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Abstract 

This paper presents experimental results of usage 
of LSA for analysis of English literature texts. 
Several preliminary transformations of the 
frequency text-document matrix with different 
weight functions are tested on the basis of 
control subsets. Additional clustering based on 
correlation matrix is applied in order to reveal 
the latent structure. The algorithm creates a 
shaded form matrix via singular values and 
vectors. The results are interpreted as a quality of 
the transformations and compared to the control 
set tests. 

1. Introduction 
The Latent Semantic Analysis (LSA) is a powerful 
statistical technique for indexing, retrieval and 
analysis of textual information used in different 
fields of the human cognition during the last decade. 
Although it is a comparatively old and well-studied 
technique, there are several important problems that 
still remain unsolved. The effective usage of LSA is 
a process of very sophisticated tuning and can be 
viewed as kind of art. The main factors that 
influence the results quality obtained by LSA are the 
following: 

• Pre-processing (stop-words, stemming) 
• Frequency matrix transformations 
• Choice of dimensionality 
• Choice of similarity measure 

The purpose of this paper is to study the impact of 
the frequency matrix transformations in isolation 
while keeping the other parameters fixed. 

LSA is fully automatic and does not use any 
preliminary constructed dictionaries, semantic 
networks, knowledge bases, conceptual hierarchies, 
grammatical, morphological or syntactic analysers, 
etc. The general idea is that there exists a set of 
latent dependencies between the words and their 
contexts (phrases, paragraphs and texts). They both 
are represented in the same semantic space. The 
identification and proper treatment of the latent 

dependency permits LSA to deal successfully with 
the synonymy and partially with the polysemy, 
which are the major problems in the word-based 
approaches. 

LSA is a two-stage process and includes learning 
and analysis of the indexed data. During the learning 
phase LSA performs an automatic document 
indexing. The process starts with construction of a 
matrix X whose columns are associated with 
documents, and whose rows with terms (words or 
key-phrases). Its cell (i,j) contains the frequency 
(possibly transformed using a weight function) of 
term i  in document j. The matrix X is then submitted 
to singular value decomposition (SVD) which results 
three matrices T, D (orthonormal) and S (diagonal), 
such that X=TSDt. Some of the rows and columns of 
T, S and D are removed, which is supposed to 
remove the unnecessary noise. This results in 
compression of the source space in much smaller 
one where there are only a limited number of 
significant factors (usually between 50 and 400). 
The newly obtained matrix X′=T′S′Dt′ is the least 
squares best-fit approximation of X. Thus, a vector 
(column in the D′S′ matrix) of reduced 
dimensionality is associated with each term or 
document. It is possible to perform a sophisticated 
SVD, which speeds up the process by directly 
finding the truncated matrices T′, S′ and D′ (Berry et 
al. 93). 

The second phase is the analysis. Most often this 
includes a study of the proximity between a couple 
of documents, a couple of words or between a word 
and a document. A simple mathematical 
transformation using the singular values and vectors 
from the training phase permits to obtain the vector 
for a non-indexed text. This permits the design of a 
LSA based natural language search engine. The 
proximity degree between two documents can be 
calculated as a dot product between their normalised 
LSA vectors. The usage of other measures is also 
possible, e.g.: Euclidean and Manhattan distances, 
Minkowski measures, Pearson’s correlation 



coefficient etc. (Deerwester et al. 90; Laudauer et. 
al. 98; Nakov 00). 

2. Weight functions 
The matrix X is usually transformed using the so-
called weight functions. Thus, the cell (i,j) contents 
should be a better approximation of the interrelations 
between terms and documents: columns are 
associated with documents and the rows — with 
terms (words or key-phrases). It is convenient to 
express the transformation as a product of two 
numbers — local and global weight functions 
(Witter 97; Dumais 91): 

a (i,j) = L(i,j)*G(i). 
The local weight function L(i,j) presents the weight  
of term i in document j. The global weight function 
G(i) is used to express the weight of the term i  
across the entire document set. 

Two different local functions and six global 
functions were involved in our considerations. The 
twelve combinations are noted by LWF*GWF, 
where LWF = 0 or 1 and represents the number of 
the local weight function and GWF = 0,1,2,3,4 or 5 
and represents the global one. 

