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Abstract. In this paper, we introduce weight prediction into the AdamW
optimizer to boost its convergence when training the deep neural net-
work (DNN) models. In particular, ahead of each mini-batch training,
we predict the future weights according to the update rule of AdamW
and then apply the predicted future weights to do both forward pass and
backward propagation. In this way, the AdamW optimizer always utilizes
the gradients w.r.t. the future weights instead of current weights to up-
date the DNN parameters, making the AdamW optimizer achieve better
convergence. Our proposal is simple and straightforward to implement
but effective in boosting the convergence of DNN training. We performed
extensive experimental evaluations on image classification and language
modeling tasks to verify the effectiveness of our proposal. The experi-
mental results validate that our proposal can boost the convergence of
AdamW and achieve better accuracy than AdamW when training the
DNN models.

Keywords: Deep learning · Weight prediction · Convergence · AdamW.

1 Introduction

The optimization of deep neural network (DNN) models is to find the optimal
parameters using an optimizer which has a decisive influence on the convergence
of the models and thus directly affects the total training time. Adaptive gradient
methods, such as RMSprop [20], AdaGrad [3], Adam [7] and AdamW [11], are
currently of core practical importance in deep learning training as they are able
to attain rapid training of modern deep neural network (DNN) models. Particu-
larly, AdamW [11], also known as Adam with decoupled weight decay, has been
used as a default optimizer for training various DNN models [1, 10, 11, 20, 21].
The major advantage of AdamW lies in that it improves the generalization per-
formance of Adam [7] and thus works as effectively as SGD with momentum [18]
on image classification tasks.

As with other popular gradient-based optimization methods, when using
AdamW as an optimizer, each iteration of DNN training, i.e., a mini-batch
training, generally consists of one forward pass and one backward propagation,
where the gradients w.r.t. all the parameters (also known as weights) are com-
puted during the backward propagation. The generated gradients are then used
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by the AdamW optimizer to calculate the update values for all parameters, which
are finally applied to updating the weights. The remarkable features of using
AdamW to update parameters include: 1) the updates of weights are continu-
ous; 2) each mini-batch uses the currently available weights to do both forward
pass and backward propagation.

Motivated by the fact that DNN weights are updated in a continuous man-
ner and the update values calculated by the AdamW should reflect the "correct"
direction for updating the weights, we introduce weight prediction [2,4] into the
DNN training to further boost the convergence of AdamW. Concretely, ahead
of each mini-batch training, we first perform weight prediction according to the
currently available weights and the update rule of AdamW. Following that, we
use the predicted future weights instead of current weights to perform both for-
ward pass and backward propagation. Finally, the AdamW optimizer utilizes the
gradients w.r.t. the predicted weights to update the DNN parameters. We ex-
periment with two typical machine learning tasks, including image classification
and language modeling. The experimental results demonstrate that our proposal
outperforms AdamW in terms of convergence and accuracy. For instance, when
training four convolution neural network (CNN) models on CIFAR-10 dataset,
our proposal yields an average accuracy improvement of 0.47% (up to 0.74%)
over AdamW. When training LSTMs on Penn TreeBank dataset, our proposal
achieves 5.52 less perplexity than AdamW on average.

The contributions of this paper can be summarized as follows:

(1) We, for the first time, construct the mathematical relationship between cur-
rently available weights and future weights after several continuous updates
when using AdamW as an optimizer.

(2) We devise an effective way to incorporate weight prediction into AdamW. To
the best of our knowledge, this is the first time that uses weight prediction
strategy to boost the convergence of AdamW. The proposed weight predic-
tion strategy is believed to be well suited for other popular optimization
methods such as RMSprop [20], AdaGrad [3], Adam [7], et al.

(3) We conducted extensive experimental evaluations to validate the effective-
ness of our proposal, which demonstrates that our proposal is able to boost
the convergence of AdamW when training the DNN models.

