
Weight-Aware Cache for Application-Level
Proportional I/O Sharing

Jonggyu Park and Young Ik Eom

Abstract—Virtualization technology has enabled server consolidation wheremultiple servers are co-located on a single physical machine

to improve resource utilization. In such systems, proportional I/O sharing is critical tomeet the SLO (Service-Level Objectives) of the

applications running in each virtual instance. However, previous studies focus on block-level I/O proportionality without considering the

upper-layer I/O caches, which handle I/O requests on behalf of the underlying storage devices, thereby failing to achieve application-level

proportional I/O sharing. To overcome this limitation, we propose a newcachemanagement scheme,Weight-aware Cache (WaC), which

reflects the I/Oweights on cache allocation and reclamation. Specifically,WaCprioritizes higher-weighted applications in the lock acquisition

process of cache allocation by re-ordering the lock waiting queue based on I/Oweight. Additionally,WaC keeps the number of cache entries

of each application proportional to its I/Oweight, throughweight-aware cache reclamation. To verify the efficacy of our scheme, we

implement and evaluateWaC on both the page cache and bcache. The experimental results demonstrate that our scheme improves I/O

proportionality with negligible overhead in various cases.

Index Terms—Cache, cloud computing, operating systems, resource management

Ç

1 INTRODUCTION

VIRTUALIZATION has become an essential building block for
modern sever systems[1], [2], [3], [4], [5]. One of its fasci-

nating benefits is the consolidation of multiple servers into a
single physical machine, thereby maximizing resource utili-
zation. However, server consolidation inherently forcesmul-
tiple servers to share underlying system resources, making it
difficult to meet the SLO (Service-Level Objective) of each
application[6], [7], [8], [9]. To achieve SLO guarantees, the
majority of virtualization techniques, such as KVM and
Docker, rely on cgroup for controlling the host kernel resour-
ces[10], [11], [12], [13].

Cgroup [11] is a Linux kernel feature that limits and con-
trols various kinds of system resources, including CPU,
memory, and block I/O. Particularly, cgroup collaborates
with I/O schedulers to proportionally distribute I/O resour-
ces using I/O weight. However, cgroup is designed solely to
achieve block-level I/O proportionality, rather than applica-
tion-level I/O proportionality. Accordingly, it regulates I/O
activities only in the block layer without giving consider-
ation to the upper layers of the system software stack, such
as caching layers. As a result, when an application utilizes

I/O caches, such as bcache and the page cache, the applica-
tion-level I/O proportionality can be distorted. In other
words, even though the bandwidths of the applications are
proportional to their I/O weights at the block layer, the
applications actually experience disproportional I/O band-
width in the holistic point of view.

The concept of caches is widely utilized to bridge the per-
formance gap between fast and slow media. For example,
Linux kernel assigns a certain amount of main memory as
page cache to remedy relatively slow access to storage devi-
ces. The page cache handles I/O requests on behalf of the
underlying storage devices [14], thereby achieving enor-
mous performance improvement. Similarly, bcache[15] has
been developed to hide the high latency of slow storage
devices in the block layer by utilizing comparatively faster
storage devices. For example, the poor random I/O perfor-
mance of hard disk drives (HDD) can be alleviated by using
flash storage devices as bcache. However, the design princi-
ples of conventional I/O cache management schemes do
not include application-level I/O proportionality, and the
ability to cooperate with cgroup is insufficient to realize
application-level proportional I/O sharing. Therefore, the
adoption of such I/O cache can cause dis-proportionality of
I/O performance.

The conventional I/O cache management consists of two
phases, cache allocation and reclamation. Cache allocation
handles the upcoming I/O operations by allocating a new
cache entry and temporarily storing the data inside the
cache. Since cache is shared by multiple threads, cache allo-
cation is often protected by synchronization techniques,
such as spinlock. For example, the page cache and bcache
utilize qspinlock, which manages multiple lock acquisition
requests in a lock waiting queue. However, the qspinlock is
implemented based on FIFO-queue, where the oldest ele-
ment of the queue is serviced first [16], [17]. Thus, regard-
less of I/O weight, the lock acquisition order follows the

� Jonggyu Park is with the Department of Platform Software, Sungkyunk-
wan University, Suwon 16419, South Korea. E-mail: jonggyu@skku.edu.

� Young Ik Eom is with the Department of Electrical and Computer Engi-
neering/College of Computing and Informatics, Sungkyunkwan Univer-
sity, Suwon 16419, South Korea. E-mail: yieom@skku.edu.

Manuscript received 27 Apr. 2021; revised 9 Nov. 2021; accepted 14 Nov. 2021.
Date of publication 19 Nov. 2021; date of current version 8 Sept. 2022.
This work was supported by the Institute of Information& communications Tech-
nology Planning & Evaluation (IITP) Grant funded by the Korea government
(MSIT) under Grant 2015-0-00284, (SW Starlab) Development of UX Platform
Software for Supporting ConcurrentMulti-users on LargeDisplays).
(Corresponding author: Young Ik Eom.)
Recommended for acceptance by D.B. Whalley.
Digital Object Identifier no. 10.1109/TC.2021.3129366

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 10, OCTOBER 2022 2395

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0856-6503
https://orcid.org/0000-0003-0856-6503
https://orcid.org/0000-0003-0856-6503
https://orcid.org/0000-0003-0856-6503
https://orcid.org/0000-0003-0856-6503
https://orcid.org/0000-0001-6141-8054
https://orcid.org/0000-0001-6141-8054
https://orcid.org/0000-0001-6141-8054
https://orcid.org/0000-0001-6141-8054
https://orcid.org/0000-0001-6141-8054
mailto:jonggyu@skku.edu
mailto:yieom@skku.edu

order of enqueueing. Accordingly, the conventional cache
management schemes cannot reflect the I/O weight in cache
allocation.

Cache reclamation secures free cache entries by evicting
the existing ones. Since cache reclamation decides which
data the cache will keep, it significantly affects the perfor-
mance of read operations. Conventional cache management
schemes often adopt an LRU policy, which considers recency
of page references without considering the I/O weight.
Thus, the conventional cache reclamation can reclaim pages
used by higher-weighted applications ahead of those used
by lower-weighted ones, even when the pages have similar
reference characteristics. In this way, the use of I/O cache
can distort application-level I/O proportionality.

To realize application-level proportional I/O sharing, we
introduce a new cache management scheme, called WaC
(Weight-aware Cache). WaC reflects the I/O weight in the
process of cache allocation and reclamation. The cache allo-
cation scheme of WaC prioritizes higher-weighted applica-
tions in the lock acquisition process of cache allocation.
When the lock for cache allocation is available,WaC traverses
the entire lock waiting queue and detects the element with
the highest I/O weight. Afterward, WaC re-orders the lock
waiting queue based on the I/O weights so that the element
with the highest I/O weight can possess the lock in the next
turn. The reordering job can degrade scalability in the case
when the next lock holder is located in a different NUMA
node. To prevent this,WaC also considers the NUMA topol-
ogy when deciding the next lock holder. Through this pro-
cess,WaC can achieve proportional I/O sharing according to
the I/Oweight of each application.

Re-ordering the lock waiting queue based on I/O weight
can incur a problem, called starvation, where an application
fails to acquire the lock for very long time. When there are
many applications with high I/O weights, the lower-
weighted applications should keep yielding their chances
for lock acquisition, thereby experiencing starvation. To
solve the problem, we adopt a conventional well-known
technique for starvation, called aging. WaC continuously
increments I/O weights of the applications that yield their
turns of lock acquisition at each re-ordering phase. There-
fore, lower-weighted applications can acquire the lock in a
finite time, avoiding the starvation problem.

The cache reclamation scheme of WaC prioritizes cache
entries that are used by higher-weighted applications while
considering the recency of the cache references. WaC keeps
track of the owner application of each cache entry and the
number of cache entries owned by each application. During
cache reclamation, WaC decides cache entries for eviction
by considering the I/O weights of the owner applications
and their current number of cache entries. By doing so,WaC
makes the number of cache entries of each application pro-
portional to their I/O weights. Consequently, the higher-
weighted applications can possess more cache entries in the
I/O cache, which in turn improves the read performance of
such applications, compared with lower-weighted ones.