2.1. Local weight functions (LWF) 
The trivial local weight function is equal to the term 
frequency tf(i,j) of term i in document j. The term 
frequency in logarithmic scale is used to diminish 
the large numbers. Extreme suppression gives the 
binary weight function — it is equal to 1 when 
tf(i,j)>0 and 0, otherwise. We use the first two local 
weight functions  
LWF = 0: term-frequency L(i,j) = tf(i,j), 
LWF = 1: logarithm L(i,j) = log(tf(i,j)+1). 

Here and later the base of the logarithmic 
function is assumed to be equal to 2. 

2.2. Global weight functions (GWF) 
The first global weight function (GWF=0) is the 
trivial G(i)=1. Combined with the trivial local 
weight function it gives as a result no 
transformation. The second one, cited as normal 
(GWF=1) represents normalisation of the rows, i.e. 
the terms' local weights:  

G(i) = 1/sqrt(Σj L(i,j)2). 
In the definition of the rest global weight functions 
the following notation is used: 
gf(i) for the global frequency of term i; 

df(i) for the number of documents in which term i 
appears, and  
ndocs for the number of documents or text 
fragments in the set of consideration.  

The third global weight function (GWF=2), 
known as GfIdf, is the ratio of the global frequency 
of a term and the number of documents in which it 
appears: 

G(i) = gf(i)/df(i). 
By combining GWF=2 with LWF=0 we get the 
conditional probability p(i,j)=tf(i,j)/gf(i) of the 
document j under condition that the term i appears, 
multiplied by df(i). The last number is proportional 
(multiplied by ndocs) to the probability of 
appearance of the term under the presupposition that 
the terms are chosen equally likely. The combination 
GWF=2 with LWF=1 has not probability 
interpretations.  

The global weight function (GWF=3) named Idf 
is usually defined by: 

G(i) = 1+ log (ndocs/df(i)). 
It may be interpreted as the quantity of information 
of appearance of the term i plus 1. Note that the 
realisation of the event A with probability P(A) may 
be declared (approximately) by –logP(A) bits of 
information.  

The global weight function referred to as entropy 
(GWF=5) is given by 

G(i)= 1+{Σj  p(i,j) log p(i,j)}/ log ndocs. 
Actually, this equation represents some entropy 
ratio, i.e.  

G(i)= 1– H(d|i)/H(d), 
where H(d) is the entropy of the distribution 
(uniform) of the documents and H(d|i) is the entropy 
of  the conditional distribution given that the term i 
appeared. The last tested global function (GWF=4) 
is the real entropy of the conditional distribution:  

G(i) =  H(d|i) = – Σj  p(i,j) log p(i,j). 

3. Related work 
The weight functions considered follow to some 
extent the classic weightings considered by previous 
researchers. (Dumais 91; Jones 72) propose three 
local weightings: term frequency, logarithm and 
binary, and 4 global weightings: Normal, GfIdf, Idf 
and Entropy. We skipped the binary weighting as it 
is proved to be not beneficial and added the classical 
entropy to the potentially useful global weightings. 
Although there are 4*5=20 different combinations 
(we added the possibility of no-weighting) Dumais 



investigated only 6 combinations: tf-raw, tf-normal, 
tf-gfidf, tf-idf, tf-entropy and log-entropy. Five 
different test collections have been considered and 
the weightings have been evaluated (ADI, MED, 
CISI, CRAN and TIME) in terms of average 
precision on several fixed recall levels. She obtained 
decrease in performance for both tf-normal and tf-
gfidf over the base-line tf-raw, while the quality 
increased for tf-idf, tf-entropy and log-entropy. 

4. Experiments 
The experiments were performed on two English 
literature texts we collected on the Web from the 
Gutenberg Project (http://sailor.gutenberg.org): The 
Adventures of Sherlock Holmes by Arthur Conan 
Doyle and Huckleberry Finn by Mark Twain. We 
have chosen these two texts since they are of almost 
equal sizes of approximately 500 KB. The file 
contents were carefully investigated and all HTML 
tags and Gutenberg project headers were discarded.  
Since LSA tries to capture the mutual dependences 
between the words and their contexts it is of crucial 
importance to provide contexts of reasonable sizes. 
Usually, when indexing small documents they are 
passed as they are, since it is best to work on the 
whole document. It is clearly not the case here and 
we split both documents into chunks of size of 
approximately 2 KB (we took care not to split 
sentences). The size of 2 KB was chosen after some 
experiments with different splittings as the most 
appropriate for detecting the differences between the 
different weight functions. Thus, we obtained 541 
chunks of 2 KB each: 272 for The Adventures of 
Sherlock Holmes and 269 for Huckleberry Finn by 
Mark Twain. We kept 10% of the set apart to be 
used later as a training set (54 chunks: 27 chunks 
from each of the oeuvres). 
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Figure 1: Singular values 

The stop-words from a pre-selected list (e.g. of, the, 
from, for) and the words met in just one document 

were removed since they cannot contribute to the 
proximity. We thus reduced the total different non-
stop word forms considered from 10316 to 5534. In 
order to keep the results clean no word stemming 
was performed nor complex terminology couples 
were used since the author could prefer one word 
form to another. 

