest x-ray images. We also compared our WEENet architecture
with other SOTA CNN-based COVID-19 classification
approaches and reported the results in Table 6. The reported
Frontiers in Oncology | www.frontiersin.org 9
results reflect the dominancy of our WEENet on CRD dataset
across each evaluation metric Although our method obtained
comparatively lower values for sensitivity and specificity on the
CXI and XDC datasets, still our method attained best results on
the same datasets across the other two evaluation metrics. The
TABLE 5 | Performance comparison of several deep learning-based models over augmented datasets.

Dataset name Model Original dataset Cross-corpse evaluation

CXI (18) TP↑ FP↓ FN↓ TN↑ Sensitivity↑ Specificity↑ Accuracy↑ ROC↑ Accuracy↑
MobileNet (38) 219 149 134 266 0.620 0.641 0.631 0.630 0.583
NASNet-Mobile (39) 307 61 64 336 0.827 0.846 0.837 0.837 0.784
VGG16 (34) 280 88 126 388 0.689 0.815 0.757 0.758 0.693
ResNet101 (35) 249 119 101 299 0.711 0.715 0.713 0.712 0.647
ResNet50 (35) 307 61 98 302 0.758 0.832 0.793 0.795 0.691
VGG19 (34) 291 77 79 321 0.786 0.806 0.796 0.797 0.738
EfficientNet (31) 339 29 37 363 0.901 0.926 0.914 0.914 0.883
WEENet 364 4 3 397 0.991 0.990 0.991 0.991 0.947

XDC (32) MobileNet (38) 61 33 39 55 0.610 0.625 0.617 0.617 0.587
NASNet-Mobile (39) 83 11 19 75 0.813 0.873 0.840 0.840 0.816
VGG16 (34) 71 23 30 64 0.703 0.735 0.718 0.718 0.687
ResNet101 (35) 77 17 20 74 0.793 0.813 0.803 0.803 0.774
ResNet50 (35) 72 22 19 75 0.791 0.773 0.781 0.782 0.698
VGG19 (34) 68 26 20 74 0.772 0.740 0.755 0.755 0.714
EfficientNet (31) 88 6 12 82 0.880 0.931 0.904 0.904 0.817
WEENet 93 1 2 92 0.979 0.989 0.984 0.984 0.974

CRD (33) MobileNet (38) 759 261 402 618 0.653 0.703 0.675 0.675 0.597
NASNet-Mobile (39) 822 198 174 846 0.825 0.810 0.817 0.818 0.798
VGG16 (34) 784 236 433 587 0.644 0.713 0.672 0.672 0.586
ResNet101 (35) 833 187 116 904 0.877 0.828 0.851 0.851 0.880
ResNet50 (35) 751 269 478 542 0.611 0.668 0.633 0.634 0.595
VGG19 (34) 798 222 198 822 0.801 0.787 0.794 0.794 0.742
EfficientNet (31) 947 73 103 917 0.901 0.926 0.913 0.914 0.847
WEENet 1004 16 19 1001 0.981 0.984 0.982 0.983 0.914
February 2022 | V
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best reported results presented in Tables 3–6 are highlighted in
the bold text while the runner up scores are indicated in the
underlined text. Furthermore, some visual results of the
proposed WEENet over test set of each dataset are given
in Figure 7.

3.6 Feasibility Analysis for 5G-Enabled
IoMT Environment
Considering the requirements of 5G-enabled IoMT environment
for rapid and accurate smart healthcare systems (42–44), it is
essential to analyze the feasibility of a system before deploying in
the real world. The feasibility assessment protocols involved
different steps to investigate the suitability of a given system
for the problem under observation in various aspects such as the
robustness of decision-making system, automation, real-time
response, and employability on edge-computing platforms.
Having this in mind, we conducted feasibility analysis
experiments and investigated our proposed WEENet in the
abovementioned aspects. Based on the obtained quantitative
results in the previous section, we estimated the robustness of
our WEENet by averaging the attained accuracy score across all
datasets and achieved an average of 90% accuracy. Next, the
proposed method meets automation requirements thereby
Frontiers in Oncology | www.frontiersin.org 10
providing fully end-to-end deep learning system. Although,
our method takes relatively more time for diagnosing COVID-
19 in chest x-ray image, it has limited memory storage
requirements for deployment on edge devices, making it a
suitable approach for early COVID-19 detection in 5G-enabled
IoMT environments. The conducted feasibility assessment
findings are depicted in Figure 8.

