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Abstract
Models of synaptic plasticity have been used to better understand neural development as well as learning and memory. One 
prominent classic model is the Bienenstock-Cooper-Munro (BCM) model that has been particularly successful in explain-
ing plasticity of the visual cortex. Here, in an effort to include more biophysical detail in the BCM model, we incorporate 
1) feedforward inhibition, and 2) the experimental observation that large synapses are relatively harder to potentiate than 
weak ones, while synaptic depression is proportional to the synaptic strength. These modifications change the outcome of 
unsupervised plasticity under the BCM model. The amount of feed-forward inhibition adds a parameter to BCM that turns 
out to determine the strength of competition. In the limit of strong inhibition the learning outcome is identical to standard 
BCM and the neuron becomes selective to one stimulus only (winner-take-all). For smaller values of inhibition, competi-
tion is weaker and the receptive fields are less selective. However, both BCM variants can yield realistic receptive fields.

Keywords Synaptic plasticity · BCM · learning rule · STDP

1 Introduction

One of the hallmarks of the nervous system is it’s adaptive 
character. Over long time-scales the responses of neurons 
adapt to the input that it receives. On the neural level the 
adaptive character is perhaps nowhere more clearly observed 
than in the primary visual cortex. Manipulation of the visual 
environment and closure of the eyes have been shown to 
strongly affect the development of the visual system and the 
receptive fields that emerge (Wiesel & Hubel, 1963). For 
instance, under normal conditions neurons in binocular cor-
tex receive inputs from both retinas and become responsive 
to inputs from both eyes. However, when one eye is closed 
during development it loses its drive onto the neurons. Syn-
aptic changes are believed to be responsible for this type of 
adaptation.

To describe such neurophysiological experiments on the 
development of the visual cortex, the Bienenstock, Cooper 
and Munro (BCM) model was introduced some 40 years ago 

as a computational theory of synaptic plasticity (Bienenstock 
et al., 1982; Clothiaux et al., 1991). BCM theory is a unsu-
pervised learning rule that contains two important ingredi-
ents: First, as in other Hebbian models of synaptic plasticity, 
high post-synaptic activity increases (potentiates) synaptic 
strengths of inputs that are co-active, while low post-synaptic 
activity leads to a weakening (depression) of synaptic strength 
of active inputs. However, this could lead to exponential run-
away plasticity as strengthened synapses are more likely to 
lead to strong responses and will be subsequently potentiated 
further. Therefore a second ingredient, unique to BCM, is 
that the threshold that determines the switch-point between 
depression and potentiation is adjusted depending on the run-
ning average activity of the post-synaptic neuron. When the 
activity of the neuron becomes too high, the threshold for 
potentiation is increased so that synapses will become more 
likely to be depressed. As a result, with the right parameters 
stable receptive fields develop in the BCM model without the 
need for additional bounds on the synaptic weights or other 
homeostatic mechanisms.

The BCM model has stood the test of time and remains 
one of the leading models for unsupervised cortical plastic-
ity (reviewed in Cooper & Bear, 2012). While BCM is not 
a microscopic model of plasticity, over the years the con-
nection to more microscopic details has been strengthened, 
for instance by incorporation of the role of calcium influx 
(Shouval et al., 2002b) and linking BCM to Spike Timing 
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Dependent Plasticity (Izhikevich & Desai , 2003; Graupner 
& Brunel, 2012; Gjorgjieva et al., 2011).

The BCM model typically forms highly selective recep-
tive fields so that the neuron after learning is active only in 
response to one or a few input patterns. However, with some 
tweaks the BCM model can also be modified to learn recep-
tive fields such as found in primary visual cortex.

In an effort to incorporate more biological detail, we 
include here two effects. First, under standard BCM the syn-
apses change sign, which is at odds with biology. Therefore 
we split the synaptic inputs into excitatory and inhibitory 
ones. Under general conditions this by itself does not change 
the standard BCM model (Scofield & Cooper, 1985), but it 
becomes important when we include the second modifica-
tion, namely the dependence of plasticity on the synaptic 
strength. It has been observed that the relative amount of 
long term potentiation is less for strong synapses than for 
weak synapses (Debanne et al., 1999; Montgomery et al., 
2001; Loebel et  al., 2013). Meanwhile, the percentage 
decrease in strength appears to be independent of strength 
itself when synaptic depression protocols are used (Debanne 
et al., 1996; Bi & Poo, 1998). The phenomenon is known as 
soft-bound or weight dependent plasticity. Indirect evidence 
for soft-bound plasticity stems from the central distribution 
of synaptic weights (e.g. Zhang et al., 2015), which follows 
naturally from soft-bound plasticity.

Here we study how inclusion of weight dependence in 
BCM plasticity combined with feed-forward inhibition 
changes the outcome of learning. We find that the strength 
of inhibition determines the selectivity that develops, but 
in the limit of strong inhibition one recovers results from 
standard BCM.

2  Weight dependent BCM

2.1  Definition of the standard BCM model

We consider a neuron with N modifiable synapses whose 
strength is coded in the weight vector w = (w1,… ,wN) , 
Fig. 1a. The inputs are denoted with the vector x . As the 
entries in x represent firing rates we assume them positive, 
xi ≥ 0 . The post-synaptic neuron driven by these inputs has 
an activity y = g(w ⋅ x) . Here g() is the neuron’s input-output 
transfer function.

The standard BCM synaptic modification rule is defined 
as follows. First, the weights are updated according to

(1)
�w

dwi

dt
= xiF(y)

= xiy(y − �)

where �w determines the update rate of the synapses, and 
F(y) = y(y − �) is a function of the post-synaptic activity.

