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1 Introduction

Concrete results in conformal representation theory have played a crucial role in the re-

cent resurgence of the conformal bootstrap [1–66]. Compact expressions for conformal

blocks with external scalars [67, 68] were crucial for the development of modern numerical

bootstrap techniques [1]. Subsequently, techniques for computing blocks of operators with

spin [35, 69–77] have led to universal numerical bounds on wide classes of CFTs [35, 66, 78],

in addition to analytical results like proofs of the conformal collider bounds [79–82] and

the average null energy condition [83], and new results on the Regge limit in CFTs [84–86].

In parallel developments, harmonic analysis on the conformal group [87] has played an

important role in several recent works [88–93], including the large-N solution of the SYK

model [94–97]. Relationships between Witten diagrams and conformal blocks have also

received recent attention [98–103].

More sophisticated analyses will require new results for operators with spin. Several

efficient techniques for dealing with spinning operators have been developed over the last

decade, including index-free/embedding-space methods [35, 69–71, 74, 104], the shadow

formalism in the embedding space [71], “differential bases” for three-point functions [35, 70],

and recursion relations [66, 72, 105]. While these methods are superior to naive approaches,

they still aren’t enough to solve some difficult problems. For example, the shadow formalism

lets one write integral expressions for general blocks, but the integrals are difficult to

evaluate in practice in all but the simplest cases. The differential basis approach lets one

compute spinning blocks in terms of simpler “seed blocks,” but doesn’t explain how to

compute the seed blocks.1

In this work, we introduce new tools that dramatically simplify computations in con-

formal representation theory, particularly involving operators with spin. The first key

idea is to consider a (fictitious) operator w(x) that transforms in a finite-dimensional

1A recursion relation for seed blocks in 3d was guessed in [72] by solving the Casimir equation order-by-

order in an OPE expansion. Expressions for seed blocks in 4d were derived in [77] by solving the Casimir

equation using a suitable ansatz.
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representation W of the conformal group. By studying the OPE of this highly degener-

ate operator with a non-degenerate operator O(x), we find (in section 2) a large class of

conformally-covariant differential operators Dv
A that can be used for computations. Here,

A = 1, . . . , dimW is an index for W , and v is a weight vector of W (i.e. a common eigen-

vector of the Cartan subalgebra).2

The action of Dv
A on O(x) shifts the weights of O by the weights of v, in addition

to introducing a free A index. For this reason, we call Dv
A a weight-shifting operator.

For example, weight-shifting operators can increase or decrease the spin of O.3 Weight-

shifting operators can be written explicitly using the embedding space formalism [35, 69,

71, 74, 111–117], e.g. (2.44) in general spacetime dimensions, (2.71) in 3d, and (2.78) in

4d. However, our construction applies independently of the embedding space formalism,

and in fact works for generalized Verma modules of any Lie (super-)algebra.4

A second key observation is that weight-shifting operators obey a type of crossing

equation,

Dv
A,x1

〈O′
1(x1)O2(x2)O3(x3)〉(a) =

∑

O′
2,v

′,b

{· · · }Dv′

A,x2
〈O1(x1)O′

2(x2)O3(x3)〉(b), (1.1)

which we derive in section 3. Here, a and b label conformally-invariant three-point struc-

tures that can appear in a correlator of the given operators. The coefficients {· · · } are

examples of 6j symbols (or Racah-Wigner coefficients) for the conformal group, which in

this case are computable with simple algebra. Equation (1.1) lets us move a covariant

differential operator acting on x1 to an operator acting on x2. As we will see, this provides

enough flexibility to perform a variety of computations involving weight-shifting opera-

tors. We also introduce a diagrammatic language that makes these computations easy

to understand.

As an application, in section 4 we focus on computing conformal blocks and under-

standing some of their properties. In section 4.3, we derive an expression for a general

conformal block involving operators (both external and internal) in arbitrary representa-

tions of SO(d) in terms of derivatives of blocks with external scalars.5 This generalizes

the beautiful result of [70] for conformal blocks of symmetric traceless tensors (STTs).

Weight-shifting operators also explain where the differential operators of [70] come from

(as we discuss in section 3.5). Our formula can be simplified in special cases. For example,

2Some examples of such operators appear in the conformal tractor calculus, which originally deals with

the case of tensor W [106, 107]. The theory of local twistors [108–110] deals with the case of spinor W .