A crucial moment when using LSA is the correct 
choice of dimensionality. Figure 1 shows the top 200 
singular values sorted in descending order. The 
curve goes straight down and then flattens. We have 
to cut the singular values around the place where the 
curve behaviour changes. If we cut further we lose 
important information and if we keep more values 
we start modelling the noise. Figure 1 shows that for 
our case this value is somewhere between 10 and 20. 
 

0*0 0*1 0*2 0*3 0*4 0*5 1*0 1*1 1*2 1*3 1*4 1*5
129.70 8.05 480.03 441.63 22.32 44.72 100.74 6.48 185.57 324.24 16.75 178.18

82.97 4.23 236.89 349.90 18.17 30.72 48.93 3.27 130.08 202.85 10.49 82.39

61.78 2.81 130.93 226.24 13.43 20.32 32.11 1.89 83.48 162.67 8.72 49.45

43.49 2.70 115.50 164.63 11.88 15.37 29.16 1.68 56.70 128.36 7.22 48.49

38.27 2.34 96.16 157.88 10.67 14.63 26.11 1.64 50.64 120.16 7.20 43.28

37.21 2.25 83.98 138.06 10.49 13.34 24.69 1.56 45.20 115.20 6.88 41.46

35.77 2.20 77.21 135.89 10.29 13.09 23.33 1.54 44.15 107.06 6.85 39.71

32.31 2.04 70.53 134.32 9.37 12.91 22.82 1.49 39.81 104.74 6.71 38.60

32.09 2.01 67.96 133.27 9.19 12.76 22.31 1.47 38.50 104.33 6.70 37.31

31.52 2.00 65.06 131.86 9.07 12.56 21.87 1.45 36.59 103.45 6.65 36.71

30.48 1.97 62.10 129.74 9.05 12.41 21.59 1.42 35.06 100.76 6.59 36.21

29.84 1.91 54.86 129.27 8.98 12.31 20.99 1.39 34.02 100.12 6.45 35.80

29.46 1.86 53.42 126.14 8.95 12.16 20.51 1.37 33.46 99.11 6.42 34.44

28.36 1.82 50.12 125.62 8.65 12.10 20.34 1.35 33.06 98.79 6.40 34.39

27.72 1.77 49.07 122.06 8.63 11.78 20.06 1.35 32.19 97.60 6.35 33.64

Table 1: Singular values for the 12 weight functions 

When different weight functions are applied we 
obtain very different singular values but the 
corresponding curve has similar behaviour. After a 
careful investigation we decided to use the 
dimensionality of 15 for all the weight functions in 
order to obtain comparable results. Table 1 shows 
the top 15 singular values in descending order when 
the different weight functions were applied. 

As was mentioned above we used 2x6=12 
different weight functions. For each of these cases 
we calculated the dot products between all document 
couples. Thus we obtained correlation matrices 
corresponding to the documents (487x487). Figures 
2 and 3 show the correlation matrices maps in 5 
different colours for the five correlation intervals: 
87,5-100%, black colour; 75-87,5%, dark grey; 62,5-
75%, grey; 50-62,5%, light grey; 0-50%, white. The 



chunks are arranged in a way that these from The 
Adventures of Sherlock Holmes come first and just 
then come the ones from Huckleberry Finn without 
any mixture. 

There are always several ways to express the 
same thought and the authors are forced to choose 
between different syntactic constructions, synonyms 
and terminology according to the intended audience 
and the impact the text must produce. Furnas, 
Landauer, Gomez and Dumais have shown (Furnas 
et. al. 86) that people use the same words to describe 
the same subject only 10-20% of the time. 
 