2 Related Work

When using the gradient-based optimization methods to train DNN models,
the differences in optimization methods lie in that the ways using gradients to
update model parameters are different. Generally, the commonly used first-order
gradient methods can be categorized into two groups: the accelerated stochastic
gradient descent (SGD) family [15,16,18] and adaptive gradient methods [7,23,
24].

Adaptive gradient methods, also known as adaptive learning methods, have
been heavily studied in prior research and widely used in deep learning training.
Very different from the SGD methods (e.g., Momentum SGD [18]), which use a
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unified learning rate for all parameters, adaptive gradient methods compute a
specific learning rate for each individual parameter [24]. In 2011, Duchi et al. [3]
proposed the AdaGrad, which can dynamically adjust the learning rate according
to the history gradients from previous iterations and utilize the quadratic sum
of all previous gradients to update the model parameters. Zeiler [23] proposed
AdaDelta, seeking to alleviate the continual decay of the learning rate of Ada-
Grad. AdaDelta does not require manual tuning of a learning rate and is robust
to noisy gradient information. Tieleman and Hinton [20] refined AdaGrad and
proposed RMSprop. The same as AdaGrad, RMSprop adjusts the learning rate
via element-wise computation and then updates the variables. One remarkable
feature of RMSprop is that it can avoid decaying the learning rate too quickly. In
order to combine the advantages of both AdaGrad and RMSprop, Kingma and
Ba [7] proposed another famous adaptive gradient method, Adam, which has
become an extremely important choice for deep learning training. Loshchilov
and Hutter [11] found that the major factor of the poor generalization of Adam
is due to that L2 regularization for it is not as effective as for its competitor, the
Momentum SGD. They thus proposed decoupled weight decay regularization for
Adam, which is also known as AdamW. The experimental results demonstrate
that AdamW substantially improves the generalization performance of Adam
and illustrates competitive performance as Momentum SGD [18] when tackling
image classification tasks. To simultaneously achieve fast convergence and good
generalization, Zhuang et al. [24] proposed another adaptive gradient method
called AdaBelief, which adapts the stepsize according to the “belief” in the cur-
rent gradient direction. Other adaptive gradient methods include AdaBound [12],
RAdam [9], Yogi [22], et al. It is worth noting that all these adaptive gradient
methods share a common feature: weight updates are continuous and each mini-
batch training always uses currently available weights to perform both forward
pass and backward propagation.

Weight prediction was previously used to overcome the weight inconsistency
issue in the asynchronous pipeline parallelism. Chen et al. [2] used the smoothed
gradient to replace the true gradient in order to predict future weights when
using Momentum SGD [18] as the optimizer. Guan et al. [4] proposed using the
update values of Adam [7] to make weight predictions. Yet, both approaches use
weight prediction to ensure the weight consistency of pipeline training rather
than considering the impact of weight prediction on the optimizers themselves.

3 Methods

Ahead of any t-th (t ≥ 1) iteration, we assume that the current available DNN
weights are θt−1. Given the initial learning rate γ ∈ R, momentum factor β1 ∈ R
and β2 ∈ R, and weight decay value λ ∈ R, we reformulate the update of
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AdamW [11] as

θt = (1− γλ)θt−1 −
γm̂t√
v̂t + ϵ

,

s.t.


gt = ∇tf(θt−1),
mt = β1 ·mt−1 + (1− β1) · gt,
vt = β2 · vt−1 + (1− β2) · g2

t ,
m̂t =

mt

1−βt
1
,

v̂t =
vt

1−βt
2
.

(1)

In (1), mt and vt refer to the first and second moment vector respectively, ϵ is
the smoothing term which can prevent division by zero.

Letting θ0 denote the initial weights of a DNN model, then in the following
s times of continuous mini-batch training, the DNN weights are updated via

θ1 = (1− γλ)θ0 −
γm̂1√
v̂1 + ϵ

,

θ2 = (1− γλ)θ1 −
γm̂2√
v̂2 + ϵ

,

· · ·

θs = (1− γλ)θs−1 −
γm̂s√
v̂s + ϵ

,

(2)

where for any i ∈ {1, 2, · · · , s}, we have
gi = ∇if(θi−1),
mi = β1 ·mi−1 + (1− β1) · gi,
vi = β2 · vi−1 + (1− β2) · g2

i ,
m̂i =

mi

1−βi
1
,

v̂i =
vi

1−βi
2
.

