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Weibull Modulus Estimated by the Non-linear Least
Squares Method: A Solution to Deviation Occurring
in Traditional Weibull Estimation

T. LI, W.D. GRIFFITHS, and J. CHEN

The Maximum Likelihood method and the Linear Least Squares (LLS) method have been
widely used to estimate Weibull parameters for reliability of brittle and metal materials. In the
last 30 years, many researchers focused on the bias of Weibull modulus estimation, and some
improvements have been achieved, especially in the case of the LLS method. However, there is a
shortcoming in these methods for a specific type of data, where the lower tail deviates
dramatically from the well-known linear fit in a classic LLS Weibull analysis. This deviation can
be commonly found from the measured properties of materials, and previous applications of the
LLS method on this kind of dataset present an unreliable linear regression. This deviation was
previously thought to be due to physical flaws (i.e., defects) contained in materials. However,
this paper demonstrates that this deviation can also be caused by the linear transformation of
the Weibull function, occurring in the traditional LLS method. Accordingly, it may not be
appropriate to carry out a Weibull analysis according to the linearized Weibull function, and the
Non-linear Least Squares method (Non-LS) is instead recommended for the Weibull modulus
estimation of casting properties.

DOI: 10.1007/s11661-017-4294-4
� The Author(s) 2017. This article is an open access publication

I. INTRODUCTION

THE Weibull distribution has been widely used to
analyze the variability of the fracture properties of
brittle materials for over 30 years. Fitting a Weibull
distribution also later became a popular method in the
prediction of the quality and reproducibility of cast-
ings.[1–3] The cumulative distribution function (CDF) of
the Weibull distribution is given by[4]

P ¼ 1� exp �
x� xu

x0

� �m� �

; ½1�

where P is the probability of failure at a value of x, xu is
the minimum possible value of x, x0 is the probability
scale parameter characterizing the value of x at which
62.8 pct of the population of specimens have failed, and
m is the shape parameter describing the variability in the
measured properties, which is also widely known as the
Weibull moduli.

In a practical application, x could be substituted by
the symbol r for the properties of materials (e.g.,

Ultimate Tensile Strength (UTS)), and the lowest
possible value of property could be assumed to be 0,
making xu = 0, so that Eq. [1] can be re-written as a
2-parameter Weibull function:

P ¼ 1� exp �
r

r0

� �m� �

: ½2�

There are several approaches to the estimation of the
Weibull modulus in Eq. [2], with the most common
methods being the Linear Least Squares method (LLS)
and the Maximum Likelihood method (ML).
Many researches focused on the bias of the estimated

Weibull modulus obtained by the estimation methods.
Khalili and Kromp[5] recommended the ML and the
LLS methods after a comparison of the ML, LLS
methods, and methods of momentum. Butikofer et al.[6]

found that the LLS method was less biased than the ML
method for a small sample size. Tiryakioglu and
Hudak[7] and Wu et al.[8] studied the best estimators
for the LLS method.
However, there is still a shortcoming in the LLS

method. In practice, some data points of the measured
properties seriously deviate from the linear behavior in
the traditional LLS method for Weibull estimation,
resulting in a bad fit in the linear regression model. A
good example was that of Griffiths and Lai’s[2] mea-
surement of UTS of a commercial purity ‘‘top-filled’’
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Mg casting, as shown in Figure 1. It is clear that the
data points were not randomly scattered along the fitted
straight line in this linear regression, and the corre-
sponding R2 value was only 79.1 pct, both of which
suggested that it was a bad linear fit. These outliers
would exert much influence on the regression line,
making the Weibull modulus deviate from its true value.
This type of behavior (i.e., data deviation in the lower
tail) in the plots of the linearized Weibull function
(Figure 1) has occurred widely and resulted in estima-
tion bias to various degrees, of which examples can be
found in References 2 and 9 through 14. Keles et al.[14]

made a summary of this deviation occurring in the
measurement of brittle materials.

When this deviation occurs, a traditional solution is
to firstly eliminate a few data points before the next step
of the Weibull moduli analysis,[1] because the data
points in the lower tail were considered to be caused by
gross pores. Nevertheless, the Weibull modulus obtained
after such elimination would also neglect the effect of
porosity on the quality of the castings, and could not
reflect the reproducibility of the whole castings.

