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Abstract: Traces collected at monitored points around the Internet contain repre-

sentative performance information about the paths their probes traverse. Basic mea-

surement attributes, such as delay and loss, are easy to collect and provide a means to

both build and validate empirical performance models. However, the task of analysis

and extracting performance conclusions from measurements remains challenging.

Ideally, performance modelling aims to find a set of self-contained parameters to

describe, summarise, profile and easy display network performance status at a time.

This can result in the provision of meaningful information to address applications in

fault and performance management, hence providing input to network provisioning,

traffic engineering and performance prediction.

In this work we present the Weibull Mixture Model, a method to characterise end-

to-end network delay measurements within a few simple, accurate, representative and

handleable parameters using a finite combination of Weibull distributions, with all the

aforementioned benefits. The model parameters are related to meaningful delay charac-

teristics, such as average peak and tail behaviour in a daily profile, and can be optimally

found using an iterative algorithm known as Expectation Maximisation. Studies on

such parameter evolution can reflect current workload status and all possible network

events impacting packet dynamics, with further applications in network management.

In addition, a self-sufficient procedure to implement the Weibull Mixture Model is

presented, along with a set of matching examples to real GPS synchronised measure-

ments taken across the Internet, donated by RIPE NCC.

Keywords: Performance Modelling, Weibull Mixture Model, Expectation Max-

imisation, Management Applications, RIPE NCC.
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1 Introduction

Both users and operators agree on the need to keep a network operating under its maxi-

mum achievable performance; that is, to offer the best possible quality of service to the

customers, yet keeping the minimum cost to providers. However, before optimising

network performance, it is necessary to describe it.

The IP Performance Measurement working group of the IETF has recognised packet

delay as one of the basic metrics to characterise network performance, since it provides

representative information of the state of health of a given path in the Internet. How-

ever, the delay dynamics are specified in a percentile-basis which, for certain applica-

tions, does not permit extracting useful information, and does not give a parsimonious

point of view of network delay. It is rather convenient to find a model which matches

the delay histogram at all percentiles and that is easily and accurately be described by

a few set of parameters. However, previous work has acknowledged the difficulty of

this task and revealed it is in fact challenging, if not impossible [1].

For instance, some studies have tried to match delay histograms using different

probability distributions, which are similar in shape and properties to the empirical

delay distribution observed from measurements. These include the use of the Shifted

Gamma distribution [2], the Weibull distribution [3] and a truncated version of the

Gaussian distribution [4]. However, most of these works have reported inaccurate re-

sults, due to the variability and complexity of the problem under study.

Nevertheless, such works do not mention the use of multiple probability distribu-

tions. This work presents a new model to characterise end-to-end packet delay using a

finite mixture of Weibull distributions, that overcomes the limitations of single distri-

bution approaches.

The motivation for using a mixture of Weibull distributions are manifold:

• The Weibull distribution belongs to the so-called group of heavy-tailed distribu-

tions, often found in the modelling of other networking and computer events [5].

• Previous work have acknowledged the suitability of using the Weibull distribu-

tion in modelling packet delay [3].

• The Weibull distribution approximates the queue length distribution of a router

fed by fractional Brownian motion [6]. Fractional Brownian motion is a statisti-

cal model widely used in the modelling of self-similar and long-range dependent

processes, such as network traffic [7, 8, 9, 10].

• Packet delay has been shown to be accurately characterised by a single Weibull
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distribution in a single-hop scenario [3] and has also been analytically shown to

describe the dynamics of end-to-end delays [11].

• The Weibull distribution is completely determined by two parameters only, one

regards to most likely delay, and the other is concerned with the heaviness of

the distribution tail. Thereby, the examination of the two parameters can easily

provide insight in the fundamental characteristics of the stochastic delay experi-

enced by packets in a given network path: average and variability.

This work introduces the Weibull Mixture Model, a method to characterise end-

to-end delay using a finite combination of Weibull distributions, using the Expectation

Maximisation algorithm [12]. The EM algorithm defines a two-step procedure to find

the maximum likelihood estimate of an underlying probability distribution from a given

sample in an iterative way. EM has traditionally been applied to mixtures of Gaussian

distributions [13], but in this work it shall be used for a mixture of Weibull distributions.

