
Innovations in Computer Science 2010

Weight Distribution and List-Decoding Size of Reed-Muller Codes
Tali Kaufman1 Shachar Lovett2 Ely Porat3

1MIT
2Weizmann Institute of Science

3Bar-Ilan University
kaufmant@mit.edu shachar.lovett@weizmann.ac.il porately@cs.biu.ac.il

Abstract: We study the weight distribution and list-decoding size of Reed-Muller codes. Given a weight
parameter, we are interested in bounding the number of Reed-Muller codewords with a weight of up to the
given parameter. Additionally, given a received word and a distance parameter, we are interested in bounding
the size of the list of Reed-Muller codewords that are within that distance from the received word. In this work,
we make a new connection between computer science techniques used for studying low-degree polynomials and
these coding theory questions. Using this connection we progress significantly towards resolving both the weight
distribution and the list-decoding problems.
Obtaining tight bounds for the weight distribution of Reed-Muller codes has been a long standing open problem
in coding theory, dating back to 1976 and seemingly resistent to the common coding theory tools. The best
results to date are by Azumi, Kasami and Tokura [1] which provide bounds on the weight distribution that
apply only up to 2.5 times the minimal distance of the code. We provide asymptotically tight bounds for the
weight distribution of the Reed-Muller code that apply to all distances.
List-decoding has numerous theoretical and practical applications in various fields. To name a few, hardness
amplification in complexity [14], constructing hard-core predicates from one way functions in cryptography [4]
and learning parities with noise in learning theory [9]. Many algorithms for list-decoding such as [4, 5] as
well as [14] have the crux of their analysis lying in bounding the list-decoding size. The case for Reed–Muller
codes is similar, and Gopalan et. al [6] gave a list-decoding algorithm, whose complexity is determined by the
list-decoding size. Gopalan et. al provided bounds on the list-decoding size of Reed–Muller codes which apply
only up to the minimal distance of the code. We provide asymptotically tight bounds for the list-decoding size
of Reed–Muller codes which apply for all distances.

Keywords: Reed-Muller codes; Weight distribution; List-decoding; and Low-degree polynomials

1 Introduction
The weight distribution of an error correcting code

counts, for every given weight parameter, the number
of codewords with weight bounded by the given pa-
rameter. The weight distribution of a code is the main
characteristic of the code, and governs the behavior of
the code, from both theoretical and practical aspects.

Understanding the weight distribution of Reed-
Muller codes is a 30-year-old standing open question
in coding theory. The last progress on this question
was made by Kasami and Tokura [10] that character-
ized the codewords of Reed-Muller codes of weight up
to twice the minimal distance of the code, and hence
obtained bounds for the weight distribution that ap-
ply till twice the minimal distance of the code. In this
work we study the weight distribution of Reed Muller
codes and provide asymptotically tight bounds that
apply to all distances.

The problem of list-decoding an error correcting
code is the following: given a received word and a dis-

tance parameter find all codewords of the code that
are within the given distance from the received word.
List-decoding is a generalization of the more common
notion of unique decoding in which the given distance
parameter ensures that there can be at most one code-
word of the code that is within the given distance from
the received word. The notion of list-decoding has
numerous practical and theoretical implications. The
breakthrough results in this field are due to Goldre-
ich and Levin [4] and Sudan [12] who gave efficient list
decoding algorithms for the Hadamard code and the
Reed-Solomon code. See surveys by Guruswami [7]
and Sudan [13] for further details. In complexity, list-
decodable codes are used to perform hardness am-
plification of functions [14]. In cryptography, list-
decodable codes are used to construct hard-core pred-
icates from one way functions [4]. In learning theory,
list decoding of Hadamard codes implies learning par-
ities with noise [9].

In this work we study the question of list-decoding

422

WEIGHT DISTRIBUTION AND LIST-DECODING SIZE OF REED-MULLER CODES

Reed-Muller codes. Specifically, we are interested in
bounding the list sizes obtained for different distance
parameters for the list-decoding problem. Our work
provides asymptotically tight bounds that apply to
all distances. The improved bounds, imply improved
algorithms for list-decoding Reed-Muller codes.

Our results are obtained by making a new connec-
tion between computer science techniques used for
studying low-degree polynomials and the discussed
coding theory questions. Using this connection we
manage to progress significantly towards resolving
these two important open problems.

Our proofs are technically relatively simple. We
view this as evidence to the importance of this new
connection, since these were considered as notorious
open problems, resistent to the more common coding
theory tools. we view this as the main innovation of
our work.

1.1 Reed–Muller Codes
Reed-Muller codes are a very fundamental and well

studied family of codes. RM(n, d) is a linear code,
whose codewords f ∈ RM(n, d) : 𝔽n2 → 𝔽2 are eval-
uations of polynomials in n variables of total degree
at most d over 𝔽2. In this work we study the code
RM(n, d) when d � n, and are interested in particu-
lar in the case of constant d.

The following facts regarding RM(n, d) are straight-
forward: It has block length of 2n, dimension∑
i≤d
(
n
i

)
and minimum relative distance 2n−d

2n = 2−d.

1.2 Weight Distribution of Reed-Muller
Codes

We now formally define the weight distribution of
a code, and discuss previous known bounds for the
weight distribution of Reed-Muller codes.

Definition 1 (Relative weight). The relative weight
of a function/codeword f : 𝔽n2 → 𝔽2 is the fraction of
non-zero elements,

wt(f) =
1
2n
|{x ∈ 𝔽

n
2 : f(x) = 1}|

Definition 2 (Accumulative weight distribution).
The accumulative weight distribution of RM(n, d) at
a relative weight α is the number of codewords up to
this weight, i.e.

A(α) = |{p ∈ RM(n, d) : wt(p) ≤ α}|
where 0 ≤ α ≤ 1.

It is well-known that for any p ∈ RM(n, d) which is
not identically zero, wt(p) ≥ 2−d. Thus, A(2−d−ε) =
1 for any ε > 0. Kasami and Tokura [10] characterized

the codewords in RM(n, d) of weight up to twice the
minimal distance of the code (i.e up to distance 21−d).
Based on their characterization one could conclude
the following.

Corollary 1 (Corollary 10 in [6]).

A(21−d − ε) ≤ (1/ε)2(n+1)

Corollary 1 and simple lower bounds (which we
show later, see Lemma 15) show that A(α) = 2Θ(n)

for α ∈ [2−d, 21−d− ε] for any ε > 0 (and constant d).