Currently, a popular explanation for this deviation,
based on a plot of linearized Weibull CDF (Figure 1), is
that the dataset may follow a 3-p/mixed Weibull
distribution.[15–17] The goodness-of-fit of linear regres-
sion line (i.e., R2) was accordingly used to determine the
Weibull behavior of the datasets.[18,19] Tiryakioglu[19]

developed the following equation for the critical R2

value to determine the Weibull behavior of a dataset:

R2
0:05 ¼ 1:0637�

0:4174

N0:3
; ½3�

where R2
0:05 is the critical R

2 and N is the sample size. If
R2 of a linear regression was smaller than this critical
value, the corresponding dataset was thought to follow a
3-p/mixed Weibull distribution.

This paper was aimed at investigating the reason for
this widely reported deviation, and finding an appropri-
ate method to estimate the Weibull modulus when such
deviations occur. Preliminary work demonstrated that
the widely reported deviation can be also caused by the

linear transformation of the Weibull function, and a
Non-LS method may be more appropriate to evaluate
the Weibull modulus. Comprehensive Monte Carlo
simulations and a real casting experiment were subse-
quently carried out to explore the reliability of the
parameter estimation by Non-LS, LLS, and ML meth-
ods. It has been shown that the Non-LS method, which
avoids the linear transformation, outperforms all the
other methods.

II. BACKGROUND

A. Linear Least Squares (LLS) Methods

The Linear Least Squares method is also known as
the linear regression method. Taking the natural loga-
rithm of Eq. [2] twice gives the linearized form of the 2-p
Weibull CDF:

Ln �Ln 1� Pð Þ½ � ¼ mLn rð Þ �mLn r0ð Þ: ½4�

The Weibull modulus can then be determined accord-
ing to the slope of a simple linear regression, (i.e.,
ordinary least squares) of Ln [�Ln (1 � P)] against
Ln(r), where the P value is assigned by a probability
estimator. The probability estimators reported in the
literature were generally written in the form of

P ¼
i� a

Nþ b
; ½5�

where i is the rank of the data sorted in an ascending
order, N is the total sample size, a and b are constants,
whose values depend on the estimators used. The
common estimators were summarized by Tiryakioglu
and Hudak,[7] and are shown in Table I.

B. Maximum Likelihood (ML) Method

In statistics, the likelihood is a function of the
parameters of a given observed dataset and the under-
lying statistical model. ‘‘Likelihood’’ is related to, but is
not equivalent to ‘‘probability’’; the former is used after
the outcome data are available to describe that some-
thing that is likely to have happened, while the latter
describes possible future outcomes before the data are
available.

Fig. 1—Weibull estimation using the LLS method, which was pub-
lished in Ref. [2] (the ‘‘Top-filled’’ results).

Table I. Probability Estimators Summarized by Ref. [6]

a b

0.5 0 Eq. [6]
0 1 Eq. [7]
0.3 0.4 Eq. [8]
0.375 0.250 Eq. [9]
0.44 0.12 Eq. [10]
0.25 0.50 Eq. [11]
0.4 0.2 Eq. [12]
0.333 0.333 Eq. [13]
0.50 0.25 Eq. [14]
0.31 0.38 Eq. [15]
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The basic principles can be described as follows.[20–22]

If there is a dataset of N independent and identically
distributed observations, namely x1, x2,…, xN, coming
from a underlying probability density function f(h). The
true value of h is unknown and it is desirable to find an

estimator ĥ which would be as close to htrue as possible.
First the joint density function for all observations can
be calculated as

f x1x2 . . . xnjhð Þ ¼ f x1jhð Þf x2jhð Þ � � � � f xnjhð Þ ¼
Y

n

i¼1

f xijhð Þ:

½16�

From a different perspective, Eq. [16] can be consid-
ered to have the observed data x1, x2,…, xN, as the fixed
parameters and h as the function’s variable. This will be
called the likelihood function as follows

L hjx1x2 . . . xnð Þ ¼ f x1x2 . . . xnjhð Þ ¼
Y

n

i¼1

f xijhð Þ: ½17�

The maximum likelihood estimate (MLE) of h can be
obtained by maximizing the likelihood function given
the observed data as

ĥMLE ¼ argmax
h

L hjx1x2 . . . xnð Þ: ½18�

For a Weibull estimation of castings, the likelihood
function of the observed dataset, x1, x2,…, xN, can be
written as

L m; rjx1; x2; . . . ; xNð Þ ¼
Y

N

i¼1

fðxijm; rÞ

¼
Y

N

i¼1

m

r

x

r

� �m�1

exp �
xi

r

� �m� �

� �

:

½19�

Here f(xiŒm, r) is the probability density function of
Weibull distribution. MLE of a Weibull parameter can
be then obtained by maximizing Eq. [19], using
Nelder–Mead method.

The estimated Weibull modulus obtained by the
Maximum Likelihood method was also biased from
the value of mtrue. Khalili[5] reported that the bias level
of the ML Method was higher than Eq. [6] of the linear
least square method. This suggestion was also supported
by the following study of References 6 and 8.