The remainder of this work is organised as follows: In section 2, we introduce

the EM algorithm and develop the equations defined by EM for a mixture of Weibull

distributions. Section 3 briefly reviews the methodology to validate the model against

measurements. Section 4 constitutes the experiments carried out with a set real net-

work delay measurements, gently donated by the “Test Traffic Measurement” project

at the RIPE NCC institution1, and potential applications of this work. Finally, section 5

addresses conclusions and discussion.

2 The Weibull mixture model

2.1 Introduction

The Weibull mixture model assumes packet delays are distributed as a finite combina-

tion of Weibull distributions. The Weibull probability density function (PDF) is given

by:

p(x|r,s) =
sxs−1

rs exp(−(x/r)s), x ≥ 0, r,s > 0 (1)

where r and s refer to the scale and shape parameters respectively, which determine its

structure and statistics 1. Varying the values of these two parameters highly impacts the

appearance of the Weibull distribution, as depicted in figure 1. As shown, parameter r

1The RIPE NCC website: http://www.ripe.net/ttm
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is closely related to the distribution peak (fig. 1, top) and parameter s is concerned with

the tail behaviour (fig. 1, bottom).

[Figure 1 about here.]

Additionally, the two parameters determine the value of first- and second-order

statistics, given in table 1.

[Table 1 about here.]

Notice that when s≫ 1, the equation s+1
s ≈ 1, hence mode and mean are close to the

value of parameter r. Thus, parameter r represents the values where the data are mainly

located (the distribution peak). On the other hand, the parameter s is concerned with the

rate at which the exponential portion of the Weibull distribution, that is, exp(−(x/r)s),

decays.

Despite its benefits, the use of a single Weibull distribution does not provide enough

flexibility to accurately match real end-to-end delay histograms. For this reason, the

use of a finite weighted M-sized combination of Weibull probability distributions shall

be considered, namely:

p(x|q,r,s) =
M

∑
j=1

q j p(x|r j,s j) (2)

where q j represents the weight of the j-th Weibull component, which characterised by

its own scale and shape parameters (r j,s j). Obviously, ∑ j q j = 1.

Concluding, the model is totally characterised by the 3×M set of parameters, Θ:

Θ = [q1,r1,s1, . . . ,qM,rM,sM] (3)

representing weight, q j, rough average r j and tail s j behaviour of all of its components.

The problem now moves to obtaining an estimate of the optimal model parameters Θ̂∗

for a given set of delay measurements x collected by the network administrator. In

other words:

Problem statement: Given a set of N measurements x = [x1, . . . ,xN ]T that constitutes

the delay experienced by packet probes for a certain link, the modelling prob-

lem involves finding the optimal set of 3×M parameters, Θ̂∗, that best fits the

measurement histogram.

This implies maximising the log-likelihood function, that is:
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logL(Θ|x) = log
N

∏
i=1

M

∑
j=1

q j p(xi|r j,s j) =
N

∑
i=1

log
( M

∑
j=1

q j p(xi|r j,s j)
)

(4)

which encompasses computing the sum of a logarithm of sums, and often very hard to

obtain analytical expressions by traditional Maximum Likelihood procedures.

To accomplish a tractable solution, a data augmentation step is necessary [14].

2.2 Introducing hidden labels

Let us introduce a second random variable, z, which represents the probability that a

data sample comes from a single component of the mixture-model. That is, p(zi =

j|xi,Θ) represents the probability of the measurement value xi to be drawn from the j-

th Weibull distribution for a particular model Θ. For this reason, the set of augmented

data {zi}
N
i=1 is often referred as to the “labels”.

It is straightforward that, for a given value xi, if its original component zi = j is

known, then p(xi|zi = j,Θ) = p(xi|r j,s j). Also, the component weights can be refor-

mulated as p(z = j|Θ) = q j.