The primary interest of these theories is in curved conformal manifolds. Part of our results can be viewed

as a classification of differential operators involving tractor or local twistor bundles in the conformally flat

setting. It is an interesting question whether our results generalize to the curved setting.
3When Dv

A lowers the spin of O, its missing spin degrees of freedom are (roughly speaking) transferred

to the index A for W .
4Our construction is based on the “translation functor” of Zuckerman and Jantzen [118, 119].
5The rough idea is that weight-shifting operators allow us to exchange a tensor product W ⊗V∆,ℓ, where

W is finite-dimensional, and V∆,ℓ is the generalized Verma module of a symmetric traceless tensor (STT)

operator. This tensor product then contains many new types of generalized Verma modules that can include

operators in non-STT representations of SO(d).
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in section 4.4 we give new expressions for so-called “seed blocks” in 3d and 4d CFTs in

terms of derivatives of scalar blocks.

Our techniques also give a new way to understand many identities and recursion rela-

tions satisfied by conformal blocks. In section 4.5, we rederive and explain diagrammatically

several identities relating scalar conformal blocks with different dimensions and spins.6 In

section 4.6, we discuss how to use derivative-based expressions for blocks to find recur-

sion relations of the type introduced by Zamolodchikov [123, 124] and used in numerical

bootstrap computations [14, 22, 40, 51, 66, 125].

In section 5, we comment on some additional applications beyond computing conformal

blocks. Weight-shifting operators are helpful for studying inner products between conformal

blocks that appear in inversion formulae [90–93]. By integrating weight-shifting operators

by parts, one can reduce inversion formulae for spinning operators to inversion formulae

for scalars. In particular, one can express 6j symbols for arbitrary generalized Verma

modules of the conformal group in terms of 6j symbols for four scalar (and two STT)

representations. We pursue this idea in more detail in [126].

A related idea is “spinning-down” a crossing equation: by applying spin-lowering oper-

ators to both sides of a crossing equation, we can express it in terms of a crossing equations

for scalar operators. Spinning-down may be useful in the numerical bootstrap — it could

perhaps obviate the need to explicitly compute spinning blocks.

Finally, in section 6, we discuss further applications and future directions. We give

several details and examples in the appendices.

2 Weight-shifting operators

2.1 Finite-dimensional conformal representations

Let W be a finite-dimensional irreducible representation of SO(d+ 1, 1). We can think of

W in two different ways. Firstly, W is a vector space with basis eA (A = 1, . . . , dimW ),

in which the action of the conformal group is given by

g · eA = DB
A(g)eB, (2.1)

where DB
A(g) are representation matrices.

Secondly, W is the conformal representation of a (very) degenerate primary operator

wa(x). Under the subgroup SO(1, 1)× SO(d) ⊂ SO(d+ 1, 1) generated by dilatations and

rotations, W decomposes into a direct sum7

W →
j⊕

i=−j

(Wi)i, j ∈ 1

2
N. (2.2)

Here, (ρ)∆ denotes a representation of SO(1, 1) × SO(d) with dimension ∆ and SO(d)

representation ρ. The dimensions in the decomposition (2.2) are integer-spaced and must

6These identities can also be understood using techniques from integrability [120–122].
7j is equal to the sum of all Dynkin labels of W , with spinor labels counted with multiplicity 1

2
, which

is the same as the length of the first row of the SO(d+ 1, 1) Young diagram for W .
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be invariant under the Weyl reflection ∆ → −∆, which implies that they are integers or

half-integers.8

The lowest-dimension summand in (2.2) is spanned by the multiplet wa(0) which has

scaling dimension −j and carries an index a for the SO(d) representation W−j (which is

always irreducible). Because it has the lowest dimension in W , it is annihilated by Kµ and

thus is a primary. The position-dependent operator wa(x) = ex·Pwa(0) is a polynomial in

x of degree 2j because the representation W contains only 2j +1 levels of descendants. In

other words, almost all descendants of wa(x) are null and this is reflected in the fact that

wa(x) satisfies a particular generalization of the conformal Killing equation that admits

only polynomial solutions.

We can relate these two pictures by expanding wa(x) in our basis

wa(x) = wa
A(x)e

A. (2.3)

The coefficients in this expansion wa
A(x) are conformal Killing (spin-)tensors. As an exam-

ple, consider the adjoint representation of the conformal group. Under SO(1, 1)×SO(d),

it decomposes as (here and throughout, “•” denotes the trivial representation)

→ ( )−1 ⊕ (• ⊕ )0 ⊕ ( )1 (2.4)

The operator wµ(x) is thus a vector with dimension −1. A basis for W = is given by

eA ∈ {Kµ, D,Mµν , Pµ}, and the coefficients wµ
A(x) in this basis are the usual conformal

Killing vectors on R
d,

wµ(x) = Kµ − 2xµD + (xρδ
µ
ν − xνδ

µ
ρ )M

νρ + (2xµxν − x2δµν )P
ν . (2.5)

In this case the differential equation satisfied by wµ(x) is the usual conformal Killing

equation,

∂µwν(x) + ∂νwµ(x)− trace = 0. (2.6)

2.2 Tensor products with finite-dimensional representations

Consider a primary operator O with SO(1, 1) × SO(d) representation (ρ)∆ for generic ∆.