  

  

  
Figure 2: Correlation matrices maps. LWF=0 

Authors make their choices according to both the 
specific text intention and their own subjective 
preferences. They (denoted as style) are consistent 
(along the text or all the author’s oeuvres) and easy 
to discover for humans but very hard to describe and 
measure. Researchers in statistical stylistics have 
concentrated at word-based statistics (word length, 
word length distribution, long words count, 
type/token ratios (Losee 96)), text-based statistics 
(sentence length, clause complexity (Klare 63; Lorge 
59)) and statistics based on specific items (pronouns 
counts, presence/absence of contractions/amplifiers, 
relative frequency of specific verbs: e.g. seem, 

appear etc. (Biber 89; Karlgen 94)). Recent 
experiments show that the application of LSA is 
another way to distinguish the texts created by 
different authors. (Nakov 01) 

A well-known property of LSA is that it maps the 
semantically related texts next to each other in the 
vector space. Thus, in our particular case the chunks 
from the same oeuvre tend to be more similar to 
each other than those coming from different oeuvres. 
Looking at figures 2 and 3 we can see two dark 
rectangles of almost equal size showing the higher 
proximity between the chunks from the same 
oeuvre. 

 

 

  

  
Figure 3: Correlation matrices maps. LWF=1 

We exploited this feature to test the quality of the 
different weight functions in the following manner. 
Each of the test chunks is projected in the semantic 
space of the 487 chunks and its cosine with all of 
them is calculated. These cosines are then sorted in 
descending order and the precision at the levels of 
10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 is 
calculated. Given a specific test chunk and a fixed 
level we define the precision as the ratio of the 
chunks that share a common oeuvre with the test 
chunk to the number of the chunks in that level. For 



example consider a test chunk from the Huckleberry 
Finn and let 47 among the 50 top ranked chunks are 
from the same oeuvre. Then the precision at 50 will 
be 47/50=0,94. We calculated the average precision 
for all the 54 test chunks as well as separately for 
both oeuvres (27 test chunks for each). The 
following tables 2,3,4 and 5 show the precision for 
each of the weight functions considered. 

We apply additional clustering based on 
correlation matrix in order to reveal the latent 
structure. The aim is to determine the natural 
document classes. This partition is to be used for 
further classification of the documents. Such 
problem is considered in the project DIDONA: 
Internet Technologies for Document Categorization, 
where the classes are fixed using expert opinion. 
(Mateev et al. 99) 
 

0*0 0*1 0*2 
Level 

holmes finn AVG holmes finn AVG holmes finn AVG 

10 0.993 0.930 0.962 0.974 0.963 0.969 0.974 0.919 0.947 

20 0.984 0.939 0.961 0.974 0.958 0.966 0.965 0.917 0.941 

30 0.979 0.941 0.960 0.973 0.949 0.961 0.958 0.899 0.928 

40 0.975 0.930 0.952 0.969 0.946 0.957 0.955 0.884 0.920 

50 0.974 0.927 0.951 0.963 0.949 0.956 0.950 0.870 0.910 

60 0.966 0.923 0.944 0.956 0.943 0.950 0.946 0.862 0.904 

70 0.967 0.916 0.942 0.950 0.936 0.943 0.943 0.850 0.897 

80 0.959 0.907 0.933 0.944 0.928 0.936 0.940 0.840 0.890 

90 0.956 0.899 0.927 0.937 0.924 0.930 0.938 0.830 0.884 

100 0.950 0.895 0.922 0.933 0.918 0.926 0.937 0.819 0.878 

AVG 0.970 0.921 0.945 0.957 0.941 0.949 0.950 0.869 0.910 

Table 2: Precision table for LWF=0, GWF=0,1,2 

0*3 0*4 0*5 
Level 

holmes finn AVG holmes finn AVG holmes finn AVG 

10 1.000 0.959 0.980 0.993 0.989 0.991 1.000 0.963 0.982 

20 0.997 0.952 0.974 0.995 0.982 0.988 0.998 0.954 0.976 

30 0.996 0.943 0.970 0.991 0.970 0.981 0.998 0.951 0.974 

40 0.996 0.938 0.967 0.986 0.970 0.978 0.998 0.943 0.970 

50 0.995 0.935 0.965 0.984 0.969 0.977 0.997 0.941 0.969 

60 0.994 0.935 0.964 0.985 0.969 0.977 0.995 0.937 0.966 

70 0.994 0.933 0.963 0.985 0.967 0.976 0.993 0.932 0.962 

80 0.993 0.928 0.960 0.984 0.966 0.975 0.992 0.930 0.961 

90 0.990 0.923 0.957 0.983 0.965 0.974 0.992 0.926 0.959 

100 0.989 0.919 0.954 0.983 0.963 0.973 0.990 0.922 0.956 

AVG 0.994 0.936 0.965 0.987 0.971 0.979 0.995 0.940 0.967 

Table 3: Precision table for LWF=0, GWF=3,4,5 

The partitioning algorithm creates a shaded-form 
matrix by means of singular values and vectors. As 
was mentioned in section 2 the initial matrix X is 