In fact, this notation agrees with the total probability theorem that establishes:

p(x|Θ) = ∑
j

p(x,z = j|Θ) = ∑
j

p(x|z = j,Θ)p(z = j|Θ) =
M

∑
j=1

q j p(x|r j,s j) (5)

The new complete log-likelihood function becomes:

logL(Θ|x,z) = log
N

∏
i=1

qzi p(xi|rzi ,szi) =
N

∑
i=1

logqzi p(xi|rzi ,szi) (6)

It is worth remarking that by introducing the auxiliary labels z, we have transformed

a sum of logarithms of a sum (see eq. 4) into a more convenient sum of logarithms

(see eq. 6). However, the second formulation has the missing information z handicap,

which needs be estimated separately. To proceed, the Expectation Maximisation shall

be used [14, 13].

2.3 The Expectation Maximisation algorithm

The EM algorithm is a method for finding the maximum-likelihood estimate of an un-

derlying distribution from a given sample in an iterative way. It is especially useful
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when part of the information is hidden or have missing values making the task of esti-

mation particularly difficult. Such missing information regards to the labels {zi}
N
i=1 for

this particular problem.

Essentially, the EM algorithm defines two steps repeated iteratively until conver-

gence: (1) an expectation step (E-step), where the expectancy of the complete log-

likelihood function (eq. ) is calculated with respect to the observed information x and

the current state of the model parameters estimate Θ(t); and (2) a maximisation step

(M-step) where the previous amount is maximised with respect to the parameters Θ,

see:

E-step: Q(Θ,Θ(t)) = E[logL(Θ|x,z)|x,Θ(t)] (7)

M-step: Θ(t+1) = argmax
Θ

Q(Θ,Θ(t)) (8)

After a certain number of iterations (from 10 to 100 depending on the particular

problem), the algorithm converges to a local maximum in the likelihood function, giv-

ing the optimal set of parameters, ΘML.

Expanding E-step and taking separate derivatives with respect to the different pa-

rameters (M-step) lead to the following formulation:

q(t+1)
j =

1

N

N

∑
i=1

p(zi = j|xi,Θ(t)) (9)

r(t+1)
j =

[∑N
i=1 xs

(t)
j p(zi = j|xi,Θ(t))

∑N
i=1 p(zi = j|xi,Θ(t))

]1/s
(t)
j

(10)

s(t+1)
j =

∑N
i=1 p(zi = j|xi,Θ(t))

∑N
i=1

(

( xi

r
(t)
j

)s
(t)
j −1

)

log( xi

r
(t)
j

)p(zi = j|xi,Θ(t))
(11)

To complete the iterative circle, the probability p(zi = j|xi,Θ) can be calculated

using the Bayes’ rule as:
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p(zi = j|xi,Θ(t)) =
p(xi,zi = j|Θ(t))

p(xi|Θ(t))
=

=
p(xi|zi = j,Θ(t))p(zi = j|Θ(t))

∑M
k=1 p(xi|zi = j,Θ(t))p(zi = j|Θ(t))

=

=
q j p(xi|r j,s j)

∑k qk p(xi|rk,sk)
(12)

Table 2 summarises the procedure in a batch way.

[Table 2 about here.]

3 Model validation

The hypothesis of an underlying probability distribution or combination of probability

distributions on a measured data must be adequately checked, tested and validated. To

do so, we have used both visual matching techniques and quantitative techniques to

measure the matching accuracy of the model.

Visual techniques whether a model “looks” suitable to a given data, and can help

assessing if a given model should be accepted or rejected in a first instance. These

include comparing the histogram against the Weibull mixture model, the same plot in

log-log scale and a quantile-quantile plot [15].

In addition to qualitative techniques, we have used the λ2 test [16] to give insight

in the accuracy of the Weibull mixture model. Essentially, the λ2 test is derived from

the χ2-test, but slightly modified to overcome its limitations.

