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PAPER

Weight Distributions of Non-binary LDPC Codes

Kenta KASAI†a), Member, Charly POULLIAT††b), David DECLERCQ††c), Nonmembers,
and Kohichi SAKANIWA†d), Fellow

SUMMARY In this paper, we study the average symbol and bit-weight

distributions for ensembles of non-binary low-density parity-check codes

defined on GF(2p). Moreover, we derive the asymptotic exponential growth

rate of the weight distributions in the limit of large codelength. Interest-

ingly, we show that the normalized typical minimum distance does not

monotonically increase with the size of the field.

key words: non-binary low-density parity-check code, weight distribution,

Galois fields

1. Introduction

In 1963, Gallager invented low-density parity-check

(LDPC) codes [1]. Due to the sparseness of the code rep-

resentation, LDPC codes are efficiently decoded by sum-

product decoders [2] or belief propagation (BP) decoders

[3]. Using a powerful analytical method called density

evolution [3] that was proposed by Richardson and Ur-

banke, messages of BP decoding are statistically evaluated

and codes can be optimized for best decoding thresholds.

The optimized LDPC codes [4] exhibit the decoding perfor-

mance at a rate very close to the Shannon capacity.

Non-binary LDPC codes were invented by Gallager

[1]. Davey and MacKay [5] found that non-binary LDPC

codes can outperform binary LDPC codes. Non-binary

LDPC codes have captured much attention recently due to

their decoding performance [6]–[10]. The (2, dc)-regular

non-binary LDPC codes defined on GF(2p) are empirically

known as the best codes for 2p ≥ 64, especially for short

codelength. Poulliat et al. optimized (2, dc)-regular non-

binary LDPC codes by considering binary images of GF(2p)

symbols. However, the main shortcoming of non-binary

LDPC codes is their decoding complexity and requirements

of large memories. Reduced complexity algorithms for de-

coding non-binary LDPC codes have recently been pro-

posed [11]. Recently, the decoder for non-binary LDPC

codes was implemented on general-purpose computing on
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graphics processing units (GPGPUs) [12], which runs much

faster than those implemented on CPUs.

The weight distributions of linear codes play very

important roles in analysis of the decoding performance.

Specifically, for LDPC codes, the bound of the thresholds

for the ML decoding [1], [13], and the error floors [14], [15]

for BP decoding were studied using the weight distributions.

Studies on weight distributions for binary LDPC codes

date back to Gallager’s landmark PhD thesis [1]. Gallager

derived the average weight distributions of LDPC code en-

sembles and empirically showed that the typical minimum

distance [1], for fixed rates, grows with the weight of rows

and and columns of the parity-check matrices. In [16], the

weight distributions of various classes of regular LDPC code

ensembles were derived. In [17], the weight distributions of

irregular LDPC code ensembles were derived. In [14] and

[15], the exponential growth rate of the weight distribution

of the standard irregular code ensembles [18] were derived.

Recently, in [19], the authors investigated the weight distri-

butions of multi-edge type LDPC code ensembles.

Studies on weight distributions for non-binary LDPC

codes also date back to [1]. Gallager derived symbol-weight

distribution of Gallager code ensembles defined on Z/qZ

and showed that the minimum distance grows linearly with

codelength when the variable node degree is greater than 2.

Hu [20] derived the asymptotic bit-weight distributions for

random parity-check code ensembles.

For the transmission over the binary input channels,

we restrict ourselves to considering non-binary LDPC codes

over GF(q) with q = 2p. Once the primitive element of

GF(2p) is fixed, each symbol in GF(2p) can be represented

as a binary sequence of length p. With this binary repre-

sentation, the weight distributions of the non-binary LDPC

codes can be considered not only in terms of the symbol-

weight but also in terms of the bit-weight. In this paper, we

derive the average weight distributions of the symbol and

bit-weight for non-binary LDPC code ensembles defined on

GF(2p). We derive the asymptotic growth rate and the con-

dition for the exponentially few average number of code-

words of small linear weight.