To verify the effectiveness of our scheme, we implement
WaC in two I/O cache systems: the kernel page cache and a
generic block-layer caching kernel module (bcache). In our
experiments with the Docker virtualization, we measured the
application-level I/O proportionality and the performance of

WaC, while comparing themwith those of conventional cache
management schemes. Evaluation results with real-world
benchmarks indicate that WaC displays up to 36.9% better I/
O proportionality than the conventional scheme with only
3.9% overhead atmost.

The rest of this paper is organized as follows. Section 2
elaborates on the background, and Section 3 demonstrates
the motivation of our work. Section 4 explains the design of
WaC in detail. The implementation of WaC on the page
cache and bcache is presented in Section 5. Experimental
results are provided in Section 6. Section 7 discusses the
related work. We conclude this paper in Section 8.

Overall, this paper makes the following contributions:

� Experimental demonstration of the problem of con-
ventional cache managements, regarding I/O pro-
portionality (Section 3)

� Weight-aware locking mechanism for reflecting I/O
weights in cache allocation. (Section 4.1)

� Weight-aware page reclamation for keeping data gen-
erated by higher-weighted applications. (Section 4.2)

2 BACKGROUND

In this section, we describe cgroup and application-level
I/O proportionality. Afterward, the mechanism of the con-
ventional I/O cache management schemes is given with
their limitation in terms of I/O proportionality.

2.1 Cgroup and Proportional I/O Sharing

Cgroup is widely adopted to control and limit the allocation
of system resources, such as CPU, memory, and block I/O.
Cgroup manages those resources in the form of subsystems,
each of which has various parameters for controlling
resource consumption[11]. Particularly, the blkio subsystem
monitors and regulates block I/O requests. Cgroup creates
a blkio resource group that contains a set of applications as
necessary, and the blkio subsystem controls the I/O band-
width of the groups [18] by adjusting their I/O-related
parameters. There are two representative policies to control
I/O performance in Cgroup [19]: proportional weight pol-
icy and throttling/upper limit policy. The weight policy is
to set I/O weight of cgroups and determine their shares.
The throttling policy is to set the upper limit of either I/O
bandwidth or IOPS. These two policies have both pros and
cons. The weight-based controlling can fully utilize the I/O
bandwidth that the device can support, but it cannot set the
exact I/O throughput. The throttling-based controlling can
limit the exact I/O performance but may waste the remain-
ing I/O performance in order to achieve the exact I/O per-
formance. This work focuses on the weight-based policy,
which controls I/O performance with I/O proportionality.

In conventional systems, CFQ and BFQ I/O schedulers
use this I/O weight value (blkio.weight) [11], [20] when they
decide how many I/Os will be dispatched from the request
queues in the block layer [18]. Specifically, the CFQ sched-
uler gives higher-weighted applications more time for proc-
essing I/O so that the block-level I/O proportionality can be
achieved according to their I/O weights [21]. Note that, in
this paper, I/O proportionality [22] refers to making the
bandwidth ratio of applications be proportionally allocated

2396 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 10, OCTOBER 2022

according to their I/O weights. For example, as shown in
Fig. 1, let us suppose that the system manager creates three
resource groups with I/O weights 100, 400, and 500. Then,
for I/O proportionality, they should have the I/O band-
width ratio of 0.1:0.4:0.5, when the total amount of I/O
resources available in the system is 1.0.

In practice, however, the application-level I/O propor-
tionality cannot be guaranteed with I/O caches because I/O
caches [21], [23], [24] may exclude the I/O scheduler from
the critical path except when uncached data are requested.
For example, when an application tries to access data
already stored in the page cache, the application retrieves
the data directly from the page cache, skipping the layers
beneath the page cache. This characteristic of the page cache
avoids relatively slow access to the underlying storage
device and helps to achieve high I/O bandwidth and low
latency. However, since such I/O requests do not experi-
ence the block layer, the I/O weights of cgroup cannot be
applied. Additionally, the blkio subsystem does not directly
control I/O caches, and also, the I/O caches cannot achieve
the required I/O proportionality by themselves.

2.2 I/O Cache

A cache is a component that temporally stores data on a
faster medium in lieu of a slower one. The current computer
systems adopt various kinds of caches to bridge the perfor-
mance gap between two different hardware devices. Partic-
ularly, I/O caches effectively improve I/O performance by
directly servicing I/O requests on behalf of the slow storage
device, when the corresponding data reside in it [25]. For
example, Linux kernel utilizes unused space of the main
memory as I/O cache, called page cache. Similarly, Linux
kernel provides another type of I/O cache in the block layer,
called bcache, to remedy the low performance of a slow
storage device by means of a faster one.

2.3 Cache Allocation

I/O cache management mainly performs two tasks; cache
allocation and cache reclamation. Cache allocation refers to a
task that allocates a new cache entry to store incoming data.
For example, when an application tries to write uncached
data, the cache management allocates a new cache entry to
the application and stores the corresponding data inside the
entry. Since the cache resource is shared by multiple CPUs,
cache allocation should be mutually exclusive [24]. To
achieve this, I/O cache management often adopts a locking
mechanism to protect the critical section. For example, both

the page cache and bcache protect the cache allocation using
qspinlock in Linux systems.

The overview of qspinlock mechanism is shown in Fig. 2.
As described in Fig. 2, qspinlock mechanism consists of one
qspinlock structure and multiple per-CPU qnodes, each of
which is an element of lock waiting queue[16]. In the lock-
ing mechanism, for cache allocation, the conventional cache
management selects the next lock holder from the lock wait-
ing queue in a FIFO manner [16], [17]. Therefore, the con-
ventional cache allocation cannot prioritize applications
with higher I/O weights. For example, in Fig. 2, when
CPU3 tries to acquire the qspinlock, it is inserted at the tail
of the lock waiting queue regardless of its I/O weight.
Afterward, when CPU1 releases the qspinlock, CPU2 stops
busy-waiting and acquires the lock in a FIFO manner with-
out consideration on I/O weight. Therefore, although the
applications on CPU3 and CPU4 have higher I/O weights
than the one on CPU2, CPU2 acquires the lock ahead of
CPU3 and CPU4. Like this, the conventional cache manage-
ment handles cache allocation using a FIFO-based queue
which does not consider I/O weights, thereby distorting the
I/O proportionality.

Cache allocation and its lock contention are critical to the
I/O performance [24], and have an increasing impact on the
performance as the number of applications co-running in a
system increases. For example, in a multi-container environ-
ment where multiple servers co-run in a single physical sys-
tem, lock contention increases due to the high number of
simultaneous cache allocation requests. Thus, I/O requests
from applications have to wait a significant amount of time
to acquire the lock. Accordingly, the order of lock acquisi-
tion becomes a critical factor on the I/O performance in
such systems.

We demonstrate this problem in Fig. 3, by measuring the
lock contention count using lockstat [26] while running

Fig. 1. An overview of I/O resource sharing using cgroup.

Fig. 2. The conventional Qspinlock.

PARK AND EOM: WEIGHT-AWARE CACHE FOR APPLICATION-LEVEL PROPORTIONAL I/O SHARING 2397

multiple random write workloads on tmpfs. Here, the lock
contention denotes the case that a process attempts to
acquire the lock that is already held by another process. As
shown in Fig. 3, the lock contention count increases along
with the number of running threads, mainly due to high con-
tention of cache allocation requests from multiple threads.
When the number of threads becomes 128, the number of
lock contentions reaches 92,687. In terms of performance, the
average latency of the workloads significantly increases as
the number of concurrent threads increases. Like this, the
more threads run in a system, the more important the order
of lock acquisition becomes. Moreover, this problem is exac-
erbated when the amount of available cache entries is low
and cache allocation induces cache reclamation [24]. In the
case of page cache, it is known that allocating free pages can
take more than 200ms in such cases because dirty pages
should be evicted in advance to create free pages [21], [24].

2.4 Cache Reclamation

Since the cache size is usually smaller than the entire data
size, the cache management should reclaim the existing
cache entries to secure free entries for new data. In this pro-
cess, cache replacement algorithms such as LRU (Least
Recently Used) and FIFO decide which cache entries to
evict. There have been various kinds of cache replacement
algorithms to maximize the cache hit ratio. For example,
LRU policy evicts the cache entries that are not used for a
long time under the assumption that recently accessed data
will be accessed again soon.