Given a histogram obtained from data set x, the χ2 methods computes a discrepancy

quantity, named D2, which measures, for every histogram bin, the difference between

the number of observations falling in its range, and the expected number of observa-

tions that should fall in according to the proposed model. That is, for the k-th bin, the

discrepancy should be:

D2
k =

(ok − ek)
2

ek
(13)

where ok refers to the true number of observations falling in the k-th histogram bin, and

ek regards the expected number of observations according to the model. That is, for an

N-sized histogram, such number of expected observations is ek = N
R

k−th bin p(x|Θ)dx.

The χ2-metric comprises the sum of discrepancies for all the histogram bins, that
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is, D2 = ∑k D2
k . Then, if the Weibull mixture model is correct, D2 is χ2 distributed with

K − 3M − 1 degrees of freedom, with M being the number of Weibull components in

the mixture. Hence, for a given significance level α (typically α = 0.05), the model is

accepted if:

D2 < χα2,K−3M−1 (14)

However, the χ2 test can output very different results depending on the histogram’s

bin-size chosen. To overcome this limitation, previous work [16, 17] suggests the use

of a related discrepancy measure, named λ2, which aims to correct the χ2 value to

achieve bin-size insensitiveness. The expression for λ2 is:

λ2 =
χ2 − ξ−3M

N −1
(15)

where ξ is computed as ξ = ∑k
ok−ek

ek
. In other words, ξ is the same equation as χ2

except of the numerator is not squared.

The λ2-test also provides means to compare discrepancies of models. That is, for

a given data sample x, a model Θ1 better fits it than a model Θ2 if λ̂2
Θ1

< λ̂2
Θ2

. This

criteria shall be used to compare whether an M1-sized model is more accurate than a

M2-sized one.

In addition to this, the model shall also be tested on its capability to not only match

histograms at every point, but also to accurately estimate first- and second-order mo-

ments, sucha as mean and variance. Data-based estimates are:

x̄ =
1

N

N

∑
i=1

xi (16)

σ2
x =

1

N

N

∑
i=1

(xi − x̄)2 (17)

The estimates of the two above, based on the model parameters are given by:

x̄ = ∑
j

q j x̄ j = ∑
j

q jr jΓ(
s j +1

s j
) (18)

σ2
x = ∑

j
q j(σ2

j + x̄2
j)− x̄ = ∑

j
q jr jΓ(

s+2

s
)−

(

∑
j

q jr jΓ(
s j +2

s j
)
)2

(19)
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4 Experiments, results and applications

4.1 Measurement testbed

The Weibull Mixture Model has been applied to more than 700000 one-way delay

measurements, collected from around 35 monitored points spread around the world,

donated by the RIPE NCC institution.

The measuring strategy followed involved collecting around 3000 GPS-synchronised

(few hundred nanoseconds accuracy) one-way delays uniformly spread on a 24-hour

period. This implies a resolution of:

Resolution =
3000 readings

24×60 mins
≈ 2 measurements/min

In the following experiments, we have subtracted the minimum value from the the

delay measurement set, thus giving only the stochastic queing portion of it. However,

we have kept the original scale considering both elements to show the effect of the

queueing delay over the total delay.

In what follows, section 4.2 shows the model matching in a single example with

further conclusions of some aspects of the algorithm, such as optimal mixture-size

and time of convergence. Section 4.3 explores the results obtained through the whole

measurement set of experiments. Finally, section 4.4 shows how the Weibull Mixture

Model can be applied to detecting routing step changes.

4.2 Visual example of model fit

End-to-end delays typically show high variability patterns with bell-shaped histograms,

such as the one shown in figure 2 (top and middle-left). The use of a single Weibull

distribution gives optimal estimates of r̂ = 0.7418 and ŝ = 1.4887. According to table 1,

the model’s mean is located at x̄ = r̂Γ( ŝ+1
ŝ )1/ŝ = 0.6703. This implies that the majority

of the packets will experience 0.67ms of queueing delay which, in addition to the

12.16 ms of transmission delay, gives a total average delay of 12.83 ms. The estimated

variance is σ2 = 0.2097.

[Figure 2 about here.]