By itself this plasticity rule can lead to run-away diver-
gence of synaptic weights. A synapse will be increased when 
y > 𝜃 , but strong weights lead to more post-synaptic activity 
and hence more potentiation. Likewise, very low activity 
will lead to depression of already weak weights. Therefore 
the threshold � dynamically tracks the average post-synaptic 
activity squared with a time-constant �� , so that the condi-
tion for potentiation becomes harder as post-synaptic activ-
ity increases,

This is the second ingredient of BCM. Experimental evi-
dence for such a dynamical shift of the threshold shift has 
been observed (Kirkwood et al., 1996; Lim et al., 2015).

Together, the weights and threshold updates of the BCM 
model form a dynamical system driven by the input patterns, 
and with �w and �� as parameters. The dynamical repertoire 
of the standard BCM model has recently been studied in 
detail (Udeigwe et al., 2017). To catch run-away plasticity 
the threshold update needs to be supra-linear in the activ-
ity ( y2-term in Eq. (2)). The threshold update also needs to 
be fast enough, otherwise the system becomes unstable and 
strong oscillations in the synaptic weights or chaos result. 
On the other hand, the update needs to be slow enough to 
capture the average activity.

Typically the stimuli x are drawn from a set of K stimuli. 
A given stimulus is indexed with a superscript x(k) . With 
y(k) we denote the response of the neuron to that stimulus. 
Assuming that every unit time-step a new pattern is pre-
sented, we require that the threshold represents the average 
activation but also that updates are small, i.e. we require 
1∕K ≪ 𝜏𝜃 ≪ 𝜏w . When �w, �� are slow enough we can 
replace the threshold by its mean field average over the stim-
uli � =

1

K

∑
k

�
y(k)

�2 . In other words, the dynamical system 
becomes N-dimensional (Udeigwe et al., 2017).

2.2  Inhibition in BCM models

In the standard BCM model the synaptic weights can be 
excitatory or inhibitory and can change sign. This is at odds 
with biology. While during early development GABA recep-
tors can change from excitatory to inhibitory (Owens et al., 
1996), this capacity is later lost and commonly not believed 
to be part of ongoing plasticity. Yet, inhibition is indispen-
sable in order to obtain selective receptive fields. To allow 
for effectively negative weights, we adopt the common solu-
tion that plastic excitatory connections exist in parallel to 
feed-forward inhibitory connections, Fig. 1a. The inhibitory 
neuron pools the inputs and inhibits the excitatory neuron 

(2)��
d�

dt
= −� + y2
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proportionally. Denoting the excitatory weights as vi and the 
uniform inhibitory strength u, the net input to the neuron 
is h =

∑
i vixi − u

∑
i xi =

∑
i(vi − u)xi . We can identify the 

effective weights as wi = vi − u , which are thus constrained 
as wi ≥ −u.

The plasticity has to be distributed over the excitatory and 
inhibitory connections. For instance one could make inhi-
bition plastic and keep excitation fixed. Here, however, we 
keep the inhibitory connections fixed and update the excita-
tory weights as in Eq. (1), hence Δvi = Δwi . The plasticity 
of the excitatory connections thus happens on a background 
of fixed inhibition.

As long as the excitatory weights do not reach their mini-
mum bound of 0, the model behaves mathematically exactly 

like the standard BCM model. So, in the standard BCM 
model splitting the effective weights into plastic excitatory 
weights and fixed inhibitory weights has no consequence on 
the outcome of plasticity, as was already analyzed in Scofield 
and Cooper (1985).

2.3  The weight dependent BCM model

However, the split into excitatory and inhibitory connec-
tions does matter when we include weight dependence of 
plasticity. In experiments it has been observed that plastic-
ity depends on the current weight of the synapse. As typi-
cal plasticity experiments use extracellular stimulation and 
recording, one does not know how many synapses are being 

a) c)

b)

d)

Fig. 1  Weight dependent BCM model and its dynamics for a neuron 
with two inputs. a. Top: Neuron receiving input through excitatory 
weights and parallel fixed feed-forward inhibition. Bottom: Reduc-
tion to a neuron with effective weights w

i
 , that combine the excita-

tory weights v
i
 and the fixed inhibition u, so that w

i
= v

i
− u . b. In 

weight dependent BCM the depression part of modification curve 
depends on the weight itself. When the weight is large, depres-
sion is strong (thick curve); while for weak weights depression is 
limited (thin curve). The potentiation part of the curve is unmodi-
fied. c. Setup of the 2D system. The input vector alternates between 
x
(1) = (cos�, sin�) and x(2) = (sin�, cos�) . The superscript labels 

the stimulus. d. Left: Example result of a simulation of stand-

ard BCM using the stimulation protocol of panel c. After an initial 
transient the system finds a stable fixed point. From top to bottom: 
the post-synaptic activity y in response to patterns 1 (solid) and 2 
(dashed), the plasticity threshold � , and the evolution of the synap-
tic weights w1 and w2 (black and green). In standard BCM the final 
weight configuration is strongly selective, as the post-synaptic activ-
ity becomes zero for one input pattern and high for the other input 
pattern. Right: In the weight dependent BCM model the dynamics 
is similar but the fixed points leads to less selective post-synaptic 
activation (compare dashed curve in top panels). (Stimulus angle 
� = 0.4; inhibition u = 1.3)
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stimulated. Therefore it is common to report the relative 
changes in synaptic strength, which should be distinguished 
from the absolute amounts of plasticity used in the model. 
It has been observed that this relative amount of long term 
potentiation is smaller for already strong synapses than for 
weak synapses (Debanne et al., 1999; Montgomery et al., 
2001; Loebel et al., 2013; Zhang et al., 2015). Meanwhile, 
for depression protocols the percentage decrease in strength 
appears to be independent of strength itself (Debanne et al., 
1996).