The conformal multiplet of O is a generalized Verma module which we denote V∆,ρ.
9 Under

a conformal transformation x′ = g(x), O transforms in the usual way10

g · Oa(x) = Ω(x′)∆ρab(R(x
′)−1)Ob(x′),

Ω(x′)Rµ
ν(x

′) =
∂x′µ

∂xν
, (2.7)

where Rµ
ν ∈ SO(d) and ρab(R

−1) is the action of R−1 in the representation ρ.

8In general this Weyl reflection also acts non-trivially on the SO(d) representations.
9Recall that a generalized Verma module (also called a parabolic Verma module) is roughly-speaking

obtained by starting with a finite-dimensional representation of a subgroup (in this case SO(1, 1)× SO(d))

and acting with arbitrary products of lowering operators (in this case the momentum generators Pµ). See,

e.g. [127]. This is the usual construction of long multiplets in conformal field theory.
10When we think of Oa(x) as an operator on a Hilbert space, then g · Oa(x) means UgO

a(x)U−1
g , where

Ug is the unitary operator implementing g. Equation (2.7) should thus be understood as defining the

action of g on the value O(x) rather than the function O.
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We would like to understand the decomposition of the tensor product

W ⊗ V∆,ρ, (2.8)

when W is finite-dimensional. This is equivalent to finding primary operators built out

of wa(x) and Ob(x). Formally, we must take an OPE between wa(x) and Ob(x), treating

them as operators in decoupled theories.11 The simplest primary in the OPE is

wa(0)⊗Ob(0), (2.9)

which is primary because it vanishes under the action of the special conformal generator

1 ⊗ Kµ + Kµ ⊗ 1. This particular state is not generally in an irreducible representation

of SO(d). Decomposing it further, we obtain primary states in irreducible representations

λ ∈W−j ⊗ ρ of SO(d) and with scaling dimensions ∆ − j.

To find the other primaries in the OPE, we can use the following trick. Define M =

W ⊗ V∆,ρ and consider the factor space M ′ =M/(⊕µPµM), i.e. treat all total derivatives

in M ′ as zero. Then any two states in M differing by a descendant will be equal in M ′. As

we show in appendix B, for generic ∆ the tensor product M decomposes into a direct sum

of simple generalized Verma modules, and in this case it is easy to see that the non-zero

states in M ′ are in one-to-one correspondence with the primary states in M .

We can easily find a basis for M ′: given any expression of the form ∂ · · · ∂wa(0) ⊗
∂ · · · ∂O(0), we can “integrate by parts” and move all the derivatives to act on w. Thus a

basis for M ′ is given by the non-trivial states of the form12

∂µ1 · · · ∂µmw
a(0)⊗Ob(0). (2.10)

Note that because w has a finite number of non-zero descendants, M ′ is finite-dimensional.

To find the primaries inM corresponding to this basis, we need to add total derivatives

with the same scaling dimension to the above basis elements. This leads to the following

ansatz with some undetermined coefficients ck,

c1∂µ1 · · · ∂µmw
a(0)⊗Ob(0) + c2∂µ1 · · · ∂µm−1w

a(0)⊗ ∂µmOb(0) + . . . . (2.11)

After projecting onto an irreducible SO(d) representation λ ∈ W−j+m ⊗ ρ, we obtain an

ansatz for a primary in representation (λ)∆−j+m. We can fix the coefficients ck up to an

overall normalization by requiring that the state (2.11) is annihilated by 1⊗Kµ +Kµ ⊗ 1.

In this way, we find a primary operator of scaling dimension ∆+i for each of the irreducible

components in Wi ⊗ ρ and every i = −j, . . . , j.
It is not hard to confirm that these primaries account for all the states in W ⊗ V∆,ρ

by checking that the SO(1, 1)× SO(d) characters agree. We thus conclude

W ⊗ V∆,ρ =

j⊕

i=−j

⊕

λ∈Wi⊗ρ

V∆+i,λ, (generic ∆). (2.12)

11We are not assuming that wa(x) is an operator in a physical theory — it is simply a mathematical

object that serves as a useful tool for understanding consequences of conformal symmetry.
12If Ob(0) had null descendants (for example, if it itself were the primary of a finite-dimensional repre-

sentation), it would be possible that some of these states are total derivatives and thus vanish in M ′. Since

we assume that ∆ is generic, this does not happen.