C. Non-linear Least Squares (Non-LS) Method

The Non-LS method has many similarities to the LLS
method. The observed data are also sorted in an
ascending fashion, and subsequently paired with the
failure probabilities, obtained by the estimators shown
in Table I. It differs from the LLS method as a
non-linear regression, using a Gauss–Newton algorithm,
is directly carried out to achieve the best fitted curve of a
Weibull function. This method was used to estimate

Weibull parameters in some other fields,[23,24] but has
not been applied in the Weibull estimation of castings
and brittle materials.

III. METHODS

A. Re-analysis of Griffiths and Lai’s Data

As shown in Figure 2, the Griffiths’ data shown in
Figure 1 (i.e., UTS of a commercial purity Mg casting
produced using a top-filled running system) were re-an-
alyzed using the Non-LS method. To compare the fitting
performance, the Weibull function with the parameters
obtained by the LLS method (i.e., the method originally
used in Griffiths and Lai’s paper[2]) is also plotted in
Figure 2. Residual Sum of Squares (SSR) was used to
evaluate the goodness-of-fit instead of R2 in this non-lin-
ear model (the adjusted R2 values were also given).
According to Figure 2(a), it can be seen that the data

points showed a good fit to the Non-linear regression
curve (SSR = 0.0238), which is much better than the
curve plotted according to the LLS estimation results
(the Weibull parameters shown in Figure 1, SSR =
0.4096). There was a significant difference between the
Weibull modulus estimated by the two methods (11.147
and 4.427). Therefore, although the Tiryakioglu’s equa-
tion (i.e., Eq. [3], (R0.05)

2 = 0.9047) rejected the Weibull
behavior of this dataset, it is still not clear whether the
data points follow a 2-p Weibull distribution.
According to Figure 2(b), when the Non-LS estima-

tion result was plotted in the linearized Weibull plot
(i.e., solid line in Figure 2(b)), the data points showed a
very bad fit to the line (R2

<0), which was much worse
than the LLS estimation results (R2 = 79.1 pct). The
contradictory conclusions of Figures 2(a) and (b) sug-
gest the following question: ‘‘Is it appropriate to
determine the Weibull behavior of datasets according
to the traditional linearized Weibull plot (Figure 2(b)),
or the non-linear Weibull plot (Figure 2(a))?’’

B. A Shortcoming of the Linearized Form of the Weibull
Function

It should be noted that according to the estimator
defined as Eq. [5], the cumulative probability in the
Weibull estimation using the least square method is set to
a specific value (denoted by Pest,i for the ith datum point)
with the same weight for each datum point. However, in
a practical process, the true cumulative probability,
referred to as Ptrue,i, is of course not necessarily equal to
the estimated cumulative probability (Pest,i). Bergman[25]

also pointed out that it was erroneous to assume the
same weight for each datum point in Eq. [5]. Thus, there
is usually a difference between Ptrue,i and Pest,i, making
the estimated Weibull moduli biased.
Let DYnon-linear,i indicate the difference between the

true and estimated values on the Y axis for the ith datum
point in the plot of the original Weibull CDF, as shown
in the following equation:

DYnon�linear;i ¼ Ptrue;i � Pest;i

�

�

�

�: ½20�
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Similarly, let DYlinear,i indicate this difference on the
Y axis in the plot of the linearized Weibull function
(Eq. [3]), which can be calculated by the following
equation:

DYlinear;i ¼ Ln½�Lnð1� Ptrue;iÞ� � Ln½�Lnð1� Pest;iÞ�
�

�

�

�:

½21�

As shown in Figure 3, no matter how much Ptrue,i and
Pest,i are, linear transformation can always numerically
enlarge the difference between the true and estimated
values on the Y axis. In other words, DYlinear,i is always
larger than DYnon-linear,i, especially when Pest,i signifi-
cantly deviates from Ptrue,i. Such an increase, in the

deviation from the estimated value to the true value on
the Y axis, causes a larger distance between the
estimated and true positions of the data points in the
linearized Weibull function plot, compared with that in
the original Weibull CDF plot. Furthermore, it should
be noted that the enlargement due to the linear
transformation also exists in the linearized form of the
3-p Weibull function.
This enlargement level can be further described by the

following enlargement factor (EF):

Enlargement factor: EF ¼
DYnon�linear;i

DYlinear;i
: ½22�

A 3D plot of this equation is shown in Figure 4. It can
be seen that the EF value would be significantly small,

Fig. 2—(a) Weibull estimation of Griffiths’ data shown in Fig. 1, using the Non-LS method and the LLS method. The used estimator is P =
(i � 0.5)/N (Eq. [6] shown in Table I). (b) The results of the two methods plotted in the plot of the linearized Weibull function.