To implement weight-dependence of the plasticity in 
BCM, we modify the learning rule as follows. When poten-
tiation occurs, the original BCM rule Eq. (1) still applies 
as before. However, whenever the synapse is depressed, 
the excitatory weight is depressed with an amount propor-
tional to the excitatory weights, i.e. dvi

dt
∝ vi . When the rule 

is expressed in the effective weights wi one has

Note that indeed in case of depression the relative amount 
of change in the excitatory synapse, Δvi∕vi = Δwi∕(wi + u) , 
is independent of the weight, while for potentiation 
Δvi∕vi ∝ 1∕vi , as has been observed experimentally. The 
threshold update, Eq. (2) is unaltered in the weight depend-
ent BCM model. The resulting modification curve of weight 
dependent BCM is sketched in Fig. 1b. Weight dependence 
has also been observed in spike timing dependent plasticity 
(STDP) protocols (Bi & Poo, 1998). In the appendix we 
explain how weight-dependence can be included in STPD-
based BCM models and how this can lead to the above 
model.

Mathematically, should an excitatory synapse become 
inhibitory ( wi < −u ), the model’s definition ensures that it 
will only experience potentiation and quickly become excit-
atory again. Provided xi ≥ 0 , the weight dependent BCM 
model automatically obviates the need for hard bounds, 
which aids analysis.

3  Outcome of BCM with two inputs

In order to gain intuition in the weight dependent BCM 
model we start with a neuron with just two inputs that is 
stimulated with two alternating patterns. The patterns are 
denoted as vectors x(k) , where the superscript k = 1..K 
indicates the presented pattern. Following Udeigwe et al. 
(2017) we use the parametrization x(1) = (cos�, sin�) and 
x
(2) = (sin�, cos�) . These are vectors with unit length mir-

rored in (1, 1) and an angle �∕2 − 2� between them.
We set � = 0.4 , initialize with small weights and simu-

late until the weights equilibrate, Fig. 1c. In preliminary 

(3)

𝜏w
dwi

dt
=

{
(wi + u) xiy(y − 𝜃) if y(y − 𝜃) < 0 (depression),

xiy(y − 𝜃) otherwise (potentiation).

simulations of weight dependent BCM we found that the 
parameters �� and �w required for stability were similar to 
those needed for standard BCM. As the threshold needs to 
average all K inputs and K = N , we typically used �� = 10N , 
�w = 10�� . Provided the system is stable, the fixed points 
won’t depend on these parameters.

Code was implemented in Octave with a C routine for 
efficient simulation of BCM, and is available at https:// 
github. com/ vanro ssuml ab/ weight- depen dent- BCM. The 
neuron was linear y = w ⋅ x . We also tried a rectifying non-
linearity, however, as the activity typically doesn’t become 
negative this lead to very similar results.

3.1  Standard BCM for a neuron with two inputs

When the classical BCM model is repeatedly presented with 
two alternating stimuli, the synaptic weights develop to a 
stable value. More precisely, there are two stable fixed points 
(Castellani et al., 1999; Cooper et al., 2004; Udeigwe et al., 
2017). In general the fixed points of the learning dynam-
ics are the weights at which the average update is zero, i.e. 
⟨Δw⟩ = 0 , where the brackets denote the average over the 
stimuli. Using that the stimulus vectors are linearly inde-
pendent in Eq. (1) leads to the stronger condition that the 
weight change in response to each stimulus is zero, i.e. 
Δw(1) = Δw(2) = 0 . Hence either y(k) = 0 or y(k) = � . As 
there are two input patterns, there are four cases to consider. 
It turns out that the fixed point is stable when for one input 
pattern the output y(1) = � , and for the other input pattern 
the neuron remains silent y(2) = 0 (or vice versa). The cases 
y(1) = y(2) = 0 , or y(1) = y(2) = � are also fixed points, but are 
unstable. Writing the stimuli as a square matrix X, so that 
yk =

∑
i Xk,iwi , the stable fixed points are

where m = 1, 2 indexes either fixed point.
Simulation confirms these classic results, Fig. 1d. After 

learning has stabilized, the neuron is active in response 
to one particular input and falls silent in response to the 
other, Fig. 1d (left, top). The initial conditions determine 
which stimulus wins. Thus under standard BCM the neu-
ron develops to become highly selective (winner-take-all 
competition).

3.2  Weight dependent BCM for a neuron with two 
inputs

Next we repeat the simulation with weight dependent BCM. 
The dynamics to reach the equilibrium are similar and the 
threshold oscillates a bit before settling down, Fig. 1d (right). 
However, the stable fixed points are different. The plasticity is 
still competitive as one stimulus is randomly preferred above 

(4)wi = 2(X−1)i,m
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the equivalent other stimulus. However, the post-synaptic 
response to the losing stimulus remains above zero, there-
fore competition in weight dependent BCM model is weaker 
than in standard BCM. In parallel, the synaptic weights are 
less extreme, Fig. 1d (right, bottom). This raises the question 
if competition is always less in the weight dependent BCM 
model. We systematically varied the inhibition and examine 
the weights in steady state, that is, at the end of a long simula-
tion, Fig. 2a. One can distinguish two regimes.

For strong inhibition (right region, above u ≳ 2 ), we 
retrieve standard BCM behavior. The neuron shows win-
ner-take-all selectivity and weights are as expected from 
standard BCM. There is no plasticity for either stimulus at 
equilibrium, Δw(1) = Δw(2) = 0.

However, for weak inhibition (left region in Fig. 2a) 
the neuron is always activated by both patterns, but not to 
the same extent. The selectivity depends on the amount 
of inhibition. The stronger the inhibition, the stronger the 
selectivity. Note however that competition is even present at 
zero inhibition, which is unlike competition resulting from 
lateral inhibition commonly used in unsupervised plasticity 
models. Below we define selectivity mathematically (Eq. 
(11)).