– 5 –
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As a simple example, consider the case where W = is the vector representation of

SO(d+ 1, 1) and ρ is the trivial representation of SO(d). We have the decomposition

→ (•)−1 ⊕ ( )0 ⊕ (•)+1, (2.13)

so the primary state of W is the scalar w(0) of scaling dimension −1. We thus find

⊗ V∆,• = V∆−1,• ⊕ V∆, ⊕ V∆+1,•. (2.14)

According to the above discussion, we have the following ansatz for the primaries in this

decomposition

V∆−1,• : φ−(0) = w(0)⊗O(0),

V∆, : Vµ(0) = t1∂µw(0)⊗O(0) + t2w(0)⊗ ∂µO(0),

V∆+1,• : φ+(0) = b1∂
2w(0)⊗O(0) + b2∂µw(0)⊗ ∂µO(0) + b3w(0)⊗ ∂2O(0). (2.15)

Recalling that ∂µ is the same as the action of Pµ and using the conformal algebra in

appendix A, we find

(1⊗Kµ +Kµ ⊗ 1) · φ−(0) = 0,

(1⊗Kµ +Kµ ⊗ 1) · Vν(0) = 2δµν(∆t2 − t1)w(0)⊗O(0),

(1⊗Kµ +Kµ ⊗ 1) · φ+(0) = 2(∆b2 − db1)∂µw(0)⊗O(0)

+ 2 (b3 (2∆− d+ 2)− b2)w(0)⊗ ∂µO(0). (2.16)

It follows that these states are primary if

t1 = ∆t2,

b1 =
∆b3
d

(2∆− d+ 2), b2 = b3(2∆− d+ 2). (2.17)

We must assume that ∆ is generic because e.g. for ∆ = 1, Vµ becomes a primary descendant

of φ−, Vµ = ∂µφ−. In this special case, there are not sufficiently many primaries to account

for all states of dimension ∆. In particular there is no combination of descendants which

gives ∂µw(0)⊗O(0), and consequently ⊗V1,• does not decompose into generalized Verma

modules of primary operators. These subtleties will not be important in this work, and we

will always assume ∆ to be generic.

2.3 Covariant differential operators from tensor products

Consider now the primary state (2.11), and let us write it in the form

O′c(x) = eA ⊗ (DA)
c
bOb(x), (2.18)

where the differential operators DA are defined by13

(DA)
c
bOb(x) ≡ πcabµ1···µm

(
c1∂

µ1 · · · ∂µmwa
A(x)Ob(x)

+c2∂
µ1 · · · ∂µm−1wa

A(x)∂
µmOb(x) + . . .

)
. (2.19)

13Note that DA depends explicitly on x. This is because Pµ acts non-trivially on W and thus these

operators are translation-covariant rather than translation-invariant.
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Again, the ci are chosen so that O′c(0) is a primary transforming in the representation

(λ)∆′ . Here, πcabµ1···µm
is a projector onto the SO(d) representation λ ∈W−j+m ⊗ ρ.

By construction, O′ transforms under a conformal transformation as

g · O′c(x) = Ω(x′)∆
′

λcd(R
−1(x′))O′d(x′). (2.20)

On the other hand, we also have

g · O′c(x) = g · eA ⊗ g · (DAO)c(x)

= DB
A(g)eB ⊗ g · (DAO)c(x). (2.21)

It follows that

g · (DAO)c(x) = Ω(x′)∆
′

λcd(R
−1(x′))DA

B(g−1)(DBO)d(x′). (2.22)

In other words, DA takes a primary operator that transforms in (ρ)∆ to a primary opera-

tor that transforms in (λ)∆′ , up to the additional action of the finite-dimensional matrix

DB
A(g−1). We summarize this situation by writing

DA : [∆, ρ] → [∆′, λ]. (2.23)

Here, for all practical purposes [∆, ρ] is just a convenient notation. We give it a precise

meaning in appendix B.

Notice that DAO has a lowered index for W , so it transforms in the same way as

the basis elements of the dual representation W ∗. For this reason, we will say that DA is

associated with W ∗. Similarly, exchanging W and W ∗, DA is associated with W . This

convention will be useful when we discuss the action of differential operators on tensor

structures in section 3.1.

