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Abstract—Soft biometric techniques can perform a fast and
unobtrusive identification within a limited number of users, be
used as a preliminary screening filter, or combined in order to in-
crease the recognition accuracy of biometric systems. The weight
is a soft biometric trait which offers a good compromise be-
tween distinctiveness and permanence, and is frequently used in
forensic applications. However, traditional weight measurement
techniques are time-consuming and have a low user acceptability.
In this paper, we propose a method for a contactless, low-cost,
unobtrusive, and unconstrained weight estimation from frame
sequences representing a walking person. The method uses image
processing techniques to extract a set of features from a pair of
frame sequences captured by two cameras. Then, the features are
processed using a computational intelligence approach, in order
to learn the relations between the extracted characteristics and
the weight of the person. We tested the proposed method using
frame sequences describing eight different walking directions,
and captured in uncontrolled light conditions. The obtained
results show that the proposed method is feasible and can achieve
a view-independent weight estimation, also without the need of
computing a complex model of the body parts.

Index Terms—soft biometrics, weight, neural networks.

I. INTRODUCTION

Soft biometric recognition techniques, while featuring a lack

of distinctiveness, can use samples captured in an unobtrusive

and unconstrained way, in uncooperative conditions [1–3], or

with surveillance cameras placed at long distances [3]. Such

recognition systems can be employed where it is difficult to

adopt systems based on hard biometric traits (e.g. surveillance

applications), the pool of users is small enough, or a high

accuracy is not required. Examples of soft biometric traits are

the height, gender, and eye color.

In this context, the weight offers a good compromise

between distinctiveness and permanence [4]. Moreover, in

forensic analyses, the weight is one of the few characteristics

that can be inferred from the evaluation of a scene. Traditional

techniques for the weight measurement, however, are based

on the contact of the body with a sensor and are difficult to

be applied in uncooperative contexts. The contactless weight

estimation based on surveillance frame sequences can reduce

the time needed for the measurement process, increase the user

acceptability, and be a useful tool in investigative activities.

Other possible fields of application are the surveillance of crit-

ical areas, public buildings, schools (e.g., against pedophiles),

and public areas (e.g., for safety monitoring).

Fig. 1. Schema of the proposed method.

In this paper, we propose a method for a contactless, low-

cost, and unobtrusive weight estimation based on frame se-

quences captured in unconstrained environments. The method

achieves a weight estimation independent from the point of

view, position of the person, and illumination. Moreover, the

proposed method does not require the computation of complex

models of the body parts. The schema of the proposed method

is shown in Fig.1. First, the method performs the analysis of

pairs of frame sequences captured by two cameras, and ex-

tracts features related to the dimensional characteristics of the

silhouette. A computational intelligence approach is then used

to process the features and estimate the corresponding weight,

by evaluating the relations between the visual characteristics

and the weight of the person.

The paper is structured as follows. Section II describes

the related works on weight estimation techniques and soft

biometric systems based on surveillance cameras. In Section

III, the proposed method is detailed. Section IV presents the

experimental results, and Section V summarizes the work.

II. PREVIOUS WORK

In the literature, recognition techniques designed for surveil-

lance applications are based on different biometric traits. There

are methods based on hard-biometric traits, for example the

face characteristics [5,6], and methods based on soft biometric

traits [3]. The main advantages of using soft biometric tech-

niques consist in the possibility to perform the recognition in

less-constrained scenarios, and in the opportunity to design

fast techniques for the continuous authentication and periodic

re-authentication. Soft biometric traits used in surveillance ap-
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plications can be behavioral or physiological. In the literature,

the most studied behavioral soft biometric trait is the gait [7].

Gait recognition systems can obtain a satisfactory accuracy and

can work at great distances [8]. Physiological soft biometric

traits can be used in different applicative contexts. The method

described in [9] computes categorical information about an

individual (e.g. gender and race) in order to filter large

surveillance databases by limiting the number of entries to be

searched for each biometric query. The approach proposed in

[10] uses characteristics extracted from the face and the clothes

in order to perform continuous authentications. A method

based on color and height characteristics for the detection

of the individuals throughout a sparse multi-camera network

is presented in [11]. The technique described in [3] uses

three part (head, torso, legs) height and color soft biometric

models in order to perform the recognition of the individuals.