The Linux page cache utilizes a variant of LRU, called
2Q-LRU, which utilizes two LRU queues: an active list to
keep frequently accessed pages, and an inactive list for the
other pages [27]. When a page is accessed for the first time,
it is placed at the head of the inactive list. Afterward, the
page can be promoted to the active list when it is accessed
again. Pages in the active list are demoted to the inactive list
when they are considered unlikely to be accessed again.
Finally, pages at the tail of the inactive list are reclaimed
when the amount of free memory space gets lower than the
predefined threshold.

Bcache provides LRU, FIFO, and random as a configura-
tion parameter. It assigns each cache entry a priority value,
which decrements over time, and utilizes the value in cache
reclamation. For example, in the case of LRU, bcache
restores the priority value of cache entries to the pre-defined
value upon each access and evicts cache entries that have
the lowest priority value.

Cache reclamation is crucial to the I/O performance, espe-
cially to that of read I/Os, because it decides the contents of
the cache. Unfortunately, both the page cache and bcache do
not consider I/O weight in the process of cache reclamation.
Therefore, those cache systems lack the ability to reflect I/O
weight in cache reclamation, which in turn leads to failing to
achieve application-level proportional I/O sharing.

3 MOTIVATION

A majority of virtualized systems utilize cgroup, which
cooperates with I/O schedulers, to achieve proportional
I/O sharing. However, the adoption of the I/O cache can
impede application-level proportional I/O sharing because
I/O requests might not experience the underlying I/O
scheduler. As shown on the left side of Fig. 4, buffered I/Os
are usually handled by the page cache without going
through the I/O scheduler. Only some of the read requests
are delivered to the I/O scheduler when the corresponding
data do not exist in the cache. Similarly, as shown on the
right side of Fig. 4, bcache also handles I/Os on behalf of
the underlying storage, thereby hindering the I/O sched-
uler from controlling the I/O requests. Unfortunately, the
conventional I/O cache management cannot reflect I/O
weight by itself, as mentioned in Section 2.

To experimentally demonstrate the distortion of I/O pro-
portionality caused by cache allocation, we conducted an
experiment with the Fileserver workload in Filebench. We
ran this workload in each of four containers with different
weights (i.e., 100, 200, 400, 800). Each of the workloads runs
for around 300 seconds and generates around 6 GB of data.
The experiment is performed with two different types of
I/Os: (1) direct I/O whereby I/O requests bypass the page
cache layer, and (2) buffered I/O whereby I/O requests use
the page cache for buffering and caching. In this experi-
ment, we do not adopt bcache, and thus all of direct I/Os
visit the I/O scheduler. The detailed experimental setup is
described in Table 1 of Section 6.

Fig. 5 shows the R/W combined I/O bandwidths and the
normalized (to the bandwidth of the container with weight
100) I/O bandwidths for the two different I/O types. As

Fig. 3. Lock contention count and the average latency while varying the
number of threads. A higher value denotes more severe lock contention
and worse performance.

Fig. 4. The critical path of I/O requests depending on I/O types.

2398 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 10, OCTOBER 2022

shown in Fig. 5, while direct I/O exhibits decent I/O pro-
portionality (1:1.9:3.2:5.4), buffered I/O presents poor pro-
portionality in that it shows similar performance in all
differently weighted containers. This unsatisfying result of
buffered I/O comes from the buffering of I/O operations in
the page cache.

Fileserver is a write-intensive I/O workload, and so, the
majority of the I/O operations are absorbed by the page cache
in the case of buffered I/O. However, the conventional page
cachemanagement does not prioritize higher-weighted appli-
cations in the cache allocation stage,which has critical impacts
on the write performance. Rather, it handles applications in a
FIFO manner during the cache allocation process. Therefore,
even if the containers have different I/O weights, buffered
I/O cannot differentiate the I/O bandwidth of the containers.

Nonetheless, the difference in the total bandwidth between
the two cases shows a clear reason for using I/O caches. In the
experiment of Fig. 5, the total bandwidth of four containers
with direct I/O is 677.3 MB/s, while that with buffered I/O is
1200.4 MB/s. Considering this huge I/O performance gain of
I/O caches, we cannot ignore I/O caches even in cloud sys-
temswhere performance SLO is very crucial [25], [28].

To show the distortion of I/O proportionality caused by
cache reclamation, we conducted an experiment with the Re-
read workload of FIO. Like the previous motivational experi-
ment of Fig. 5, we ran thisworkload in each of four containers
with different weights (i.e., 100, 200, 400, 800). Each container
creates one 3 GB test file to cache all the data of the file into
the page cache. Then, the host writes a 4 GB dummy file to
trigger excessive page reclamation. Lastly, we executed 1 GB
re-read operations in each container and measured the I/O
bandwidth. The experiment is also performed with two dif-
ferent types of I/Os, direct I/O and buffered I/O. As shown
in Fig. 6, buffered I/O shows poor I/O proportionality than

direct I/O. A large number of re-read requests are serviced
from the page cache in the case of buffered I/O. Unfortu-
nately, when the conventional page cachemanagement evicts
cache entries after the dummy writes from the host, it does
not consider I/Oweights. Therefore, even though some cache
entries are used by higher-weighted containers, the entries
are evicted prior to other entries used by lower-weighted
ones, resulting in poor I/O proportionality.

The aforementioned analyses on the conventional I/O
cache management lead us to conclude that strictly keeping
the FIFO or LRU policy without considering the I/O weights
is harmful to the I/O proportionality when runningweighted
applications. Based on the motivational analyses above, we
suggest a new cache management scheme that resolves the
aforementioned problems.

4 DESIGN

In this section, we present a new cachemanagement scheme,
called WaC (Weight-aware Cache), to achieve application-
level proportional I/O sharing. The overview of WaC is pre-
sented in Fig. 7.WaC has the following goals:

� WaL (Weight-aware Lock): Prioritizing higher-
weighted applications in the locking mechanism for
cache allocation.

� WaR (Weight-aware Reclamation): Prioritizing the
cache entries used by higher-weighted applications
in the cache reclamation.

4.1 Weight-Aware Lock (WaL)

WaL is a new locking mechanism that reflects I/O weight in
the decision process of the next lock holder for cache alloca-
tion to achieve proportional I/O sharing. The structure of
WaL is similar to the conventional qspinlock in thatWaL uti-
lizes the lock waiting queue and qspinlock. However, WaL
stores the I/O weight of each application inside the qnode

TABLE 1
Experimental Configuration

Fig. 5. Comparison of I/O bandwidths and normalized I/O bandwidths
between direct I/O and buffered I/O, with the Fileserver workload (I/O
bandwidth is normalized to the container of weight 100). Here, the I/O
proportionality of direct I/O is 1 : 1.9 : 3.2 : 5.4.

Fig. 6. Comparison of I/O bandwidths and normalized I/O bandwidths
between direct I/O and buffered I/O, with the Re-read workload (I/O
bandwidth is normalized to the container of weight 100.)

Fig. 7. An overview of WaC.

PARK AND EOM: WEIGHT-AWARE CACHE FOR APPLICATION-LEVEL PROPORTIONAL I/O SHARING 2399

and utilizes them in deciding the next lock holder. As a
result, while the conventional qspinlock chooses the next
lock holder in a FIFOmanner,WaL traverses the lockwaiting
queue and chooses the one that has the highest I/Oweight.

However, simply reordering the lock waiting queue
based on I/O weight can incur two problems. First, the star-
vation problem can take place. Since the lower-weighted
applications should yield their turns to higher-weighted
ones, such applications may consume a long time to acquire
the lock. Especially, when the majority of applications have
high I/O weights, the lower-weighted ones might be denied
to acquire the lock constantly. Prevention of such starvation
is necessary to build a robust system because starvation can
produce long-term unfairness and even system failures.

To solve this problem, we adopt a conventional well-
known technique for starvation, called aging, which gradu-
ally increments the priority of a task over time. WaL adjusts
the I/O weights of qnodes by a certain value, whenever reor-
dering occurs. Consequently, WaL considers not only I/O
weight, but also waiting time in deciding the next lock holder.