Fig. 3—(a) A 3D plot based on the functions of DYlinear,i and DYnon-linear,i. (b) View from another direction of (a), indicating that DYlinear,i is
always larger than DYnon-linear,i.
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even close to 0, when Ptrue,i approaches to 0 or 1, which
means that the DYnon-linear,i would be dramatically
enlarged at these positions. This non-uniform enlarge-
ment is the underlying reason why it was normal to
report a deviation in the lower and upper tails of a
dataset in a traditional linearized Weibull plot
(Figure 1).

Since the regression algorithms of the least square
method (no matter linear or non-linear regression)
produce the result according to the residuals (i.e., the
smallest Sum of Residual Squares), which is only related
to the Y-coordinate, the non-uniform enlargement of
DYlinear,i accordingly may result in more bias of the
regression results (such as the estimated Weibull mod-
uli). Therefore, the bad fit of the Non-LS estimation
result shown in Figure 4(b) may be due to the enlarge-
ment of the difference between the true and estimated
probabilities. The least square method has been accord-
ingly used in this paper in the plot of the non-linear
Weibull CDF, rather than its linearized form. This
approach is the non-linear least square method
(Non-LS).

C. Examples of the Negative Effect of the Enlargement
of DYnon-linear,i on Weibull Estimation

For a further illustration of the negative effect of the
enlargement of DYnon-linear,i, an example has been given
in Table II. This dataset was generated from a 2-p
Weibull distribution with shape = 11 and scale= 60,
which was close to the Non-LS estimation result of
Griffiths (Figure 1). The raw data were sorted in
ascending order, shown in the second column of
Table II. The true cumulative probabilities (Ptrue,i) were
directly calculated from the Weibull function as listed in
the third column. The estimated cumulative probability
was computed according to Pest,i = (i � 0.5)/N (Eq. [6]),

and has been shown in the 4th column. DYlinear,i and
DYnon-linear,i were listed in the 5th and 6th columns,
respectively.
Figures 5(a) and (b) show the corresponding Weibull

estimation results using the Non-LS and LLS methods.
The solid square points indicate Ptrue,i, while the hollow
triangle points denote Pest,i. It can be seen that the
deviation from the estimated value to the true value on
the Y axis was obviously larger in the plot of the
linearized Weibull function (DYlinear,i in Figure 5(b)),
than in the plot of the original non-linear Weibull CDF
(DYnon-linear,i in Figure 5(a)), especially when Ptrue,i is
small. A deviation similar to that shown in Figure 1 (i.e.,
Griffiths’ data) consequently occurred in the lower tail
as shown in Figure 5(b).
In addition, the Weibull behavior of this dataset was

also rejected by Tiryakioglu’s equation (Eq. [3]). The
line plotted based on the Non-LS estimation (i.e., the
solid black line in Figure 5(b)) showed an extreme bad
fit to the triangle points (i.e., R2

< 0), similar to that
shown in Figure 2(b). However, this line was more close
to the true function than the linear regression line.
Figure 5(c) shows the change in the enlargement

factor (EF) along with Ptrue,i, revealing that the enlarge-
ment of DYnon-linear,i was more dramatic when Ptrue,i is
close to 0 and 1, which is consistent with Figure 4.
Accordingly, the performance of the Weibull moduli
estimation is poorer in the LLS method than in the
Non-LS method, which can explain the different level of
the goodness-of-fit in different Weibull plots as shown in
Figure 2.

IV. SIMULATION PROCEDURES

To further illustrate the discussion in Section III,
Monte Carlo simulations were performed in R Version

Fig. 4—(a) The function of the enlargement factor (EF). (b) View from another direction of (a), indicating the DYnon-linear,i would be dramati-
cally enlarged when Pture,i is close to 0 or 1.
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3.3.0 (https://www.r-project.org). As shown in Figure 6,
different procedures were used to investigate the bias of
the estimated Weibull modulus.

For direct comparison of the different estimation
methods (Figure 6(a)), random data points of sample
size N were firstly generated from a 2-p Weibull function
(Eq. [2]) with shape parameter =11 (referred to as mtrue)
and scale parameter = 60 (referred to as r0,true). The
different approaches, listed in Table III, were used to
evaluate the Weibull modulus (written as mest) of the
generated data.