The rest of this paper is organized as follows. In Sect. 2,

we define non-binary LDPC codes and their ensembles.

Section 3 derives the average symbol and bit-weight distri-

butions. Section 4 investigates the asymptotic exponential

growth rate of the average symbol and bit-weight distribu-

tions. Section 5 illustrates the numerical examples of the

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers
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asymptotic growth rate of the average symbol and bit-weight

distributions. Section 6 concludes this paper.

2. Non-binary LDPC Code Ensemble

Binary and non-binary LDPC codes are defined by bipartite

graphs which are also referred to as Tanner graphs [18]. For

a bipartite graph with N variable nodes and M check nodes,

with some abuse of notation, we denote the v-th variable

node and c-th check node by v and c, respectively.

The Tanner graph is said to have a degree distribution

pair

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λ(x) =

dv
∑

i=2

λix
i−1, ρ(x) =

dc
∑

j=2

ρ j x
j−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

if the fraction of edges incident to variable nodes of degree

i is λi for i = 2, . . . , dv and the fraction of edges incident to

check nodes of degree j is ρ j for j = 2, . . . , dc. Each edge

= (c, v) is labeled h(c,v) ∈ GF(2p)\{0}. For a given Tanner

graph, we consider all GF(2p)-valued maps on each variable

node v such that

x : v �→ xv ∈ GF(2p).

A map x is said to be a codeword if the values of x satisfies

all the check constraints. To be precise,

∑

v∈Vc

h(c,v)xv = 0 for c = 1, . . . ,M,

where Vc is the set of variable nodes adjacent to the check

node c. The symbol-weight w(x) of x is defined by the num-

ber of non-zero values of xv. To be precise

w(x) = |{v ∈ {1, . . . ,N} | xv � 0}|.

The parameters N,M, ρ(x) and λ(x) are constrained to en-

sure that the number of edges on variable node and check

node sides is consistent.

N
/

∫ 1

0

λ(x)dx = M
/

∫ 1

0

ρ(x)dx =: E, (1)

where we denote the number of edges by E. The set of edges

is denoted by E.

Assume we are given the following parameters for the

code construction. The codelength N, a degree distribution

pair (λ(x), ρ(x)), and the Galois field GF(2p) of size q = 2p.

With these parameters, we define the non-binary irregular

LDPC code ensemble as an equiprobable set of the codes

defined by the Tanner graphs which have N variable nodes,

the degree distribution pair (λ(x), ρ(x)) and edges with la-

bels uniformly and randomly chosen from GF(2p)\{0}. The

non-binary irregular LDPC code ensemble is denoted by

G(N, λ(x), ρ(x), 2p).

We consider the standard Tanner graph modeled with

sockets [18]. Each variable (resp. check) node has i sock-

ets, where i is the degree of the variable (resp. check) node.

The sockets are aligned in arbitrary but fixed order. Vari-

able and check nodes are connected via their sockets. Thus

graph connection is specified by a permutation π on [1, E]

such that i-th variable socket connects to the π(i)-th check

sockets. There are E! possible ways of the edge connection

consistent with (λ(x), ρ(x)). There are (q−1)E possible ways

of choosing non-zero entries {h(c,v)}(c,v)∈E.

Consequently, the number of codes in the ensemble

G(N, λ(x), ρ(x), 2p) is given by

|G(N, λ(x), ρ(x), 2p)| = E!(q − 1)E . (2)

Furthermore, we define the design rate r as follows.

r := (N − M)/N = 1 −

∫ 1

0
ρ(x)dx

∫ 1

0
λ(x)dx

.

3. Weight Distribution of Non-binary LDPC Codes

In this section, we derive the average bit-weight and symbol-

weight distribution of the non-binary irregular LDPC code

ensemble G(N, λ(x), ρ(x), 2p).

In order to transmit the codewords over the binary-

input channels, we consider the binary-image of non-binary

symbols. Once a primitive element α of GF(2p) is fixed,

each symbol is given a p-bit representation [21, pp.110].