The second problem is a scalability issue derived from
NUMA-blindness. As previously reported[29], [30], [31],
[32], [33], NUMA-blind lock management can result in per-
formance degradation on NUMA systems. Specifically, fre-
quent change in the NUMA nodes of the lock holders can
induce noticeable overheads, because the memory band-
width between NUMA sockets is finite and remote access is
more expensive than local access[30]. To mitigate such over-
heads, WaL additionally stores the NUMA node ID of each
qnode and endeavors to maintain the lock holder on the
same NUMA node.

The pseudo-code of WaL is presented in Algorithm 1.
When the current lock holder releases the qspinlock, WaL
traverses the lock waiting queue to find the qnode that has
the highest I/O weight (search phase). We call this qnode as
maxNode. WaL examines not only the I/O weight, but also
the NUMA node ID to minimize performance overheads on
a NUMA system. Therefore, when multiple qnodes have
the same highest I/O weight, WaL chooses the one on the
same NUMA node as the head node. Afterward, WaL reor-
ders the lock waiting queue so that the maxNode is located
at the next of the head node and can acquire the qspinlock
in the next turn. Finally, WaL increments the I/O weights of
the other qnodes to prevent the starvation problem.

Indeed, the aging phase is inherent in the search phase to
minimize the traversing overheads. In other words, WaL
needs to traverse the lock waiting queue only once. But for
ease of understanding, we decoupled the search phase and
the aging phase in Algorithm 1. The maximum I/O weight
that can be manually set by cgroup is 1,000, while the
adjusted I/O weights can be higher than 1,000. Accordingly,
regardless of initial I/Oweights, any application can eventu-
ally become the maxNode due to the aging technique and
thus acquire the lock. In our experiments of Section 5, we set
the increment value as 100 for the following reason. First, we
set the weight values of cgroups in units of 100 (i.e., 100, 200,
400, and 800). I/O weight denotes the proportionality rela-
tionship in that a process with weight 800 is supposed to
show 8 times higher I/O performance than that with weight
100. Therefore, setting the increment value as 100 follows the
concept of I/O weight since a process with weight 100 can

acquire the lock after a process with weight 800 acquires the
lock around 7–8 times if the lock is contended. In otherwords,
the process with weight 100 becomes weight 800 after yield-
ing 7 times when the increment value is 100. If a system sets
the weight values in units of 50, (e.g., 50, 100, 150, and 200),
the increment value should be 50.

Algorithm 1. The Pseudo-Code of WaL

1: if qspinlock is available then
// cur is the qnode of the current lock holder

2: headNid = head! nid
3: qnode == head;
4: maxWeight == 0;
5: maxNode, prevNode, iterNode == NULL;

/* Search phase: find the qnode with the maximum
I/O weight (on the same NUMA node if possible) */

6: while qnode ! next 6¼ tail do
7: nextNode = qnode!next
8: if maxWeight <nextNode!weight then
9: prevNode = qnode;
10: maxNode = nextNode;
11: maxWeight = nextNode!weight;
12: end
13: else if (maxWeight == nextNode!weight) and

(headNid == nextNode! nid) then
14: prevNode = qnode;
15: maxNode = nextNode;
16: maxWeight = nextNode!weight;
17: end
18: qnode = qnode! next;
19: end

// Reordering the lock waiting queue
20: prevNode! next = maxNode! next;
21: maxNode! next = head! next;
22: head! next = maxNode;

// Aging phase
23: iterNode = maxNode;
24: while iterNode 6¼ tail do
25: iterNode! next!weight þ= agingValue;
26: iterNode = iterNode! next;
27: end
28: head.acquire(lock);
29: end

An example of WaL is illustrated in Fig. 8. In the initial
state, the qspinlock is occupied by CPU1 where APP1 is run-
ning, and two qnodes are in the lock waiting queue. CPU4 is
busy-waiting for the qspinlock because it is the head node.
The I/O weight of CPU2 qnode has been increased from 200
to 400 after reordering twice. When APP3 tries to acquire the
qspinlock, WaL creates a qnode structure for APP3 at the tail
of the lock waiting queue and stores its I/O weight and the
NUMA node ID inside the qnode (A). When CPU1 releases
the qspinlock, WaL traverses the lock waiting queue to find
the maxNode. Here, since the head node (CPU4) has been
busy-waiting,WaL does not reorder the head node and lets it
acquire the lock in this turn. In the example, the qnodes of
CPU2 and CPU3 have identical I/O weight (400). Therefore,
WaL additionally investigates the NUMA node information
and picks CPU3 node as maxNode, because CPU3 node is
located on the same NUMA node as the head node (CPU4).
Afterward, WaL reorders the lock waiting queue so that the

2400 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 10, OCTOBER 2022

maxNode (CPU3) is located next to the head node (CPU4) (B).
Finally, as the head node (CPU4) holds the qspinlock, the
maxNode (CPU3) becomes the new head of the queue and
will acquire the qspinlock in the next turn. Meanwhile, the
aging technique is applied, and thus the I/O weights of qno-
des in the queue are incremented (C). Consequently, by use of
WaL, higher-weighted applications can obtain the lock for
cache allocation relatively faster than applications with a
lower weight, thereby achieving application-level propor-
tional I/O sharing.

4.2 Weight-Aware Reclamation (WaR)

The conventional cache reclamation usually utilizes FIFO
and LRU variants. However, such methods cannot priori-
tize applications with high I/O weights. To overcome this
limitation, we proposeWaR, which considers both reference
recency and I/O weight. The goal of WaR is to keep the
number of allocated cache entries for each application pro-
portional to its I/O weight. To achieve this, WaR calculates
the I/O proportion of each application and calculates the
threshold number of cache entries that the application
should have. Finally, during cache reclamation, WaR com-
pares the number of cache entries of each application and
its threshold, and decides which cache entries to evict.

Fig. 9 describes the behavior of WaR. First, WaR calcu-
lates the I/O proportion of each application through divid-
ing each I/O weight by the total sum of I/O weights. For
example, in Fig. 9, the system executes four applications in
four cgroup nodes with I/O weight 100, 200, 400, and 800,
respectively. Then, each of these applications has an I/O
proportion of 0.07, 0.13, 0.27, and 0.53, respectively, when
the total amount of cache resources available in the system
is 1.0. Second, WaR keeps track of both the total number of
cache entries (total # entries in the figure) and the number
of cache entries used by each application (p.g. # entries in

the figure). When cache reclamation is triggered,WaR calcu-
lates the threshold (TH in the figure) of each application by
multiplying the I/O proportion and the total number of
cache entries. Here, the threshold value indicates the maxi-
mum number of cache entries an application is supposed to
possess. From the tail of the cache entries, WaR compares
the number of cache entries per group (p.g. # entries in the
figure) with the threshold value and evicts the cache entry
whose owner application has more cache entries than its
threshold. Note that when multiple applications share the
same page, WaC designates the highest-weighted applica-
tion as the owner of the page.

For instance, as shown in Fig. 9, the cache entries of APP1
and APP3 will be evicted because their p.g. # entries is higher
than their TH, while WaR keeps the cache entries of APP4.
Afterward,WaR decreases the total # entries from 10 to 8, and
the TH values become adjusted due to the change of the total
entries. Finally, WaR decrements the p.g. # entries of APP1
and APP3 by 1, because of the cache eviction. By performing
this process repetitively, WaR can keep the number of pages
of each application proportional to its I/Oweight.

Cache reclamation is closely related to read performance in
that it decides the contents of the cache. Read operations can
be serviced by the cache, depending on the existence of the
corresponding data in the cache.WaR tries to keep more data
of higher-weighted applications in the cache, which in turn
increases the probability that their read requests are processed
by the cache without accessing the underlying storage device.
As a consequence,WaR can prioritize higher-weighted appli-
cations, thereby enhancing I/O proportionality.

5 IMPLEMENTATION

We implementedWaC in two places in the Linux kernel: the
page cache and bcache. The operating system utilizes
unused space of the main memory as page cache to acceler-
ate I/O requests. Similarly, bcache is a discrete storage
device to cache I/O requests at the block layer. Since they
have different internal mechanisms, we explain the imple-
mentation details in this section.