1.3 List-decoding Size of Reed-Muller
Codes

We now formally define the list-decoding size of a
code, and discuss previous known bounds for the list-
decoding size of Reed-Muller codes. Moreover we dis-
cuss known list-decoding algorithms for Reed-Muller
codes. We start with the following definition.

Definition 3 (Relative distance between two func-
tions). The relative distance between two functions
f, g : 𝔽n2 → 𝔽2 is defined as

dist(f, g) = ℙx∈𝔽n2 [f(x) �= g(x)]
Our work focuses on understanding the asymptotic

growth of the list size in list-decoding of Reed-Muller
codes, as a function of the distance parameter. Specif-
ically we are interested in obtaining bounds on the
following.

Definition 4 (List-decoding size). For a function f :
𝔽
n
2 → 𝔽2 let the ball at relative distance α around f

be

B(f, α) = {p ∈ RM(n, d) : dist(p, f) ≤ α}
The list-decoding size of RM(n, d) at distance α,

denoted by L(α), is the maximal size of B(f, α) over
all possible functions f , i.e.

L(α) = max
f :𝔽n2→𝔽2

|B(f, α)|

In a recent work, Gopalan, Klivans and Zucker-
man [6] proved that for distances up to the minimal
distance of the code, the list-decoding size of Reed-
Muller codes remains constant.

Theorem 2 (Theorem 11 in [6]).

L(2−d − ε) ≤ O ((1/ε)8d)
Their result of bounding the list-decoding size of

Reed-Muller codes is inherently limited to work up
to the minimum distance of the code, since it uses

423

T. KAUFMAN, S. LOVETT AND E. PORAT

the structural theorem of Kasami and Takura on
Reed-Muller codes [10], which implies a bound on the
weight distribution of Reed-Muller codes that works
up to twice the minimum distance of the code.

Additionally, the work of [6] has developed a list-
decoding algorithm for RM(n, d) whose running time
is polynomial in the worst list-decoding size and in
the block length of the code.

Theorem 3 (Theorem 4 in [6]). Given a distance
parameter α and a received word R : 𝔽

n
2 → 𝔽2,

there is an algorithm that runs in time poly(2n, L(α))
and produces a list of all p ∈ RM(n, d) such that
dist(p,R) ≤ α.

Since Gopalan et al. could obtain non-trivial
bounds on the list-decoding size for distance parame-
ter α that is bounded by the minimum distance of the
Reed-Muller code, their algorithm running time could
be analyzed only for α that is less than the minimum
distance of the code. This supports our earlier state-
ment, that the crux of the analysis of list-decoding
algorithms is in bounding the list-decoding size.

1.4 Our Results
The weight distribution of RM(n, d) codes beyond

twice the minimum distance was widely open prior to
our work. See e.g. Research Problem (15.1) in [11]
and the related discussion in that chapter. In this
work we provide asymptotic bounds for the weight
distribution of RM(n, d) that applied for all weights
2−d ≤ α ≤ 1/2. Specifically, our first main result
gives exact boundaries on the range of α for which
A(α) = 2Θ(n�), for any � = 1, 2, ..., d, showing there
are "cut-off distances", at which the accumulative
weight distribution jumps from 2Θ(n�) to 2Θ(n�+1).

Theorem 4 (First main theorem - accumulative
weight distribution). Let 1 ≤ � ≤ d− 1 be an integer,
and let ε > 0. For any α ∈ [2�−d−1, 2�−d − ε]

2Ω(n�) ≤ A(α) ≤ (1/ε)O(n�)

and A(α) = 2Θ(nd) for any α ≥ 1/2.

We also address the more general problem of
bounding the list-decoding size. Gopalan et al. [6]
left as an open problem the question of bounding the
list-decoding size of Reed-Muller codes beyond the
minimal distance. We give tight bounds on the list-
decoding size of Reed–Muller codes that apply to all
distances. In fact, we show that the behavior of the
list-decoding size is asymptotically identical to that
of the accumulative weight distribution.

Theorem 5 (Second main theorem - list-decoding
size). Let 1 ≤ � ≤ d− 1 be an integer, and let ε > 0.
For any α ∈ [2�−d−1, 2�−d − ε]

2Ω(n�) ≤ L(α) ≤ (1/ε)O(n�)

and L(α) = 2Θ(nd) for any α ≥ 1/2.

Using Theorem 5 and Theorem 3, we obtain the
following algorithmic result for list-decoding Reed-
Muller codes.

Theorem 6 (List-decoding algorithm). Let R : 𝔽n2 →
𝔽2 be a received word. Let α ∈ [2�−d−1, 2�−d − ε] be
a required distance parameter, where 1 ≤ � ≤ d − 1
is integer and ε > 0. There exists an algorithm that
runs in time (1/ε)O(n�) and produces a list of all p ∈
RM(n, d) such that dist(p,R) ≤ α

Observe that Theorems 4 and 5 are asymptotically
tight even for sub-constant values of ε. The smallest
possible value is ε = 2−n, and indeed for α = 2�−d− ε
we get that both A(α) and L(α) are upper bounded
by (1/ε)O(n�) = 2O(n�+1), while for α = 2�−d they are
lower bounded by 2O(n�+1). We note this is an im-
provement over an earlier version of this work, which
obtained sub-optimal dependency on ε.

1.5 Techniques
Our results are obtained by making a new connec-

tion between computer science techniques used for
studying low-degree polynomials and weight distri-
bution and list-decoding size of Reed-Muller codes.
Evidence of the importance of this new connection is
the technical simplicity of our proofs that solve these
well-known and difficult open problems. Following is
a detailed discussion of our techniques.

The bounds on the accumulative weight distribu-
tion of the Reed-Muller code are obtained using the
following novel strategy. We show that a function
f : Fn2 → F2 whose weight is bounded by wt(f) ≤
2−k(1 − ε) can be approximated by a function of a
small number of its k-derivatives (Lemma 7). We
accomplish this in three steps. First, we show that
such a function can be computed as an expectation
of its (k − 1)-iterated derivatives multiplied by some
bounded coefficients (Lemma 8). Moreover, we show
that each of the (k− 1)-iterated derivatives is biased.
Using standard sampling methods we convert this to
approximation using only a few biased (k−1)-iterated
derivatives (Lemma 10). The final step is approxi-
mating each biased (k − 1)-iterated derivative by a
small number of its derivatives (which are k-iterated
derivatives of f). To this end we prove a general

424

WEIGHT DISTRIBUTION AND LIST-DECODING SIZE OF REED-MULLER CODES

lemma showing that any biased function can be ap-
proximated in a concise manner by an algorithm hav-
ing oracle access to a small number of its derivatives
(Lemma 9).