The plots at the bottom show the accuracy of the matching via the log-log and QQ

plots. It can be clearly seen from them that the matching accuracy is relatively poor,

especially for fitting the tail. If two Weibull components are considered, the matching
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accuracy significantly improves, as shown in fig. 3. The EM algorithm gives model pa-

rameter estimates of q1 = 0.4363, r1 = 0.4503 and s1 = 2.2824 for the first component

and q2 = 0.5637, r2 = 0.9787 and s2 = 1.7037 for the second Weibull. This yields a

mean value of x̄ = 0.6661 and variance of σ2 = 0.2277, which are slightly different

than the 1-Weibull model estimates. Again, the QQ-plot reveals that the matching is

still not perfect.

[Figure 3 about here.]

Figures 4–7 show the accuracy achieved when considering 3, 5, 7 and 10 Weibull

components respectively. Seemingly, adding more components provides a gradually

better matching accuracy, at the price of increasing the model complexity though.

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

Two questions arise from these results. Firstly, how many Weibull distributions are

required to obtain a good fit? And secondly, how many algorithm iterations are neces-

sary to achieve convergence? Figure 8 addresses these questions. Fig. 8-bottom shows

the evolution of the discrepancy λ̂2 with the number of iterations, for various values of

M. As shown in fig. 8-top, the use of a single Weibull offers poor performance com-

pared to the results achieved with M = 2. Indeed, the use of two components or more

results more appropriate (fig. 8-bottom) with M = 5 being the best possible choice. The

same plots reflects an interesting fact: the use of too many components degrades the

matching discrepancy. This effect has previously been analysed and treated [18].

[Figure 8 about here.]

Additionally, the same figure 8 shows how to choose a suitable number of algorithm

iterations. In practice, when considering two or more Weibull components, at least

20 iterations are necessary to achieve convergence. Generally, the more components

considered, the more iterations needed.

More detailed results are given in table 3. In quantitative terms and after conver-

gence, it is concluded that the use of a single Weibull distribution to fit delay histograms

does not capture the delay dynamics of this particular end-to-end link. However, the

10



Weibull Mixture Model with at least two components significantly improves the match-

ing accuracy. Moreover, a Weibull Mixture Model considering three components and

beyond only achieves a slightly better match. Nevertheless, the use of more than five

components performs even worse results in terms of λ2.

[Table 3 about here.]

With regard to first- and second-order moment estimates, table 4 shows the results

for various sizes of the Weibull Mixture Model according to equations 19, and a com-

parison to data estimates as given by equation 17. According to this, the mean and

variance for M = 2 and M = 3 provides the closest results to the sample mean and

variance.

[Table 4 about here.]

In conclusion, these results show that the use of a M-sized mixture of Weibull

distributions (M > 1) provides a good delay histogram fit. The experimental results are

consistent with this hypothesis, not only at every specific quantile of the probability

density function, but also in terms of estimating general sample properties such as the

mean and the variance.

The next section attempts to show how many of the remaining 244 experiments

have shown similar good fitting results.

4.3 Full measurement testings

Figure 9 shows histograms of the λ2 discrepancy values obtained for the 245 experi-

ments for mixture sizes of 1, 2, 3, 5 and 7.

[Figure 9 about here.]

Table 5 shows bounds on the discrepancy achieved by the 10 to 100 percentages of

the experiments to which different M-sized models have been applied.

[Table 5 about here.]

As shown, if using M = 5 Weibull components, 50% of the experiments achieve

discrepancy results of λ2 = 0.0289. This value is typical of a model fit as accurate

as the one shown in fig. 3. Furthermore, up to 90% of the cases exhibit λ2 = 0.1045,

which corresponds to a similar accuracy than the shown in fig. 3.

It is worth remarking that the use of M > 5 components may degrade performance

results, whereas the use of M < 5 might lead to poorly accurate fits. M = 5 stands as
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the optimal choice in terms of accuracy. However, the complexity of handling 3×M

parameters may suggest more practical M = 2 and M = 3 sized models, at the expense

of losing some accuracy.