The nature of the stable fixed points in this regime is 
different from standard BCM. The bottom panel in Fig. 2a 
shows the weight update per stimulus and reveals that in 
weight dependent BCM the synaptic change in response 
to one pattern is canceled by that of the other pattern, 

a.i

a.ii

a.iii

a.iv

b

Fig. 2  The fixed points of weight dependent BCM as a function of 
the amount of feed-forward inhibition for a neuron with two inputs. 
a. Outcome of weight dependent BCM as a function of the strength 
of the feed-forward inhibition after plasticity has equilibrated. Show-
ing from top to bottom: i) the post-synaptic activity y to input pat-
tern 1 (solid) and 2 (dashed). For low inhibition, the neuron becomes 
weakly selective. For strong inhibition (right region, u ≳ 2 ), the out-
come is identical to the standard BCM result and has winner-take-all 
selectivity. ii) The excitatory weights v1,2 (weight 1: black; weight 2: 
green). iii) The effective weights w1,2 . The grey area indicates a for-
bidden region where the excitatory weight would be negative. iv) The 
amount of change in the weights in response to either input pattern 

(the smaller weight is colored green; in units of �−1
w

 ). The change in 
response to pattern 1 (2) is indicated by a solid (dashed) curve (as 
in panel a.i). At lower inhibition synaptic potentiation caused by one 
pattern cancels against synaptic depression caused by the other; at 
higher inhibition levels both are zero. b. Stable solution of standard 
BCM and weight dependent BCM as a function of stimulus parame-
ter � (post synaptic activities in top panel; synaptic weights in bottom 
panel). As � increases, the angle between stimulus vectors decreases 
(become more parallel). For standard BCM the weights diverge (thin 
red curves), while for weight dependent BCM they converge (black 
and green). Feedforward inhibition was fixed to u = 1
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Δw(2) = −Δw(1) . The weights keep changing and only the 
net change is zero, ⟨Δw⟩ = Δw(2) + Δw(1) = 0.

One can wonder if the weak competition is due to the 
constraint on the non-negativity of the excitatory synapses. 
However, while one excitatory weight can come close to 
zero, it does not exactly equal zero, Fig. 2a.ii. In other words, 
the dynamics do not run into the vi ≥ 0 bound.

The critical level of inhibition for which weight depend-
ent BCM solutions become identical to standard BCM 
depends on the stimulus. In Fig. 2b the angle between the 
stimuli, � , was varied, while the level of inhibition was fixed 
to 1. For nearly orthogonal stimuli ( � ≈ 0 ) the solutions of 
standard and weight dependent BCM were identical. How-
ever, for nearly parallel stimuli ( � → �∕2 ) the weights in 
standard BCM diverge to ensure that the activity remains 
zero for one stimulus and nonzero for the other, while in 
weight dependent BCM the weakly competitive solution is 
stable.

3.2.1  Effect of neural noise

We first examined whether the above results are robust to 
noise. We denote the noisy version of the post-synaptic 
activity as ỹ = y + 𝜈y where �y is zero-mean Gaussian noise 
added to the output of the neuron with variance �2

y
 (noise 

added to the input had similar effects). In order to not change 
the mean activity and concentrate solely on the effect of 
noise, we assume a linear input-output relation y = w.x . 
With added noise the averaged modification function in 
standard BCM becomes

Similarly the threshold becomes � =
1

K

∑
k (̃y

k)2 =
1

K∑
k(y

k)2 + �2

y
 , where we used that for large enough �� , thresh-

old � and activity ỹ are uncorrelated. Solving for ⟨Δw⟩ = 0 
as above yields the equilibria. For small noise one has 
yk(yk − �) + �2

y
= 0 for both k, which combined together 

with the threshold equation yields y1 + y2 = 2 . This then 
gives (y1 − 1)[(y1)2 − 2y1 + �2

y
] = 0. As the y1 = y2 = 1 solu-

tion is unstable, one has (y1)2 − 2y1 + �2
y
= 0 , or

For large noise ( �y ≥ 1 ), one has y1 = y2 = 1 and � = 1 + �2
y
 . 

The noise thus reduces the competition between the stimuli, 
and at high noise levels the fixed points collapse into one 
single, symmetric fixed point ( w ∝ 1 for the stimulus used). 

(5)

⟨Δwi⟩ ∝ ∫ xiF(y)N(0, 𝜎2
y
)d𝜈y

= xi⟨ỹ(ỹ − 𝜃)⟩
= xi[y(y − 𝜃) + 𝜎2

y
]

y1,2 = 1 ±
√

1 − �2
y

� = 2

Indeed this is what we find in simulation, Fig. 3b(left). In 
the simulation of weight dependent BCM, we see a simi-
lar effect of the noise, Fig. 3b(right). In summary, in both 
standard BCM and weight dependent BCM noise reduces 
the competition.

3.3  Phase‑plane analysis

To better understand the behaviour of weight dependent BCM 
in the regimes of both weak and strong inhibition we study the 
(w1,w2)-plane, Fig. 4a+b. We are mainly interested in the fixed 
points, which are given by

The fixed points can be found from the null-clines. The null-
clines are the curves at which the net change of either weight 
is zero (blue and orange curves). The fixed points (FPs) are 
located where the null-clines intersect. For weak inhibition 
( u = 1.3 ) there are five such intersections, Fig. 4a, circles. In 
addition, there is an unstable FP for w1 = w2 = 0 . The fixed 
points present in standard BCM remain present in weight 
dependent BCM (indicated in red). This is easy to see, because 

(6)
Δw

(1)

1
(w1,w2) + Δw

(2)

1
(w1,w2) = 0

Δw
(1)

2
(w1,w2) + Δw

(2)

2
(w1,w2) = 0

Fig. 3  In both standard BCM and weight dependent BCM post-
synaptic noise weakens competition. Top panel: the activities in 
response to either stimulus and the threshold (red dashed) after the 
plasticity has converged. Bottom: panel: the (effective) synaptic 
weights. Stimulus as in Fig. 1
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if y = 0 or y = � in Eq. (3), then Δw = 0 . However, in addition 
two new FPs arise, unique to weight dependent BCM.