This implies that every RM(n, d) codeword of
weight up to 2−k(1 − ε) can be well approximated
by c = c(k, ε) of its kth-derivatives. Since the dis-
tance between every pair of RM(n, d) codewords is
at least 2−d, a good enough approximation of a
RM(n, d) codeword determines the Reed-Muller code-
word uniquely. Hence, the number of RM(n, d) code-
words up to weight 2−k(1 − ε), is bounded by the
number of kth-derivatives to the power of c = c(k, ε).
As RM(n, d) codewords are polynomials of degree at
most d, their kth-derivatives are polynomials of degree
at most d − k. There can be at most 2O(nd−k) such
derivatives, since this is a bound on the total num-
ber of degree d − k polynomials. Thus, the number
of RM(n, d) codewords up to weight 2−k(1 − ε), can
be bounded by (2O(nd−k))c = 2O(c·nd−k). We comple-
ment these upper bound estimations with matching
lower bounds.

A similar work along the same lines is the work of
Bogdanov and Viola [3], which shows that a function
f : Fn2 → F2 whose weight is bounded by wt(f) ≤
1/2 − ε can be well approximated by c = c(k, ε) of
its 1st-derivatives. Note that approximation by 1st-
derivatives does not imply in general approximation
by k-iterated derivatives which is crucial for obtaining
our bounds here.

The bounds on the list-decoding size of Reed-Muller
codes are obtained using similar techniques to the
ones used for bounding the accumulative weight dis-
tributions.

1.6 Generalized Reed-Muller Codes
The problems of bounding both the accumulative

weight distribution and the list-decoding size can be
extended to Generalized Reed-Muller codes, the fam-
ily of low-degree polynomials over larger fields. How-
ever, our techniques fail to prove tight results in these
cases, as they do for Reed–Muller codes. We provide
in Appendix 4 some partial results for this case and
make a conjecture about the correct bounds.

1.7 Organization
The paper is organized as follows. In Section 2 we

prove the main technical lemma, showing that a low-
weight function can be approximated by its iterated
derivatives. We then apply this lemma to bounding
the weight distribution and list-decoding size of Reed-
Muller codes in Section 3. We study the extension of
our techniques for Generalized Reed-Muller codes in

Section 4, where we provide some (non tight) bounds
for these codes.

2 Approximation of Biased Functions
by Derivatives

We prove in this section the main technical lemma
we use for bounding the weight distribution and list-
decoding size of Reed–Muller codes. We require some
definitions before stating it.

Definition 5 (Discrete derivatives). Let f : 𝔽n2 → 𝔽2
by a function. The discrete derivative of f in direction
a ∈ 𝔽

n
2 is defined as

fa(x) = f(x+ a) + f(x).

The k-iterated discrete derivative of f in directions
a1, ..., ak ∈ 𝔽

n
2 is defined as

fa1,...,ak(x) =(...((fa1)a2)...)ak(x) =∑
S⊆[k]

f(x+
∑
i∈S
ai)

We note that usually derivatives are defined as
fa(x) = f(x + a) − f(x), but since we are working
over 𝔽2, we can ignore signs. Another notion central
to our proof is that of a bias of a function.

Definition 6 (Bias). The bias of a function f : 𝔽n2 →
𝔽2 is

bias(f) =𝔼x∈𝔽n2 [(−1)f(x)] =
ℙ[f = 0]− ℙ[f = 1] =
1− 2wt(f)

Our main lemma states that if f is a function with
small weight, then it can be approximated by an al-
gorithm having oracle access to a small number of its
iterated derivatives. In the following when we assume
an algorithm A receives as input a function g(·), we
mean A has the ability to evaluate g on any input.
One example is if A receives a representation of g in
some canonical form (when g is a polynomial, A re-
ceives as input its list of coefficients).

Lemma 7. Let f : 𝔽n2 → 𝔽2 be a function such that
wt(f) ≤ 2−k(1− ε). For every error parameter δ > 0
there exists a universal algorithm A (that is, inde-
pendent of f) with the following properties. A has
two types of inputs. The first is an input x ∈ 𝔽

n
2

on which A is required to guess f(x). The second
input is a family of t = O(log(1/εδ) · log(1/δ)) sets
of k directions {yi,j ∈ 𝔽

n
2 : 1 ≤ i ≤ t, 1 ≤ j ≤ k}

and their corresponding k-iterated derivatives of f ,

425

T. KAUFMAN, S. LOVETT AND E. PORAT

{fyi,1,...,yi,k(·) : 1 ≤ i ≤ t}. For every function f
there exists a set of directions {yi,j} such that

Pr
x∈𝔽n2

[f(x) �= A(x;{yi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ k},

{fyi,1,...,yi,k(·) : 1 ≤ i ≤ t})] ≤ δ.
Our starting point in the proof of Lemma 7 is the

following lemma, which states that if a function f has
weight less than 2−k(1− ε), then it can be computed
exactly by a its iterated (k−1)-derivatives, and more-
over each of theses derivatives is biased.

Lemma 8. Let f : 𝔽n2 → 𝔽2 be a function such that
wt(f) ≤ 2−k(1− ε) for integer k ≥ 2. Then the func-
tion (−1)f(x) : 𝔽n2 → {−1, 1} can be written as

(−1)f(x) =

𝔼a1,...,ak−1∈𝔽n2 [αa1,...,ak−1(−1)fa1,...,ak−1 (x)]

where

1. The coefficients αa1,...,ak−1 are real numbers of
absolute value at most 10.

2. All the functions fa1,...,ak−1 are biased,
bias(fa1,...,ak−1) ≥ ε.

We prove Lemma 8 in Subsection 2.1. The second
lemma shows that biased functions can be approxi-
mated using a small number of their derivatives.

Lemma 9. Let f : 𝔽n2 → 𝔽2 be a function such that
bias(f) ≥ ε. For every error parameter δ > 0 there
exists a universal algorithm A′ (that is, independent
of f) with the following properties. A′ has two types
of inputs. The first is an input x ∈ 𝔽

n
2 on which

A′ is required to guess f(x). The second input is a
set of t = log(1/εδ) + 1 directions y1, . . . , yt ∈ 𝔽

n
2

and the directional derivatives of f in these directions
fy1(·), . . . , fyt(·). For every function f there exists a
set of directions y1, . . . , yt such that

Pr
x∈𝔽n2

[f(x) �= A′(x; y1, . . . , yt, fy1(·), . . . , fyt(·))] ≤ δ.