For example, with a primitive element α ∈ GF(23) such that

α3 + α + 1 = 0, each symbol is represented as 0 = (0, 0, 0),

1 = (1, 0, 0), α = (0, 1, 0), α2 = (0, 0, 1), α3 = (1, 1, 0),

α4 = (0, 1, 1), α5 = (1, 1, 1) and α6 = (1, 0, 1).

For a given Tanner graph G, we denote the number

of codewords of symbol-weight and bit-weight ℓ in G by

AG(ℓ) and AG
b

(ℓ), respectively. For the non-binary irregular

LDPC code ensembleG(N, λ(x), ρ(x), 2p), let A(ℓ) and Ab(ℓ)

be the average number of codewords of symbol-weight and

bit-weight ℓ, respectively. Since each code in the ensem-

ble G = G(N, λ(x), ρ(x), 2p) is given uniform probabilities,

it follows that

A(ℓ) =
∑

G∈G

AG(ℓ)
/

|G|,

Ab(ℓ) =
∑

G∈G

AG
b (ℓ)
/

|G|.

3.1 Symbol-Weight Distribution for Non-binary LDPC

Codes

We will derive the average symbol-weight distribu-

tion of the non-binary irregular LDPC code ensemble

G(N, λ(x), ρ(x), 2p). For readers who are unfamiliar with

the enumeration technique developed for the weight distri-

butions of LDPC code ensembles so far, we refer the readers

to [1], [14], [16], [17].

Theorem 1: The average number of codewords A(ℓ) of

symbol-weight ℓ for the non-binary irregular LDPC code

ensemble G = G(N, λ(x), ρ(x), 2p) is given by
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A(ℓ) =
∑

k≥0

coef
(

(Q(s, t)P(u))N , tℓskuk
)

(

E

k

)

(q − 1)E−k
,

Q(s, t) :=

dv
∏

i=2

(1 + tsi)Li , P(u) :=

dc
∏

j=2

f j(u)R j ,

f j(u) :=
1

q

(

(1 + (q − 1)u) j + (q − 1)(1 − u) j
)

,

where coef(g(s, t, u), sit juk) is the coefficient of a term sit juk

in a polynomial g(s, t, u). NLi and NR j are the number of

variable and check nodes of degree i and j, respectively i.e.,

Li =
λi

i
∫ 1

0
λ(x)dx

,R j =
ρ j(1 − r)

j
∫ 1

0
ρ(x)dx

=
ρ j

j
∫ 1

0
λ(x)dx

.

Note that
∑dc

j=2
R j = 1 − r and

∑dc

j=2
R jN = M.

Proof: We say an edge is active if the edge is incident to a

variable node v such that xv � 0. Each edge (c, v) can be

viewed as a conveyer of the value y(c,v) := h(c,v)xv from the

incident variable node v to the incident check node. The

check node c determines whether it is satisfied or not only

by the values y(c,v) which are conveyed along the connecting

edges (c, v) for v ∈ Vc. To be precise, c is satisfied if

∑

v∈Vc

y(c,v) = 0 ∈ GF(2p).

The assignment of values {y(c,v)}(c,v)∈E that the edges convey

is referred to as the edge constellation. We will count all the

codewords of weight ℓ in all graphs in the ensemble G with

k active edges, and sum them up for all k ≥ 0.

Counting all these codewords involves the following 3

parts:

(i) Count the edge constellations satisfying all the parity-

check constraints for k active edges.

(ii) Count the edge constellations which stem from code-

words of symbol-weight ℓ and k active edges. In other

words, such constellations have k active edges which

incident to ℓ variable nodes.

(iii) Count the edge permutations among k active edges and

E − k non-active edges.

Before we start counting the edge constellations of (i),

first, let us count the active edge constellations satisfying a

single parity-check constraint. Consider a check node c of

degree j. The check node c is satisfied if the j values that

the connecting edges convey sum to 0, i.e.,
∑

v∈Vc
y(c,v) = 0.