decomposed as a product of the form X=TSD. After 
the removal of most of the least significant singular 
values we obtain X′=T′S′D′.  

The process of cutting some of the singular 
values can be explained by a form of factor analysis 
and especially as a principal component analysis. 
Under the factor analysis consideration the matrix X 
is written in the form X = FA + U, where A is the 
matrix of the factor weights, F is the matrix of factor 
vectors and U is the errors matrix. Now coming back 
to SVD we obtain A=D′S′. 

1*0 1*1 1*2 
Level

holmes finn AVG holmes finn AVG holmes finn AVG 

10 0.989 0.963 0.976 0.967 0.989 0.978 0.985 0.970 0.978 

20 0.985 0.965 0.975 0.954 0.980 0.967 0.972 0.945 0.958 

30 0.974 0.967 0.970 0.947 0.979 0.963 0.969 0.940 0.954 

40 0.970 0.965 0.968 0.942 0.976 0.959 0.963 0.930 0.946 

50 0.965 0.962 0.964 0.936 0.977 0.957 0.964 0.920 0.942 

60 0.962 0.961 0.961 0.938 0.975 0.957 0.961 0.916 0.938 

70 0.962 0.954 0.958 0.939 0.973 0.956 0.958 0.913 0.936 

80 0.960 0.953 0.956 0.933 0.970 0.952 0.957 0.908 0.932 

90 0.960 0.948 0.954 0.930 0.965 0.948 0.953 0.903 0.928 

100 0.956 0.944 0.950 0.926 0.965 0.945 0.948 0.898 0.923 

AVG 0.968 0.958 0.963 0.941 0.975 0.958 0.963 0.924 0.944 

Table 4: Precision table for LWF=1, GWF=0,1,2 

1*3 1*4 1*5 
Level

holmes finn AVG holmes finn AVG holmes finn AVG 

10 0.985 0.993 0.989 1.000 0.996 0.998 0.985 0.993 0.989 

20 0.980 0.989 0.984 0.997 0.989 0.993 0.982 0.993 0.987 

30 0.972 0.990 0.981 0.995 0.993 0.994 0.977 0.993 0.985 

40 0.971 0.990 0.981 0.994 0.988 0.991 0.975 0.992 0.983 

50 0.968 0.989 0.979 0.993 0.989 0.991 0.978 0.989 0.983 

60 0.969 0.986 0.977 0.992 0.987 0.990 0.975 0.988 0.982 

70 0.966 0.983 0.974 0.988 0.986 0.987 0.971 0.987 0.979 

80 0.964 0.981 0.972 0.986 0.984 0.985 0.970 0.986 0.978 

90 0.961 0.979 0.970 0.984 0.981 0.982 0.965 0.981 0.973 

100 0.957 0.977 0.967 0.982 0.979 0.980 0.964 0.978 0.971 

AVG 0.969 0.986 0.977 0.991 0.987 0.989 0.974 0.988 0.981 

Table 5: Precision table for LWF=1, GWF=3,4,5 

We apply a rearrangement algorithm on A. We sort 
the columns in descending order by the dispersion 
explained by the factors. Then we arrange the rows 
in a way that for each subsequent factor the weights 
greater than 0.5 are arranged in descending order. 
After the rearrangement we compute AAt, which 
gives X′tX′. This way the documents are arranged in 
a way that the documents with higher proximity in 



LSA sense are grouped on the main diagonal in 
subsequent clusters. 

 

 
Figure 4: Rearranged matrix. LWF=1, GWF=3 

 
Figure 5: Rearranged matrix. LWF=1, GWF=4 

Figures 4 and 5 show the results of the 
application of the algorithm for the weightings 1*3 
and 1*4. We can see two major groups of chunks on 
the main diagonal, which is natural: we have two 
texts and thus two groups of chunks. Several smaller 
groups of chunks that are much dissimilar from the 
other ones following them are bounded. The bigger 
and clearer clusters formed by 1*4 show that it is a 
better weighting scheme. This is consistent with 
both the correlation matrices from figures 2 and 3 

and the formal evaluation in terms of precision from 
tables 2,3,4 and 5. 