(3)

When summing up all weight update equations in (2), we have

θs = θ0 − γλ

t−1∑
i=0

(θ0 + θ1 + · · ·+ θt−1)−
t∑

i=1

γm̂i√
v̂i + ϵ

,

s.t.


gi = ∇if(θi−1),
mi = β1 ·mi−1 + (1− β1) · gi,
vi = β2 · vi−1 + (1− β2) · g2

i ,
m̂i =

mi

1−βi
1
,

v̂i =
vi

1−βi
2
.

(4)

It is well known that the weight decay value λ is generally set to an extremely
small value (e.g., 5e−4), and the learning rate γ is commonly set to a value smaller
than 1 (e.g., 0.01). Consequently, γλ is pretty close to zero, and thus, the second
term of the right hand of (4) can be neglected. This, therefore, generates the



Weight Prediction Boosts the Convergence of AdamW 5

following equation:

θs ≈ θ0 −
s∑

i=1

γm̂i√
v̂i + ϵ

. (5)

(5) illustrates that given the initial weights θ0, the weights after s times of
continuous updates can be approximately calculated. Correspondingly, given θt,
the weights after s times of continuous updates can be approximately calculated
via

θt+s ≈ θt −
t+s∑

i=t+1

γm̂i√
v̂i + ϵ

. (6)

From (6), we see that given the initial weights θt, θt+s can be approximately
calculated by letting θt subtract the sum of s continuous relative variation of the
weights. Note that the relative increments of the weights in each iteration should
reflect the trend of the weight updates in each iteration. In (6), γm̂i√

v̂i+ϵ
should

reflect the “correct” direction for updating the weights θt as it is calculated by
the AdamW, and the weights are updated in a continuous manner and along the
way of inertia directions.

We can therefore replace
∑t+s

i=t+1
γm̂i√
v̂i+ϵ

in (6) with s γm̂t+1√
v̂t+1+ϵ

in an effort

to approximately predict θt+s for the case when only θt, gt and the weight
prediction steps s are available. Note that at any t-th iteration, the gradients
of stochastic objective, i.e., gt = ∇t(θt−1), can be calculated when the back-
ward propagation is completed. Letting θ̂t+s denote the approximately predicted
weights for θt+s, we can construct the mathematical relationship between θt and
θ̂t+s as

θ̂t+s = θt − s
γm̂t+1√
v̂t+1 + ϵ

,

s.t.


gt = ∇tf(θt−1),
mt = β1 ·mt−1 + (1− β1) · gt,
vt = β2 · vt−1 + (1− β2) · g2

t ,
m̂t =

mt

1−βt
1
,

v̂t =
vt

1−βt
2
.

(7)

In the following, we showcase how to incorporate weight prediction into
the DNN training when using AdamW [11] as an optimizer. Algorithm 1 illus-
trates the detailed information. The weight prediction step s and other hyper-
parameters are required ahead of the DNN training. At each iteration, the cur-
rent available weights θt should be cached before the forward pass starts (Line
4). Then weight prediction are performed using (7) and the predicted weights
θ̂t+s is generated (Line 5). Following that, the predicted weights θ̂t+s are used
to do both forward pass and backward propagation (Lines 6 and 7). Finally, the
cached weights θt is recovered and updated using the AdamW optimizer (Lines
8 and 9).
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Algorithm 1 Weight prediction for AdamW
Require: Weight prediction step s, other hyper-parameters such as γ, β1, β2, γ, ϵ.
1: Initialize or load DNN weights θ0.
2: t← 1.
3: while stopping criterion is not met do
4: Cache the current weights θt.
5: Calculate θ̂t+s using (7).
6: Do forward pass with θ̂t+s.
7: Do backward propagation with θ̂t+s.
8: Recover the cached weights θt.
9: Update the weights θt using the AdamW optimizer.