This general construction shows that there exists a huge variety of conformally covari-

ant differential operators, corresponding to tensor products with different finite-dimensional

representations. In fact, as explained in appendix B, all conformally-covariant differential

operators acting on generic Verma modules arise in this way. For reference, let us summa-

rize this result in the following

Theorem 2.1. The conformally-covariant operators DA : [∆, ρ] → [∆ − i, λ] associated

with W are (for generic ∆) in one-to-one correspondence with the irreducible components

in the tensor product decomposition

W ∗ ⊗ V∆,ρ =

j⊕

i=−j

⊕

λ∈(Wi)∗⊗ρ

V∆−i,λ. (2.24)

When the Dynkin indices of ρ are sufficiently large, Brauer’s formula (also known as

Klimyk’s rule) [128, 129] implies that the tensor products simplify, giving

W ∗ ⊗ V∆,ρ =
⊕

(δ,π)∈Π(W ∗)

V∆+δ,ρ+π. (2.25)
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Here, Π(W ∗) denotes the weights of W ∗ (with multiplicity). A consequence of (2.25) is

that for generic ∆, ρ, the number of differential operators acting on [∆, ρ] and transforming

in W is equal to dim(W ∗). Further, each operator is labeled by a weight vector of W ∗ (i.e.

an element of W ∗ which is an eigenvector of the Cartan subalgebra) and shifts (∆, ρ) by

that weight. For this reason, we call the DA weight-shifting operators.

One of the most important weight-shifting operators comes from the adjoint represen-

tation of the conformal group, W = . The tensor product ⊗ V∆,ρ always contains

V∆,ρ itself as a factor. The corresponding DA : [∆, ρ] → [∆, ρ] are the usual differential

operators generating the action of the conformal algebra (see e.g. [130]),

DA = wA · ∂ +
∆

d
(∂ · wA)− 1

2
(∂µwAν)Sµν , (2.26)

where wAµ are conformal Killing vectors (2.5), and Sµν are the generators of SO(d) rotations

in the representation ρ.

2.4 Algebra of weight-shifting operators

What is the algebra of weight-shifting operators?14 Before answering this question, let us

rephrase our construction in a slightly different language. Recall from (2.18) and (2.19)

that we identify primaries in W ⊗ V∆,ρ of the form

O′c(0) = eA ⊗ (DA)
c
bOb(0). (2.27)

Note that O′c(0) ∈ W ⊗ V∆,ρ but it transforms in the same way as the primary of V∆′,λ.

This means that (2.27) gives a homomorphism

Φ : V∆′,λ →W ⊗ V∆,ρ, (2.28)

defined by mapping the primary of V∆′,λ to the right hand side of (2.27). The action of Φ

on descendants follows by acting with Pµ ⊗ 1 + 1⊗ Pµ on (2.27).

Composition of differential operators is equivalent to composition of the corresponding

homomorphisms in the opposite order. Specifically, suppose

Φ1 : V∆′,ρ′ →W1 ⊗ V∆,ρ,

Φ2 : V∆′′,ρ′′ →W2 ⊗ V∆′,ρ′ . (2.29)

Then

(1⊗ Φ1) ◦ Φ2 : V∆′′,ρ′′ →W2 ⊗W1 ⊗ V∆,ρ

(1⊗ Φ1)(Φ2(O′′(x))) = eB2 ⊗ eA1 ⊗D2BD1AO(x). (2.30)

Thus, to find the algebra of weight-shifting operators, we must express the right-hand side

of (2.30) in terms of homomorphisms associated to the irreducible factors of W2 ⊗W1.

14The results of this section are not used in the rest of this work. The reader should feel free to skip this

section on first reading.
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As we will see in the next section, the embedding formalism lets us define weight-

shifting operators that make sense even when ρ is a generic (i.e. not necessarily dominant)

weight. For example, the spin ℓ of a symmetric traceless tensor operator can be written

as Z · ∂
∂Z , where Z is a polarization vector. The operator Z · ∂

∂Z is then well-defined when

acting on functions of non-integer homogeneity in Z.

The correct way to understand differential operators with generic weights is to con-

sider homomorphisms between Verma modules as opposed to generalized Verma modules.

Consider the triangular decomposition

g = g− ⊕ h⊕ g+, (2.31)

where h is the Cartan subalgebra, and g± are generated by positive/negative roots of g.

Let Mλ be the Verma module of g with highest-weight λ, and denote the corresponding

highest-weight vector by xλ.
15

Let W be a finite-dimensional representation of g. For each weight-vector16 w ∈ W ,

we can construct a g-homomorphism

Φw
λ :Mλ →W ⊗Mµ, µ = λ− wtw, (2.32)

such that

Φw
λ (xλ) = w ⊗ xµ + . . . . (2.33)

Here, “. . . ” is a sum of terms of the form

eα1 · · · eαk
w ⊗ e−αk+1

· · · e−αmxµ, (2.34)

where e±α ∈ g± are raising/lowering operators. Their coefficients are fixed by demanding

that Φw
λ (xλ) is g+-primary, i.e. that it is killed by 1 ⊗ eα + eα ⊗ 1 for all positive roots α.