The bias of the estimated Weibull modulus (mest) was
defined by the following equation,[5,7,26]

M ¼ mest=mtrue: ½23�

M = 1 means the approach used was unbiased. In
addition, since the estimated parameters are normalized
by the true parameters, the setting of the scale and shape
parameters are inconsequential.[5,19] This process was
repeated for 20,000 times to obtain 20,000 M values.
The bias level of the different approaches was evaluated
by the mean of the 20,000 M values, written as Mmean.

To study the effect of the dramatic enlargement of
DYnon-linear,i on Weibull moduli estimation
(Figure 6(b)), the program checked whether the smallest
datum of the randomly generated dataset was<30, thus
making the data used for the simulation contain at least
one datum point smaller than 30. This setting ensured a
small value of the true probability of the first datum
point (Pture,1), and thus the corresponding difference
between the true and estimated values on the Y axis
(DYnon-linear,1) would be dramatically enlarged in the

linearized Weibull function plot, according to Figure 4
(when Ptrue,1 is close to 0).
Based on the linearized Weibull plot, Tiryakioglu

et al.[19] developed an equation for critical R2 (see
Eq. [3]), to determine the Weibull behavior of datasets.
Similarly, based on the non-linear Weibull plot, the
critical SSR (referred to as SSRC) could also be
calculated using a Monte Carlo simulation and the
procedures shown in Figure 6(c). The SSRC obtained
would be larger than the SSR value of 95 pct datasets
(i.e., 19,000 out of 20,000).

V. RESULTS

A. Direct Comparison of the Estimation Approaches

Figure 7 illustrates the results of the simulations
shown in Figure 6(a). In general, the estimated Weibull
modulus became closer to mtrue with increase in sample
size N. Figure 7(a) summarizes the Mmean obtained by
the LLS and the ML methods (i.e., Approaches 1 to 10
and 21 in Table III). It can be seen that Approaches 1
and 9 were relatively less biased for N ‡ 25, and
Approach 5 was the least biased approach when the
sample size N was<25. This observation was consistent
with the results of References 5 and 7. Figure 7(b) shows
a summary of Mmean achieved via the Non-LS method
(i.e., Approaches 11 to 20 in Table III). It was obvious
that Approach 12, which was the worst estimator for the
LLS method (i.e., Approach 2), was less biased than the
other estimators using the Non-LS method, especially
when the sample size was smaller than 30.

Table II. Data (Referred to as x) Generated from a Weibull Function with Shape = 11, Scale = 60

i x Ptrue,i Pest,i = (i � 0.5)/N DYlinear,i DYnon-linear,i

1 34.0085 0.001938 0.02 0.018062 2.34314
2 34.6850 0.002406 0.06 0.057594 3.24576
3 37.1551 0.005122 0.10 0.094878 3.02130
4 42.4875 0.022199 0.14 0.117801 1.90484
5 51.1540 0.158850 0.18 0.021150 0.13734
6 51.8391 0.181473 0.22 0.038527 0.21573
7 54.0502 0.271693 0.26 0.011693 0.05155
8 54.5408 0.295427 0.30 0.004573 0.01843
9 55.1336 0.325901 0.34 0.014099 0.05221
10 55.2120 0.330076 0.38 0.049924 0.17674
11 55.3406 0.336997 0.42 0.083003 0.28175
12 55.7049 0.357082 0.46 0.102918 0.33283
13 56.6743 0.413777 0.50 0.086223 0.26074
14 57.0168 0.434843 0.54 0.105157 0.30805
15 57.8910 0.490647 0.58 0.089353 0.25148
16 58.0565 0.501496 0.62 0.118504 0.32925
17 58.2651 0.515268 0.66 0.144732 0.39860
18 58.6562 0.541344 0.70 0.158656 0.43479
19 59.7578 0.615759 0.74 0.124241 0.34242
20 60.5805 0.671011 0.78 0.108989 0.30892
21 60.8124 0.686338 0.82 0.133662 0.39136
22 61.0008 0.698679 0.86 0.161321 0.49409
23 62.7504 0.805486 0.90 0.094514 0.34101
24 63.0698 0.822946 0.94 0.117054 0.48552
25 64.0881 0.873164 0.98 0.106836 0.63899
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For a further comparison, Approaches 1, 5, 9, and 12
were put together as shown in Figure 7(c). For 15 £ N<
35 and 90 £ N, it was clear that Approach 12 resulted in
the least bias for all the sample sizes. For 35 £ N< 90,
Approaches 1 and 12 were better than the other
approaches. Figure 7(d) shows the Standard Error
(SE) of M, revealing a negligible difference between
the SE values of different approaches.