5.1 Page Cache

The page cache manages cache entries in the unit of page
and maintains the cache entries in two LRU lists: active list

Fig. 8. An example of WaL.

Fig. 9. An overview of WaR.

PARK AND EOM: WEIGHT-AWARE CACHE FOR APPLICATION-LEVEL PROPORTIONAL I/O SHARING 2401

and inactive list. The conventional page cache protects
cache allocation using FIFO-based qspinlock. To implement
WaL, we add weight and nid (NUMA node ID) variables
into the qnode structure and assign the corresponding val-
ues to the variables when an application creates a new
qnode. We utilize the numa_node_id() function, which is pro-
vided by Linux kernel, to obtain the NUMA node ID of the
current application.

To implement WaR in the page cache, we performed the
following tasks. First, we add two new variables, for I/O
proportion and the number of cache entries per group, into
the cgroup structure. Whenever the cgroup hierarchy
changes due to an event, such as the creation of a new
cgroup, WaR re-calculates the I/O proportion. Upon cache
allocation,WaR links the new cache entry to the correspond-
ing cgroup node, in order to clarify the ownership of the
cache entry. Additionally, WaR increments the number of
cache entries per group. In this way, WaR can refer to the I/
O proportion and the number of cache entries per group
during cache reclamation. Finally, to obtain the total num-
ber of cache entries, WaR utilizes the existing NR_FILE_-
PAGES variable, which is the number of file-backed page
cache entries that the kernel keeps track of. When the page
reclamation is triggered, WaC can evict pages from the tail
of the inactive list according to the policy ofWaR.

We only apply WaR to the inactive list of the page cache
because the active list significantly contributes to the high
cache hit ratio. Therefore, moving pages from the active list
to the inactive list is performed with LRU to preserve the
high hit ratio of the page cache as conventional. Meanwhile,
WaC performs the conventional cache reclamation in the
case of the direct reclamation (foreground reclaim), in
which the system has a lack of free pages, in order to pre-
vent the OOM (Out-Of-Memory) problem and minimize
performance degradation. WaR requires additional CPU
overhead for comparing the number of cache entries of each
application and its threshold. Therefore, WaC performs
WaR in the case of background reclaim (kswapd), thereby
taking the computation off the critical path and minimizing
performance degradation.

5.2 Bcache

Bcache manages the cache entries in the unit of bucket and
utilizes priority values to implement cache reclamation
algorithms such as LRU, FIFO, etc. Bcache also utilizes
qspinlock to protect the cache allocation as in the case of
page cache. Therefore, the implementation of WaL in the
page cache is applied to bcache. To implement WaR in
bcache, in addition to the modification in the cgroup struc-
ture, we additionally add a cgroup pointer inside the bucket
structure to access I/O proportion and the number of cache
entries per group during cache reclamation. Upon cache
allocation, WaC links the corresponding cgroup pointer to
the allocated cache entry and increments the total number
of cache entries and the number of cache entries per group.
When cache reclamation is needed, WaR calculates the
threshold and decides which cache entries to evict. After
cache reclamation, WaC adjusts the number of cache entries
per group and the total number of cache entries. The imple-
mentation of WaR does not require modification on the
mechanism for priority control. Therefore, the conventional

cache reclamation algorithm is still valid among the cache
entries within the same cgroup.

6 EVALUATION

6.1 Evaluation Setup and Test Settings

To verify the efficacy of WaC, we performed various experi-
ments on the two machines described in Table 1. Machine A
is utilized to evaluate the page cache version ofWaC. To test
the scalability of WaC and the performance of the bcache
version, we utilize machine B, which is equipped with 64
physical cores (hyper-threading disabled) and high perfor-
mance storage device for bcache. All the benchmarks in the
experiments are containerized by Docker v18.09.4-CE and
run five times, unless otherwise specified. To quantitatively
measure the I/O proportionality, we adopt a new metric
called proportionality variation (PV), introduced in [34]. PV
is calculated via the following equation.

PV ¼ 1

N
�
X

8APPs
jIdeal�Actualj: (1)

Here, APPs are applications, N is the number of applica-
tions, Ideal is the ideal performance, and Actual is the actual
performance obtained from experiments. The lower the
value is, the closer the proportionality is to the ideal.

6.2 Page Cache

6.2.1 Fileserver Workload

To examine WaL on the page cache in terms of application-
level I/O proportionality, we ran eight Fileserver workloads
in eight differently weighted containers, each of which runs
for around 300 seconds and generates around 3 GB of data.
The Fileserver workload performs a large amount of buffered
writes and thus incurs frequent page cache allocation. Fig. 10a
shows the normalized I/O bandwidth of eight containers in
the Fileserver experiment. As shown in the x-axis of Fig. 10a,
we assign different weights to the containers from 100 to 800.
The bandwidths of the containers are normalized to the band-
width of the container with weight 100. In the figure, Ideal
represents the page cache management with ideal I/O pro-
portionality that the containers expect to achieve, i.e.,
1:2:3:4:5:6:7:8, and the Conventional is the conventional page
cachemanagement of the Vanilla Linux kernel.

As a result of the experiment, fromweights 100 to 800, I/O
proportionality of WaC shows 1:1.73:2.24:2.65:3.04:3.75:
4.37:6.26, whereas the conventional scheme shows 1:1.51:
2.02:2.40:2.63:2.71:3.07:3.31. Especially in the case of weight
800, WaC shows only a 1.74 lower I/O proportion than the
ideal case, while the conventional scheme exhibits a 4.69
lower I/O proportion than the ideal case. WaC can achieve
better application-level I/O proportionality than the conven-
tional scheme, because it prioritizes higher-weighted contain-
ers in the lock acquisition process during cache allocation. As
a result, higher-weighted containers can quickly finish their
write operations and resume the next write operations,
thereby showing higher I/O bandwidth. In terms of PV,WaC
outperforms the conventional scheme by around 36.9%. We
also measured the total I/O bandwidth while varying the
number of containers from two to eight, in order to analyze
the overheads of WaL of WaC. Similarly to the previous

2402 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 10, OCTOBER 2022

experiment, we ran Fileserver workloads with differently
weighted containers. As shown in Fig. 10b, the experimental
result shows that the total I/O bandwidth decreases only by
3.9% atmost whenWaC is applied.

6.2.2 Re-Read Workload

To evaluate WaR of WaC, we performed the same Re-read
experiments as the motivational experiments presented in
Section 3. In the Re-read experiment, four containerswith dif-
ferent I/O weights create their own files, and then the host
creates a dummy file to contaminate the page cache. After-
ward, the containers read the files again to examine how
many pages of each container reside in the page cache. In
our experiments, we also ran the workload with direct
I/O as well as buffered I/O for better comparison. All the
performance results are normalized to the case of weight 100.
As shown in Fig. 11, the conventional scheme exhibits poor
I/O proportionality because the conventional cache reclama-
tion scheme does not consider I/O weight at all. Therefore,
pages of higher-weighted containers can be evicted before
those of lower-weighted containers, even when their refer-
ence counts are the same. As a result, the conventional
scheme shows the PV of 1.4, whileWaC shows the PV of 0.33.
This result stems from the fact thatWaC balances the number
of allocated cache entries of the containers according to their
I/O weights, by keeping cache entries of higher-weighted
containers longer in the page cache. This result is even supe-
rior to that of direct I/O, in that direct I/O shows the PV of
0.61. This is because, in the case of WaC, the block-level I/O
proportionality is also guaranteed by the underlying I/O
scheduler, in addition to the cache-level I/O proportionality.

6.2.3 Overhead of WaC

To investigate the overheads caused by additional process-
ing of WaC, we measured the hit ratio, while executing four

containers with different I/O weights, each of which runs
the Webserver (read-intensive) workload. In addition, we
also measured the total bandwidth and the average latency,
while performing Fileserver and Re-read workloads in four
containers with the same I/O weight. As shown in Fig. 12a,
the overall hit ratio drops just by about 0.8% on average,
denoting that WaC keeps a satisfactory hit ratio even with
deprioritizing the pages of lower-weighted containers. This
result comes from the fact that WaC reflects I/O weight
only in the inactive list leaving the active list as it is.