Techniques for the extraction of characteristics related to the

gait, height, size, and gender are presented in [12].

A critical step for many biometric applications based on

surveillance cameras is the silhouette segmentation. In the

literature, there are many studies on silhouette segmentation

techniques, which can be divided in methods based on the

direct detection and methods based on the background subtrac-

tion. Examples of methods based on the direct detection are

presented in [13,14]. With respect to the methods based on the

direct detection, most of the methods based on the background

subtraction can obtain better performances in terms of compu-

tational time. For this reason, these methods are more used in

surveillance applications than direct detection methods. Some

well-known background subtraction techniques in the litera-

ture are described in [15–17]. The presence of shadows can

drastically reduce the segmentation accuracy of these methods,

especially in surveillance applications with uncontrolled light

conditions. In the literature, there are many algorithms for the

shadow removal [18], which consider different features (e.g.

the gradient of the images, the correlation between frames,

and models of the light diffusion).

An interesting soft biometric characteristic is the weight.

This trait, in fact, offers a good compromise between dis-

tinctiveness and permanence and can be used in forensic

applications. In the literature, there are few studies on the

weight estimation from the visual aspect of the individuals.

The correlation between the human metrology and the weight

is studied in [19]. The method described in [4] estimates the

weight from single images by using measurements performed

by skilled operators. These techniques require the support of

a human expert and do not consider walking persons.

III. THE PROPOSED APPROACH

The proposed approach is designed to estimate the weight

of a walking person by using image processing techniques and

a computational intelligence approach. The method performs

a contactless, low-cost, unobtrusive, and unconstrained weight

estimation, without defining and computing complex relation-

ships between the size of various body parts and the body

weight. The proposed weight estimation technique is invariant

to the point of view, illumination conditions, position, and

speed of the walking person. Satisfactory results were obtained

using a similar approach for the estimation of the volume of

small objects [20].

The weight is estimated from frame sequences captured by

two cameras placed in order to obtain a frontal view and a

side view of the walking person. The method extracts a set

of dimensional features from the silhouette of the individual.

Then, a first approximation of the body volume is computed,

and a technique based on neural networks is used to perform

the weight estimation.

The approach can be divided in the following steps:

1) camera calibration;

2) acquisition and preprocessing;

3) silhouette segmentation;

4) feature extraction;

5) weight estimation using neural networks.

A. Camera calibration

The cameras are individually calibrated off-line before the

acquisitions by using a set of images representing a chessboard

moved in different positions. The intrinsic parameters are then

computed by using the techniques proposed in [21,22]. The

considered extrinsic parameters are the positions and angles

of the two cameras, which are measured by a human operator.

B. Acquisition and preprocessing

Two frame sequences are captured synchronously from two

color CCD cameras with wide-angle lenses. Every frame is

then rectified in order to compensate for the lens distortion,

using the algorithms described in [21,22]. In order to sim-

plify the segmentation step, a reference background image is

captured for every frame sequence.

C. Silhouette segmentation

The silhouette segmentation is a critical step of the proposed

method. The considered frame sequences, in fact, are cap-

tured in uncontrolled light conditions and can present strong

shadows. The proposed technique is based on a background

subtraction approach and estimates the foreground for each

single frame i by considering separately captured background

images. Shadow removal techniques are used in order to

overcome problems related to the uncontrolled light condi-

tions. The technique can be divided in the following steps:

estimation of the moving regions; estimation of the strong

shadows; region of interest (ROI) computation; boundary

estimation; computation of the correlation image; boundary

filling; silhouette refinement.

The estimation of the moving regions permits to obtain a

first approximation of the ROI. In order to detect the moving

regions with colors similar to the background, the maximum

distance between the RGB channels of the frame IF (i) and

the background IB (j) is computed:

D (x, y, i) = max (|c (IF (x, y, i))− c (IB (x, y, i))|) , (1)

with c = R,G,B. A binary image representing the moving

regions IM (i) is then obtained by applying an empirically



estimated threshold tM corresponding to the kth percentile of

the histogram of D(i):

IM (x, y, i) =

{

1 if D(x, y, i) < tM
0 otherwise

. (2)

Strong shadows are then searched in order to prevent the

presence of artifacts in the final silhouette image. Similarly

to the algorithm described in [23], the channel H of the

HSV colorspace is considered. First, the frame IF (i) and the

background IB(i) are converted in the HSV colorspace. The

binary image IS(i) describing the strong shadows is computed

as:

IS (x, y, i) =







1 if (tH1 < HF (x, y, i) < tH2)
∧ (tD1 < DH(x, y, i) < tD2)

0 otherwise

,

(3)
where HF (i) is the channel H of the frame IF (i) converted in

the HSV colorspace, DH(i) is the angular distance between

the channel H of the considered frame and the background,

tH1, tH1, tH1, and tH1 are empirically estimated thresholds.