We numerically determined the stability from the Jaco-
bian using standard linear stability analysis. At the standard 
BCM FPs, however, the update function is not differentiable 
(see Fig. 1b), and the Jacobian is not well-defined. However, 
we can use the stronger requirement that the FP is stable, if 
it is stable for both for depression and for potentiation cases. 
The eigenvalues of the Jacobian need to be negative for both 
piecewise continuous functions on either side of the fixed 
point. The resulting stable FPs are indicated by solid circles, 
the unstable ones by open circles.

Note that when inhibition is very small, the synaptic weights 
associated to the standard BCM fixed points could become 
inaccessible, because they would require a negative excitatory 
weight ( wi < −u ). This restricted region is indicated in grey. 
However, from about u ≳ 0.5 (for these stimuli), the fixed points 
are accessible but unstable in the weight dependent model.

For strong inhibition ( u = 2.3 ) a qualitatively different 
situation occurs. The new FPs and those from standard BCM 
merge; the null-clines intersect now only three times, com-
pare Fig. 4b to Fig. 4a. The stable fixed points of weight 
dependent BCM are identical to the standard BCM fixed 
points in the strong inhibition regime, as in our simulations.

Fig. 4  Dependence of stable fixed points of weight dependent BCM 
in two dimensions on inhibition. a) Phase portraits of the weights 
at weak ( u = 1.3 ) and b) strong inhibition ( u = 2.3 ). The null-clines 
( dw1∕dt = 0 in blue, and dw2∕dt = 0 in orange) intersect five times. 
The stable (unstable) fixed points are indicated with filled (open) 
circles. For weak inhibition, the fixed points of standard BCM (the 
top-left and bottom right red circles) are unstable, and instead new 
stable fixed points arise (black circles). The tan colored regions indi-
cate where the first input pattern leads to depression and the second 
stimulus leads to potentiation (and the reverse for the green region). 
The new fixed points are always in these regions. In the grey region 
the excitatory weight would need to become negative, breaking our 
assumptions. b) For strong inhibition, there are only four FPs. The 

top-left and bottom-right fixed points from standard BCM are now 
stable. The symmetric fixed points, around w = (0, 0) and w ≈ (1, 1) 
are always unstable. The grey restricted region ( w1,2 < −2.3 ) falls 
out of view. c) When the neuron receives fixed feed-forward excita-
tion instead of feed-forward inhibition (negative u), only a symmet-
ric fixed point remains. d) Phase diagram of the stable fixed points 
of weight dependent BCM as a function the inhibition strength u and 
the stimulus parameter � . The grey-level indicates the selectivity s, 
Eq. (11). Allowing for feedforward excitation, there are three types of 
fixed points: classical BCM with winner-take-all selectivity ( s = 1 ), 
fixed points unique to weight dependent BCM with selectivity set by 
the level of inhibition(0 < s < 1 ), and unselective fixed points ( s = 0)
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3.3.1  Critical amount of inhibition

We have seen that above a certain level of inhibition the 
weight dependent model behaves identically to standard 
BCM. Here we calculate the amount of inhibition at which 
this transition occurs.

First, we determine where in the w−plane fixed points 
could occur. The new fixed points require that one stimulus 
leads to potentiation and the other to depression. In order 
words, y(1) > 𝜃 and y(2) < 𝜃 , or vice versa. In y-space the 
region where y(1) > 𝜃 , where � =

1

2

∑
k=1,2

�
y(k)

�2 , is given by 
a disc of unit radius, centered at y(1) = 1 , y(2) = 0 , and similar 
for the alternative case. Because the post-synaptic activation 
is given by y(k) = (Xw)k , the corresponding regions in w-space 

are found by the linear transform w = X−1

(
y(1)

y(2)

)
 . These 

regions are indicated by the light green and pink shading in 
Fig. 4a+b The new fixed points must lie inside them. Mean-
while the standard BCM fixed points must lie on the edge of 
these regions as for standard BCM y(k) = � . Secondary 
regions emerge corresponding to the case where the post-
synaptic activity becomes negative for one stimulus (bottom-
left light green and pink regions). However, there are no null-
clines in these regions and hence there are no FPs.

Because the stimulus components are assumed positive 
( x(k)

i
≥ 0 ), the sign of the plasticity is determined only by 

the post-synaptic activity. For a given stimulus the synapses 
either all undergo potentiation or all undergo depression. 
Mix cases do not occur, simplifying the analysis. Assume 
for now that the first stimulus leads to depression of all syn-
apses, and the second stimulus leads to potentiation. From 
Eq. (3) the FPs can be written as a matrix equation

The standard BCM FPs correspond to F(y1) = F(y2) = 0. 
The new solution(s) for which F(yk) ≠ 0 requires that the 
determinant of the matrix is zero, i.e.

In other words, the possible fixed points must lie on a line 
in the (w1,w2) plane. This corresponds to the top-left fixed 
point (black circle).

Another, mirrored solution occurs when instead the 
first stimulus leads to potentiation and the second stimulus 
leads to depression (the lower right fixed point). In that case 
x
(1)

2
x
(2)

1
(w1 + u) = x

(1)

1
x
(2)

2
(w2 + u) . Both lines go through the 

point (w1,w2) = (−u,−u).
This reduction has two applications. First, one can now 

eliminate w2 and express Δw1(w1,w2) as a quartic polyno-
mial in w1 , with u and x as a parameters. The polynomial 

(7)
(
x
(1)

1
(w1 + u) x

(2)

1

x
(1)

2
(w2 + u) x

(2)

2

)(
F(y1)

F(y2)

)
= 0

(8)x
(1)

1
x
(2)

2
(w1 + u) = x

(2)

1
x
(1)

2
(w2 + u)

has highly complicated coefficients, caused by the depend-
ence of � on w . Nevertheless, this reduction simplifies 
numerical solution of the fixed points to a one dimensional 
equation. Together with the condition that the first stimulus 
indeed leads to depression, numerical solution of this poly-
nomial confirmed our simulation results: There is at most 
one solution, and, when inhibition is strong the standard 
BCM fixed points are stable and there are no additional 
fixed points.