Each symbol y(c,v) is in GF(2p). Let m j(ℓ) be the number

of edge constellations that satisfy the single parity-check

constraint. Equivalently, m j(ℓ) is the number of sequences

(x1, . . . , x j) ∈ GF(2p) j such that

x1 + · · · + x j = 0 and |{i | xi � 0}| = ℓ.

It is obvious that m j(0) = 1,m j(1) = 0 and m j(2) =
(

j

2

)

(q−1).

It is shown in [1, Eq. (5.3)] that

m j(ℓ) =
(−1)ℓ(q − 1) + (q − 1)ℓ

q

(

j

ℓ

)

.

The generating function of m j(ℓ) is simply written as fol-

lows.

f j(u) : =

j
∑

ℓ=0

m j(ℓ)u
ℓ

=
1

q

(

(1 + (q − 1)u) j + (q − 1)(1 − u) j
)

.

Next, count the edge constellations of (i). Since there are

R jN check nodes of degree j, the number of the edge con-

stellations that satisfy all the M parity-check constraints

with given k active edges is given by

coef

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

dc
∏

j=2

f j(u)R jN , uk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3)

Secondly, we will count the constellations of (ii), i.e., k

active edges which stem from codewords of symbol-weight

ℓ. Consider a variable node of degree i. Let a(ℓ, k) be the

number of the constellations of k active edges which stem

from a variable node v with a map xv � 0 if ℓ = 1 and

xv = 0 otherwise. From the definition of the active edges, it

is easily checked that

a(ℓ, k) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 (ℓ = 0, k = 0),

1 (ℓ = 1, k = i),

0 otherwise.

The generating function of a(ℓ, k) is given as follows.
∑

ℓ≥0,k≥0

a(ℓ, k)tℓsk = 1 + tsi.

Since there are LiN variable nodes of degree i, the con-

stellations of k active edges which stem from codewords of

symbol-weight ℓ is given as

coef

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

dv
∏

i=2

(1 + tsi)LiN , tℓsk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4)

Finally, we will count (iii), the edge permutations

among k active edges and E − k non-active edges. The

number of possible ways of permuting active and non-active

edges and assigning the values of active edges is given as

k!(E − k)!(q − 1)k (5)

Let A(ℓ, k) be the average number of graphs which have

codewords of symbol-weight ℓ for given k active edges. By

multiplying Eqs. (3), (4) and (5), and dividing by the number

of codes in the ensemble given in Eq. (2), we obtain

A(ℓ, k) = coef

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

dc
∏

j=2

f j(u)R j N , uk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

coef

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

dv
∏

i=2

(1 + tsi)LiN , tℓsk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

/

(

E

k

)

(q − 1)E−k.
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The average number of codewords of symbol-weight ℓ for

the ensemble is obtained by summing up A(ℓ, k) over the all

possible active edge numbers.

A(ℓ) =

E
∑

k=0

A(ℓ, k) (6)

This concludes the proof. �

3.2 Bit-Weight Distribution for Non-binary LDPC Codes

In a similar way, we will derive the average bit-weight dis-

tribution of the non-binary irregular LDPC code ensemble

G(N, λ(x), ρ(x), 2p). First, consider a variable node of de-

gree i. Let ab(ℓ, k) be the number of the constellations of k

active edges which stem from a variable node v which has

ℓ = 1 in the binary representation of xv. From the definition

of the active edges, it is obvious that

ab(ℓ, k) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 (ℓ = 0, k = 0),
(

p

ℓ

)

(ℓ ≥ 1, k = i),

0 otherwise.

The generating function of ab(ℓ, k) is given as follows.

∑

ℓ≥0,k≥0

a(ℓ, k)tℓsk = 1 + ((1 + t)p − 1)si.