We prove Lemma 9 in Subsection 2.2. The last in-
gredient required for the proof of Lemma 7 is a stan-
dard sampling lemma showing how to transform exact
computation by averaging many functions, to approx-
imation by averaging few functions.

Lemma 10. Let f : 𝔽
n
2 → 𝔽2 be a function, H =

{h1, ..., ht} a set of functions from 𝔽
n
2 to 𝔽2, such that

there exist constants ch1 , ..., cht of absolute value at
most C, such that

(−1)f(x) = 𝔼i∈[t][chi(−1)hi(x)] (∀x ∈ 𝔽
n
2)

Then f can be approximated by a small number
of the functions h1, ..., ht. For any error param-
eter δ > 0, there exist functions h1, ..., h� ∈ H
for � = O(C2 log 1/δ), and a function F : 𝔽

�
2 →

𝔽2, such that the relative distance between f(x) and
F (h1(x), ..., h�(x)) is at most δ, i.e.

ℙx∈𝔽n2 [f(x) �= F (h1(x), ..., h�(x))] ≤ δ
The function F is a weighted majority, i.e. it is of
the form

F (h1(x), ..., h�(x)) = sign(
�∑
i=1
si(−1)hi(x)).

Moreover, we can have s1, ..., s� to be integers of ab-
solute value at most C + 1.

We prove Lemma 10 in Subsection 2.3. We now
prove Lemma 7 using Lemmas 8, 9 and 10.

Proof of Lemma 7. Let f : 𝔽
n
2 → 𝔽2 be a function

such that wt(f) ≤ 2−k(1 − ε), and let δ > 0 be an
error parameter. We start by defining an algorithm
A1(x) approximating f(x) using a small number of
its (k − 1)-iterated derivatives. If k = 1 simply set
A1(x) = f(x). For k ≥ 2 apply Lemma 8 to get that
(−1)f(x) can be exactly computed as

𝔼a1,...,ak−1∈𝔽n2 [αa1,...,ak−1(−1)fa1,...,ak−1 (x)]

where |αa1,...,ak | ≤ 10 and bias(fa1,...,ak−1(x)) ≥ ε.
Applying Lemma 10 we get that f can be approxi-
mated by a small number of its (k−1)-iterated deriva-
tives,

Pr
x∈𝔽n2

[Maj(fa1,1,...,a1,k−1 (x), . . . , fa�,1,...,a�,k−1 (x))

�= f(x)] ≤ δ/2
where � = O(log 1/δ). Define

A1(x) = Maj(fa1,1,...,a1,k−1 (x), . . . , fa�,1,...,a�,k−1(x)).

We now approximate each (k − 1)-iterated deriva-
tive by a small number of its derivatives. We will
use Lemma 9 to this end. Notice this can be done
since by Lemma 8 all (k − 1)-iterated derivatives
fai,1,...,ai,k−1 have bias of at least ε (and in the k = 1
case, bias(f) ≥ ε). Thus, for each 1 ≤ i ≤ � there
exists t = O(log(1/εδ)) directions yi,1, . . . , yi,t such
that

Pr
x∈𝔽n2

[fai,1,...,ai,k−1(x) �= A′(x; yi,1, . . . , yi,k,

fai,1,...,ai,k−1,yi,1(·), . . . , fai,1,...,ai,k−1,yi,t(·))]
≤ δ/(2�).

426

WEIGHT DISTRIBUTION AND LIST-DECODING SIZE OF REED-MULLER CODES

Plugging all these into A1, we get an algorithm A
such that

Pr
x∈𝔽n2

[f(x) �= A(x; {yi,j : 1 ≤ i ≤ �, 1 ≤ j ≤ t},

{fai,1,...,ai,k−1,yi,j : 1 ≤ i ≤ �, 1 ≤ j ≤ t})] ≤ δ.

In total, A has as input �·t = O(log(1/εδ)·log(1/δ))
k-iterated derivatives of f , and (a subset) of the di-
rections of these derivatives.

2.1 Proof of Lemma 8
Before proving Lemma 8, we need some claims re-

garding derivatives. The first claim shows that if a
function has non-zero bias, it can be computed by an
average of its derivatives.

Claim 11. Let g : 𝔽n2 → 𝔽2 be a function such that
bias(g) �= 0. Then

(−1)g(x) =
1

bias(g)
𝔼a∈𝔽n2 [(−1)ga(x)]

where the identity holds for any x ∈ 𝔽
n
2 .

Proof. Fix x. We have

(−1)g(x)
𝔼a∈𝔽n2 [(−1)ga(x)] =

𝔼a∈𝔽n2 [(−1)g(x)−ga(x)] =

𝔼a∈𝔽n2 [(−1)g(x+a)] = bias(g)

The following claim shows that if a function has
low weight, then derivatives of it will also have low
weight, and thus large bias.

Claim 12. Let f : 𝔽n2 → 𝔽2 be a function such that
wt(f) ≤ 2−k(1 − ε). Let a1, ..., as ∈ 𝔽

n
2 for 1 ≤ s ≤

k − 1 be any derivatives, and consider bias(fa1,...,as).
Then bias(fa1,...,as) ≥ 1−2s+1−k(1−ε). In particular

1. If s < k − 1 then bias(fa1,...,as) ≥ 1− 2s+1−k.

2. If s = k − 1 then bias(fa1,...,as) ≥ ε.
Proof. Consider fa1,...,as

fa1,...,as =
∑
I⊆[s]

f(x+
∑
i∈I
ai)

For random x, the probability that f(x+
∑
i∈I ai) =

1 is wt(f), which is at most 2−k(1 − ε). Thus by the
union bound,

ℙx∈𝔽n2 [∃I ⊆ [s], f(x+
∑
i∈I
ai) = 1] ≤ 2s−k(1 − ε)

In particular it implies that

wt(fa1,...,as) = ℙx∈𝔽n2 [fa1,...,as(x) = 1] ≤ 2s−k(1 − ε)

and we get the bound since bias(fa1,...,as) = 1 −
2wt(fa1,...,as).

We now can prove Lemma 8 using Claims 11 and 12.