Second, the above analysis also yields the critical amount 
of inhibition above which the FPs merge and the standard 
BCM solutions become stable. As seen from Fig. 2a at the 
transition point Δw(1) = Δw(2) = 0 . At this point the weights 
are both standard BCM fixed points (Eq. (4)) but also must 
fall on the line given by Eq. (8).

Eq. (8) can be re-written as u = (−x
(1)

1
x
(2)

2
w
1
+ x

(2)

1
x
(1)

2
w
2
)

∕ detX . Using that the top-left standard BCM fixed point is 
given by w = (−2x

(1)

2
, 2x

(1)

1
)∕ detX , this yields the critical level 

of inhibition

(and similar equation with superscript (1) and (2) swapped 
for the case that the first stimulus leads to potentiation). 
When the feed-forward inhibition exceeds this level ( u > u∗ ), 
the standard BCM FPs are stable. For non-symmetric stimuli 
the levels of critical inhibition will be different for each fixed 
point.

For completeness we can extend this analysis to negative 
u. In that case the neuron receives static feed-forward excita-
tion. In order to obtain low enough activity the weights now 
reach the lower bound wi = −u , Fig. 4c. The critical value 
of inhibition for this to happen can be found by substitution 
of w = (−u,−u) in y = � , yielding

At and below this value of inhibition the weights are 
w = (−u,−u) and the neuron is completely non-selective.

The regimes are summarized in Fig. 4d for our specific 
stimulus parametrization where u∗ = 2 sin 2�∕[cos� + cos 3�

+ sin� − sin 3�] , and u∗∗ = −[
√
2 sin(� + �∕4)]−1 . The grey-

level indicates the selectivity which is defined as

It ranges from 1/2 for the unselective case (dark grey) to 1 
for standard BCM (white).

(9)u∗ = 2

x
(1)

1
x
(1)

2

[
x
(2)

1
+ x

(2)

2

]

[
x
(1)

1
x
(2)

2
− x

(2)

1
x
(1)

2

]2

(10)u∗∗ = −2
x
(2)

1
+ x

(2)

2
[
x
(1)

1
+ x

(1)

2

]2
+
[
x
(2)

1
+ x

(2)

2

]2

(11)s ≡ maxk y
k

∑
l y

l
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4  Receptive field development with many 
inputs

Next, we analyzed how the above observations carry over to 
higher dimensional situations. We used a neuron with 
N = 20 inputs receiving K = 20 stimuli which had all the 
same spatial profile but had different centers. We had noted 
earlier that for stimuli that are smooth, such as von Mises 
shapes x(k)

i
∼ exp[−(1 + cos 2�

i−k

N
)] , the convergence of 

standard BCM becomes exponentially slow as N increases 
(Froc & van Rossum, 2019). Hence we used triangular 
shaped stimuli, x(k)

i
=
[
1 −

2

N�
|i − k|

]

+
 , where |i − k| is tak-

ing periodic boundaries into account, and � is a parameter 
setting the width of the profile (set to 0.5). Stimuli were 
presented in a randomly permuted, fixed sequence.

In the case of standard BCM, when there are K = N 
stimulus patterns that span the N-dimensional space (i.e. 
the stimulus vectors are linearly independent), the winner-
take-all solution carries over from the 2D case. In the steady 
state the neuron becomes selective to one stimulus only, and 
remains silent in response to all other stimuli (Castellani 
et al., 1999). The resulting weights have an oscillatory char-
acter, Fig. 5a. This is a direct consequence of the strong 

selectivity: if the neuron is only active in response to one 
stimulus, the synaptic weights need to be arranged such that 
for all other stimuli the inputs exactly cancel each other. The 
fixed points generalize from the 2D case.

For weight dependent BCM the above approach eliminating 
one of the weights is in principle extendable to higher dimen-
sions. However, as soon as more than one stimulus leads to 
depression, the condition on the determinant in Eq. (7) includes 
products of elements of w and the reduction is no longer linear. 
Furthermore, the enumeration of all possible cases becomes 
cumbersome. Hence, we rely on simulations only.

We find that for weak feedforward inhibition all effective 
weights are positive and the neuron responds to all stimuli, 
albeit at different rates. It is less selective, Fig. 5b(left). 
As inhibition is increased, negative effective weights arise 
and the neuron responds only to some stimuli. As an aside, 
with our over-simplified threshold-linear neuron we retrieve 
contrast-invariant tuning curves well-known from V1 phys-
iology. Finally for strong inhibition, the neuron becomes 
selective to a single stimulus, similar to the case in standard 
BCM.