B. Effect of a Dramatic Enlargement of DYnon-linear,i

Figure 8 shows the Mmean of the datasets containing
at least one datum point <30. As can be seen from
Figure 8(a), the LLS method (i.e., Approaches 1 to 10 in
Table III) was seriously biased when dealing with this
type of data. For 15 £ N £ 40, which was the common
sample size for obtaining the Weibull modulus of
castings in previous publications,[2,27–29] the Mmean

values were no more than 0.7, presenting a significant
bias of the estimated Weibull modulus. In addition, even
with a large sample size, such as N = 115, the Mmean

values of Approaches 1 to 10 still did not exceed 0.85.
Thus, it can be suggested that the LLS method is not
suitable for estimating the Weibull modulus, when Pest.i

dramatically deviates from Ptrue,i in the lower tail. This
may explain why the data points shown in Figure 1
deviated from the linear fit.
By contrast, according to Figure 8(b), the Non-LS

method (i.e., Approaches 11 to 20) was significantly less
biased. Even the worst approach (Approach 12) of the
Non-LS method could cause a smaller bias (Mmean>

0.85, at N =15) than any approaches using the LLS
method (Mmean < 0.8, at N = 115). In addition,
Approach 11 obtained the least biased estimates among
all the approaches using the Non-LS methods (Ap-
proaches 11 to 20), especially when the sample size was
smaller than 30.
Moreover, it should be noted that Approach 12,

which was unbiased in Figure 7(b), became the most
seriously biased estimator among the approaches of the
Non-LS method, indicating that the bias of the
approaches could be different depending on the level
of the enlargement of DYnon-linear,i.
Mmean obtained by the ML method (Approach 21 in

Table III) was also shown in Figure 8(b), but it was
clear that Approach 21 was more biased for all the
sample sizes examined, in contrast to the Non-LS
method.

Fig. 5—(a) and (b) Weibull estimation using (a) the Non-LS and (b) LLS methods, corresponding to the data listed in Table II. The black points
indicate Ptrue,i, while the red points denote Pest,i. (c) The change of EF along with Pture,i.
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95 pct CI (confidence interval) of Approaches 1, 11,
and 21 was computed under an assumption that the M
values follow a standard normal distribution, as shown
in Figure 8(c).

Therefore, the Non-LS method is relatively reliable,
when the estimated probability (Pest.i) deviated dramat-
ically from true probability (Pture,i) in the lower tail, and
Approach 11 was recommended to be the default to
estimate the Weibull modulus for this type of data.

C. Critical Sum of Residual Squares (SSRC)

Table IV shows the SSRC values for different sample
sizes. The estimator used was P = (i � 0.5)/N (i.e.,
Eq. [6] in Table I). As previously mentioned, 95 pct
Weibull datasets (19,000 out of 20,000) in the simulation
had a smaller SSR than SSRC. Applying this criterion
to the Non-LS estimation result shown in Figure 2
(N = 25), it can be determined that Griffiths and Lar’s
data (Figure 1) follow a 2-p Weibull distribution.

However, it should be noted that this suggestion was
quite different using Tiryakioglu’s equation (i.e.,
Eq. [3]), which suggested that Griffiths and Lar’s data

followed a 3-p/mixture Weibull distribution. In con-
junction with the discussion in Section III–B, Tiryakio-
glu’s equation may falsely reject the Weibull behavior of
Griffiths’ data, due to the shortcomings of the linearized
Weibull function.
In addition, since the SSR value is affected by the

sample size N, SSRC values of the samples having
different sizes could not be directly compared with each
other. Therefore, the mean sum of residual squares
(SSRCmean) can be further used to evaluate the good-
ness-of-fit of the non-linear regression results, as shown
in the third column of Table IV and the following
equation:

SSRCmean ¼ SSRC=N: ½24�

The best fit curve of SSRCmean was computed as
shown in Figure 9, which followed the formula below:

SSRCmean ¼ 0:06463 �N�0:93778: ½25�

Therefore, the author recommends using this equa-
tion to determine the Weibull behavior of datasets.

Fig. 6—Flowcharts summarizing the simulation procedures: (a) direct comparison of the three estimation methods; (b) to study the effect of the
enlargement of DYnon-linear,i on Weibull estimation.
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D. Practical Data from Mg-Alloy Castings

Figure 10 shows an example of a commercial purity
Mg-alloy casting. Similar to the casting shown in
Figure 1, this Mg casting was also produced using a
resin-bonded sand mold with a top-filled system, and the
casting procedures were the same as Griffiths and Lai’s
work.[2] The material used was from the same batch as

the Mg alloy used by Griffiths and Lai,[2] so it can be
readily compared. Thus, the reproducibility of this
casting was expected to be close to the results from the
casting shown in Figure 1. After solidification, the
casting was machined into 40 test bars and tensile
strength was tested. The UTS data were used for
Weibull analysis.