Proof of Lemma 8. Let f : 𝔽
n
2 → 𝔽2 be a function

such that wt(f) ≤ 2−k(1 − ε). Thus bias(f) = 1 −
2wt(f) > 0 and by Claim 11 we can write

(−1)f(x) = 1
bias(f)

𝔼a1∈𝔽n2 [(−1)fa1 (x)]

If k = 1 we are done. Otherwise by Claim 12, fa1

also has positive bias,

bias(fa1) ≥ 1− 2s+1−k(1− ε) > 0

and so again by Claim 11 we can write

(−1)fa1 (x) =
1

bias(fa1)
𝔼a2∈𝔽n2 [(−1)fa1 ,a2 (x)]

Thus we have

(−1)f(x) =
1

bias(f)
𝔼a1∈𝔽n2 [1

bias(fa1)
𝔼a2∈𝔽n2 [(−1)fa1,a2 (x)]]

We can continue this process as long as we can guar-
antee that fa1,...,as has non-zero bias for all a1, ..., as ∈
𝔽
n
2 . By Claim 12 we know this happens for s ≤ k− 1,

and thus we have

(−1)f(x) =

𝔼a1,...,ak−1∈𝔽n2 [αa1,...,ak−1(−1)fa1,...,ak−1 (x)]

where

αa1,...,ak =
1

bias(f)
1

bias(fa1)
1

bias(fa1,a2)
...

1
bias(fa1,...,ak−2)

.

By Claim 12 we know that bias(fa1,...,ak−1) ≥ ε
for all (k − 1)-iterated derivatives. We now bound
αa1,...,ak . By Claim 12 we get that

1 ≤ αa1,...,ak ≤
k−2∏
s=0

1
1− 2s−k+1 ≤

∏
r≥1

1
1− 2−r

≤ 10.

427

T. KAUFMAN, S. LOVETT AND E. PORAT

2.2 Proof of Lemma 9.
For a set of directions y1, . . . , yt ∈ 𝔽

n
2 and a subset

I ⊆ [t], define yI =
∑
i∈I yi. We start by showing that

if we know the directions y1, . . . , yt and the directional
derivatives of f in these directions fy1(·), . . . , fyt(·),
then we can also compute all the derivatives in direc-
tions yI , that is the functions fyI (·).
Claim 13. Let y1, . . . , yt ∈ 𝔽

n
2 a set of directions,

and fy1(·), . . . , fyt(·) the directional derivatives of a
function f : 𝔽n2 → 𝔽2. For every non-empty I ⊆ [t]
there exists an algorithm AI such that

AI(x; y1, . . . , yt, fy1(·), . . . , fyt(·)) = fyI (x)

for all x ∈ 𝔽
n
2 .

Proof. Let I = {i1, . . . , ir}. The algorithm AI calcu-
lates

AI(x) =
r∑
a=1
fyia (x+

a−1∑
b=1
yib).

It is straightforward to verify that AI(x) = fyI (x) for
all x ∈ 𝔽

n
2 .

We turn to prove Lemma 9.

Proof of Lemma 9. Define the algorithm A′ as fol-
lows. For a set of directions y1, . . . , yt ∈ 𝔽

n
2

and the directional derivatives of f : 𝔽
n
2 → 𝔽2

in these directions fy1(·), . . . , fyt(·), define A′(x) to
be the majority vote of fyI (x), which according to
Claim 13 can be computed by algorithms receiving
x, y1, . . . , yt, fy1(·), . . . , fyt(·), that is,

A′(x; y1, . . . , yt, fy1(·), . . . , fyt(·)) =
Maj {AI(x; y1, . . . , yt, fy1(·), . . . , fyt(·))}∅�=I⊆[t] =

Maj {fyI (x)}∅�=I⊆[t] .

We will prove that there is a choice of y1, . . . , yt for
which A′(x) = f(x) for almost all x. In fact, we will
prove this occurs for a random choice of y1, . . . , yt.
First, we claim that A′(x) = f(x) iff

S =
∑
∅�=I⊆[t]

(−1)f(x+yI) > 0.

This is because fyI (x) = f(x) iff f(x+ yI) = 0. Hav-
ing the majority of fyI (x) being equal to f(x) is equiv-
alent to S > 0 (note we cannot have S = 0 as S is the
sum of an odd number of {−1, 1} summands). Let
x, y1, . . . , yt ∈ 𝔽

n
2 be chosen uniformly and indepen-

dently. We prove S > 0 with high probability using
Markov’s inequality. First we compute 𝔼[S].

𝔼[S] = 𝔼

⎡
⎣ ∑
∅�=I⊆[t]

(−1)f(x+yI)

⎤
⎦ = (2t − 1)bias(f).

To bound Var[S] we observe that the different sum-
mands in S are pairwise independent. This is because
for distinct I, J ⊆ [t] we have

𝔼[(−1)f(x+yI) · (−1)f(x+yI)] =

𝔼[(−1)f(x+yI)+f(x+yJ)] =

𝔼[(−1)f(x+yI)] · 𝔼[(−1)f(x+yJ)] =
bias(f)2,

where we used the fact that the two points x + yI
and x + yJ are uniform and independent given that
x, y1, . . . , yt are chosen uniformly and independently.
We thus conclude that

Var[S] =
∑
∅�=I⊆[t]

Var[(−1)f(x+yI)]

= (2t − 1)Var[(−1)f(x)] ≤ 2t − 1.

Hence we conclude that

Pr[S ≤ 0] ≤ Pr[|S − 𝔼[S]| ≥ (2t − 1)bias(f)]

≤ bias(f)
2t − 1

.

Thus, for t = log(1/εδ) + 1 we get that

Pr[S ≤ 0] ≤ δ,
Hence we get that for uniformly chosen x, y1, . . . , yt,

Pr
x,y1,...,yt∈𝔽n2

[A′(x; y1, . . . , yt, fy1(·), . . . , fyt(·))

�= f(x)] ≤ δ.
By an averaging argument, for every f there must
exist a choice for y1, . . . , yt where

Pr
x∈𝔽n2

[A′(x; y1, . . . , yt, fy1(·), . . . , fyt(·)) �= f(x)] ≤ δ.

2.3 Proof of Lemma 10
The proof of Lemma 10 is based on a standard sam-

pling argument.