Finally, the action of Φw
λ on g−-descendants of xλ is fixed by g-invariance. The construction

of Φw
λ is completely analogous to the construction of Φ in (2.28) above. The vector (2.33)

is the analog of the primary state (2.11).

Weight-shifting operators in the embedding space are in one-to-one correspondence

with the homomorphisms Φw
λ . In particular, they are labeled by weight-vectors of W . This

is consistent with our argument based on Brauer’s formula in the previous section.

The homomorphisms (2.33) have been studied in [131]. Given two finite-dimensional

representations V,W with weight-vectors v ∈ V , w ∈W , they satisfy the algebra

(1⊗ Φw
λ−wt v) ◦ Φv

λ = Φ
J(λ)(v⊗w)
λ , (2.35)

where

J(λ) ∈ Aut(V ⊗W ) (2.36)

15When λ = (∆, ρ) with ρ a dominant weight of so(d), then Mλ is reducible and contains the generalized

Verma module V∆,ρ as a subfactor.
16Not to be confused with the conformal Killing tensors wA from the previous section.
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is an invertible operator called the fusion operator. The fusion operator thus completely

encodes the algebra of weight-shifting operators. It satisfies a number of interesting prop-

erties, and is closely related to solutions of the Yang-Baxter equations and integrabil-

ity [131]. Most importantly for our discussion, the Arnaudon-Buffenoir-Ragoucy-Roche

equation gives an explicit expression for J(λ) in terms of generators of g [132]. In princi-

ple, this answers the question posed at the beginning of this section. In practice, we will

not need such a general answer in this work. We leave further exploration of the fusion

operator and its applications to the future.

Another point of view on the algebra of weight-shifting operators is given by a special

kind of 6j symbols, as we explain in appendix D.

2.5 Weight-shifting operators in the embedding space

Our construction of weight-shifting operators is extremely general, but it is inconvenient

for computations because it is cumbersome to find the primary states O′. For practical

computations, we can use the embedding formalism [35, 69, 71, 74, 111–117], where the

conformal group acts linearly. The tradeoff is that coordinates in the embedding space

satisfy constraints and gauge redundancies, and we must take care to find differential

operators respecting these conditions. The above construction tells us precisely when this

should be possible.

The formalism described in [69] makes it easy to study operators in tensor representa-

tions of SO(d). Symmetric traceless tensors (STTs) of SO(d) are particularly simple. We

will describe this case first in order to make contact with the examples above. However,

our primary interest is in general representations, and for these it will be useful to use

specialized formalisms for different spacetime dimensions.

2.5.1 General dimensions

In the embedding formalism, the conformal compactification of Rd is realized as the pro-

jective null cone in R
d+1,1. We take the metric on R

d+1,1 to be

X2 = ηmnX
mXn = −X+X− +

d∑

µ=1

XµX
µ. (2.37)

A primary scalar O(x) lifts to a function on the null cone O(X) with homogeneity

O(λX) = λ−∆OO(X). (2.38)

It is convenient to arbitrarily extend O(X) outside the null cone, introducing the gauge

redundancy

O(X) ∼ O(X) +X2Λ(X). (2.39)

A tensor operator Oµ1···µℓ(X) lifts to a tensor Om1···mℓ(X) in the embedding space, subject

to gauge redundancies and transverseness

Om1···mℓ(X) ∼ Om1···mℓ(X) +XmiΛm1···m̂i···mℓ(X), (2.40)

XmiOm1···mi···mℓ(X) = 0, (2.41)
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in addition to the homogeneity condition (2.38). For symmetric tensors, it is useful to

introduce a polarization vector Zm and define

O(X,Z) ≡ Om1···mℓ(X)Zm1 · · ·Zmℓ
. (2.42)

Because of (2.40), we must take Z · X = 0, and because of (2.41), we must identify

Z ∼ Z + λX. Finally, when Om1···mℓ is traceless, we can impose Z2 = 0.