(12)wi = K(X−1)i,m

a) b) c)

Fig. 5  BCM in higher dimensions behaves similarly to two dimen-
sions. Simulation of a single neuron with N = 20 inputs, trained on 
K = 20 triangular stimuli, width � = 0.5 . a) Top panel: The activ-
ity for a given input pattern, that is the convolution of the input pat-
terns with the weights, showing that it is active only in response to 
one of the input patterns. Plots were re-centered such that the central 
synapse was the strongest. Bottom panel: Standard BCM yields an 
oscillating weight profile. b) In weight dependent BCM the receptive 
fields and the shape of the weight profile depend on the strength of 
feed-forward inhibition. The stronger the inhibition, the more selec-

tive. At very strong inhibition one retrieves a solution similar to 
standard BCM. The middle panels show the total excitatory (black) 
and inhibitory (red) input for each stimulus; the bottom panel show 
the weight profile. Note the changes in y-axis scale across panels. 
c) Top: The selectivity of the neuron trained with weight depend-
ent BCM. When equal to 1, only one stimulus activates the neuron. 
Bottom: The excitation/inhibition imbalance expressed the fraction 
of excess excitation for the preferred stimulus that is not canceled 
against inhibition and drives the neuron. For strong inhibition, most 
excitation is canceled by the inhibitory drive
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a)
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c)
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To further characterize these regimes, we plot the selec-
tivity Eq. (11) which now ranges from 1/K for non-selective 
neurons, to 1 for winner-take-all competition. This selec-
tivity increases with increasing inhibition, Fig. 5c, top. A 
step-like pattern can be seen as less and less stimuli yield a 
response as inhibition is increased.

As the inhibition increases, the neuron receives more 
excitation but almost all of it is canceled by inhibition. To 
quantify this we calculate the imbalance as the amount 
of excess excitation at the peak response. We define it as 
m ≡ [maxk Ek − I]∕maxEk , where Ek is the excitatory cur-
rent for stimulus k, Ek =

∑
i wix

(k)

i
 , and I = u

∑
i x

(k)

i
 the 

inhibitory current which is independent of stimulus k for this 
stimulus ensemble. Note that unlike other classic balanced 
models, the neuron is still mean-driven and not noise-driven. 
The imbalance ranges from 1 when the neuron is exclusively 
driven by excitation, and decreases when the inhibition can-
cels the excitation. In the highly selective regime the excita-
tion and inhibition largely cancel against each other. In sum-
mary, also when considering neurons with multiple inputs, 
weight dependent BCM develops receptive fields where the 
feedforward inhibition determines the selectivity.

4.1  V1 receptive field development

To examine whether the weight dependent BCM model 
would be appropriate as a model for sensory cortex devel-
opment, we examined a neuron trained with natural image 
patches. We trained the neuron with 40000 randomly selected 
circular shape patches of 400 pixels of natural images taken 
from Hyvärinen et al. (2009). Retinal pre-processing was 
modeled as a balanced Difference-of-Gaussians filter with 
a center width of 1 pixel and a surround of 3 pixels (Law & 
Cooper, 1994). To prevent negative x, the pixel intensities 
xi were scaled and offset to range from 0 to 1. Not only are 
the input patterns now much less structured than above, the 
number of input patterns is much larger than the number of 
inputs ( K ≫ N ). We cycled through the patches until equi-
librium was reached.

Without further modification however, standard BCM leads 
again to receptive fields that are highly selective, with typically 

only a few stimuli giving a strong response. As a result the 
weights have a lot of fine structure, Fig. 6a left. The synaptic 
weights are again large in magnitude, Fig. 6c, cf. Fig. 5. For 
weight dependent BCM, the receptive fields are again much 
less selective at this intermediate level of inhibition and the 
weight profiles are smooth, Fig. 6a right. The corresponding 
synaptic weights, Fig. 6c, follow again a smooth distribution, 
centered around zero, but with a much smaller variance.

Neither variant of BCM leads to localized Gabor-type 
receptive fields such as one sees in primary visual cortex. 
This is not surprising. It is known that in order for stand-
ard BCM plasticity to yield such receptive fields, it needs 
to be modified. First, the input patterns need to be made 
zero-mean (Blais et al., 1998). Second, the post-synaptic 
activity needs to be a non-linear function of the input. 
As in (Blais et al., 1998) we used a saturating sigmoid 
y(h) = �− tanh(h∕�−) when the net input h = w ⋅ x was nega-
tive and y(h) = �+ tanh(h∕�+) when h was positive. As a 
result the neuron is linear ( y ≈ h ) for small inputs, but satu-
rates so that −𝜎− < y < 𝜎+ , where �− = 0.01 and �+ = 50.

Together, these modifications ensure that the plasticity 
becomes sensitive to higher order moments in the input data, 
which are crucial in developing localized receptive fields, 
but also generally sufficient. Many models with Hebbian 
learning and an output non-linearity yield localized recep-
tive fields, provided the input is whitened (Brito & Gerstner, 
2016). When we repeat the simulations with these modi-
fications, both standard and weight dependent BCM yield 
Gabor-like weight profiles, Fig. 6b. Thus while both BCM 
variants can yield localized receptive fields, they only do so 
under specific conditions.

While the distribution of synaptic weights now has a 
comparable spread and roughly similar shape, it becomes 
positively skewed in the case of weight dependent BCM, 
resembling observed weight distribution, Fig. 6c.

5  Discussion

In summary, we have introduced a variant of BCM which in 
two aspects differs from standard BCM. First, the weights 
coming into a neuron are split into in inhibitory and excita-
tory ones. This is a well-known construction in compu-
tational neuroscience which allows us to incorporate the 
second aspect, namely weight dependence of excitatory 
plasticity. Experimentally, weight dependence of plasticity 
is reasonably well established, in particular for the potentia-
tion branch. Far less papers studied weight dependence in 
synaptic depression, yet we are not aware of any study dis-
puting the findings on which our model is based. Indeed, it 
is difficult to imagine how despite numerous non-linearities 
and saturating processes such as receptor insertion, plasticity 
could be independent of the current synaptic weight.