Table III. Approaches Using the Estimators Shown in Table I Together with LLS, Non-LS, and ML Methods

Estimators

Methods

LLS Non-LS ML

Eq. [6] Approach 1 Approach 11 Approach 21
Eq. [7] Approach 2 Approach 12
Eq. [8] Approach 3 Approach 13
Eq. [9] Approach 4 Approach 14
Eq. [10] Approach 5 Approach 15
Eq. [11] Approach 6 Approach 16
Eq. [12] Approach 7 Approach 17
Eq. [13] Approach 8 Approach 18
Eq. [14] Approach 9 Approach 19
Eq. [15] Approach 10 Approach 20

Fig. 7—Mmean values obtained via the approaches in Table III, (a) Approaches 1 to 10 and 21, (b) Approaches 11 to 20, for a direct comparison
of the three estimation methods; (c) a further comparison of Approaches 1, 5, 9, and 12 shown in (a) and (b); (d) Standard Error (SE) of the ap-
proaches shown in (a) and (b).
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Figure 10 shows the Weibull parameters evaluated
using Approaches 1 and 11. It can be seen that the data
points showed a good fit to the linear regression line
(Figure 10(a)). In addition, in Figure 10(b), the data
points showed a good fit to both the curves obtained
using the Non-LS method (Approach 11, SSR =
0.0222) and the LLS method (Approach 1, SSR =
0.0265). In conjunction with Figure 7, the enlargement
of DYnon-linear,i in the dataset may not be dramatic. The
estimated Weibull moduli (11.7 and 11.4) were close to
the Non-LS estimation results shown in Figure 1, rather
than the LLS estimation results.

As previously mentioned, this casting process (i.e., the
casting shown in Figure 10) is the same as the Griffiths
and Lai’s casting process (i.e., the casting shown in
Figure 2), and thus the estimated Weibull modulus
shown in Figure 10 should be close to the true Weibull
modulus of Griffiths and Lai’s casting. Therefore, the
Weibull modulus shown in Figure 10 could be used as
the reference value to determine which Weibull modulus
(i.e., the LLS and Non-LS estimation results) in
Figure 2 was closer to the true value. Based on the
comparison between Figures 2 and 10, it can be

suggested that the Non-LS estimation result shown in
Figure 2 (i.e., m = 11.14) is closer to the true Weibull
modulus than the LLS estimation result (i.e., m = 4.4).
The Non-LS method is accordingly more appropriate to
estimate the Weibull modulus of Griffiths and Lai’s
data.
In addition, this comparison (Figures 10 and 2)

further revealed that the SSRC method (Figure 9) may
be more appropriate to interpret Griffiths and Lai’s
data, while Tiryakioglu’s equation (Eq. [3]) will falsely
interpret this dataset to be a 3-p Weibull distribution.
Figure 11 shows an example of results from an AZ91

casting, produced in the same way as the cast test bar
results shown in Figure 10. As shown in Figure 11(a),
the data points deviated from the linear regression line,
and the corresponding R2 was smaller than the critical
R2 suggested by Eq. [3] [(R0.05)

2 = 0.9256), rejecting the
Weibull behavior of this dataset. However, according to
the non-linear Weibull plot (Figure 11(b)], there was a
clear difference between curves obtained by Approaches
1 (the LLS method) and 11 (the Non-LS method). The
curves obtained by Approach 11 have an SSR value
smaller than the critical SSR (SSRC = 0.0816979,

Fig. 8—Mmean of Approaches (a) 1 to 10 and (b) 11 to 21 applied on the dataset containing at least one datum<30. (c) 95 pct CI of Approaches
1, 11, 21 applied on dataset containing at least one datum<30. (d) Standard error of M.
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Table IV), suggesting the data followed a 2-p Weibull
distribution. This different judgment of Weibull behav-
ior is similar to that found in the estimation of Griffiths
and Lai’s data (Figure 2), and the dataset may be falsely
interpreted in the linearized Weibull plot.

VI. DISCUSSION

A. Determination of Weibull Behavior of Datasets

Figure 3 indicates that the difference between the
estimated and true cumulative probabilities of data
points (DYnon-linear,i) would be significantly enlarged due
to the linear transformation of the Weibull function.
Figure 4 further reveals that this enlargement level was
not uniform: the enlargement could be more dramatic in
the lower and upper tails (i.e., when Ptrue,i is close to 0
or 1).