3.7 WEENet for Lung Cancer Detection
In this section, we discuss the effectiveness and reusability of our
proposed WEENet framework for early detection of lung cancer
in chest CT scan images of infected patients. The deep learning-
based early detection of lung cancer (45) can greatly facilitate the
doctors and other medical-related individuals to eliminate the
cancer cell at first place by providing proper care and treatment
to the infected patients. Considering the relevancy in the image
data (chest CT scan images) used for COVID-19 detection and
lung cancer CT scan images (46), the proposed WEENet
framework can be used for lung cancer detection by fine-
tunning the architecture on lung cancer image data using
transfer learning strategy (47). For efficient retraining of the
WEENet architecture, the trained weights (already learned
knowledge during training on COVID-19 image data) can be
TABLE 6 | Performance comparison of the proposed WEENet with other baseline models.

Dataset Model Original dataset

CXI (18) Sensitivity↑ Specificity↑ Accuracy↑
SqueezeNet (40) 0.980 0.920 –

WEENet 0.850 1.0 0.995
XDC (32) ResNet50 (35) 0.981 0.958 0.970

WEENet 1.0 0.957 0.978
CRD (33) ChestNet (41) 0.962 0.972 0.962

WEENet 0.986 0.996 0.993
February 2022 | Volume 11 | Arti
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FIGURE 7 | Visual results of WEENet over each dataset (A) CXI, (B) XDC, and (C) CRD datasets.
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FIGURE 8 | Feasibility assessment of our proposed WEENet for 5G-enabled IoMT environment.
FIGURE 9 | The graphical overview of the reusability process of our proposed WEENet for lung cancer detection task.
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used while training the proposed WEENet on lung cancer image
data. The utilization of trained weights will not only reduce the
training efforts (in terms of training time) but can also improve
the performance of retrained architecture for lung cancer
detection. The reusability workflow of our proposed WEENet
for lung cancer detection task is depicted in Figure 9.
4 CONCLUSION AND FUTURE WORK

The COVID-19 pandemic started in 2019 and has severely
affected human life and the world economy for which different
actions are initiated to stop its spread and efficiently handle the
pandemic. Such actions include the concept of smart lockdown,
development of new devices for temperature checking, early
detection of COVID-19 using medical imaging techniques, and
treatment plans for patients with different risk levels. This work
supports the necessary action of early COVID-19 detection using
medical chest x-ray images in 5G-enabled IoMT environment,
contributing to the management of COVID-19 pandemic.
Considering the limited available medical imaging data and
different conflicting performance metrics for early COVID-19
detection, in this work, we investigated deep learning-based
frameworks for effective modeling and early diagnosis of
COVID-19 from medical chest x-ray images in IoMT-enabled
environment. We proposed “WEENet” for COVID-19 diagnosis
using efficient CNN architecture and evaluated its performance on
three benchmark medical chest x-ray and CT image datasets using
eight different evaluation metrics such as accuracy, ROC,
robustness, specificity, and sensitivity etc. We also tested the
performance of our method using cross-corpse evaluation
strategy. Our results are encouraging against SOTA methods
and will support healthcare authorities in analyzing medical
chest x-ray images of infected patients and will assist the
management of the COVID-19 pandemic in IoMT environments.

The reported results are better than SOTA methods, but
model size is not the best among all methods under
consideration (though better than majority of the models).
Frontiers in Oncology | www.frontiersin.org 12
This is due to some of the architectural layers, tuned to
balance the performance metrics towards optimization. More
investigation is needed to further reduce the model size without
affecting the performance, which is one of our plans. We also
plan to extend this work to a multiclass problem including mild,
moderate, and severe as discussed in COVIDGR dataset (48)
from the University of Granada, Spain.
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