Since there are LiN variable nodes of degree i, the number of

constellations of k active edges which stem from codewords

of bit-weight ℓ is given as

coef

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

dv
∏

i=2

(

1 + ((1 + t)p − 1)si)LiN , tℓsk

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Using this, in a similar way as done for the symbol-weight

distributions, the average number Ab(ℓ) of codewords of bit-

weight ℓ is given as follows.

Theorem 2: Let n := pN be the bit-codelength. The

average number Ab(ℓ) of codewords of bit-weight ℓ for

the non-binary irregular LDPC code ensemble G(N =

n/p, λ(x), ρ(x), 2p) is given by

Ab(ℓ) =

E
∑

k=0

Ab(ℓ, k), (7)

Ab(ℓ, k) :=
coef
(

(Qb(s, t)Pb(u))n , tℓskuk
)

(

E

k

)

(q − 1)E−k
,

Qb(s, t) :=

dv
∏

i=2

(1 + ((1 + t)p − 1)si)Li/p,

Pb(u) :=

dc
∏

j=2

f j(u)R j/p,

f j(u) :=
1

q

(

(1 + (q − 1)u) j + (q − 1)(1 − u) j
)

.

4. Asymptotic Analysis

In this section, we investigate the asymptotic behavior of

the average weight distributions of non-binary LDPC code

ensemble in the limit of large codelength. The number of

codewords of fixed weight usually exponentially grows or

decreases with codelength. We are interested in the rate of

the exponential growth. We define

γ(ω) := lim
N→∞

1

N
logq A(ωN),

γb(ω) := lim
n→∞

1

n
log Ab(ωn),

and refer to them as the exponential growth rate or simply

growth rate of the average number of codewords in terms of

symbol-weight and bit-weight, respectively. We use, unless

otherwise specified, log(·) = log2(·).

With these growth rates, we can roughly estimate the

number of codewords of symbol and bit-weight respectively

by

A(ωN) ∼ qγ(ω)N and Ab(ωn) ∼ 2γb(ω)n,

where we denote aN ∼ bN if and only if limN→∞
1
N

logq
aN

bN
=

0. For a fixed q, it can be seen that an ∼ bn if and only if

limn→∞
1
n

log an

bn
= 0, since n = qN.

We will investigate γ and γb. Since the techniques for

deriving the growth rates of γ and γb are similar, we shall

only provide the derivation for γb.

The number of terms in Eq. (7) is equal to E + 1, where

E is defined in Eq. (1). Therefore, from Eq. (6) we have

max
k≥0

Ab(ℓ, k) ≤ Ab(ℓ) ≤ (E + 1) max
k≥0

Ab(ℓ, k). (8)

Therefore it follows that the largest term alone contributes

the growth rate of Ab(ℓ) as follows.

1

n
log Ab(ℓ) =

1

n
log max

k≥0
Ab(ℓ, k) + o(1). (9)

Rewrite Ab(ℓ, k) as

Ab(ωn, βn) =
coef((Qb(s, t)Pb(u))n , (tωsβuβ)n)

(

ǫn

βn

)

(q − 1)(ǫ−β)n
,

with

n = N p, β = k/n, ω = ℓ/n and ǫ = E/n.

We will calculate limn→∞
1
n

log Ab(ωn, βn). In order to do

this, we first introduce the following lemma.

Lemma 1 ([17], III.2): For an m-variable polynomial g(x1,

. . . , xm) with non-negative coefficients, it holds that

lim
n→∞

1

n
log coef(g(x1, . . . , xm)n, x

α1n

1
· · · xαmn

m )

= inf
x1,...,xm>0

log
g(x1, . . . , xm)

x
α1

1
· · · x

αm
m

.
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The point (x1, . . . , xm) that takes the minimum of

g(x1, . . . , xm)

x
α1

1
· · · x

αm
m

is given by a solution of the following equations.

xi

g(x1, . . . , xm)

∂g(x1, . . . , xm)

∂xi

= αi (i = 1, 2, . . . ,m)

Using Lemma 1 with (9), we obtain the following the-

orem.