According to the Weibull analysis of example data
(Figures 2 and 5), the non-uniform enlargement of
DYnon-linear,i can affect the judgement of the Weibull
behavior of datasets. The re-analysis of Griffiths’ data
(Figure 2) and the corresponding SSRC value
(Table IV) indicated that it may not be necessarily
correct to reject the Weibull behavior of datasets,
according to the goodness-of-fit of the linear regression
line (Eq. [3]). It should be noted that if a significant
enlargement of DYnon-linear,i occurred in the lower tail
(i.e., the first few data points), even a dataset generated
from a Weibull distribution would probably present a
bad fit to the linear regression line, as shown in
Figure 5(b).

The experimental result (Figure 10) further showed
the dataset of a top-filled commercial purity Mg casting
followed a 2-p Weibull distribution, according to both
R2 and SSR. In addition, both of the LLS and Non-LS
results in Figure 10 were close to the Non-LS estimation
result of Griffiths and Lai (Figure 2), which further
supported the reliability of the Non-LS estimation.
Figure 11 shows a further example that the dataset may
be falsely interpreted.
Therefore, the non-uniform enlargement of

DYnon-linear,i is an underlying reason for the deviation
of the data points widely found in previous publica-
tions.[2,9–13] Previous researchers suggested that this
deviation could be due to the nature of the physical
flaws (i.e., defects, such as porosity, low melting point
intermetallic compounds, and segregation) in the mate-
rial,[14,30] and the corresponding data points were
interpreted to follow an underlying 3-p or mixed
Weibull distribution.[15–17] However, more analysis
(Eq. [25]) is still required to distinguish what is the
actual reason of the deviation. The simulation results
(Figure 5) and experimental results (Figures 2 and 10)
indicated that a deviation caused by the non-uniform
enlargement of DYnon-linear,i could be falsely interpreted
to be due to physical flaws (i.e., 3-p/mixed Weibull
distribution). This misunderstanding may exist in pre-
vious researches.

B. Effect of Weibull Modulus Estimation

The results of the Monte Carlo simulations demon-
strated that the non-uniform enlargement of
DYnon-linear,i resulted in a greater bias in the Weibull
modulus estimation. When the difference between
DYlinear,i and DYnon-linear,i was not necessarily large
(Figure 7), the Non-LS method was slightly less biased
than the LLS method. However, when high enlargement
of DYnon-linear,i occurs in the lower tail (Figure 5), the
Non-LS method has a considerable merit over the LLS
method.
It is therefore recommended that the plot of the

original non-linear Weibull CDF and the Non-LS

Table IV. SSRC Values; the Estimator Used is P =
(i 2 0.5)/N

N SSRC SSRCmean

15 0.0756771 5.0451E�03
20 0.0784904 3.9245E�03
25 0.0797666 3.1907E�03
30 0.0802094 2.6736E�03
35 0.0818855 2.3396E�03
40 0.0816979 2.0424E�03
45 0.0832347 1.8497E�03
50 0.0826510 1.6530E�03
55 0.0837245 1.5223E�03
60 0.0829798 1.3830E�03
65 0.0834890 1.2844E�03
70 0.0831899 1.1884E�03
75 0.0844495 1.1260E�03
80 0.0846093 1.0576E�03
85 0.0842047 9.9064E�04
90 0.0849502 9.4389E�04
95 0.0840484 8.8472E�04
100 0.0846551 8.4655E�04
105 0.0833319 7.9364E�04
110 0.0842549 7.6595E�04
115 0.0845723 7.3541E�04
120 0.0838167 6.9847E�04

Fig. 9—SSRCmean for different sample sizes.

5526—VOLUME 48A, NOVEMBER 2017 METALLURGICAL AND MATERIALS TRANSACTIONS A



method, which avoids the linear transformation, should
be used for the Weibull analysis of material properties.

VII. CONCLUSION

1. It has been demonstrated that the difference
between the estimated and true cumulative proba-
bilities of data points can be dramatically enlarged
in the lower and upper tails, due to the linear
transformation in the traditional Weibull modulus
estimation using the LLS method.

2. Such an enlargement is an underlying reason of the
deviation from the linear regression line, which was
previously widely reported and interpreted to be
due to physical flaws contained in the brittle and
metal materials.

3. It is therefore not necessarily correct to reject the
Weibull behavior of a dataset, according to the
goodness-of-fit of the linear regression line, such as R2.

4. The Non-LS method, which is demonstrated to be
less biased compared with both the LLS and ML

methods, is recommended for the Weibull modulus
estimation.
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Fig. 10—Weibull estimation of UTS of the commercial pure Mg casting produced by the author. (a) LLS estimation, (b) Non-LS estimation.
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