Fig. 12b shows the write bandwidth of Fileserver and the
read bandwidth of Re-readworkloads. They are performed in
the same configuration as in Fig. 10b and Fig. 11 except that
all the containers have the same I/O weight in this experi-
ment. Comparedwith the conventional scheme,WaC exhibits
2.7% and 3.7% drop in the total bandwidth on the Fileserver
and Re-read workloads, respectively. In addition, the average
latency of executing Fileserver and Re-read workloads
increases by 1.5ms and 0.6ms on average inWaC, respectively.
These overheads of WaC originate from searching for a con-
tainerwith the highest I/Oweight during the cache allocation
and repeatedly keeping track of the number of allocated cache
entries per application for cache reclamation. However, con-
sidering the satisfactory results of I/O proportionality, we
believeWaC is very practical to help improve the I/O propor-
tionalitywith imperceptible overheads.

6.2.4 Comparison With Memory Cgroup

One might assume a combination of memory and blkio
cgroup could be an alternative toWaC. The memory subsys-
tem of cgroup provides the ability to control the maximum
memory usage of each application. However, when the
memory usage of a resource group exceeds its limit, the
memory cgroup reclaims not only its file-backed pages but
also anonymous pages. Therefore, it cannot solely limit the

Fig. 10. Results on Fileserver. Fig. 11. Results on Re-read workload.

Fig. 12. Overhead of WaC.

PARK AND EOM: WEIGHT-AWARE CACHE FOR APPLICATION-LEVEL PROPORTIONAL I/O SHARING 2403

amount of file-backed pages which affects the I/O perfor-
mance. Consequently, I/O proportionality still cannot be
guaranteed by memory cgroup.

To confirm this, we ran both Fileserver and Re-read bench-
marks and compared the experimental results of memory
cgroupwith those of our scheme. Here, in the case of memory
cgroup, we set the same ratio of memory limit (1:2:4:8) as that
of I/O weights of WaC. In the Fileserver experiment of
Fig. 13a, memory cgroup shows poor I/O proportionality,
showing PV of 4.25, while PV ofWaC is 0.33. Especially, with
memory cgroup, the container with I/O weight 800 shows
12.6 times higher I/O bandwidth than the lowest-weighted
container (100). Also, as shown in Fig. 13b of the Re-read
workload experiment, from weights 100 to 800, I/O propor-
tionality ofWaC shows 1:2.02:3.91:8.46, whereas that of mem-
ory cgroup shows 1:1.15:1.60:4.53. PVs of WaC and memory
cgroup are 0.14 and 1.67, respectively. We believe that these
results come from the fact that memory cgroup cannot solely
control file-backed pages (page cache) without limiting anon-
ymous pages.

6.2.5 Aging Technique

To prevent the starvation problem, we added the aging
technique to WaL. To verify that our scheme is robust in
extreme cases, we performed the Fileserver experiment with
eight containers. Here, the I/O weight of one container (C1)
is 100 and the others (C2 – C8) are 1000. As shown in Fig. 14,
I/O proportionality of WaC is 1:8.94:9.36:9.08:8.83:9.49:
9.77:9.43 with PV of 0.64. On the other hand, WaC without
the aging technique shows 1:12.57:13.31:11.72:12.443:13.31:
12.77:13.35 in I/O proportionality with PV of 2.31. In the case
ofWaCwithout aging technique, C1 should repetitively yield
its turn to other containers with higher I/O weight without
any reward, thereby showing lower I/O bandwidth than it
should. However, since WaC increases the I/O weight of C1
whenever it yields its turn for lock acquisition, it shows bet-
ter I/O proportionality than the case of WaC without the
aging technique. Therefore, even though there are multiple
higher-weighted containers, our scheme is still able to guar-
antee the performance of the lower-weighted containers
according to their I/Oweights.

6.2.6 Scalability

To analyze the effect of NUMA-awareness of WaL, we per-
formed a scalability experiment using FIO on machine
B shown in Table 1. We ran 4 KB buffered writes via four dif-
ferently weighted containers, each of which execute multiple

threads for the write operations. In this experiment, we
spread the threads of the same container to different nodes as
much as possible to simulate the worst case where the
NUMAnode of the lock holder frequently changes. As shown
in Fig. 15, for all the cases, the total IOPS decreases after the
total number of threads reaches 64, which is the number of
physical cores. The peak IOPS ofWaCwithoutNUMA-aware-
ness is around 5% lower than that of the conventional. It is
because WaC without NUMA-awareness chooses the next
lock holder without considering the NUMA topology and
thus frequently changes the NUMA node of the lock holder.
On the other hand, WaC outperforms even the conventional
scheme by around 7%due to its NUMA-awareness.

6.3 Bcache

In addition to the page cache, we also evaluate WaC on
bcache. We utilized machine B to perform experiments with
the high performance storage device (Optane SSD) for
bcache and ran benchmarks using four differently weighted
containers from 100 to 800.

6.3.1 RandomWrite Test

To test WaL, we ran FIO with 4KB random write workloads
using four containers. The random write workload performs
direct I/Owhich bypasses the page cache and utilizes bcache.
Similarly to the previous experiments, the containers are dif-
ferentlyweighted from100 to 800 so as to inspect proportional
I/O sharing. As shown in Fig. 16, the conventional bcache
cannot effectively prioritize higher-weighed applications,
resulting in 2.59 of PV. On the other hand, WaC shows only
0.94 of PV by gracefully overcoming the limitation of the con-
ventional bcache throughWaL. The computation overhead of
WaL is imperceptible in the case of bcache, because bcache is a
storage device which is much slower than CPU and main
memory. Therefore, in this experiment, we did not observe

Fig. 13. Comparison with memory cgroup. Fig. 14. Eval. for aging scheme.

Fig. 15. Scalability of WaC.

2404 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 10, OCTOBER 2022

any noticeable overheads of WaC in terms of the total I/O
bandwidth. Specifically, the raw bandwidths (MB/s) of the
conventional bcache from weight 100 to weight 800 are
111.14, 116.82, 130.18, and 156.65. The raw bandwidths (MB/
s) ofWaC are 47.01, 84.09, 149.84, and 246.20.

6.3.2 Random Read Test

To examine the I/O proportionality of read performance, we
ran random read workloads in four differently weighted
containers. Prior to measuring the performance, we ran the
benchmark once to warm up the cache. As shown in Fig. 17,
the conventional bcache shows the PV of 3.01, while WaC
exhibits that of 1.45. Moreover, on the conventional bcache,
the lower weighted containers show higher read bandwidth
because their data are cached more in the warm-up phase.
The random read workload is not time-based, and thus the
higher-weighted containers finished earlier than the others
in the warm-up phase. Therefore, the data for lower-
weighted containers evicts the data for higher weighed ones,
according to the recency policy of LRU. On the other hand,
WaR ofWaC considers not only recency, but also I/Oweight.
Therefore, bcache keeps more cache entries of higher-
weighted containers, thereby showing better I/O propor-
tionality. The total read bandwidth of the conventional and
our scheme are 2,047 MB/s and 2,188 MB/s, respectively. In
detail, the raw bandwidths (MB/s) of the conventional
bcache from weight 100 to weight 800 are 700, 643, 375, and
329, whereas those ofWaC are 238, 371, 588, and 991.

WaR induces additional CPU computations, compared
with the conventional reclamation. Therefore, we addition-
ally measured the CPU utilization of cache reclamation dur-
ing the evaluation using the perf profiler. Here, 1 CPU
utilization means that a thread occupies 1 CPU core during
the given period. In the case of the conventional bcache,
cache reclamation requires 0.009 CPU utilization during the
evaluation whereas WaR requires 0.014 CPU utilization.
Although WaR shows around 1.56 times higher CPU

utilization, the CPU utilization is still extremely low. There-
fore, we believe the additional computation of WaR is
negligible.