Theorem 3: The growth rate γb(ω) of the average number

of codewords of normalized bit-weight ω for the non-binary

irregular LDPC code ensemble G(N, λ(x), ρ(x), 2p) is given

by

γb(ω) = sup
β>0

inf
t>0,s>,u>0

[

log Qb(s, t) + log Pb(u)

− β log(u) − β log(s) − ω log(t)

− ǫh (β/ǫ) − (ǫ − β) log(q − 1)

]

= : sup
β>0

γb(ω, β), (10)

where h(x) := −x log(x) − (1 − x) log(1 − x). A point (u, s, t)

that takes inft,s,u is given as a solution of the following equa-

tions.

ω = t

∂Qb

∂t

Qb

=

dv
∑

i=2

Lit(1 + t)p−1si

1 + ((1 + t)p − 1)si
, (11)

β = u

∂Pb

∂u

Pb

= u

dc
∑

j=2

R j

p

∂ f j(u)

∂u

f j(u)
, (12)

= u

dc
∑

j=2

j(q − 1)
R j

p

(1 + (q − 1)u) j−1 − (1 − u) j−1

(1 + (q − 1)u) j + (q − 1)(1 − u) j
,

β = s

∂Qb

∂s

Qb

=

dv
∑

i=2

Li

p

i((1 + t)p − 1)si

1 + ((1 + t)p − 1)si
. (13)

A point β which gives the maximum of γb(ω, β) needs to

satisfy the stationary condition

− log u − log s − log
ǫ − β

β
+ log(q − 1) = 0. (14)

In a similar way, the growth rate γ(ω) of the average number

of codewords of normalized symbol-weight ω is derived.

Note that, once the normalized weigh ω is fixed, the in-

termediate variables u, s, t and β can be viewed as functions

of ω. Hereafter, we fix ω and denote u, s, t and β instead of

u(ω), s(ω), t(ω) and β(ω).

In Theorem 3, the growth rate γb(ω) seems too com-

plicated to investigate the behavior of γb(ω). Interestingly,

the derivative of γb(ω) in terms of ω can be expressed in the

following simple form.

Lemma 2: For β and t such that t � 0 and Eqs. (11), (12)

and (13) hold, we have

d

dω
γb(ω) = − log(t(ω)).

Proof: Let x′ denote the derivation of x with respect to ω.

Differentiating γb(ω) defined in Eq. (10), we have

d

dω
γb(ω)=

Q′
b

Qb

+
P′

b

Pb

−w
t′

t
−β′ log

ǫ−β

β
+β′ log(q−1)

− log t − (β′ log u + β
u′

u
+ β′ log s + β

s′

s
), (15)

where s is given by Eqs. (11), (12) and (13). Combining (12)

and P′
b
=
∂Pb

∂u
u′, we have

P′
b

Pb

− β
u′

u
= 0 (16)

From (11), (13) and Q′
b
=
∂Qb

∂t
t′ +

∂Qb

∂s
s′, we have

Q′
b

Qb

− w
t′

t
+ β

s′

s
= 0

Thus, substituting (14), we conclude the proof since the re-

maining term in the right hand side of (15) is − log t. �

4.1 Analysis of Small Weight Codeword

In this section, we investigate how the number of code-

words of small weight are changed by degree distribution

pairs (λ(x), ρ(x)) and q. To this end, we analyze the growth

rate γb(ω) and γ(ω) for small normalized weight ω. From

the linearity of LDPC codes, it follows that Ab(0) = 1 and

γb(0) = 0. From (10) and Lemma 2, it holds that for ω→ 0,

γb(ω) = γ′b(0)ω + o(ω) (17)

= − log(t)ω + o(ω), (18)

where t is a t which satisfies (11), (12), (13) and (14) for

ω → 0. From (11), for ω → 0, it holds that t j si → 0 for

i such that Li � 0 and j = 1, . . . , p. Using this, we see

that β → 0 from (13). From Eq. (12), it is consequent that

u→ 0. Moreover, from (12) it follows that as u→ 0,

β =

dc
∑

j=2

j( j − 1)(q − 1)
R j

p
u2 + o(u2).