The ROI is computed considering the previously estimated

binary masks and the module of the gradient GM (i) of the

matrix D(i). First, a binary image IR(i) is computed as:

IR (x, y, i) = IM (x, y, i)× (¬IS (x, y, i)) . (4)

An image of the gradient IG(i) of the candidate ROI regions

is computed as:

IG (x, y, i) = IR (x, y, i)×GM (x, y, i) . (5)

The ROI is defined as the 8-connected region of IR(i) with

the maximum value obtained by summing the correspondent

region of GM (i). Finally, a morphological closing operation

is applied to the ROI.

The boundary is then estimated in order to obtain a seg-

mented area that is not affected by weak shadows. Weak

shadows, in fact, do not present strong edges [24]. The

boundary is computed by using the information related to the

gradient of the considered frame and background. The binary

images of the edges of the frame EF (i) and background EB(i)
are obtained by applying an empirically estimated threshold

tN to the gradient module of D(i) and IB(i) respectively.

The boundary image BB(i) is defined as:

BB (x, y, i) = EF (x, y, i)− (¬EB (x, y, i)) . (6)

The obtained result is then refined by applying a morpholog-

ical opening operation followed by a morphological closing

operation.

Considering that the boundary image BB(i) does not de-

scribe the complete body shape, additional information is

estimated in order to properly segment the human silhouette.

The image regions appertaining to the silhouette are then

estimated by computing the correlation between the considered

frame and background. A matrix C(i) is computed as the

correlation between local m ×m regions of the frame IF (i)
and the background IB(j) converted in gray-scale. A binary

image CT (i) is obtained as

CT (i, j) =

{

1 if C(x, y, i) < tT
0 otherwise

, (7)

(a) (b)

Fig. 2. Visual representation of the height computation method: (a) geometric
parameters; (b) body measures.

where tT is an empirically estimated value.

A binary image of the candidate body regions CB(i) is then

obtained as:

CB (x, y, i) = CT (x, y, i)× (¬BB (x, y, i)) . (8)

In order to reduce the probability of considering regions

affected by shadows as appertaining to the human silhouette,

a trapezoidal area describing the body limits is estimated and

only the local regions of the image CB(i) appertaining to

this area are used to estimate the final silhouette. The 8-

connected regions of CB(i) are considered as appertaining to

the body if the p% of their area is included in the trapezoidal

region describing the body limits. The limits of the trapezoidal

area along the y direction correspond to the maximum and

minimum coordinates of the pixels equal to 1 in the boundary

image BB(i). The limits along the x direction correspond to

the maximum and minimum coordinates of the pixels equal

to 1 in the areas of boundary image BB(i) included between

the 0% and 20% of the boundary height (corresponding to

the foots) and between the 80% and 100% of the boundary

height (corresponding to the head). A first approximation of

the silhouette SM (i) is obtained by summing the obtained

areas and the boundary BB(i). The silhouette S(i) is then

computed as the biggest 8-connected region of SM (i).
In order to refine the obtained result, a morphological filling

operation followed by a morphological closing operation are

applied.

D. Feature extraction

A set of features are computed for each pair of frame

sequences by using characteristics extracted from every frame:

• the height of the person;

• an approximation of the body volume;

• a set of values describing the areas of the ellipses that

approximate the body shape at different heights;

• the walking direction (estimated by a human operator).

1) Height estimation: the body height is estimated for each

frame i by using a technique similar to the method presented in

[25]. The proposed algorithm is based on the pinhole camera

model and trigonometric equations.

The used extrinsic parameters are the height ∆H and the tilt

angle θ of the cameras (Fig. 2). The used intrinsic parameter

is the focal length f , obtained from the calibration step.