4.4 On detecting step changes

Step changes in delay profiles are important events as they clearly cause a significant

degradation in network performance. They are often attached to changes in routing

configuration for various reasons: link failure, power shutdowns and routing exchange

protocols misbehaving [19]. The ability to early detect and locate such incidents is key

for a quick recovery.

The Weibull Mixture Model provides enough flexibility to detect such situations.

Figure 10 shows the matching how two Weibull distributions combined together accu-

racy captures the bimodal histogram shown in this step change model. A close exami-

nation of the model parameters (see table 6) shall reveal two Weibull components, each

located at a different histogram peak. This information is very valuable to network op-

erators since they can easily detect step change events just by monitoring the evolution

of the model parameters over time.

[Figure 10 about here.]

[Table 6 about here.]

5 Summary, discussion and further works

This work has presented the Weibull Mixture Model, a way to characterise, summarise

and profile delay experienced between edges in the Internet. Such model consists

of combining multiple Weibull distributions to fit the delay histogram obtained from

packet probes, taken at different times of the day. An easy, comprehensive and power-

ful statistic technique, known as Expectation Maximisation algorithm, has been utilised

to obtain the optimal model parameters and given rise to a procedure implementation

that can be easily run by network administrators and managers.

The Weibull Mixture Model has been checked and tested with more than 700000

GPS-accurate measurements collected under real network activity. The proposed model

gives accurate results qualitatively and quantitatively in more than 90% of the exper-

iments considered, providing a close fit at all percentiles of the delay histogram and

inferring basic first- and second-order moments from its parameters only.
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The implications of reducing daily delay behaviour from around 3000 measure-

ments into 3M parameters (often ranging 6 to 15 the most) are manyfold:

- The Weibull Mixture Model allows a certain grade of profiling. Traditionally,

network managers have categorised delay behaviour in terms of percentiles,

which allow a poor representation of the real histogram (just one point of it per

percentile). This model rather permits a richer representation as it gives all the

points of the histogram with a fewer number of parameters.

- Statistics are easy to compute. Delay mean and standard deviation and other first

and second-order moments, very useful when negotiating Service Level Agree-

ments, arise from the model parameters easily.

- A new set of metrics to help managers and users assess network performance sta-

tus, i.e. traffic workload, network availability and connectivity, grade of conges-

tion, etc. has been defined, and its applicability shown. The analysis of the model

parameters can help identify and diagnosis sudden events in network activity,

such as network misconfiguration, power shutdowns, denial-of-use attacks, etc.

as they dramatically impact the model parameters.

- Workload profiling and performance benchmarking. Profiling link workload is

key to keep track of traffic demand evolution and assess which areas require

urgent capacity upgrades. The Weibull Mixture Model parameters effectively

captures the delay histogram features and constitute an optimal way to profile,

record and store performance status of a network.

Ongoing research shall attempt to produce an EM-based real-time algorithm able to

adapt and adjust model parameters at every new measurement sample. This would al-

low a finer tracking of end-to-end performance status with further applications in early

detection and troubleshooting of performance degradation events; real-time workload

estimation and hotspot location and even permit a certain grade of automatic traffic

redirecting and engineering to avoid congestion and load balancing.

Additionally, it is intended to investigate the possible implications of embedding

real-time network status inference via the Weibull Mixture Model into TCP’s con-

gestion advoidance and slow-start mechanisms. This consists of optimally adjusting

the congestion window of TCP with the information provided by the Weibull-mixture

model on attempts to early detect and react from congestion based on delay analysis

rather than packet loss. For example, a sudden decrease of parameter s is clearly an

effect of increase in delay variability, which can be considered a symptom of network

congestion.
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Figure 1: The Weibull distribution. Plots for different values of its scale (top) and shape

(bottom) parameter.
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Figure 2: Matching example with a single Weibull distribution.