Proof of Lemma 10. Choose h1, ..., h� uniformly and
independently from H . Fix x ∈ 𝔽

n
2 , and let Zi be the

random variable

Zi = chi(−1)hi(x)

and let S = Z1+...+Z�
� . We will use the fact that if

|S − (−1)f(x)| < 1 then sign(S) = (−1)f(x).
We first bound the probability that

|S − (−1)f(x)| > 1/4

428

WEIGHT DISTRIBUTION AND LIST-DECODING SIZE OF REED-MULLER CODES

By regular Chernoff arguments for bounded inde-
pendent variables, since 𝔼[S] = (−1)f(x) and each Zi
is of absolute value of at most C, we get that

ℙh1,...,h�∈H [|S − (−1)f(x)| > 1/4] ≤ e− �
32C2

(see for example Theorem A.1.16 in [2]).
In particular for � = O(C2 log 1/δ) we get that

ℙh1,...,h�∈H [|S − (−1)f(x)| > 1/4] ≤ δ
Thus by averaging arguments, there exists h1, ..., h�

such that

ℙx∈𝔽n2 [|
∑�
i=1 chi(−1)hi(x)

�
− (−1)f(x)| ≥ 1/4] ≤ δ

We now round each coefficient to a close rational,
without damaging the approximation error. The coef-
ficient of (−1)hi(x) is αi = chi

� . If we round chi to the
closest integer [chi], we get that the coefficient of each
(−1)hi(x) is changed by at most 1

2� , and thus the total
approximation is changed by at most 1/2. Hence we
have

ℙx∈𝔽n2 [|
∑�
i=1[chi](−1)hi(x)

�
)− (−1)f(x)| ≥ 3/4] ≤ δ.

Thus we got that

ℙx∈𝔽n2 [sign(
∑�
i=1[chi](−1)hi(x)

�
) �= (−1)f(x)] ≤ δ.

Since dividing by � does not change the sign we get

ℙx∈𝔽n2 [sign(
�∑
i=1

[chi](−1)hi(x)) �= (−1)f(x)] ≤ δ

3 Bounds for Reed-Muller Codes
In this section we study the weight distribution and

list-decoding size of Reed–Muller codes. Recall that
RM(n, d) denotes the code of multivariate polynomi-
als p(x1, ..., xn) over 𝔽2 of total degree at most d. In
the following n and d will always stand for the num-
ber of variables and the total degree. We assume that
d� n, and study in particular the case of constant d.

3.1 Weight Distribution of Reed-Muller
Codes

We prove in this subsection our first main theorem,
Theorem 4, which gives the asymptotic behavior of
the weight distribution of Reed-Muller codes. It is a
direct corollary of Theorem 14, giving an upper bound
on the accumulative weight at distance 2�−d − ε, and
Lemma 15, giving a simple lower bound at distance
2�−d−1.

Theorem 14 (Upper bound on the accumulative
weight). For any integer 1 ≤ k ≤ d− 1,

A(2−k(1− ε)) ≤ (1/ε)O(d2
(d−k)!n

d−k).

In particular for constant d we get that

A(2−k − ε) ≤ (1/ε)O(nd−k).

Lemma 15 (Lower bound on the accumulative
weight). For any integer 1 ≤ k ≤ d

A(2−k) ≥ 2
nd−k+1
(d−k+1)! (1+o(1)).

In particular for constant d we get that

A(2−k) ≥ 2Ω(nd−k+1).

We start by proving the lower bound.

Proof of Lemma 15. Single out k variables x1, ..., xk,
and let q be any degree d − k + 1 polynomials on
the remaining n − k variables. First, for any such q,
the following degree d polynomial has relative weight
exactly 2−k

q′(x1, ..., xn) = x1x2...xk−1(xk + q(xk+1, ..., xn))

The number of different polynomials q is

2(n−k
d−k+1) = 2

nd−k+1
(d−k+1)! (1+o(1))

We prove Theorem 14 using Lemma 7.

Proof of Theorem 14. Fix 1 ≤ k ≤ d − 1. We will
bound the number of polynomials p ∈ RM(n, d) such
that wt(p) ≤ 2−k(1 − ε). Let p be any such polyno-
mial. Apply Lemma 7 to p(x) with error parameter
δ = 2−(d+2). There exists a universal algorithm A,
and for each p a set of t = O(d2 + d log(1/ε)) direc-
tions {yi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ k} such that

Pr
x∈𝔽n2

[p(x) �= A(x;{yi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ k},

{pyi,1,...,yi,k(·) : 1 ≤ i ≤ t})] ≤ δ.

Define p′(x) = A (x; {yi,j}, {pyi,1,...,yi,k(·)}). We have
that dist(p, p′) = Prx[p(x) �= p′(x)] ≤ δ. We claim
that this guarantees that p′(x) specifies p(x) uniquely
- it is the only element of RM(n, d) of distance at
most δ from p′. This is because the minimal distance
of RM(n, d) is 2−d, and we chose δ to be less than
half the minimal distance. Now, in order to compute
p′(x), we need to specify to the algorithm A the set

429

T. KAUFMAN, S. LOVETT AND E. PORAT

of vectors yi,j and the polynomials pyi,1,...,yi,k(·). To
specify each vector yi,j ∈ 𝔽

n
2 we require n bits. Each

polynomial pyi,1,...,yi,k(·) is a k-iterated derivative of
a degree-d polynomial p(x), hence it is a degree d− k
polynomial. Thus, in order to specify it, we need to
give the list of its

∑d−k
i=0
(
n
i

)
bits. Summing up, we

need a total of

tk · n+ t ·
d−k∑
i=0

(
n

i

)
= O
(
d2 log(1/ε) · n

d−k

(d− k)!
)

bits in order to specify p′ completely. Since each p′
approximates at most a single p we get that the num-
ber of polynomials p ∈ RM(n, d) such that wt(p) ≤
2−k(1 − ε) is bounded by the number of distinct p′,
which is bounded by

(1/ε)O
(

d2
(d−k)!n

d−k)
.

3.2 List-decoding Size of Reed-Muller
Codes

We now turn to the problem of bounding the list-
decoding size of Reed-Muller codes, and we prove our
second main theorem, Theorem 5. We will show that
the same techniques used to bound the weight distri-
bution when proving Theorem 4 can be applied with
minor variants to also bound the list-decoding size.
We note this is an exception; commonly bounding the
list-decoding size is a much harder task than bounding
the weight distribution, and there exist codes where
these two parameters behave very differently. How-
ever, we will see that in the case of Reed–Muller codes
they share the same asymptotic behavior.

Theorem 5 giving the list-decoding size of Reed-
Muller codes is a direct corollary of Theorem 16, giv-
ing an upper bound on the list-decoding size at dis-
tance 2�−d − ε, and the same lower bound we used to
bound the accumulative weight distribution, obtained
in Lemma 15.

Theorem 16 (Upper bound on the list-decoding
size). For any integer 1 ≤ k ≤ d− 1,

L(2−k(1 − ε)) ≤ (1/ε)O(d2
(d−k)!n

d−k).

In particular for constant d we get that

L(2−k − ε) ≤ (1/ε)O(nd−k).