6.3.3 TPC-C

To extensively verify the efficacy of our scheme, we ran the
TPC-C workload with mysql-innodb. The TPC-C workload
generates 92% of read/write transactions and 8% of read-only
transactions [35]. In terms of I/O requests, the workload
issues small-sized random read/write operations, and the
ratio of read/write is around 1.9:1 [35]. The TPC-C workload
generates around 40 GB of data in total. The performance of
TPC-C is measured in transactions per minute (tpmC). As
shown in Fig. 18, the conventional bcache could not effectively
differentiate the performance of differently weighted contain-
ers. As a result, the PV of the conventional bcache is 2.48. The
detailed I/O proportionality of the conventional bcache is 1 :
1.09:1.35:1.62. On the contrary, WaC prioritizes containers
according to their I/O weights during both cache allocation
and reclamation. Consequently, WaC shows the PV of 0.63
(1:2.63:4.78:6.85). Moreover, the total tpmC of WaC is 18%
higher than that of the conventional scheme. In the case of
WaC, higher-weighted containers can utilize sufficient
amount of cache resource, thereby greatly improving their
performance. As a result, the tpmC of the container with
weight 800 is around 66% higher with WaC than the conven-
tional scheme.

6.3.4 Heterogeneous Workloads

Finally, we ran two heterogeneous workloads in a time-vary-
ing manner to further verify the effectiveness of our scheme.
In this experiment, we utilize two different workloads, a ran-
dom write workload of FIO for a malicious application and a
Fileserver workload of filebench for a high-priority applica-
tion. We ran the FIO and Fileserver workload for 240 and 300
seconds, respectively. To minimize the performance interfer-
ence of the malicious application, we set the priority of FIO as
100 and that of the Fileserver as 500. First, we run the FIO
benchmark prior to the Fileserver in order to occupy cache
entries with data generated by FIO. After 30 seconds, we exe-
cute the Fileserver workload and measure the I/O through-
put using iotop [36].

Fig. 19 shows the I/O throughput of the workloads with
the conventional cache management and WaC. As shown in
the figure, the Fileserver workload with the conventional
scheme achieves around 83% lower I/O throughput than that
withWaC on average. This significant performance difference
stems from the fact that the conventional cache management

Fig. 16. I/O proportionality on FIO random writes.

Fig. 17. I/O proportionality on FIO random reads.

Fig. 18. I/O proportionality of TPC-C.

PARK AND EOM: WEIGHT-AWARE CACHE FOR APPLICATION-LEVEL PROPORTIONAL I/O SHARING 2405

fails to prioritize the Fileserver workload, although the File-
server workload has 5 times higher priority than the FIO
workload. Especially, since we execute the FIO workload
ahead of the Fileserver workload, the data from the FIOwork-
load occupy most of the cache entries. Therefore, the File-
server workload cannot effectively utilize the cache resources.
Additionally, the conventional cache allocation is priority-
oblivious, thereby failing to prioritize the Fileserverworkload.

On the other hand, WaC preferentially allocates cache
entries to the Fileserver workload over the FIO workload
due to its WaL. Additionally, its WaR tries to keep more
data of the Fileserver workload than the FIO workload. As a
result, the read and write throughput of the Fileserver with
WaC are 291 MB/s and 281 MB/s, respectively, while those
with the conventional are 66.5 MB/s and 65.9 MB/s. Note
that the I/O throughput of FIO with the conventional
scheme is 805 MB/s where as that ofWaC is 663 MB/s.

7 DISCUSSION

Since proportional I/O sharing is an essential requirement
to construct a cloud computing environment, there has been
several research to improve I/O proportionality. For exam-
ple, J. Kim et al. [34], [37] proposed A+CFQ and H+BFQ
which extends Linux I/O schedulers considering internals
of SSDs. Additionally, S. Ahn et al. [38] proposed a new
scheme, which predicts the future I/O demands of each
container and collaboratively manages read/write opera-
tions. Similarly, Woo et al. [39] suggested a light-weight
fair-queueing scheme to provide fairness while minimizing
CPU consumption. However, such schemes still do not con-
sider the existence of cache layers in the I/O path, which is
introduced to improve I/O performance in almost all types
of system. WaC, on the other hand, is a new cache manage-
ment scheme that improves application-level I/O propor-
tionality even with the cache layers.

Cgroup v2 [40], which is the next version of cgroup, pro-
vides features to control writeback by setting dirty page ratio.
However, cgroup v2 still cannot control the page cache with
the I/Oweight although I/Oweight is a straight-forward and
user-friendly method. Additionally, cgroup v2 cannot solve
problems incurred by the locking mechanism in page alloca-
tion. Finally, cgroup v2 has no ability to control bcache for the
sake of application-level I/O proportionality.

P. Sharma et al. [41] proposed a per-VM page cache parti-
tioning scheme. The main contribution of the paper is to
increase hit ratio with small-sized memory by isolating VMs

in the page cache layer. Most recently, S. Kashyap et al. [29]
has proposed the shuffling mechanism that re-orders lock
waiting queue based on a certain policy. Theymainly focused
on solving the conventional lock problems, such as memory
footprint, with NUMA-awareness. On the other hand, the
contribution of this paper is to propose a new cache manage-
ment design to achieve application-level I/O proportionality.

In this paper, we address the I/O proportionality problem
of virtualized environments, particularly with Docker virtuali-
zation, because proportional I/O sharing is a critical factor in
such environments. However, since the page cache and bcache
mechanism are identical in a system without virtualization,
WaC is also applicable to non-virtualized environments.

We extended the previous version of our research [12], [42]
in twoways. First,WaC extendedWaL to consider the NUMA
topology when deciding the next lock holder. The NUMA
architecture has been widely adopted in many servers due to
its superior performance. Therefore, NUMA-aware lock
design is necessary to build a high-performance system. Sec-
ond, there are various I/O caches in the current computer sys-
tems. However, the previous version of our work focused
only on the page cache. In this paper, we re-designed our
scheme to be general so that it can be adopted to various I/O
caches. Additionally, we implemented and evaluated our
idea on both the page cache and bcache in this paper.

8 CONCLUSION

In this paper, we proposed a new I/O cache management
scheme, calledWaC (Weight-aware Cache), to achieve applica-
tion-level proportional I/O sharing. WaC prioritizes higher-
weighted applications both in cache allocation and reclama-
tion. For cache allocation,WaC utilizesWaLwhich considers I/
O weight and NUMA-topology when deciding the next lock
holder. For cache reclamation, WaR of WaC tries to keep the
number of cache entries proportional to I/Oweight.We imple-
mented and evaluated our idea on both the page cache and
bcache, and the experimental results demonstrate that WaC
effectively improves application-level I/O proportionality,
comparedwith the conventional cachemanagement.

REFERENCES

[1] J. Moura and D. Hutchison, “Review and analysis of networking
challenges in cloud computing,” J. Netw. Comput. Appl., vol. 60,
pp. 113–129, Jan. 2016.

[2] R. Uhlig et al., “Intel virtualization technology,” IEEE Comput., vol.
38, no. 5, pp. 48–56,May 2005.

[3] P. Barham et al., “Xen and the art of virtualization,” in Proc. ACM
Symp. Oper. Syst. Princ., 2003, pp. 164–177.

[4] M. Marzolla, O. Babaoglu, and F. Panzieri, “Server consolidation
in clouds through gossiping,” in Proc. IEEE Int. Symp. World
Wireless Mob. Multimed. Netw., 2011, pp. 1–6.

[5] S. Soltesz, H. P€otzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization: A scalable,
high-performance alternative to hypervisors,” in Proc. ACM
SIGOPS Eur. Conf. Comput. Syst., 2007, pp. 275–287.

[6] J. Kim, D. Lee, and S. H. Noh, “Towards SLO complying SSDS
through OPS isolation,” in Proc. USENIX Conf. File Storage Technol.,
2015, pp. 183–189.

[7] M. Kwon, D. Gouk, C. Lee, B. Kim, J. Hwang, and M. Jung, “Dc-
store: Eliminating noisy neighbor containers using deterministic
I/O performance and resource isolation,” in Proc. USENIX Conf.
File Storage Technol., 2020, pp. 183–191.

[8] A. Tavakkol et al., “Flin: Enabling fairness and enhancing perfor-
mance in modern NVME solid state drives,” in Proc. ACM/IEEE
Int. Symp. Comput. Archit., 2018, pp. 397–410.

Fig. 19. The I/O throughput of heterogeneous workloads in a time-series
manner.

2406 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 10, OCTOBER 2022

[9] J. Huang et al., “Flashblox: Achieving both performance isolation
and uniform lifetime for virtualized SSDS,” in Proc. USENIX Conf.
File Storage Technol., 2017, pp. 375–390.