18



0 5 10 15 20

12.5

13

13.5

14

d
e

la
y
 (

m
s
)

Delay over time

12.5 13 13.5 14
0

0.5

1

1.5

P
D

F
Histogram and its modelling

12.5 13 13.5 14
0

0.5

1

1.5

P
D

F

Mixture and its components

10
1.09

10
1.12

10
1.15

10
−2

10
−1

10
0

10
1

lo
g

 P
D

F

log delay (ms)

12.5 13 13.5 14

12.5

13

13.5

14

Percentiles of the data sample

Q
u

a
n

ti
le

s
 o

f 
th

e
 m

o
d

e
l

Q−Q plot

Model
Hist.

Total model
Single comps.

PDF
Model

Figure 3: Matching example with a 2-Weibull Mixture Model.
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Figure 4: Matching example with a 3-Weibull Mixture Model.
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Figure 5: Matching example with a 5-Weibull Mixture Model.
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Figure 6: Matching example with a 7-Weibull Mixture Model.
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Figure 7: Matching example with a 10-Weibull Mixture Model.
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Figure 9: Discrepancy results for the 245 experiments.
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Figure 10: A 2-Weibull Mixture Model matching to step change event.
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Mode: x̃ = r( s−1
s )1/s

Median: x̆ = r(ln2)1/s

Mean: x̄ = rΓ( s+1
s )

Std. dev.: σx = r
√

Γ( s+2
s )−Γ( s+1

s )2

Table 1: Main first and second-order statistics of the Weibull distribution
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1. Initialisation.

Choose M as the size of the mixture

Initialise parameters q as a flat distribution and r and s

uniformly spread over a certain interval (rmin,rmax)
and (smin,smax).
2. REPEAT until convergence.

Compute the elements of the N ×M matrix Px:

Px(i, j) = q j
s jx

s j−1

i

r
s j
j

exp
(

− ( xi
r j

)s j
)

Compute the elements of the N ×M matrix Pz:

Pz(i, j) = Px(i, j)
1T

MPx(i,∗)

Compute parameters q:

q j = 1
N Pz(∗, j)T 1N

Compute parameters r:

r j =
(

xT Pz(∗, j)
Nq j

)1/s j

Compute parameters s:

s j =
Nq j

((

(

x
r j

)s j
−1

)

log( x
r j

)

)T

Pz(∗, j)

Back to step 2.

Table 2: Summary of the implementation of Weibull Mixture Model.
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M λ2

1 0.1031

2 0.0324

3 0.0247

4 0.0221

5 0.0228

6 0.0247

7 0.0263

8 0.0265

9 0.0277

10 0.0291

Table 3: λ2 values for various mixture model-sizes.
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M-size x̄ σ̂2
x

M = 1 0.6703 0.2097

M = 2 0.6661 0.2277

M = 3 0.6664 0.2270

M = 4 0.6663 0.2271

M = 5 0.6662 0.2270

M = 6 0.6661 0.2275

M = 7 0.6661 0.2272

M = 8 0.6661 0.2275

M = 9 0.6661 0.2274

M = 10 0.6661 0.2274

Data 0.6664 0.2271

Table 4: Mean and variance estimates for different values of M.
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M = 1 M = 2 M = 3 M = 5 M = 7

λ2
10 0.0753 0.0330 0.0188 0.0141 0.0159

λ2
20 0.1258 0.0533 0.0311 0.0234 0.0241

λ2
30 0.1894 0.0709 0.0429 0.0347 0.0350

λ2
40 0.2589 0.0905 0.0599 0.0491 0.0476

λ2
50 0.3261 0.1181 0.0858 0.0690 0.0697

λ2
60 0.4549 0.1819 0.1402 0.1067 0.1117

λ2
70 0.7541 0.2610 0.2307 0.1909 0.1834

λ2
80 1.3471 0.3726 0.3194 0.2912 0.2939

λ2
90 2.5785 0.8759 0.8112 0.7042 0.7502

λ2
100 7.3261 4.2342 2.1157 2.9203 3.1371

Table 5: Quantiles of the λ2 results.
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j = 1 j = 2

q j 0.1916 0.8084

r j 0.1422 0.4108

s j 2.5948 3.1123

Table 6: Weibull Model parameters for a step-change model.
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