The distances of the head and feet from the center of the

silhouette image S (i) are first extracted, obtaining h1 (i) and

h2 (i). The values of ip1 (i) , ip2 (i) are then obtained as:



(a) (b)

Fig. 3. Subdivision of the segmented person and computation of the width
from each subdivision: (a) frame captured by Camera A; (b) frame captured
by Camera B.

ip1 (i) =

√

f2 + h1 (i)
2

; ip2 (i) =

√

f2 + h2 (i)
2

. (9)

The angles α2 (i) , α3 (i) are computed as:

α2 (i) = sin−1
h2 (i)

ip2 (i)
; α3 (i) = sin−1

h1 (i)

ip1 (i)
. (10)

The angle α1 (i) is computed as follows:

α1 (i) = 90◦ − θ − α2 (i) . (11)

The values of d1 (i) and ip3 (i) are then computed as:

d1 (i) = ∆H tanα1 (i) ; ip3 (i) =

√

∆2

H + d1 (i)
2

. (12)

The angles β1 (i) , β2 (i) are obtained as:

β1 (i) = 90◦ − α1 (i) ; β2 (i) = 90◦ − β1 (i) , (13)

and then the angle α4 (i) is computed as:

α4 (i) = 180◦ − β2 (i)− (α2 (i) + α3 (i)) . (14)

Finally, the height hi of the i-th frame is estimated as:

h (i) = ip3 (i)
sin (α2 (i) + α3 (i))

sinα4 (i)
. (15)

2) Volume approximation: a volume approximation is com-

puted from each pair of frames captured at the instant i by the

two cameras. The segmented silhouettes SA (i) and SB (i) are

first divided in a certain number of intervals nv along the y
axis, as shown in Fig. 3.

For each height interval, an ellipse passing from the coordi-

nates of the silhouette in the images is computed. The values

sA (i, n) and sB (i, n), describing the lengths in pixel of the

interval n in the silhouettes SA (i) and SB (i), are extracted.

These values are then converted in millimeters by using the

information related to the body height:

lA (i, n) = (sA (i, n)× hA (i)) /hAp (i) ;
lB (i, n) = (sB (i, n)× hB (i)) /hBp (i) ,

(16)

where hA (i) and hB (i) are the height values estimated from

the silhouettes SA (i) and SB (i) expressed in mm, hAp (i)
and hBp (i) are the height values expressed in pixel, lA (i, n)
and lB (i, n) are the lengths of the interval n, expressed in

millimeters. The area of each ellipse is then computed as:

A (i, n) = lA (i, n)
2
lB (i, n)

2
π , (17)

where A (i, n) is the area of the n-th ellipse relative to a pair

of frames. Finally, the volume approximation of the i-th pair

of frames is computed as:

V (i) =

nv
∑

n=1

a (i, n)

(

h (i)

nv

)

. (18)

(a) (b)

Fig. 4. Schema of the proposed acquisition setup (a) and the different walking
paths (b).

E. Weight estimation using Neural Networks

Weight estimation techniques based on accurate measure-

ments of the body parts are difficult to be performed in frame

sequences of walking persons. The body, in fact, can assume

different postures and some body parts can be occluded.

Moreover, shadows and reflections can reduce the accuracy

of the silhouette segmentation algorithms, especially in un-

constrained light conditions.

In this case, only the approaches based on computational

intelligence techniques are realistically feasible. In particular,

the capability of the neural networks to correctly map input-

output relationships starting from an example dataset can be

here exploited to create a weight estimation system. The

generalization capability of neural networks, moreover, can

permit to obtain accurate results also using noisy input data.

Feedforward neural networks are then used to estimate the

weight of the walking person by processing the vector of

extracted features from a pair of frame sequences captured

by two cameras.

As described in Section IV, we used feature vectors com-

posed by 7, 17, 27, and 37 characteristics for Dataset 1, Dataset

2, Dataset 3, and Dataset 4, respectively. The obtained result

consists in the estimated weight expressed in kg.