We can summarize these constraints as follows. Let I be the ideal generated by {X2, X ·
Z,Z2}, and let R be the ring of functions of (X,Z) invariant under Z → Z+λX. Symmetric

tensor operators are elements of R/(R ∩ I) which are homogeneous in both X and Z. For

a differential operator in X,Z to be well-defined on this space, it must take R → R and

also preserve the ideal R ∩ I.
The construction in section 2.3 tells us when such operators should exist. For example,

consider the case where W = is the vector representation of SO(d + 1, 1) and O(X,Z)

has spin ℓ and dimension ∆. Given the decomposition (2.13), we should be able to find

differential operators with a vector index in the embedding space, taking17

D−0
m : [∆, ℓ] → [∆− 1, ℓ],

D0−
m : [∆, ℓ] → [∆, ℓ− 1],

D0+
m : [∆, ℓ] → [∆, ℓ+ 1],

D+0
m : [∆, ℓ] → [∆ + 1, ℓ]. (2.43)

Our strategy for finding them is to start with a suitable ansatz and fix the coefficients by

requiring that Dm preserve R and R ∩ I. (We give more details in appendix C.) We find

D−0
m = Xm,

D0−
m =

(
(∆− d+ 2− ℓ)δnm +Xm

∂

∂Xn

)(
(d− 4 + 2ℓ)

∂

∂Zn
− Zn

∂2

∂Z2

)
,

D0+
m = (ℓ+∆)Zm +XmZ · ∂

∂X
,

D+0
m = c1

∂

∂Xm
+ c2Xm

∂2

∂X2
+ c3Zm

∂2

∂Z · ∂X + c4Z · ∂

∂X

∂

∂Zm

+ c5XmZ · ∂

∂X

∂2

∂Z · ∂X + c6ZmZ · ∂

∂X

∂2

∂Z2
+ c7Xm

(
Z · ∂

∂X

)2 ∂2

∂Z2
, (2.44)

where the coefficients ci are given in appendix C. For now, we simply quote

c1
c2

= −2

(
d

2
− 1−∆

)
. (2.45)

17There will also exist differential operators producing other representations in the tensor product of the

vector and spin-ℓ representations of SO(d) (generically there is also the hook Young diagram). According

to (2.25), when acting on general (non-STT) representations generically there are d + 2 operators corre-

sponding to the vector representation. However, to describe these we would need a formalism with more

polarization vectors as in [133].
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Thus, when acting on scalar operators O(X), D+0
m is proportional to the familiar Todorov

operator [134]

D+0
m ∝

(
d

2
+X · ∂

∂X

)
∂

∂Xm
− 1

2
Xm

∂2

∂X2
+O

(
∂

∂Z

)
. (2.46)

This simplified version of D+0
m (together with D−0

m ) appears in tractor calculus, where it is

known as Thomas operator [106, 107].

The overall normalization of our differential operators is a convention. It is useful to

choose conventions where the coefficients ci are polynomials in ∆, ℓ of the smallest possible

degree. If we like, factors of ∆, ℓ can then be replaced with

∆ = −X · ∂

∂X
, ℓ = Z · ∂

∂Z
, (2.47)

so that D can be expressed without reference to the operator it acts on.

Note that when acting on scalar O there a unique non-vanishing operator of the lowest

scaling dimension, D−0
m . According to theorem 2.1, this is true in general. From the

discussion in section 2.2 it follows that this operator should correspond to multiplication

by the conformal Killing tensor wa
A(x) as in (2.9). This gives a general way of finding

wa
A(x) from the embedding space formalism.

For example, one can check that the primary operator w(x) corresponding to the vector

representation of the conformal group is given by

w(x) = wm(x)em = emD−0
m = Xmem = e+ + xµeµ + x2e−, (2.48)

where e+, e− and eµ form the light cone coordinate basis of the vector representation. It

solves the equation

∂µ∂νw(x)− trace = 0. (2.49)

Let us now revisit the example from section 2.2. Let O(x) be a scalar primary of dimension

∆, as in section 2.2. We then compute18

em ⊗D−0
m O(x) = w(x)⊗O(x),

em ⊗D0+
m O(x) = zµ (∆∂µw(x)⊗O(x) + w(x)⊗ ∂µO(x)) ,

em ⊗D+0
m O(x) =

c1∆

d
∂2w(x)⊗O(x) + c1∂µw(x)⊗ ∂µO(x) + c2w(x)⊗ ∂2O(x), (2.50)

where ci are as in (2.44). It is easy to see that this is consistent with (2.15) and (2.17).

Naturally, em ⊗D0−
m O(x) vanishes when O(x) is a scalar.

18Recall that on the Poincare section we have X = (1, x2, xµ) and Z = (0, 2(x · z), zµ) = zµ∂µX where

the coordinates are ordered as (X+, X−, Xµ).
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2.5.2 1 dimension

To find the most general conformally-covariant differential operators, it is useful to employ

a formalism specialized to the given spacetime dimension. The simplest case is 1-dimension,

where the conformal group is Spin(2, 1).19 The Lorentz group is Spin(1) = Z2 (see below)

and the primary operators are labeled by a scaling dimension ∆ and a spin s = ±. We

will denote the corresponding Verma modules by V∆,s. Because the global 2-dimensional

conformal group is a product of 1-dimensional groups, the results of this section can also

be applied in 2-dimensions.