10: t← t+ 1.
11: end while

4 Experiments

4.1 Experiment Settings

In this section, we mainly compare our proposal with AdamW [11]. We evaluated
our proposal with three different weight prediction steps (i.e., s = 1, s = 2, and
s = 3), which were respectively denoted as Ours-S1, Ours-S2, and Ours-S3 for
convenience purposes. We conducted experimental evaluations on two different
machine learning tasks: image classification on the CIFAR-10 [8] dataset with
four CNN models and language modeling on Penn TreeBank [14] dataset with
two LSTM [13] models. All the experiments were conducted on a multi-GPU
platform which is equipped with four NVIDIA Tesla P100 GPUs, each with
16GB of memory size. The CPU on the platform is Intel Xeon E5-2680 with
128GB DDR4-2400 off-chip main memory.

The CIFAR-10 dataset totally includes 60k 32×32 images, 50k images for
training, and 10k images for validation. The Penn TreeBank dataset consists of
929k training words, 73k validation words as well as 82k test words. For image
classification, the used CNN models are VGG-11 [17], ResNet-34 [5], DenseNet-
121 [6], and Inception-V3 [19]. For language modeling, we trained the LSTM
models with two sizes: 1-layer LSTM and 2-layer LSTM. Each layer was config-
ured with 650 units and was applied 50% dropout on the non-recurrent connec-
tions.

We trained all CNN models for 120 epochs with a mini-batch size of 128. The
learning rate was initialized as 1e−4, and divided by ten at the 90th epoch. For
training 1-layer and 2-layer LSTM models, we set the size of each mini-batch to
20. We trained both LSTM models for 100 epochs with an initial learning rate
of 0.01 and decreased the learning rate by a factor of 10 at the 60th and 80th
epochs. For AdamW [11] and our proposal, we always evaluated them with the
default parameters, i.e., β1 = 0.9, β2 = 0.999, and ϵ = 10−8. The weight decay
for both approaches was set to λ = 5e−4.
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4.2 CNNs on CIFAR-10

In this section, we report the experimental results when training four CNN
models on the CIFAR-10 dataset. Table 1 summarizes the maximum valida-
tion top-1 accuracy and Table 2 presents the minimum validation loss. Figure 1
depicts the learning curves of validation accuracy vs. epochs for training CNNs
using AdamW, Ours-S1, Ours-S2, and Ours-S3, respectively. The learning curves
about validation loss vs. epochs are shown in Figure 2.
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Fig. 1. Validation accuracy vs. epochs of training VGG-11, ResNet-34, DenseNet-121
and Inception-V3 on CIFAR-10.

Table 1. Maximum validation top-1 accuracy on CIFAR-10. Higher is better.

Models AdamW Ours-S1 Ours-S2 Ours-S3

VGG-11 87.85% 87.83% 88.34% 88.59%
ResNet-34 94.03% 94.06% 93.95% 94.37%

DenseNet-121 93.97% 94.13% 94.04% 94.39%
Inception-V3 93.53% 93.90% 93.60% 93.61%
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Fig. 2. Validation loss vs. epochs of training VGG-11, ResNet-34, DenseNet-121 and
Inception-V3 on CIFAR-10.

Table 2. Minimum validation loss on CIFAR-10. Lower is better.