IV. EXPERIMENTAL RESULTS

The proposed method has been tested on frame sequences

captured in our laboratory since, at the best of our knowledge,

there are not available any public datasets of surveillance

frame sequences reporting the weight of the individuals. The

acquisition setup used for capturing the subjects is composed

by two synchronized Sony XCD-SX90CR CCD color cameras,

placed at a height ∆H = 2000 mm, and positioned in order to

capture both a frontal and side view of the subject (Fig. 4a).

The tilt angle of the cameras with respect to the floor is θ =
25◦, the distances between the cameras are ∆X = 4360 mm,

∆Y = 5530 mm. The cameras were individually calibrated.

The parameters used for performing the silhouette segmen-

tation are: k = 80; tH1 = 30 for the camera A, and tH1 = 180
for the camera B; tH1 = 50 for the camera A, and tH1 = 210
for the camera B; tD1 = 30; tD1 = 150; tN = 0.3; m = 19;

p = 85; tT = 0.4. The number of ellipses used during the

volume estimation is nv = 20.

We collected a database of 20 subjects in uncontrolled light

conditions, walking in 8 different directions, for a total of 160
pairs of frame sequences, with weights ranging from 43.7 kg

to 101.1 kg. The weights are measured using a weighing scale



with an accuracy of ±0.1 kg. The directions are chosen in

order to cover all the possible situations of walking people

(Fig. 4b), and uncontrolled light conditions permitted to better

simulate real surveillance scenarios. The lengths of the frame

sequences are different, according to the walking speed of the

individuals. The minimum number of frames that compose a

frame sequence is 7 and the maximum number is 29.

In order to search the best features, we created four feature

datasets from the collected database:

• Dataset 1

1) index of the walking direction (from 1 to 8);

2) median of the volume vector V ;

3) value of the 10◦ percentile of V ;

4) value of the 90◦ percentile of V ;

5) median of the height vector H ;

6) value of the 10◦ percentile of H ;

7) value of the 90◦ percentile of H .

• Dataset 2

1-7) Dataset 1;

8-27) 20 values relative to the median of the areas of the

20 ellipses approximating the body shape (matrix A).

• Dataset 3

1-7) Dataset 1;

8-17) 10 values relative to the median of the areas of the

ellipses approximating the torso (n = 4 . . . 13).

• Dataset 4

1-17) Dataset 3;

18-27) 10 values relative to the the 10◦ percentile of

the areas of the ellipses approximating the torso (n =
4 . . . 13);

28-37) 10 values relative to the the 90◦ percentile of

the areas of the ellipses approximating the torso (n =
4 . . . 13) .

In order to compute the results depicted in the paper, a

10-fold cross-validation [26] was applied to every dataset

separately. By using the cross-validation technique, we tested

the ability of the neural networks to generalize, and adapt

themselves to the environment and the acquisition scenario.

In particular, the proposed method is based on feedforward

neural networks composed by one input layer, one hidden

layer and one output layer constituted by a linear node.

The hidden layer was tested using different number of tan-

sigmoidal nodes: in our experiments, we used 3, 5, 10, 15,

20, 25, 30, 35, 40, 45, 50 nodes. We used neural networks

with a single hidden layer since they can be considered as

universal approximators. All the neural networks were trained

with the Levenberg-Marquardt back-propagation algorithm,

using a maximum epoch limit equal to 150.

In order to prove the validity of the neural approach, we

compared the results of the proposed method with the ones ob-

tained by performing the weight approximation directly from

the extracted silhouettes. The median of the volume of the

individual related to every pair of frame sequences is estimated

and then converted in kg by using approximating polynomials

of different orders (from 1 to 20), computed using the least

TABLE I
RESULTS OF THE WEIGHT ESTIMATION ON THE EVALUATED DATASET

Method Feature set Mean error (kg) Std error (kg)

FFNN-50 Dataset 1 0.18 6.05

FFNN-25 Dataset 2 0.07 2.30

FFNN-50 Dataset 3 −0.22 2.68

FFNN-30 Dataset 4 0.07 2.48

10
th order approx Median of V 0.00 10.48

Notes: FFNN-x = feedforward neural network with one hidden layer composed by x

nodes; 10th order approx = direct approach based on the 10
th order polynomial

approximation.