5. Discussion 
The results clearly show that both local and global 
weight functions are important and influence the 
results. On the other hand looking globally they 
seem to be independent from each other to some 
extent. Consider tables 2 and 3 which contain the 
precision for LWF=0. If we arrange (in descending 
order) the GWF according to the average precision 
we get the following ordering: 4,5,3,1,0,2. We 
obtain exactly the same ordering for LWF=1 (tables 
4 and 5). Thus, we conclude that this ordering is the 
one that gives the true importance of the global 
weight functions. Although, looking from The 
Adventures of Sherlock Holmes point of view we get 
a bit different orderings: 5,3,4,0,1,2 (LWF=0) and 
4,5,3,0,2,1 (LWF=1). For Huckleberry Finn we have 
the orderings 4,1,5,3,0,2 (LWF=0) and 5,4,3,1,0,2 
(LWF=1). This means that LWF and GWF are 
dependent from each other as well as on the 
particular text they are applied on. 

If we fix the GWF and look at the results for 
LWF globally we see that for all the six values of 
GWF the application of LWF=1 (logarithm) is 
always beneficial compared to LWF=0 and results in 
higher average precision. The same applies at text 
level for Huckleberry Finn. Although, looking at 
The Adventures of Sherlock Holmes we get just the 
reverse: the application of logarithm (LWF=1) 
consistently harms the precision regardless of the 
GWF applied.  

While the application of logarithm as a LWF 
seems to give inconsistent results at text level we 
can nevertheless consider it is beneficial because of 
its superior performance looking globally. Thus, 
while it harms the performance for one of the texts it 
is much more beneficial for the other text.  

Looking at GWF we discover two groups of 
functions: 0,1,2 and 3,4,5. Looking at tables 2,3,4 
and 5 we can conclude the first group results in 
lower precision regardless of the text and the LWF 
applied. 

Surprisingly, the classical entropy function 4 
demonstrates consistently superior performance to 
function 5 although the latter one is usually 
preferred when using LSA (Witter 97; Jiang 97; 
Dumais 93,94,95). This should be tested on different 
corpora and possibly by using different evaluation 



techniques. Looking at figures 2 and 3 we can see 
that although the rectangles for the two texts are 
much clear for function 4 than for 5 they contain a 
higher degree of noise outside. 

The results obtained are consistent with previous 
research in the field. As was mentioned above 
(Dumais 91) evaluated on 5 different text collections 
some of the functions we consider here: 0*0, 0*1, 
0*2, 0*3, 0*5 and 1*5. Her study differs from ours 
not only due to the larger number of function 
combinations we consider and the different text 
collections used but also on the way the performance 
is evaluated: We are interested in text categorisation 
while her primary goal was information retrieval. 
She accepted 0*0 as the base-line weighting and 
obtained decrease in performance for 0*1 (–11%) 
and 0*2 (–7%), and increase — for 0*3 (+27%), 0*4 
(+30%) and 1*5 (+40%). Thus, her ordering is: 0*1 
< 0*2 < 0*0< 0*3 < 0*4 < 1*5. Our AVG ordering 
follows the pattern only partially: 0*2 < 0*0 < 0*1 < 
0*3 < 0*4 < 1*5. Looking at Holmes we see: 0*2 < 
0*1 < 0*0 < 0*5 < 0*4 < 1*5, and for Finn we have: 
0*2 < 0*0 < 0*3 < 1*5 < 0*1 < 0*5. While this 
reordering may seem quite different most of the 
numbers behind are very next to each other. It is 
important to stress that her data is obtained as the 
average of 5 different text collections each of which 
has its own ordering that sometimes differs from the 
overall results.  

6. Future work 
Additional experiments on new text collections with 
new authors (including languages different from 
English) have to be performed in order to justify the 
results obtained and to better understand the factors 
influencing the text proximity when using LSA. 
There is some place for tuning both the sorting and 
the clustering algorithms. Different combinations of 
more authors and oeuvres (including more than one 
oeuvre per author) are to be considered. Some new 
local and global weight functions as well as new 
evaluation methods are under consideration for 
future experiments.  
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