Substituting this to (14), we have

s =
1

ǫ

dc
∑

j=2

j( j − 1)
R j

p
u + o(u)

= ρ′(1)u + o(u). (19)

As s→ 0, from (13) we have

β = 2
L2

p
((1 + t)p − 1)s2 + o(s).
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Substituting this to (14), we obtain the following.

u =
2L2

ǫp(q − 1)
((1 + t)p − 1)s + o(s)

=
λ′(0)

q − 1
((1 + t)p − 1)s + o(s). (20)

From (19) and (20)

lim
ω→0

λ′(0)ρ′(1)

q − 1
((1 + t(ω))p − 1) = 1.

Therefore we have

lim
ω→0

t(ω) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

q − 1

λ′(0)ρ′(1)
+ 1

)
1
p

− 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

In summary, we obtain the following theorem.

Theorem 4: For the non-binary irregular LDPC code en-

semble G(N, λ(x), ρ(x), 2p) with λ′(0) > 0, the growth rate

γb(ω) of the average number Ab(ωn) of codewords of bit-

weight ωn, in the limit of bit-codelength n = pN for small

ω, is given by

γb(ω) = − log

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

q − 1

λ′(0)ρ′(1)
+ 1

)
1
p

− 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

ω + O(ω2).

In a similar way, we have the following theorem.

Theorem 5: For the non-binary irregular LDPC code en-

semble G(N, λ(x), ρ(x), 2p) with λ′(0) > 0, the growth rate

of the average number A(ωN) of codewords of symbol-

weight ωN, in the limit of symbol-codelength N for small

ω, is given by

γ(ω) = −logq

(

λ′(0)ρ′(1)
)

ω + O(ω2).

The number of codewords of weight ωn is approxi-

mated by Ab(ωn) ∼ 2γb(ω)n. Therefore, if γb(ω) < 0 for small

ω, there are exponentially few codewords of bit-weight ωn.

It is important to know whether there are exponentially few

or many codewords of small weight, since decoding errors

in the large SNR region are due to the codewords of small

weight. It can be seen from Theorem 4 that γ′(0) < 0 if and

only if λ′(0)ρ′(1) < 1, which does not depend on the field

size q. Furthermore, it can be seen from Theorem 5 that

γ′
b
(0) < 1 if and only if λ′(0)ρ′(1) < 1. It makes sense that

these conditions coincide.

In summary, we have the following corollary.

Corollary 1: For the non-binary irregular LDPC code

ensemble G(N, λ(x), ρ(x), 2p) and sufficiently large N, if

λ′(0)ρ′(1) < 1, there exists δ > 0 such that there are, in

average, exponentially few codewords of bit-weight ωn for

ω < δ.

We present some more facts on the growth rates.

Theorem 6: For the non-binary irregular LDPC code en-

semble G(N, λ(x), ρ(x), 2p), the growth rates for the full

weight codewords, i.e., codewords of symbol-weight N and

bit-weight n are given as follows.

γ(1) =

dc
∑

j=2

R j logq

(

(q − 1) j + (−1) j(q − 1)
)

(21)

− (1−r)−(pǫ−1) logq (q − 1)=r (q→ ∞)

γb(1) =

dc
∑

j=2

R j

p
log
(

(q − 1) j + (−1) j(q − 1)
)

(22)

− (1 − r) − ǫ log (q − 1) = r − 1 (q→ ∞).

Codewords of symbol-weight 1 − 1/q and bit-weight 1/2

alone consist of most of the code,

γ(1 − 1/q) = r,

γb(1/2) = r. (23)

In other words, A((1 − 1/q)N) ∼ qrN and Ab(n/2) ∼ 2rn.