Models AdamW Ours-S1 Ours-S2 Ours-S3

VGG-11 0.485 0.475 0.474 0.456
ResNet-34 0.323 0.318 0.305 0.297

DenseNet-121 0.327 0.319 0.319 0.302
Inception-V3 0.346 0.333 0.331 0.324

Based on the observation of Table 1 and Figure 1, we can immediately reach
the following conclusions. First, Figure 1 shows that the learning curves of our
proposal with different weight prediction steps match well with that of AdamW
but converge faster than that of AdamW, especially at the beginning of training
epochs. The learning curves in Figures 1(a), 1(b), 1(c), and 1(d) also illustrate
that our proposal generally attains higher validation accuracy than AdamW at
the end of the training. Second, Table 1 shows that our proposal outperforms
AdamW on all evaluated CNN models in terms of the obtained maximum vali-
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dation accuracy. In particular, our proposal achieves consistently higher valida-
tion top-1 accuracy than AdamW. Compared to AdamW, our proposal achieves
0.74%, 0.34%, 0.42%, and 0.37% for training VGG-11, ResNet-34, DenseNet-
121, and Inception-V3, respectively. On average, our proposal yields 0.47% (up
to 0.74%) top-1 accuracy improvement over AdamW. Third, comparing the ex-
perimental results of Ours-S1, Ours-S2, and Ours-S3, we can see that our pro-
posal with different weight prediction steps consistently gets good results, which
demonstrates that the performance of our proposal is independent of the settings
of the weight prediction step. Particularly, the experimental results show that
Ours-S3 works the best for VGG-11, ResNet-34, and DenseNet-121, while Ours-
S1 works the best for Inception-V3. Similar conclusions can be drawn from the
observation of Table 2 and Figure 2. Our proposal consistently obtains less val-
idation loss than AdamW which again verifies that weight prediction can boost
the convergence of AdamW when training DNN models.

4.3 LSTMs on Penn TreeBank

In this section, we report the experimental results when training 1-layer and 2-
layer LSTM models on the Penn TreeBank dataset [14]. Figures 3 and 4 depict
the learning curves. Table 3 presents the obtained minimum perplexity (lower is
better), and Table 4 summarizes the obtained minimum validation loss (lower is
better).
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Fig. 3. Training 1-layer LSTM on Penn TreeBank. Left: Loss vs. epochs; Right: Per-
plexity vs. epochs.

We can draw the following conclusions from the experiment results. First,
as shown in Table 3, for both 1-layer and 2-layer LSTM models, our proposal
achieves lower perplexity and validation loss than AdamW, validating the fast
convergence and good accuracy of our proposal. Second, for 1-layer LSTM, our
proposal with s = 2 yields 9.22 less perplexity than AdamW. For 2-layer LSTM,
our proposal with s = 3 yields 2.02 less perplexity than AdamW. On average, our
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Fig. 4. Training 2-layer LSTM on Penn TreeBank. Left: Loss vs. epochs; Right: Per-
plexity vs. epochs.

Table 3. Minimum perplexity on Penn TreeBank. Lower is better.

Models AdamW Ours-S1 Ours-S2 Ours-S3

1-Layer LSTM 126.21 124.75 116.99 124.71
2-Layer LSTM 114.68 114.80 113.99 112.64

Table 4. Minimum validation loss on Penn TreeBank. Lower is better.

Models AdamW Ours-S1 Ours-S2 Ours-S3

1-Layer LSTM 4.838 4.826 4.762 4.826
2-Layer LSTM 4.742 4.743 4.736 4.724

proposal achieves 5.52 less perplexity than AdamW. Second, similar conclusions
can be drawn based on the observation of the loss vs. epochs learning curves
in Figures 3(a) and 4(a) and Table 4. Our proposal consistently achieves less
validation loss than AdamW, again validating that weight prediction can boost
the convergence of AdamW.

5 Conclusions

To further boost the convergence of AdamW, in this paper, we introduce weight
prediction into the DNN training. The remarkable feature of our proposal is
that we perform both forward pass and backward propagation using the future
weights which are predicted according to the update of AdamW. In particular,
we construct the mathematical relationship between current weights and future
weights and devise an effective way to incorporate weight prediction into DNN
training. Our proposal is easy to implement and works well in boosting the
convergence of DNN training. The experimental results on image classification
and language modeling tasks verify the effectiveness of our proposal.
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The weight prediction should also work well for other adaptive optimization
methods such as RMSprop [20], AdaGrad [3], and Adam [7] et al. when training
the DNN models. For future work, we would like to apply weight prediction to
those popular optimization methods.
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