[10] Control groups resource management. Accessed: Mar. 23, 2021.
[Online]. Available: https://libvirt.org/cgroups.html

[11] Cgroups. Accessed: Mar. 11, 2021. [Online]. Available: https://www.
kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

[12] J. Park, K. Oh, and Y. I. Eom, “Towards application-level I/O pro-
portionality with a weight-aware page cache management,” in
Proc. Int. Conf. Massive Storage Syst. Technol., 2020, pp. 1–11.

[13] Z. Gu and Q. Zhao, “A state-of-the-art survey on real-time issues
in embedded systems virtualization,” J. Softw. Eng. Appl., vol. 5,
no. 4, pp. 277–290, Jan. 2012.

[14] J. Park and Y. I. Eom, “Fragpicker: A new defragmentation tool for
modern storage devices,” in Proc. ACM Symp. Oper. Syst. Princ.,
2021, pp. 280–294.

[15] A block layer cache (bcache). Accessed:Mar. 10, 2021. [Online]. Avail-
able: https://www.kernel.org/doc/html/latest/admin-guide/
bcache.html

[16] MCS locks and qspinlocks. Accessed: Feb. 10, 2021. [Online]. Avail-
able: https://lwn.net/Articles/590243

[17] S. Kashyap, C. Min, and T. Kim, “Opportunistic spinlocks:
Achieving virtual machine scalability in the clouds,” SIGOPS
Oper. Syst. Rev., vol. 50, no. 1, pp. 9–16, Jan. 2016.

[18] CFQ (complete fairness queueing). Accessed: Dec. 10, 2020. [Online].
Available: https://www.kernel.org/doc/Documentation/block/
cfq-iosched.txt

[19] Block io controller. Accessed: Mar. 11, 2021. [Online]. Available:
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-
v1/blkio-controller.html

[20] K. Oh, J. Park, and Y. I. Eom, “H-BFQ: Supporting multi-level
hierarchical cgroup in BFQ scheduler,” in Proc. IEEE Int. Conf. Big
Data Smart Comput., 2020, pp. 366–369.

[21] S. Kim, H. Kim, J. Lee, and J. Jeong, “Enlightening the I/O path: A
holistic approach for application performance,” in Proc. Conf. File
Storage Technol., 2017, pp. 345–358.

[22] Y. Wang and A. Merchant, “Proportional-share scheduling for
distributed storage systems,” in Proc. Conf. File Storage Technol.,
2007, pp. 47–60.

[23] S. Chen, T. Chen, Y. Chang, H. Wei, and W. Shih, “Enabling union
page cache to boost file access performance of NVRAM-based
storage device,” in Proc. Des. Autom. Conf., 2018, pp. 1–6.

[24] S. S. Hahn, S. Lee, I. Yee, D. Ryu, and J. Kim, “Fasttrack: Fore-
ground app-aware I/O management for improving user experi-
ence of Android smartphones,” in Proc. USENIX Annu. Tech.
Conf., 2018, pp. 15–27.

[25] J. Bhimani et al., “Docker container scheduler for I/O intensive
applications running on NVMe SSDs,” IEEE Trans. Multi-Scale
Comput. Sys., vol. 4, no. 3, pp. 313–326, Feb. 2018.

[26] Lockstat: Documentation. Accessed: Feb. 11, 2021. [Online]. Avail-
able: https://lwn.net/Articles/252835

[27] J. Park, C. Min, and H. Yeom, “A new file system I/O mode for
efficient user-level caching,” in Proc. IEEE/ACM Int. Symp. Clust.,
Cloud Grid Comput., 2017, pp. 649–658.

[28] D. Zheng, R. Burns, and A. S. Szalay, “A parallel page cache: IOPS
and caching for multicore systems,” in Proc. USENIX Conf. Hot
Top. Storage File Syst., 2012, pp. 1–6.

[29] S. Kashyap, I. Calciu, X. Cheng, C. Min, and T. Kim, “Scalable and
practical locking with shuffling,” in Proc. ACM Symp. Oper. Syst.
Princ., 2019, pp. 586–599.

[30] Z. Radovic and E. Hagersten, “Hierarchical backoff locks for non-
uniform communication architectures,” in Proc. Int. Symp. High-
Perform. Comput. Archit., 2003, pp. 241–252.

[31] S. Kashyap, C. Min, and T. Kim, “Scalable Numa-aware blocking
synchronization primitives,” in Proc. USENIX Annu. Tech. Conf.,
2017, pp. 603–615.

[32] D. Dice, V. J. Marathe, and N. Shavit, “Lock cohorting: A general
technique for designing numa locks,” ACM Trans. Parallel Com-
put., vol. 1, no. 13, pp. 1–42, Feb. 2015.

[33] D. Dice and A. Kogan, “Compact Numa-aware locks,” in Proc.
ACM SIGOPS Eur. Conf. Comput. Syst., 2019, pp. 1–15.

[34] J. Kim, E. Lee, and S. H. Noh, “I/O scheduling schemes for better
I/O proportionality on flash-based SSDs,” in Proc. IEEE Int. Symp.
Model. Anal. Simul. Comput. Telecommun. Syst., 2016, pp. 221–230.

[35] S. Chen et al., “TPC-E VS. TPC-C: Characterizing the new tpc-e
benchmark via an I/O comparison study,” ACM SIGMOD Rec.,
vol. 39, no. 3, pp. 5–10, Feb. 2011.

[36] iotop. Accessed: Mar. 10, 2021. [Online]. Available: https://linux.
die.net/man/1/iotop

[37] J. Kim, E. Lee, and S. H. Noh, “I/O schedulers for proportionality
and stability on flash-based ssds in multi-tenant environments,”
IEEE Access, vol. 8, pp. 4451–4465, 2020.

[38] S. Ahn, K. La, and J. Kim, “Improving I/O resource sharing of
Linux cgroup for NVMe SSDs on multi-core systems,” in Proc.
USENIXWorkshop Hot Top. Storage File Syst., 2016, pp. 111–115.

[39] J. Woo, M. Ahn, G. Lee, and J. Jeong, “D2FQ: Device-direct fair
queueing for NVME SSDS,” in Proc. USENIX Conf. File Storage
Technol., 2021, pp. 403–415.

[40] Cgroups v2. Accessed: Feb. 16, 2021. [Online]. Available: https://
www.kernel.org/doc/Documentation/cgroup-v2.txt

[41] P. Sharma, P. Kulkarni, and P. Shenoy, “Per-vm page cache parti-
tioning for cloud computing platforms,” in Proc. Int. Conf. Com-
mun. Syst. Netw., 2016, pp. 1–8.

[42] K. Oh, J. Park, and Y. I. Eom, “Weight-based page cache manage-
ment scheme for enhancing I/O proportionality of cgroups,” in
Proc. IEEE Int. Conf. Consum. Electron., 2019, pp. 1–3.

Jonggyu Park received the BS degree in software
from Sungkyunkwan University, South Korea, in
2014 and the MS degree in 2016 in platform soft-
ware from Sungkyunkwan University, where he
is currently working toward the PhD degree with
the Department of Platform Software. His research
interests include storage systems and operating
systems.

Young Ik Eom received the BS, MS, and PhD
degrees in computer science and statistics from
Seoul National University, South Korea, in 1983,
1985, and 1991, respectively. Since 1993, he has
been a professor with Sungkyunkwan University,
South Korea. From 2000 to 2001, he was a visit-
ing scholar with the Department of Information
and Computer Science, University of California at
Irvine. He was also the president of the Korean
Institute of Information Scientists and Engineers
in 2018. His research interests include virtualiza-

tion, operating systems, file and storage systems, cloud systems, and UI
or UX system.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

PARK AND EOM: WEIGHT-AWARE CACHE FOR APPLICATION-LEVEL PROPORTIONAL I/O SHARING 2407

https://libvirt.org/cgroups.html
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/html/latest/admin-guide/bcache.html
https://www.kernel.org/doc/html/latest/admin-guide/bcache.html
https://lwn.net/Articles/590243
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/blkio-controller.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/blkio-controller.html
https://lwn.net/Articles/252835
https://linux.die.net/man/1/iotop
https://linux.die.net/man/1/iotop
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