Note that the double cover of the conformal group is Spin(2, 1) ≃ SL(2,R). It acts by

Möbius transformations,

(
a b

c d

)
: x→ ax+ b

cx+ d
, ad− bc = 1. (2.51)

The subgroup which fixes the origin is given by b = 0. We can exclude special conformal

transformations by setting c = 0. The remaining subgroup is a product of dilatations R+

parametrized by |a| and the Lorentz group Z2 parametrized by the sign of a. This is why

we say that Spin(1) = Z2.
20

The vector representation of Spin(2, 1) is equivalent to the symmetric square of the

spinor represenation, and in the embedding formalism we can define

X(αβ) = γm(αβ)Xm, γm(αβ) = Ωαα′(γm)α
′

β . (2.52)

In this notation the constraint X2 = 0 can be solved as

X(αβ) = χαχβ , (2.53)

where χα is a real spinor in the fundamental representation of SL(2,R). Note that χ is

odd under the center of SL(2,R). This parametrization has the advantage that now the

embedding-space operators can be taken to depend on χα,

O(λχ) = λ−2∆OO(χ), λ > 0. (2.54)

Notice that both χ and −χ correspond to the same X. The correct transformation property

of O(χ) under this transformation comes from the Z2-spin,

O(−χ) = sO(χ). (2.55)

This property will be important for the construction of tensor structures in section 3.4.1.

The embedding formalism in terms of χ is useful because the conformal group still

acts linearly, but now there is no analogue of the ideal I which needs to be preserved by

19We use the conventions of [35] for 2+1 dimensions.
20The fields which have spin s = + are the usual scalars on the circle. The fields which have s = − are

anti-periodic fermions.
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the embedding space differential operators. We have the following relation between χ and

X derivatives,

∂

∂χα
= (γm)βαχβ

∂

∂Xm
. (2.56)

Using this relation in an arbitrary differential operator written in terms of χ will automat-

ically produce the terms necessary to preserve the ideal I in X-space. For example, we can

recover the 1-dimensional version of the operator D+0
m (cf. (2.46)),

(γm)(αβ)
∂

∂χα

∂

∂χβ
∝
(
X · ∂

∂X
− 1

2

)
∂

∂Xm
− 1

2
Xm ∂2

∂X2
. (2.57)

A general embedding space differential operator is an arbitrary combination of χα and

∂α = ∂
∂χα . The combinations irreducible under Spin(2, 1) are

Dj,i
α1...αj

= χ(α1
· · ·χαj−i∂αj−i+1 · · · ∂α2j), i = −j, . . . j. (2.58)

Of course, we can also add combinations of χα∂
α, but these simply act as scalars due

to (2.54), so we can ignore this possibility. By construction, this differential operator

transforms in the spin-j representation of Spin(2, 1), changes the scaling dimension by i,

and exchanges bosons with fermions if j is half-integer,

Dj,i : [∆, s] → [∆ + i, (−1)2js]. (2.59)

It is easy to find the group-theoretic interpretation for Dj,i. Indeed, the spin-j repre-

sentation decomposes as

j →
j⊕

i=−j

((−1)2j)i, (2.60)

which means that for a generic ∆ we have the tensor product decomposition

j ⊗ V∆,s =

j⊕

i=−j

V∆+i,(−1)2js. (2.61)

Thus, we find explicitly the expected one-to-one correspondence between the differential

operators Dj,i and the terms in this tensor product. We also see explicitly that the dif-

ferential operators are labeled by the weights of the spin-j representation, in accordance

with (2.25).

Let us see what our operators look like in x-coordinate space. It is easy to check that

the usual Poincare section X+ = 1 corresponds to χ1 = x, χ2 = 1.21 We can therefore

write the embedding space operator in terms of the x-space operator as (multiplying also

by signχ2 for s = −)

O(χ) =
1

|χ2|2∆O
(
χ1

χ2

)
. (2.62)

21And also to minus these values, since there is a redundancy χ ∼ −χ.
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We therefore see that χ1 and χ2 derivatives act as

∂1 =
∂

∂χ1
=

∂

∂x
, (2.63)

∂2 =
∂

∂χ2
= −x ∂

∂x
− 2∆. (2.64)

These formulas are valid for higher order derivatives if we follow the convention that ∆ in

the last formula is increased by 1
2 by every ