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Diffuse optical tomography �DOT� involves estimation of tissue optical properties using noninva-
sive boundary measurements. The image reconstruction procedure is a nonlinear, ill-posed, and
ill-determined problem, so overcoming these difficulties requires regularization of the solution.
While the methods developed for solving the DOT image reconstruction procedure have a long
history, there is less direct evidence on the optimal regularization methods, or exploring a common
theoretical framework for techniques which uses least-squares �LS� minimization. A generalized
least-squares �GLS� method is discussed here, which takes into account the variances and covari-
ances among the individual data points and optical properties in the image into a structured weight
matrix. It is shown that most of the least-squares techniques applied in DOT can be considered as
special cases of this more generalized LS approach. The performance of three minimization tech-
niques using the same implementation scheme is compared using test problems with increasing
noise level and increasing complexity within the imaging field. Techniques that use spatial-prior
information as constraints can be also incorporated into the GLS formalism. It is also illustrated that
inclusion of spatial priors reduces the image error by at least a factor of 2. The improvement of
GLS minimization is even more apparent when the noise level in the data is high �as high as 10%�,
indicating that the benefits of this approach are important for reconstruction of data in a routine
setting where the data variance can be known based upon the signal to noise properties of the
instruments. © 2007 American Association of Physicists in Medicine. �DOI: 10.1118/1.2733803�
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I. INTRODUCTION

Image reconstruction methods used in diffuse optical tomog-
raphy �DOT� are mainly dependent on the type of data, the
diffuse light model, and the number of available anatomical/
spectral priors. There are numerous reconstruction tech-
niques available in the literature depending on the
application.1–5 Yet despite the volume of work in this area
there is no single investigation with a direct comparison of
the least-squares �LS� minimization techniques using the
same implementation scheme, especially in terms of data
noise level and complexity in the test fields. Most of the
comparisons in the literature have been in terms of imple-
mentation of minimization and convergence rates of one or
two techniques at hand.1–5 This work addresses this problem
and compares minimization methods �more specifically dif-
ferent types of regularization� with the same implementation
scheme for a direct quantitative comparison. Moreover, us-
age of weight matrices in the regularization which include
the variance and covariance properties of data and image

space are extensively explored here. A new covariance form
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borrowed from meteorological studies is introduced and
proven to be effective for reconstructing highly noisy data in
the generalized theoretical frame work.

Near infrared DOT involves reconstructing images of op-
tical properties from transmission measurements using wave-
lengths from 650–1000 nm to interrogate tissue.1,6–8 Optical
absorption and scattering images obtained using multiple
wavelengths can be used to estimate tissue hemoglobin, wa-
ter concentration, scattering amplitude, and scattering
power.8 To overcome the inherent low-spatial resolution in
DOT, there is a considerable interest in developing hybrid
systems,9–27 which use the spatial mapping of one system as
the template for DOT. Image formation from the data col-
lected by these �stand-alone/hybrid� systems involves solv-
ing an inversion problem. This article describes LS minimi-
zation techniques to solve the inverse problem and to
quantitatively compare their performance in a systematic se-
ries of simulations. The inverse problem �image reconstruc-
tion procedure� in DOT is known to be a nonlinear, ill-posed,
and ill-determined problem,2 and to solve such a problem, a
regularization term must be added to constrain the solution

space in order to obtain a meaningful image. There are many
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regularization methods available in the literature and this
work focuses on the fact that most LS techniques presented
in the literature can be encompassed within a generalized
theoretical framework, which includes a regularization ma-
trix that is based upon weights from the data and parameter
variances. Note that Appendix A gives the terminology used
in this work along with definitions of symbols.

Because of the interest in using spatial information de-
rived from conventional imaging modalities in the DOT in-
verse problem, a number of methods have been presented in
the literature.9–27 These techniques were initially proposed by
Barbour et al.9 and Schweiger et al.13 and used in to improve
the quantitative outcome of reconstructed images. Ntziach-
ristos et al.14 used the magnetic resonance �MR� information
to divide the imaging domain into tumor and nontumor re-
gions to make the problem better posed. Li et al.17 used an
x-ray tomosynthesis volume to segment the breast into dif-
ferent subregions and used different regularization param-
eters depending on the size of the subregions. Recently Gu-
ven et al.24 proposed a Bayesian frame work to include
spatial prior information in an effective way which will not
bias the image reconstruction problem to imperfect anatomi-
cal priors. Pogue and Paulsen,10 Brooksby et al.18,21,25 and
Yalavarthy et al.26 have extended these approaches for the
use of anatomical prior information in which, depending on
the connectivity and size of the subregion, the regularization
term was scaled. Even though the effect of imperfect spatial
prior information on the image reconstruction is a very active
research area,23,24,26 it was assumed here that the spatial pri-
ors were perfect. Other ongoing studies are examining this
more complex issue.

II. DOT FORWARD PROBLEM

DOT involves solving a model �forward� and estimation
�inverse� problem, sequentially as illustrated in Fig. 1. In this
section, the forward problem is described, which involves
generating the measurement data, for a given set of optical
property estimates within the tissue, using a finite element

FIG. 1. An illustration of the forward and inverse problem in diffuse optical
tomography is shown �see Ref. 64�, where �a� the data y is estimated given
values of �a and �s� and source/detector positions. In the inverse problem
�b�, the values of �a and �s� must be obtained given a set of measurements
�y�.
solution to the diffuse transport equation.
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Light propagation in a turbid elastic-scattering media, like
tissue, is treated as “neutral-particle transport” rather than
“wave propagation” and in the frequency domain, the diffu-
sion equation is used, which is given by2,28

− � . D�r� � ��r,�� + ��a�r� + i�/c���r,�� = Qo�r,�� ,

�1�

where ��r ,�� is the photon density at position r and the
light modulation frequency is given by � ��=2�f , in this
work f =100 MHz�. The isotropic source term is represented
by Qo�r ,�� and the speed of light in tissue by c, which is
constant here. �a�r� is the optical absorption coefficient and
D�r� is the optical diffusion coefficient, which is defined as

D�r� =
1

3��a�r� + �s��r��
, �2�

where �s��r� is the reduced scattering coefficient, which is
defined as �s�=�s�1−g�. �s is the scattering coefficient and g
is the anisotropy factor. A Robin �type-III� boundary condi-
tion is applied to model the refractive-index mismatch at the
boundary.29 The measured data for a frequency domain sys-
tem are the amplitude and phase of the transmitted signal. If
F is the forward model �finite element method �FEM� in
here� which gives the fluence at every point, then the
modeled data G��� can be obtained by sampling the
forward model at the boundary given internal spatial distri-
butions of optical properties and source-detector locations,
where � represents the parameters ��= �D�r� ;�a�r���,

G��� = S�F���� . �3�

The details of the FEM formulation of the forward model
are given in Refs. 30–32. The results presented are restricted
to frequency-domain data, more specifically data �y� is the
natural logarithm of the amplitude �A� and phase ��� of
the frequency-domain signal. Defining A and � in terms
of modeled data, A=�Re�G����2+Im�G����2 and �
=tan−1�Im�G���� /Re�G�����. The Jacobian �J�, which gives
the rate of change of modeled data with respect to param-
eters, is calculated using the adjoint method.30 Even though
the actual parameters being estimated are D�r� and �a�r�, the
results are presented in terms of �a�r� and �s��r�, which are
spectroscopically more meaningful.

III. LEAST-SQUARES MINIMIZATION TECHNIQUES

This section outlines several different minimization
schemes used in this work. These techniques are used to
solve the inverse problem �Fig. 1�b��, which is achieved by
minimizing the objective function ��� over the range of �.
Minimizing the objective function can be achieved by sev-
eral different approaches. The most common approaches in-
volve obtaining repeated solutions of the forward model and
recomputation of the Jacobian �J� �and its inversion� at every
iteration because of the nonlinear nature of the problem.
There are also gradient-based optimization schemes avail-
able in the literature33,34 to minimize the objective function

which does not require an explicit inversion of the Hessian
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matrix. In this work direct methods, known as full-Newton
approaches,2 are employed in minimization for all the regu-
larization techniques used for a fair comparison. LS minimi-
zation has the effect of reducing high frequency noise, lead-
ing to smooth images of optical properties. Total variation
methods and variants of this are used to obtain edge preser-
vation in reconstructed images.27,35 Solving the inverse prob-
lem using LS minimization can also be seen from a Bayesian
prospective to obtain maximum a posteriori estimate.24,36,37

A correlation between the Bayesian frame work and LS
minimization techniques is given in Refs. 12, 38, and 39, but
usage of the Bayesian frame work requires one to choose a
particular noise model for both data and image space, which
might not reflect the actual noise characteristics unless some
prior information is available. Here, the emphasis is on LS
minimization techniques with a focus on what the value of
the regularization method can be. The LS methods are di-
vided into two groups: �1� Without spatial priors and �2� with
spatial priors.

A. Without spatial priors

1. Levenberg–Marquardt minimization

This approach is also known as a trust-region method5,39

where experimental data is matched with modeled data
iteratively.40,41 The objective function for the DOT problem
is defined as

� = ��y − G����2� , �4�

where y is the data and G��� is the modeled data. This equa-
tion is minimized by setting the first-order derivative equal to
zero.

a. First-order condition. Minimizing � with respect to
�, which is achieved by setting �� /��=0,

��

��
= JT� = 0, �5�

where � is the data-model misfit, �=y−G���, J is the Jaco-
bian, and T represents the matrix transpose operator.

b. Iterative update equation. Imagine a sequence of ap-
proximations to � represented by �i, then using Taylor series
on G��i� and expanding around �i−1 gives

G��i� = G��i−1� + J��i + . . . , �6�

where ��i=�i−�i−1. Rewriting � utilizing the first two
terms of Eq. �6� �ignoring the rest, equivalently linearizing
the problem� gives

�i = y − G��i� = y − G��i−1� − J��i = �i−1 − J��i. �7�

Rewriting Eq. �5� for the ith iteration

JT�i = 0. �8�

Substituting Eq. �7� into Eq. �8� gives

JT��i−1 − J��i� = 0. �9�

Further simplification leads to the update equation
T T
�J J���i = J �i−1. �10�
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When JTJ is ill-conditioned, a diagonal term is added to
stabilize the problem. In this case, the update equation be-
comes:

�JTJ + 	I���i = JT�i−1, �11�

where ��i is the update for the parameter in the ith step.
Note that 	 monotonically decreases with iterations �always

0�, and also that 	� ���2. The iterative method �or its
modified version� is the commonly used minimization tech-
nique in DOT. It can be seen from Eqs. �10� and �11�, when
	 becomes zero in Eq. �11� it becomes Eq. �10�. It is also
important to note that JTJ is always symmetric, because
�JTJ�T=JT�JT�T=JTJ. The advantage of using this method is
in the simple choice of a regularization parameter �	�. The
limitations41 of this method include:

• JTJ must be positive definite.
• The initial guess ��0� should be close to the actual so-

lution.
• The update equation �Eq. �11�� does not solve the first-

order conditions unless 	=0.
• Since parameters are not involved in the minimization

scheme, the inverse problem may be unstable.

Even though JTJ is not positive definite in DOT, the
Levenberg–Marquardt �LM� approach �or its modified ver-
sion� has been used successfully in a number of
instances.2,6,7,28,42

2. Tikhonov minimization

The generalized objective function43,44 in the Tikhonov
case includes parameters in the minimization function, which
is defined as

� = ��y − G����2 + ��L�� − �0��2� , �12�

where � is the Tikhonov regularization parameter and L is a
dimensionless regularization matrix �in this work�. Here, �0

is the prior estimate of the optical properties, which in DOT
has typically been obtained from calibrating the data.45,46

a. Choice of �. Rewriting Eq. �12�, normalizing both
terms by their variances yields

� = 	�y − G����2

�
y�2 +
�L�� − �0��2

�
�−�0
�2 
 , �13�

where 
y is the standard deviation in the data y and 
�−�0
is

the standard deviation in the optical properties �or deviation
from the prior estimate of optical properties�. Note that the
variance of data-model misfit ��=y−G���� is assumed from
the data, i.e., �
��2= �
y�2+ �
G����2 with �
G����2=0 because
synthetic data was used. Multiplying Eq. �13� by 
y

2 and
comparing the result with Eq. �12� leads to

� =
�
y�2

�
�−�0
�2 , �14�

which shows that the Tikhonov regularization parameter ���
should be equal to the square of the ratio of the standard

deviation in data to the standard deviation of the parameters.
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This is a subtle yet important point, especially since this
parameter is rarely defined this way, and is most commonly
derived empirically.

b. First-order condition. Minimizing � with respect to
�, which is achieved by setting �� /��=0,

��

��
= JT� − �LTL�� − �0� = 0. �15�

c. Update equation. Rewriting Eq. �15� for the ith itera-
tion leads to

JT�i − �LTL��i − �0� = 0. �16�

Substituting Eq. �7� into Eq. �16� results in

JT��i−1 − J��i� − �LTL��i−1 + ��i − �0� = 0. �17�

Further simplification leads to the iterative update equa-
tion

�JTJ + �LTL���i = JT�i−1 − �LTL��i−1 − �0� . �18�

Note that LTL is symmetric. The constraint on the choice
of L is that it must be positive definite.44 In the absence of
spatial priors, a common choice for the form of L is the
identity matrix �I�, which leads to the update equation

�JTJ + �I���i = JT�i−1 − ���i−1 − �0� . �19�

Refer to Appendix B for an analysis of the Tikhonov regu-
larization in terms of singular values. This regularization
method is particularly common for ill-posed problems. The
advantage of the method, is that it includes parameters
within the minimization scheme which can be selected to
improve the stability of the solution. Its limitations are that:

• it requires a prior opinion about the noise characteristics
of the parameter and data spaces �for �� and

• it does not take into account the individual variances of
the data points/parameters, nor their covariances.

However, the simplicity of the approach makes it attrac-
tive for use in ill-posed problems. When the dynamic range
of the data is large �as in DOT�, incorporation of the maxi-
mum variance in the data will cause the minimization to bias
the solution to specific data points �e.g. near the boundaries
at source-detector locations in DOT�. To reduce the effect of
bias, one can employ a generalized least squares �GLS� mini-
mization scheme, described in the next section.

3. GLS minimization

Generalized least squares minimization schemes have
been proposed in the context of Tikhonov minimization in
the literature,1,5,38 in which there is some ambiguity in choos-
ing the regularization parameter ���. In here, a direct inclu-
sion of weight matrices �which are inverses of covariance
matrices� in the minimization scheme was employed to ex-
plicitly remove the dependence of reconstructed image qual-
ity on the choice of regularization parameter. This type of

47,48
choice leads to an objective function
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� = ��y − G����TW��y − G����

+ �� − �0�TW�−�0
�� − �0�� , �20�

where W� is the weight matrix for data-model misfit ��� with
W�= �cov����−1 �Appendix A-4 of Ref. 47�. W�−�0

is the
weight matrix for optical properties ��−�0� with W�−�0
= �cov��−�0��−1 �Appendix A-4 of Ref. 47�. Explicit forms
for these weight matrices are discussed later. Since both are
inverses of covariance matrices, they are symmetric and
positive definite.

a. First-order condition. Minimizing � with respect to
�, which is achieved by setting �� /��=0 produces

��

��
= JTW�� − W�−�0

�� − �0� = 0. �21�

b. Update equation. Similar to the Tikhonov approach,
linearizing the problem leads to the iterative update
equation48

�JTW�J + W�−�0
���i = JTW��i−1 − W�−�0

��i−1 − �0� .

�22�

4. Choice of W�

Since simulated data were used here, in the formation of
the weight matrix �covariance matrix�, it was assumed that
the cov��� is due to measurement error only, which yields47

W� = �cov����−1 = �cov�y − G�����−1 = �cov�y��−1, �23�

where cov represents the covariance operator. In the simula-
tion, typically one generates the forward data and adds noise
to it to form synthetic data

y = G��� + 
y� , �24�

where � is a random number vector. Typically, a random
number generator which follows a normal distribution with
zero mean and unity variance is used. Here, 
y is the stan-
dard deviation of the data, assuming the noise is totally un-
correlated �white noise� in which case, the covariance matrix
becomes47

�cov�y��ij = 	0 if i � j

�
y�i
2 if i = j .


 �25�

Since synthetic data were used in this article, the weight
matrix for the data �W�� becomes diagonal. In the experi-
mental case, one needs to collect an ensemble of data sets
from which a covariance matrix can be computed. In this
case, “N” data sets need to be collected using the same phan-
tom �different homogeneous phantoms need to be used for
different signal levels�, where N needs to be a large number.
From this ensemble of �y�,

�y� = ȳ + �ỹ� , �26�

where ȳ is the true or mean value of data and �ỹ� is pertur-

bation due to noise. This leads to
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�cov�y�� = �cov�ỹ�� = �ỹ��ỹ�T =
�i=1

N ỹiỹi
T

N
�27�

substituting Eq. �27� in Eq. �23� gives W�. Note that in Eq.
�23�, it was assumed the cov��� is due to measurement error,
which is also true in the case of experimental data, as the
data are calibrated to remove the offset and match the mod-
eled data.45,46

5. Choices of W�−�0

Here, two forms were considered to highlight the versa-
tility of the procedure, even though many other forms of the
covariance matrix can exist.

a. Analytical covariance form. Borrowed from the me-
teorological studies, assuming the parameter field obeys the
Helmholtz equation, an analytical form �for one-dimensional
infinite domain case� for the covariance matrix is47

�cov�� − �0��ij = �
�−�0
�2�1 +

rij

l

e−rij/l, �28�

where rij is the separation distance between locations and l is
the correlation length scale. �
�−�0

�2 is the expected variance
for �−�0. In this case, the weight matrix is constructed from
W�−�0

= �cov��−�0��−1

b. Local Laplacian form. Here, the weight matrix is
formed directly using a local Laplacian operator5,49,50 be-
tween neighboring locations, where

W�−�0
= �1/�
�−�0

�2�MTM ,

where M is the local Laplacian matrix, which is defined as

Mij = �
0 if i and j are not neighbors

− 1 if i and j are neighbors

��
j

Mij� if i = j � , �29�

where i and j represent the node numbers of the FEM mesh,
which in turn become the indices of the local Laplacian ma-
trix �M�. The diagonal terms in M gives the total number of
immediately connected nodes.

Computation of W�−�0
requires an estimate of variance of

parameters ��
�−�0
�2�, as is the case for calculation of the

Tikhonov regularization parameter �Eq. �14��. The expected
variance can be computed in many ways: the most common
method for imaging problems is estimation from the litera-
ture. For example, the optical contrast between tumor and
normal breast tissue is around 50%–400% �Refs. 51 and 52�,
which gives the expected standard deviation �
�−�0

� in the
optical properties, and can be used to compute variance. The
calibration of the experimental data is capable of giving a
very good estimate of normal tissue optical properties.45,46

Note that weight matrix containing the expected variance
will not impose a hard constrain on the expected optical
properties, but discourages update values ���� which are
above these expected deviation in a given iteration.
The advantages of the GLS approach are that:
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• It accounts for covariance among the parameters and
data points.

• It also allows the individual data points/parameters to
have different noise characteristics �variances�.

• It constrains the problem through the weight matrices,
to produce stable solutions.

The limitations of the procedure are:

• It requires prior knowledge about the noise characteris-
tics of parameter and data spaces.

• The weight matrices may necessitate computation of the
inverse of covariance matrices �increasing run time and
memory requirements�.

• It can generate unstable solutions when unreasonable
constraints are inadvertently applied.

B. With spatial priors

Overall, the LS minimization schemes using spatial priors
can be broadly classified into two approaches: �1� soft-priors
and �2� hard-priors. The following two subsections will dis-
cuss these two approaches.

1. Soft-priors

In this approach, the regularization matrix L in the
Tikhonov approach �Eq. �18�� encodes the spatial
information.21,26 Previous results have shown that using the
spatial priors in this fashion do not bias the image estimate
when the prior information is imperfect.26 Typically, the con-
ventional image is segmented into different regions depend-
ing on tissue type to generate the spatial constraints. The L
matrix relates each nodal optical property in the numerical
model to the other nodes in that region.26 Two possible forms
are indicated later.

a. Laplacian form21

Lij = �0 if i and j are not in the same region

− 1/N if i and j are in the same region

1 if i = j
� ,

�30�

where N is the number of sampling points �e.g., nodes in a
FEM mesh� in that region.

b. Helmholtz form26

Lij = �0 if i and j are not in the same region

− 1/�N + ��h�2� if i and j are in the same region

1 if i = j
� ,

�31�

where N is the number of nodes in that region, �=1/ l with l
being the covariance length and h is the distance between the
nodes.

2. Hard-priors

In the hard-prior approach, also known as a parameter-

reduction technique, the number of parameters to be esti-
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mated becomes the number of regions segmented from the
other imaging modality �spatial priors�.26,53 Even though the
number of parameters to be estimated reduces considerably
�relative to soft-priors�, the problem can still be ill-posed,2 so
a LM approach was used �Eq. �11�� in this case due to its
simplicity. The main advantages of the method are:

• The problem is overdetermined, which also implies JTJ
is positive definite.

• It is computationally efficient.

The limitations include:

• The effect of error or uncertainty in the spatial priors
can be amplified by the technique.

• The DOT problem may still be ill-posed �and ill-
conditioned� after the constraints are added.2

3. Important notes about minimization schemes

There are additional important points about these minimi-
zation schemes.

• The weight matrices �W� and W�−�0
� in the GLS

scheme are computed before the iterative reconstruction
procedure begins and are invariant during the iterative
process. The same is true of the soft-priors L-matrix
calculations.

• The first-order conditions �Eqs. �5�, �15�, and �21�� de-
rived by minimizing the objective functions �Eqs. �4�,
�12�, and �20�� in all minimization schemes appear on
the right-hand side �rhs� of the update equations �Eqs.
�11�, �18�, and �22�� which means that only when the
rhs, has reached zero, the solution reached the global
minimum.

• Computation of weight matrices, L matrices and the
Tikhonov regularization parameter, requires a prior
opinion about the variances of the parameters and data.
Here, only the best prior estimates are used, which
means that the actual variances of the parameter and
data spaces are used in the reconstruction procedure.
Variation from the best prior values can be examined
also, to observe the effect of priors, but that work is
beyond the scope of the present article.

• When spatial priors are used in this study �as well as in

FIG. 2. The chosen optical property distribution/domain for the generation
of synthetic data is shown. The diameter of the domain was 86 mm.
most studies�, it is assumed that they are perfect. The
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effect of spatial prior uncertainty on the DOT inverse
problem is discussed in Refs. 23, 24, and 26 and is the
subject of ongoing study.

• The covariance lengths associated in the weight matrix
�GLS-analytical covariance �AC� form, Eq. �28��, and
the L matrix �Helmholtz form, Eq. �31�� calculations are
chosen to be 10 and 5 mm, respectively. The effect of
covariance length on the image reconstruction is dis-
cussed in Ref. 26.

• In the LM approach �Eq. �11��, the Jacobian is normal-
ized by its optical properties. Also 	 was chosen ini-
tially to be 1 and it was reduced by a factor of 100.25 at
every iteration and multiplied by the maximum of the
diagonal values of JTJ. The normalization procedure is
described in Ref. 54. Moreover, eight iterations were
chosen for all the LM reconstructions, as it has been
shown in the literature that after this iteration, error in
the optical properties increases for this particular prob-
lem and algorithm.55,56 This inherent instability can be
attributed to the fact that JTJ is not positive definite in
DOT.

• For simplicity, all the reconstruction algorithms are
tested only in the two-dimensional case. Comparison of
three-dimensional reconstructions are left for future
investigations.

4. Special cases of GLS minimization
The update equation for the GLS scheme, Eq. �22�, turns

FIG. 3. Reconstruction results �top of the first row, abbreviations are given
in Appendix A� are shown using noiseless data �bias calculations� �a� with-
out spatial priors and �b� with spatial priors. The top row contains images of
�a and bottom row shows �s� images.
into the Tikhonov case �Eq. �18�� when W�= I and W�−�0
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=�LTL. Moreover, if one assumes that ��=�−�0, which is
equivalent to taking a single step in the iterative procedure,
then Eq. �19� maps into Eq. �11� with 	=2�. Hence, the LM
technique can be viewed as a special case of the Tikhonov

TABLE I. Mean and standard deviation of the recons
regions �labeled in first column of Fig. 3�a�� recovere
in Figs. 3–5.

Method
Noise
level Region-0

Actual — 0.01
LM 0% 0.0101±0.0

5% 0.0102±0.00
10% 0.0103±0.00

Tikhonov 0% 0.0102±0.00
5% 0.0102±0.00

10% 0.0102±0.00
GLS-AC 0% 0.01±0.00

5% 0.0101±0.00
10% 0.0101±0.00

GLS-LL 0% 0.01±0.00
5% 0.0101±0.00
10% 0.0101±0.00

Laplacian 0% 0.0098±0.00
5% 0.0098±0.00

10% 0.0095±0.00
Helmholtz 0% 0.0099±0.00

5% 0.0099±0.00
10% 0.0098±0.00

Hard-Priors 0% 0.0099
5% 0.0098

10% 0.0098
Tab

Method Noise
level

Region-0

Actual — 1.0
LM 0% 1.0356±0.23

5% 1.075±0.03
10% 1.2672±0.90

Tikhonov 0% 1.0096±0.03
5% 1.0111±0.00

10% 1.0107±0.02
GLS-AC 0% 1.0034±0.06

5% 1.0008±0.09
10% 0.9987±0.08

GLS-LL 0% 1.0022±0.06
5% 0.9998±0.10
10% 0.9981±0.09

Laplacian 0% 0.9918±0.01
5% 0.9895±0.02

10% 1.0103±0.01
Helmholtz 0% 0.9878±0.01

5% 0.9813±0.01
10% 0.9884±0.01

Hard-Priors 0% 0.9919
5% 0.9874

10% 0.9854
Tab
method, which itself is a special case of the GLS approach. It

Medical Physics, Vol. 34, No. 6, June 2007
is important, however, to differentiate LM from the single-
step Tikhonov approach because LM requires 	 to reach zero
asymptotically with number of iterations, whereas in the
Tikhonov scheme, � is constant. Moreover, LM does not

d: �a� �a and �b� �s� values �in mm−1� for different
h data having 0%, 5%, 10% noise for images shown

Region-1 Region-2

0.02 0.01
0.0172±0.0023 0.0105±0.0005
0.0125±0.0016 0.0123±0.0011
0.0132±0.0026 0.0118±0.0023
0.0117±0.0003 0.0117±0.0002
0.0114±0.0002 0.0112±0.0001
0.0108±0.0009 0.0107±0.0005
0.015±0.0011 0.0112±0.0003
0.0146±0.0012 0.0106±0.0004
0.0136±0.0009 0.0112±0.0008
0.0152±0.0012 0.0113±0.0003
0.0149±0.0015 0.0108±0.0006
0.0138±0.0009 0.0112±0.001
0.0212±0.0001 0.0112±0.0001
0.0247±0.0001 0.0097±0.0001
0.0276±0.0002 0.0157±0.0128
0.019±0.0002 0.0111±0.0001

0.0193±0.0002 0.0099±0.0001
0.0174±0.0002 0.0136±0.0001

0.0218 0.0116
0.0218 0.0131
0.018 0.0166

a�
Region-1 Region-2

1.0 3.0
0.9995±0.0359 2.3758±0.5160
1.0555±0.3254 1.8215±0.3144
1.3111±0.4128 1.7111±0.6112
1.1153±0.0260 1.1644±0.0251
1.0912±0.0189 1.0934±0.0104
1.0441±0.0062 1.0416±0.0035
1.0335±0.0199 1.6838±0.1961
1.0670±0.0362 1.6972±0.2037
1.0761±0.0343 1.3703±0.0773

1.03±0.0183 1.7801±0.2573
1.0567±0.0329 1.8502±0.3034
1.0839±0.0425 1.4271±0.0990
0.9429±0.0015 2.8207±0.0491
0.8559±0.0036 3.6931±0.1551
0.7447±0.0011 1.9884±0.0096
1.0518±0.0018 2.7833±0.0854
1.1204±0.0081 3.4252±0.1947

1.2766±0.01 2.1761±0.0382
0.9266 2.7332
1.0358 2.345
1.3899 1.822

b�
tructe
d wit

01
16
29
05
04
03

1
14
13

1
16
16
01
02
01
01
02
02

le 1�

64
57
86
97
04
16
88
16
31
93
35
47
55
02
24
54
99
21

le 1�
involve parameters in the objective function.
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5. Stopping criterion

The importance of the stopping criterion in an iterative
procedure cannot be ignored. The stopping criterion used in
this work is based on the first-order conditions and data-
model misfit, which in the limit ensures that the problem has
reached the global minima. The iterative procedure is
stopped when the L2 norm of the data-model misfit ��� does
not improve by more than 10−10% or the L2 norm of the first
order conditions is less than 10−17%. Beyond these values,
the round-off error dominates. This stopping criterion is
more robust because it involves first-order conditions as
well.

IV. TEST PROBLEM

This section provides the details of the test problem con-
sidered here. The optical property distributions used for the
synthetic data �y, noise added� generation are shown in Fig.
2. The diameter of the domain was 86 mm. The background
optical properties were �a=0.01 mm−1 and �s�=1.0 mm−1.
There were two irregular shaped targets, one in �a with a
contrast of 2:1 to background and one in �s� with a contrast
of 3:1 relative to the background. A mesh consisting of 4617
nodes �corresponding to 9040 linear triangular elements� was
used for the generation of data. Sixteen light collection/
delivery fibers were arranged equally spaced on the boundary

FIG. 4. Reconstruction results �top of the first row, abbreviations are given
in Appendix A� are shown using 5% noisy data �a� without spatial priors and
�b� with spatial priors. The top row gives images of �a and bottom row
shows �s� images.
of the circle, where one fiber was used as the source while all
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other fibers served as detectors in turn which produced a total
of 240 measurements �that is 240 ln�A� data points and 240 �
data points�. The source was modeled as a Gaussian profile
with a full width at half maximum of 3 mm to represent the
light applied57 and was placed at a depth of one transport
scattering distance from the tissue boundary.58 Noise levels
of 1%, 3%, 5%, and 10% were added to the modeled data
��ln�A� ;��� to form the experimental data �y�. At the same
time, the variances in the data were also computed to be used
in the reconstruction algorithms.

The actual reconstructions and forward modeled data
computation were performed on different FEM meshes.59

This mesh has the same diameter �86 mm� with 1785 FEM
nodes, which corresponded to 3418 linear triangular
elements.58 The expected distribution of optical properties is
given in Fig. 3�a� �first column�. Background optical proper-
ties were used as initial estimates ��0� in the evaluation of
reconstruction methods. The number of parameters to be es-
timated was 3570 �1785 in �a and 1785 in �s��. The number
of data points available for reconstruction was 480 �240 of
ln�A� and 240 of ��. The dimension of J was 480�3570, W�

was 480�480, and W�−�0
was 3570�3570. Optical prop-

erty distributions were reconstructed from the data without
noise �bias calculations� as well as with noise levels of 1%,
3%, 5%, and 10%. The reconstructions are repeated for the
case of 3% noise in the data with increasing complexity �tar-

FIG. 5. Reconstruction results �top of the first row, abbreviations are given
in Appendix A� are shown using 10% noisy data �a� without spatial priors
and �b� with spatial priors. The top row gives images of �a and bottom row
shows �s� images.
gets� in the optical property distributions.
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V. RESULTS AND DISCUSSION

Initially all reconstruction techniques were executed on a
data set without noise to estimate the bias. Note that for these
calculations the variance was found between the data gener-
ated using meshes �described in Sec. IV� with 4617 nodes
and 1785 nodes. The results without employing spatial prior
information from the reconstruction techniques are given in
Fig. 3�a�. The first column shows the expected distribution
for the 1785 node mesh used in the reconstruction and for-
ward model calculations. The Tikhonov approach failed to
recover the contrast. This was primarily due to the choice of
�, which was based on the maximum variance value, which
biases the problem to data points that are above the average
noise level. Since DOT is known to have a large dynamic
range in the data �at least eight orders of magnitude57�, this
choice of � deemphasize the data points that have low or
intermediate variance values. The root-mean-square �rms� er-
rors between the expected and reconstructed optical proper-
ties are plotted in Fig. 6. The mean and standard deviation in
the reconstructed images for different regions �labeled in first
column of Fig. 3�a�� using the reconstruction techniques dis-
cussed until now are given in Table I. In the case of no
spatial priors, LM gives less bias in �a, where as GLS per-
forms better in �s�. The bias calculations were repeated with
spatial-priors and the reconstruction results are presented in
Fig. 3�b�. These rms errors in the optical properties are also
plotted in Fig. 6. Surprisingly the soft-prior approach �La-
placian and Helmholtz� performed better than the hard-prior
strategy. It can also be observed from Fig. 6 and Table I that
the usage of spatial priors reduces the bias by at least a factor
of 2.

Figure 4�a� shows reconstruction results using data with
5% noise in amplitude without employing spatial priors.
Once again the Tikhonov approach fails to recover the con-
trast. The LM results are dominated by boundary artifacts.
Figure 4�b� presents the results from the same data set when

FIG. 6. A plot of the rms error in the estimated optical properties is shown as
a function of increasing noise level for all reconstruction techniques.
spatial priors were employed. Figures 5�a� and 5�b� show

Medical Physics, Vol. 34, No. 6, June 2007
similar kinds of effort for the case of data with 10% noise.
Note that, for the same choice of the regularization parameter
���, Tikhonov minimization scheme with spatial priors
yielded quantitatively more accurate results compared to
without spatial priors case, indicating that the reconstructed
image accuracy along with the quality largely depends on the
prior information. The rms error in the reconstructed �a and
�s� images are plotted in Fig. 6 as a function of increasing
noise level. The rms error using the LM approach increases
with increasing noise. GLS techniques perform very well
even in the case of 10% noise �Figs. 5�a� and 6�. Among the
GLS methods, usage of an analytical covariance form gives
better results ��13% less rms error� in �a and the local
Laplacian form performs slightly better ��3% less rms er-
ror� in �s�. In the case of employment of spatial-priors, it can
clearly be seen �from Figs. 4�b�, 5�b�, and 6 and Table I� that
hard-priors perform better in �s� reconstruction when the
noise level is below 10%. Among the soft-prior results, for
�a, the rms error linearly increases with increasing noise
level in the Laplacian case �Fig. 6�. In �s� reconstructions, the
performance of Laplacian and Helmholtz are comparable,
clearly Helmholtz performs slightly better ��5% � when the
noise level is above 3%. Interestingly, the Helmholtz regu-
larization emerges with the lowest rms error in �a recon-
struction. This is primarily because of the covariance length
factor in the Helmholtz form of the regularization matrix
�Eq. �31��, which ensures that the optical properties covary
within that correlation length �in here it is 5 mm�. The same
explanation is true for the GLS-analytical covariance form
�Eq. �28��, which performs better in �a estimation. It is also
important to note that in the case of a limited number of
wavelengths, Srinivasan et al.60 have shown that 5% error in
the optical property estimate ��a and �s�� can lead to ap-
proximately 45% error in spectral properties �hemoglobin,
water concentrations, oxygen saturation, and scattering esti-
mates� of tissue. Any small improvement in the optical prop-
erty estimates would be important for improvement in the
utility of this type of imaging under practical conditions.

To emphasize the effects of complexity on the reconstruc-
tion procedures, a set of simulations were performed with an
increasing number of targets. Each target was chosen to be
circular with a diameter of 10 mm. The contrast to back-
ground optical properties was 2:1. The target locations and
corresponding optical properties are shown in the first col-
umn of Fig. 7�a�. The targets were also labeled from 1 to 4
�background is labeled as 0�. The data used in this case have
a noise level of 3%. A total of four different reconstructions
were performed by adding each target at a time �from 1 to 4�.
The result of the four target case is shown in Fig. 7. Corre-
sponding mean and standard deviation of the reconstructed
optical properties for different regions �labeled in first col-
umn of Fig. 7�a�� are given in Table II. Figure 8 contains a
plot of rms error in the reconstructed optical properties with
increasing number of targets. The rms error increases with
increasing number of targets for every reconstruction algo-
rithm. Note that targets 3 and 4 were placed close to the

center of the domain, where the sensitivity is low compared
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to the periphery.58 Moreover, increasing the �a targets �from
1 to 2, target numbers 1 and 3�, caused the rms error to
increase by at least 30%. The same is true with the �s� tar-
gets. In the case of multiple targets, the Helmholtz type of
regularization matrix resulted in the least error in both �a

and �s�. Even though the hard-prior case performs very well
in terms of lowest rms error for a single target, as the com-
plexity �or number of parameters to be estimated� of the
problem increases, it clearly performs poorer than most of
the techniques presented �Fig. 8�.

Even though the choice of the Tikhonov regularization
parameter ��� given by Eq. �14� is the optimal, the other
common way is to use L-curve analysis.61 The L curve for
DOT is shallow,62 similar to the estimation problem in elec-
trical impedance tomography, which poses a problem in se-
lection of �, and is shown to be unreliable in Ref. 59.

Table III gives the computational time per iteration for
each of the reconstruction technique �in these two-

dimensional cases� on Pentium IV �dual core� 2.8 GHz, 2GB
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RAM Linux work station. GLS schemes take little more
computation time than the Tikhonov minimization, as ex-
pected hard priors took the least computation time.

Overall, the inclusion of spatial priors has an important
positive effect. The errors in the estimated optical properties
are also reduced by at least a factor of 2 with spatial infor-
mation. The reconstructed images also contain the fine fea-
tures extracted from conventional imaging modalities.
Through the incorporation of the individual variability of the
data points and optical parameters �GLS scheme�, recon-
struction performs better even when the noise level in the
data is high. It is also important to note that, as mentioned
before, iteration number 8 �which is the best result in terms
of lowest rms error� is chosen for rms error calculations in
LM approach, after this iteration, the solution becomes un-
stable. Whereas the rest of the approaches yield stable solu-
tions �error in optical properties did not increase with in-
creasing iterations�. When the individual data point variances

FIG. 7. Reconstruction results �top of
the first row, abbreviations are given in
Appendix A� are shown using 3%
noisy data �a� without spatial priors
and �b� with spatial priors for four tar-
gets in the tissue as shown. The top
row gives images of �a and bottom
row shows �s� images. The actual �a

and �s� with target numbers are given
in the first column of �a�.
were not considered �Tikhonov approach�, the reconstruction
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algorithm may not have the ability to recover the contrast in
the target. Moreover, simultaneous estimation of both ab-
sorption and scattering coefficients causes crosstalk between
the two parameter estimates. Even with error-free spatial pri-
ors, as the complexity of the estimation problem �or number
of targets� increased for a given noise level in the data, the
parameter-reduction �hard-priors� technique failed to give the
best estimates of the optical properties due to its LM imple-
mentation.

TABLE II. Mean and standard deviation of the recons
regions �labeled in first column of Fig. 7�a�� recovere

Method Region-0 Region-1

Actual 0.01 0.02
LM 0.0101±0.0004 0.0113±0.0001

Tikhonov 0.0102±0.0004 0.011±0.0001
GLS-AC 0.0102±0.0009 0.0129±0.0003
GLS-LL 0.0102±0.0011 0.0133±0.0004

Laplacian 0.01±0.0002 0.0181±0.0001
Helmholtz 0.01±0.0002 0.0169±0.0001
Hard-Priors 0.01 0.0158

Method Region-0 Region-1

Actual 1.0 1.0
LM 1.0063±0.0986 1.1333±0.0027

Tikhonov 1.0051±0.0217 1.0341±0.0019
GLS-AC 0.9993±0.0489 0.9885±0.0139
GLS-LL 0.9987±0.0553 0.9764±0.0127

Laplacian 0.9886±0.0163 1.0891±0.0023
Helmholtz 0.9899±0.0164 1.1499±0.0037
Hard-Priors 0.9856 1.3712
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VI. CONCLUSIONS

The diffuse optical tomography inverse problem is often
solved by Levenberg–Marquardt/modified Tikhonov minimi-
zation. A generalized approach for diffuse optical tomogra-
phic imaging which incorporates the expected variability of
the data noise and magnitude of the optical parameter varia-
tion is presented as a structured weight-matrix regularization.
It is also shown that Tikhonov minimization and the

ed: �a� �a and �b� �s� values �in mm−1� for different
th data having 3% noise for images shown in Fig. 7.

Region-2 Region-3 Region-4

0.01 0.02 0.01
112±0.0002 0.0111±0.0003 0.011±0.0002
112±0.0001 0.0109±0.0001 0.011±0.0001
111±0.0003 0.0114±0.0003 0.0113±0.0003
115±0.0004 0.0113±0.0003 0.0113±0.0002
105±0.0001 0.0152±0.0001 0.0158±0.0001
115±0.0001 0.0149±0.0001 0.0158±0.0001

0.0126 0.014 0.0158

Region-2 Region-3 Region-4

2.0 1.0 2.0
24±0.0623 1.1191±0.0396 1.097±0.0366
575±0.0073 1.0321±0.0056 1.0329±0.0043
486±0.0447 1.021±0.0234 1.1184±0.0076
726±0.0596 1.0271±0.0262 1.1422±0.0105
799±0.0242 1.3445±0.0043 1.4044±0.0036
122±0.0386 1.3382±0.0079 1.3521±0.0066

1.7319 1.4471 1.5255

FIG. 8. Plot of the rms error in the es-
timated optical properties is shown for
increasing number of targets with 3%
noise in the data for all reconstruction
techniques �legend of the figure�. Ab-
breviations used for the techniques are
given in Appendix A. The targets used
are numbered in the images presented
in Fig. 7�a�.
truct
d wi
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Levenberg–Marquardt approach are special cases of this
GLS minimization formalism. Weight matrices that are used
in this reconstruction procedure, consisting of the variance
and covariance among the data points and optical properties,
penalize the solution to match the modeled data with the
experimental data more appropriately. This framework can
also be used to incorporate structural information, given by
MR, computed tomography, or other imaging modalities
when the two are acquired on the same tissue volume. Using
a test problem, all of these techniques are studied in terms of
the data noise level and test field complexity and a uniform
comparison was made using the same implementation
scheme for each minimization method. Even with highly
noisy data, the GLS approach gives meaningful reconstruc-
tion results. It appears that the standard Levenberg–
Marquardt approach may be unstable for the DOT problem.
It is also shown that consideration of the individual variances
of data points is the key for an estimation procedure to re-
cover high optical contrast. Employing spatial information
reduced the errors in the reconstruction results by at least a
factor of 2. Parameter reduction using spatial priors can pro-
duce erroneous results when the noise level is high. The
same is true for increasing numbers of targets. Future work
includes investigating various approaches for incorporating
spatial priors into the GLS scheme with experimental data
sets. Moreover, a thorough examination of these techniques
in three-dimensional case will be taken up as a future inves-
tigation. The computer algorithms and test data used in this
article �along with some additional material� are given at this
web page.63
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APPENDIX A: TERMINOLOGY

DOT—diffuse optical tomography.

TABLE III. Comparison of computation time per iteration for different recon-
struction techniques on Pentium IV �dual core� 2.8 GHz, 2 GB RAM Linux
work station. the abbreviations used for the reconstruction techniques are
given in Appendix A.

Reconstruction method Computation time per iteration

LM 17.92 Sec
Tikhonov 21.28 Sec
GLS-AC 23.39 Sec
GLS-LL 23.39 Sec
Laplacian 22.78 Sec
Helmholtz 22.78 Sec
Hard-Priors 10.73 Sec
�a(r)—optical absorption coefficient of tissue.
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�s�(r)—reduced �or transport� scattering coefficient of tis-
sue.

D(r)—optical diffusion coefficient of tissue=1/3��a�r�
+�s��r��.

�—parameters �generalized� to estimate= �D�r� ;�a�r��.
�0—prior value of the parameters �initial guess, generally

obtained from prior calibration of data45,46�.
F(�)—forward model.
G(�)—Modeled data �G—sampled forward model

=S�F��.
A—amplitude of the signal.
�—phase of the signal.
y—Measured data= �ln�A� ;��.
‖X‖—L2 norm of vector X=��i=1

N Xi
2.

�—data-model misfit=y−G���.
W�—weight matrix for �= �cov����−1 �Appendix A-4 of

Ref. 47�.
W�−�0

—weight matrix for �−�0= �cov��−�0��−1 �Ap-
pendix A-4 of Ref. 47�.

�—Tikhonov regularization parameter.
L—Tikhonov regularization matrix.
I—identity matrix.
�2—variance.
J—Jacobian of the sampled forward model=�G��� /��.
�—objective function.
Error—true value-estimated value �prediction�.
Bias—difference between the true optical property distri-

bution and estimated optical properties in the case of model
generated data �without adding the noise�.

Ill-posed—Small changes in the data can cause large
changes in the parameters.

Ill-conditioned—the condition number �ratio of largest
singular value to smallest singular value� is large, which im-
plies the inverse solution would not be unique.

Ill-determined—�or under-determined� the number of in-
dependent equations are smaller than number of unknowns.

Unstability—error gets amplified with iterations.
LM—Levenberg–Marquardt minimization �Sec. III A 1�.
Tikhonov—Tikhonov minimization scheme without

spatial-priors, L= I �Sec. III A 2�.
GLS-AC—generalized least squares minimization

scheme �Sec. III A 3� with analytical covariance form for
W�−�0

�Eq. �28��.
GLS-LL—generalized least squares minimization

scheme �Sec. III A 3� with local Laplacian form for W�−�0

�Eq. �29��.
Laplacian—Tikhonov minimization scheme in the case

of soft priors �Sec. III B 1� where L approximates Laplacian
form, defined by Eq. �30�.

Helmholtz—Tikhonov minimization scheme in the case
of soft priors �Sec. III B 1� where L approximates Helmholtz
form, defined by Eq. �31�.

Hard-priors—parameter-reduction technique based on

spatial priors �Sec. III B 2�.
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APPENDIX B: TIKHONOV REGULARIZATION-
SINGULAR VALUES

It is interesting to examine Tikhonov regularization from
the point of view of singular values. If one rewrites the up-
date equation �Eq. �19�� as

�JTJ + �I���i = JT�i−1 + C , �B1�

where C=���i−1−�0�, as it is a constant vector for a chosen
iteration i. Singular-value decomposition of J gives

J = USVT, �B2�

where U and V are orthonormal matrices containing the sin-
gular vectors of J, i.e., UTU= I and VTV= I. S is a diagonal
matrix containing the singular values �Si� of J. Substituting
this into update equation �Eq. �B1�� generates

�VSTUTUSVT + �I���i = VSTUT�i−1 + C . �B3�

Using the orthonormal properties of U and left multiply-
ing by VT on both sides of Eq. �B3� yields

�VTVSTSVT + �VT���i = VTVSTUT�i−1 + VTC . �B4�

Now using the orthonormal properties of V and rearrang-
ing the terms leads to

�STS + �I�VT��i = STUT�i−1 + VTC . �B5�

Taking the inverse, left multiplying by V and simplifying
the result gives

��i = V�STS + �I�−1�STUT�i−1 + VTC� . �B6�

Writing Eq. �B7� in the form

��i = VDP , �B7�

where P= �STUT�i−1+VTC�, a column vector, and D is a di-
agonal matrix which has the form

Dij = �0 if i � j

1

Si
2 + �

if i = j . � �B8�

Similar expressions hold for L� I �Ref. 65� in Eq. �18�.
Considering the case �=0, one can clearly see that for an
ill-conditioned matrix J, implying some of the singular val-
ues are almost zero �Si�0�, the inversion becomes unstable
�some of the diagonal values of D become infinite�. By using
Tikhonov regularization, even when Si=0, the inversion pro-
cedure is stabilized �Eq. �B8��. The � act as a filtering factor,
giving the name Tikhonov filtering65 for this procedure.
Moreover, as this � damps the amplification of the diagonal
values of D for smaller values of Si in Eq. �B8�, this is also
known as damped least squares minimization procedure.65
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