Fig. 6  Receptive field development. a) Receptive field development 
under standard BCM (left) and weight dependent BCM (right, u = 1 ). 
The neuron is trained with 40000 random circular natural image 
patches and had a linear rectifying non-linearity. Inputs ranged between 
0 and 1. Weight vectors are shown. b) As in a) but the input patterns 
were made zero mean and the neuron had a sigmoid non-linearity. This 
results in localized weight profiles, resembling the sparse Gabor-like 
receptive fields found in primary visual cortex. c) Corresponding syn-
aptic weight histograms of panels a) and b) pooled over all samples. 
Standard BCM tends to lead to synaptic weights that are much larger in 
magnitude. For zero mean inputs (bottom panels) the spread in the dis-
tributions is comparable, but weight dependent BCM has a positively 
skewed distribution

◂
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The inclusion of weight dependence in unsupervised 
plasticity has been used to abolish the need for hard bounds 
on synaptic weights, and stabilize learning (van Rossum 
et al., 2000; Rubin et al., 2001; Gütig et al., 2003; Morrison 
et al., 2007; Humble et al., 2019; van Rossum et al., 2012). 
In STDP models, as weights grow as a result of potentia-
tion inducing pre/post spike time pairs, they are eventually 
knocked down again by strong depression inducing spike-
pairs. The weight dependent BCM model prevents synap-
tic weights from running away to negative values, because 
depression becomes weaker for small weights ( Δvi ∝ vi ) 
(also see text below Eq. (3)). However, because the current 
model is not stochastic, a large weight might never expe-
rience depression. As a result, weight dependence, which 
yields extra stability in STDP, here does not obviate the 
adaptation of the BCM threshold.

While weight dependent BCM does not appear to change 
the number of stable fixed points or the overall learn-
ing dynamics, it introduces an additional parameter. This 
parameter - the strength of feed-forward inhibition - sets the 
amount of competition. Competition is less selective in the 
weight dependent BCM model when the inhibition is weak; 
when inhibition is stronger than a certain threshold value, 
we retrieve standard BCM-like winner-take-all competition. 
It would interesting to measure the competition experimen-
tally, ideally using an isolated neuron. We speculate that 
biology might have exploited this to develop receptive fields 
with different amounts of selectivity, e.g. create visual recep-
tive fields with different tuning widths (Fig. 5).

In regards to the formation of sparse receptive fields, the 
weight dependent model seems to have little benefit over 
standard BCM. Both require zero-mean input. While such 
a pre-processing requirement is common in these type of 
models, the biology of it is unclear. From our results it seems 
that fixed feed-forward inhibition does not suffice for this 
purpose (Fig. 6a).

Competition and selectivity among inputs are generally 
seen as essential ingredients in networks that perform sen-
sory encoding. So one could wonder if strong competition 
is preferable from a functional point of view. For individual, 
isolated neurons there is no need to strongly select specific 
input patterns at the expense of others inputs as occurs in 
standard BCM. Competition could arise on the network level 
only, for instance through lateral inhibition, while single 
neurons do not need to be strongly selective (Hertz et al., 
1991; Billings & van Rossum, 2009).

We assumed that the plasticity occurs exclusively in the 
excitatory connections and that the feed-forward inhibition is 
fixed. Knowledge of the inhibitory plasticity and its weight 
dependence is still scarce, but as experiments progress 
inhibitory plasticity can be included in the model. Another 
extension is to consider this modified plasticity rule in recur-
rent networks.

APPENDIX: Relation to STDP plasticity

We examine two possible ways to derive weight depend-
ent BCM from weight dependent spike timing dependent 
plasticity (STDP), and how they lead to different weight 
dependence.

Based on Shouval et al. (2002a), Graupner and Brunel 
(2012) introduced a STPD model in which, whenever a 
hypothesized post-synaptic calcium concentration exceeds 
a high threshold, potentiation occurs, but when it only 
reaches a certain lower threshold, depression results. Sub-
cellular cascades could easily implement such behavior. This 
model can fit a remarkably large number of STDP data sets. 
Weight-dependence is easily included in this model: calcium 
determines whether the synapse is potentiated or depressed, 
and when it is depressed it should do so proportionally to 
the weight. When this STDP rule is tuned to give BCM-
like plasticity (see Graupner & Brunel, 2012), inclusion of 
weight dependence in STDP directly leads to the weight 
dependent BCM model used here.

An alternative way to derive a BCM-like modifica-
tion curve from STDP assumes that the net modification 
of the synapse is the sum of both the potentiation and the 
depression term. Izhikevich and Desai (2003) restricted the 
plasticity to nearest neighbor pre/post spike pairs only and 
exploited the fact that experimentally the STDP potentiation 
time-window tends to be narrower more pronounced than 
the depression window. Because at high frequencies short 
intervals between pre- and post-synaptic spike are more 
common potentiation dominates at high pairing frequencies, 
while at low frequencies synaptic depression dominates. The 
sum of potentiation and depression mimicks the BCM modi-
fication curve.

Including weight dependence of the depression compo-
nent yields for the modification per pre-synaptic input spike

where f is the post-synaptic Poisson rate. The first right hand 
side term is the potentiation part, the second the depression. 
To obtain a BCM-like modification curve, the LTD and LTP 
amplitudes A− and A+ , need to satisfy A− < 0 , A+ > |A−| 
and A+𝜏− < |A−|𝜏−.

It can been seen from Eq. (13) that a larger weight expe-
riences stronger depression, but that it also has a higher 
potentiation threshold. Thus in contrast to Fig. 1b, the zero-
crossing of the modification curve shifts with the weight. 
Because, in contrast to the Graupner and Brunel model, 
in this model both LTD and LTP need to be biophysically 
expressed for every spike pair to obtain the BCM curve, we 
think that this is biophysically less likely, for instance due 
to the high metabolic costs of plasticity (Li & Van Rossum, 

(13)Δw = f

(
A+

1∕�+ + f
+

(w + u)A−

1∕�− + f

)
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2020). It would be an interesting electrophysiological exper-
iment to decide whether the BCM threshold indeed depends 
on individual synaptic weight; we have not examined this 
model variant in detail.
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