Proof of Theorem 16. The proof follows the same
lines as that of Theorem 14. Fix f : 𝔽n2 → 𝔽2 to be
any function. We will bound the number of polyno-
mials p ∈ RM(n, d) such that dist(p, f) ≤ 2−k(1− ε).

Let g = p + f such that wt(g) ≤ 2−k(1 − ε). Ap-
plying Lemma 7 to g(x) with the error parameter
δ = 2−(d+2), there exists a universal algorithm A and
a set of direction {yi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ k} such
that

Pr
x∈𝔽n2

[g(x) �= A(x;{yi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ k},

{gyi,1,...,yi,k(·) : 1 ≤ i ≤ t})] ≤ δ.

Since g(x) = p(x) + f(x) we also have gyi,1,...,yi,k(·) =
pyi,1,...,yi,k(·) + fyi,1,...,yi,k(·). Hence, we can replace
each instance of g or its derivatives inA with instances
of p, f and their derivatives. Thus we get that

Pr
x∈𝔽n2

[p(x) �=f(x) +A(x; {yi,j},

{pyi,1,...,yi,k(·) + fyi,1,...,yi,k(·)})] ≤ δ.

Define p′(x) = f(x) + A(x; {yi,j}, {pyi,1,...,yi,k(·) +
fyi,1,...,yi,k(·)}). Since we again have dist(p, p′) ≤ δ,
the function p′(x) specifies p(x) uniquely as the only
element in RM(n, d) which has distance at most δ
from p′. Now, in order to compute p′, we may as-
sume the algorithm A has oracle access to the func-
tion f(·), since we have fixed it in advance, and it is
the same for all the polynomials we wish to bound.
Thus, in order to calculate p′(x), we need to provide
to the algorithm A the set of directions yi,j and the
polynomials pyi,1,...,yi,k(·). Notice thatA can compute
fyi,1,...,yi,k(·) using the oracle access to f and the set
of directions yi,j . As in the proof of Theorem 14, each
direction yi,j ∈ 𝔽

n
2 requires n bits, and each polyno-

mial pyi,1,...,yi,k(·) being a degree d − k polynomial
requires

∑d−k
i=0
(
n
i

)
bits to specify. Following the same

calculations as those in the proof of Theorem 14, we
conclude that the number of distinct p′(x) is bounded
by

(1/ε)O(d2
(d−k)!n

d−k).

Thus, for every fixed function f , this is also a bound
on the number of p ∈ RM(n, d) such that dist(p, f) ≤
2−k(1− ε).

4 Generalized Reed-Muller Codes
The problems of bounding both the accumulative

weight distribution and the list-decoding size can be
extended to Generalized Reed-Muller, the code of low-
degree polynomials over larger fields. However, our
techniques fail to prove tight result in these cases.
We briefly describe the reasons below, and give some
partial results.

We start by making some basic definitions. Let
q be a prime, and let GRMq(n, d) denote the code

430

WEIGHT DISTRIBUTION AND LIST-DECODING SIZE OF REED-MULLER CODES

of multivariate polynomials p(x1, ..., xn) over the field
𝔽q, of total degree at most d.

Definition 7. The relative weight of a function f :
𝔽
n
q → 𝔽q is the fraction of non-zero elements,

wt(f) = 1
qn
|{x ∈ 𝔽

n
q : f(x) �= 0}|

Definition 8. The relative distance between two
functions f, g : 𝔽nq → 𝔽q is defined as

dist(f, g) = ℙx∈𝔽nq [f(x) �= g(x)]
The accumulative weight distribution and the list-

decoding size are defined analogously for GRMq(n, d),
using the appropriate definitions for relative weight
and relative distance. We denote them by Aq and Lq.
For each 1 ≤ k ≤ d, we define a distance rk as follows.

1. For k = 1, let d = (q − 1)a + b, where 1 ≤ b ≤
q−1. Define r1 = q−a(1−b/q). r1 is the minimal
distance of GRMq(n, d).

2. For 2 ≤ k ≤ d− 1, let d− k = (q− 1)a+ b, where
1 ≤ b ≤ q− 1. Define rk = q−a(1− b/q)(1− 1/q).

3. For k = d, define rd = 1− 1/q.

We conjecture that both for the accumulative
weight distribution and the list-decoding size, the dis-
tances rk are the thresholds for the exponential depen-
dency in n.

Conjecture 17. Let ε > 0 be constant, and consider
GRMq(n, d) for constant d. Then
• For α ≤ r1 − ε both Aq(α) and Lq(α) are con-

stants.
• For rk ≤ α ≤ rk+1 − ε both Aq(α) and Lq(α) are

2Θ(nk).
• For α ≥ rd both Aq(α) and Lq(α) are 2Θ(nd).

Proving lower bounds for Aq(rk) is similar to the
case of RM(n, d).

Lemma 18 (Lower bound for Aq). For any integer
1 ≤ k ≤ d,

Aq(rk) ≥ 2Ω(nk)

The problem is proving matching upper bounds.
Using directly the derivatives method we used to give
upper bounds for RM(n, d) gives the same bounds for
GRMq(n, d), alas they are not tight for q > 2.

Aq(2−k − ε) ≤ 2O(nd−k)

If we would like to get upper bounds closer to the
lower bounds, a natural approach would be to gen-
eralize Lemma 8 to taking several derivatives in the

same direction (which is possible over larger fields).
This would give tight results for some values of k.
The crucial point is generalizing Claim 11 to the case
of taking multiple derivatives in the same direction.
So far, we didn’t find a way of doing so.

Instead, we give partial results for Conjecture 17
at both ends of the spectrum. We give results when
α ≤ r1 − ε, and when rd−1 ≤ α ≤ rd − ε (when
α ≥ rd Lemma 18 gives Lq(α) and Aq(α) are both
exponential in nd, and this is obviously tight).

First, the minimal distance of GRMq(n, d) is known
to be r1. Thus, for any ε > 0, Aq(r1−ε) = 1. Gopalan,
Klivans and Zuckerman [6] prove that Lq(r1 − ε) is
constant when q − 1 divides d.

Theorem 19 (Corollary 18 in [6]). Assume q − 1
divides d. Then

Lq(r1 − ε) ≤ c(q, d, ε)

Moving to the case of rd−1 ≤ α ≤ rd − ε, we prove

Lemma 20. Let ε > 0 be constant. then

Aq(rd − ε) ≤ 2O(nd−1)

We now move on to prove Lemmas 18 and 20. We
start with Lemma 18.