Proof: Since the proofs are almost the same for the growth

rate for both symbol and bit-weight, we focus on the proofs

for Eqs. (22) and (23). Substitute ℓ = n in Eq. (7) we have

Ab(n) =

∏dc

j=2

(

(q − 1) j + (−1) j(q − 1)
)R jn/p

q(1−r)n/p(q − 1)ǫn
, (24)

which concludes Eq. (22). It can be seen that

(ω, β, s, t, u) =

(

1

2
, ǫ

q − 1

q
, 1, 1, 1

)

satisfies Eqs. (11), (12), (13), (14). Substituting this to

Eq. (10), we have Eq. (23). �

5. Numerical Examples

In this section, we demonstrate Theorem 3. We choose the

degree distribution pair as (λ(x) = 1
7

x+ 6
7

x2, ρ(x) = x3) with

λ′(0)ρ′(1) = 3/7 and design rate r = 0.3.

Figures 1 and 2 show the growth rate for the average

symbol-weight distributions of the irregular LDPC code en-

sembles defined over GF(q = 2p) for p = 1, 2, . . . , 9. As ex-

pected in Eq. (21), γb(1) for p = 1, . . . , 9 converge to r = 0.3

and attain r = 0.3 at ω = 1 − 1/q.

Figures 3 and 4 show the growth rate for the average

bit-weight distributions of the ensembles. As expected in

Eq. (22), γb(1) rapidly converges to r − 1 = −0.7. Indeed

γb(1) = 0.0000, −0.6816, −0.6990, and −0.6999 for p =1,

2, 3 and 4, respectively. Moreover, it can be seen that the

curves at ω > 1/2 rapidly converge to the growth rate of the

binary random code ensemble of rate r.

Each curve for bit and symbol-weight takes nega-

tive values for small normalized bit-weight (resp. symbol-

weight) ω. We call the minimum normalized bit-weight

(resp. symbol-weight) crossing with 0 as normalized typical

minimum distance τ, since there are exponentially few code-

words of bit-weight ωn (resp. resp. symbol-weight ωN) for
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Fig. 1 The growth rate of the average symbol-weight distributions of a (λ(x) = 1
7

x+ 6
7

x2, ρ(x) = x3)-

irregular LDPC code ensemble defined over GF(q), The rate is r = 0.3. The endpoints at ω = 1 are

plotted with circles.

Fig. 2 The growth rate of the average symbol-weight distributions of a (λ(x) = 1
7

x+ 6
7

x2, ρ(x) = x3)-

irregular LDPC code ensemble defined over GF(q), The rate is r = 0.3.
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Fig. 3 The growth rate of the average bit-weight distributions of a (λ(x) = 1
7

x + 6
7

x2, ρ(x) = x3)-

irregular LDPC code ensemble defined over GF(q), The rate is r = 0.3.

Fig. 4 The growth rate of the average bit-weight distributions of a (λ(x) = 1
7

x + 6
7

x2, ρ(x) = x3)-

irregular LDPC code ensemble defined over GF(q), The rate is r = 0.3.
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ω < τ.

Interestingly, the normalized typical minimum distance

does not monotonically grow with q. It grows monotoni-

cally for small q and then starts decreasing for large q. In

other words, there exists a field size which locally maxi-

mizes the normalized typical minimum distance. The local

maximum size is attained at q = 25 for symbol-weight and

q = 24 for bit-weight.

6. Conclusion

In this paper, we derived the weight distributions of non-

binary LDPC codes. The analysis of the exponential growth

rate of the weight distributions revealed that the number of

codewords of small normalized weight grows (reps. van-

ishes) exponentially with the codelength iff λ′(0)ρ′(1) is

greater (resp. less) than 1. Moreover, we observed the non-

monotonicity of the field size for the normalized typical

minimum distance.

Another non-monotonicity of the field size was ob-

served for the thresholds of BP decoding. Rathi showed

that the threshold is not monotonic with the field size [22,

Table 1]. The field sizes for the local optimal typical min-

imum distance and threshold do not coincide. We expect

some relation between these two monotonousness.
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