TABLE II
RESULTS OF THE WEIGHT ESTIMATION CONSIDERING DIFFERENT

WALKING DIRECTIONS

Direction Mean error (kg) Std error(kg)

D1 0.01 0.31

D2 −1.13 4.77

D3 −0.14 0.65

D4 1.24 3.23

D5 0.11 0.39

D6 −0.05 1.74

D7 0.10 1.42

D8 0.40 1.55

Notes: results obtained on Dataset 2 using a feedforward neural network with one

hidden layer composed by 25 nodes.

mean square technique. The best results obtained by the neural

approach and by the reference method are summarized in

Table I. It is possible to observe that our approach allows

a more accurate weight estimation with respect to the direct

computation, since it is less affected by problems related to the

illumination condition, position, orientation, and speed of the

walking person. The direct computation based on a polynomial

approximation of the 10th order, in fact, obtained a mean error

near to 0 kg and a standard deviation of the error equal to

10.48 kg. Differently, the neural approach obtained a mean

error equal to 0.07 kg and a standard deviation of the error

equal to 2.30 kg.

Table I also shows that the proposed neural approach is

able to obtain the best results on Dataset 2. Consequently,

for the considered database of frame sequences, the best

evaluated feature set is composed by the walking direction,

the characteristics related to the height and volume, and the

median values of the areas of all the ellipses used for the

approximation of the silhouette shape. This fact suggests that

the use of information related to all the body parts permits to

improve the accuracy of the weight estimation. However, in

different applicative contexts, other features could obtain better

results. For this reason, it is necessary to consider this aspect

during the design and deployment of soft-biometric systems

based on surveillance cameras.

In order to evaluate the robustness of the proposed method

in the different walking directions, we evaluated the perfor-

mance of the best trained neural network using the Dataset

2. The obtained results are shown in Table II. These results

suggest that the proposed method can effectively estimate

the weight of persons walking in different directions. The

directions D2 and D4 obtained the highest mean error. This

fact can be caused by less accurate silhouette segmentations

due to the light conditions.

Lastly, we used the neural network that obtained the better

accuracy and estimated the weight of every subject. The results



TABLE III
RESULTS OF THE WEIGHT ESTIMATION OF DIFFERENT INDIVIDUALS

Individual True weight (kg) Mean error (kg) Std error(kg)

1 85.7 -0.64 1.57

2 93.3 -2.38 6.60

3 74.8 0.48 1.43

4 70.1 -0.09 0.40

5 81.3 1.53 3.82

6 54.2 0.62 1.55

7 76.6 0.68 2.04

8 100.5 0.12 1.08

9 80.8 -0.25 0.55

10 99.4 0.15 0.65

11 89.1 0.28 1.37

12 43.7 -0.05 1.05

13 67.9 1.25 3.48

14 70.6 -0.17 0.55

15 57.2 0.73 2.07

16 68.5 0.02 0.18

17 70.2 0.42 1.22

18 101.1 0.00 1.11

19 51.1 -0.36 1.06

20 77.4 -0.98 3.31

Notes: results obtained on Dataset 2 using a feedforward neural network with one

hidden layer composed by 25 nodes.

are depicted in Table III. It is possible to observe that the

obtained error is satisfactory for every considered individual.

The maximum absolute mean error, in fact, is less than 2.4 kg.

V. CONCLUSIONS

In this paper, we proposed a method for a contactless, low-

cost, unconstrained, and unobtrusive estimation of the weight

of walking individuals in surveillance frame sequences. The

weight estimation is performed using image processing tech-

niques and a computational intelligence approach. For each

pair of frame sequences, the human silhouette is segmented

and a set of features are extracted. A neural approach is then

used to process the extracted features, obtaining a weight

estimation that is independent from the point of view, position,

and illumination. Moreover, the method does not require the

computation of complex models of the body parts.

We tested the proposed method on a database composed

by frame sequences captured by two cameras in uncontrolled

light conditions, describing eight different walking directions.

The obtained results show that the method is feasible and

can achieve an accurate weight estimation. The best mean

error obtained on the evaluated set of frame sequences is

equal to 0.07 kg, with a standard deviation of 2.30 kg. The

obtained results also demonstrate that neural networks are

effectively able to solve problems related to the variability

of the environmental conditions. Moreover, the use of neural

networks permitted to design a weight estimation method that

is based on less complex features with respect to the other

techniques in the literature that are able to perform a weight

estimation from the visual aspect of the individuals.
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