Proof of Lemma 18. We start by proving for 2 ≤ k ≤
d− 1. Let d− k = (q − 1)a+ b, where 1 ≤ b ≤ q − 1.
Single out a+2 variables x1, ..., xa+2, and let g be any
degree k polynomial on the remaining variables. The
following polynomial has degree d and weight exactly
q−a(1− b/q)(1− 1/q).

g′(x1, ..., xn) =⎛
⎝ a∏
i=1

q−1∏
j=1

(xi − j)
⎞
⎠ ·
⎛
⎝ b∏
j=1

(xa+1 − j)
⎞
⎠ ·

(xa+2 + g(xa+3, ..., xn))

The number of distinct polynomial g is 2Ω(nk).
The proofs for k = 1 and k = d are similar: for
k = 1, let d = (q − 1)a + b. Let l1(x), ..., la+1(x) be
any independent linear functions, and consider

g′(x1, ..., xn) =⎛
⎝ a∏
i=1

q−1∏
j=1

(li(x) − j)
⎞
⎠
⎛
⎝ b∏
j=1

(la+1(x)− j)
⎞
⎠

For k = d, let g be any degree d polynomial on vari-
ables x2, ..., xn, and consider g′(x1, ..., xn) = x1 +
g(x2, ..., xn).

431

T. KAUFMAN, S. LOVETT AND E. PORAT

We now continue to prove Lemma 20. We first make
some necessary definitions.

Definition 9. The bias of a polynomial p(x1, ..., xn)
over 𝔽q is defined to be

bias(p) = 𝔼x∈𝔽nq [ωp(x)]

where ω = e2πi/q is a primitive q-th root of unity.

Kaufman and Lovett [8] prove that biased low-
degree polynomials can be decomposed into a function
of a constant number of lower degree polynomials.

Theorem 21 (Theorem 2 in [8]). Let p(x1, ..., xn) be
a degree d polynomial, such that |bias(p)| ≥ ε. Then p
can be decomposed as a function of a constant number
of lower degree polynomials

p(x) = F (g1(x), ..., gc(x))

where deg(gi) ≤ d− 1, and c = c(q, d, ε).

We will use Theorem 21 to bound A(rd− ε) for any
constant ε > 0.

Proof of Lemma 20. We will show that any polyno-
mial p ∈ GRMq(n, d) such that wt(p) ≤ 1 − 1/p − ε
can be decomposed as

p(x) = F (g1(x), ..., gc(x))

where deg(gi) ≤ d−1, and c depends only on q, d and
ε. Thus the number of such polynomials is bounded
by the number of possibilities to choose c degree d −
1 polynomials, and a function F : 𝔽

c
q → 𝔽q. The

number of such possibilities is at most 2O(nd−1). Let
p be such that wt(p) ≤ 1−1/p−ε. We will show there
exists α ∈ 𝔽q, α �= 0 such that bias(αp) ≥ ε. We will
then finish by using Theorem 21 on the polynomial
αp.

Consider the bias of αp for random α ∈ 𝔽q.

𝔼α∈𝔽q [bias(αp)] = 𝔼α∈Fq,x∈𝔽nq [ωαp(x)] = 1− wt(p)

since for x’s for which p(x) = 0, 𝔼α∈Fq [ωαp(x)] = 1,
and for x such that p(x) �= 0, 𝔼α∈Fq [ωαp(x)] = 0. We
thus get that

𝔼α∈𝔽q\{0}[bias(αp)] = 1− q

q − 1
wt(p) ≥ q

q − 1
ε

So, there must exist α �= 0 such that bias(αp) ≥ ε.

Acknowledgment
We would like to thank Madhu Sudan for helpful

comments on this work. The second author would like
to thank his advisor, Omer Reingold, for on-going ad-
vice and encouragement. He would also like to thank
Microsoft Research for their support during his in-
ternship. The first author was supported in part by
NSF Awards CCF-0514167 and NSF-0729011. The
second author was supported partly by the Israel Sci-
ence Foundation (grant 1300/05). Research was con-
ducted partly when the second author was an intern
at Microsoft Research.

References
[1] S. Azumi and T. Kasami and N. Tokura, On the

Weight Enumeration of Weights Less than 2.5d of
Reed-Muller Codes, Information and Control, 30(4):
380–395, 1976.

[2] N. Alon and J. Spencer, The Probabilistic Method,
Second edition, published by John Wiley, 2000.

[3] A. Bogdanov and E. Viola. Pseudorandom bits for
polynomials via the Gowers norm. In the 48th An-
nual Symposium on Foundations of Computer Sci-
ence (FOCS 2007).

[4] O. Goldreich and L. Levin, A hard core predicate for
all one way functions, In the Proceedings of the 21st
ACM Symposium on Theory of Computing (STOC),
1989.

[5] O. Goldreich, R. Rubinfeld, and M. Sudan, Learn-
ing polynomials with queries: The highly noisy case,
SIAM Journal on Discrete Mathematics, 13(4):535-
570, November 2000.

[6] P. Gopalan, A. Klivans and D. Zuckerman, List-
Decoding Reed Muller Codes over Small Fields, In the
Proceedings of the 40th ACM Symposium on Theory
of Computing (STOC), 2008.

[7] V. Guruswami, List decoding of Error-Correcting
Codes, vol 3282 of Lecture notes in Computer Sci-
ence, Springer 2004.

[8] T. Kaufman and S. Lovett, Worst case to Average
Case Reductions for Polynomials, To appear in the
Proceedings of the 49th Annual Symposium on Foun-
dations of Computer Science (FOCS), 2008.

[9] E. Kushilevitz and Y. Mansour, Learning Decision
Trees using the Fourier Spectrum, SIAM Journal of
Computing, 22(6), (1993), pp 1331-1348.

[10] T. Kasami and N. Tokura, On the weight structure
of Reed-Muller codes, In the IEEE Transactions on
Information Theory 16 (Issue 6), 1970.

[11] J. MacWilliams and N. J. A. Sloane, The Theory of
Error Correcting Codes, Amsterdam, North-Holland,
1977.

[12] M. Sudan, Decoding of Reed-Solomon codes beyond
the error-correction bound, Journal of Complexity,
13, (1997), pp. 180-193.

432

WEIGHT DISTRIBUTION AND LIST-DECODING SIZE OF REED-MULLER CODES

[13] M. Sudan, List decoding: Algorithms and Applica-
tions , SIGACT News, 31 (2000), pp 16-27.

[14] M. Sudan, L. Trevian, S. Vadhan Pseudorandom
Generators without the XOR Lemma, J. Comput.
Syst. Sci., 61 (2001), pp 236-266.

433

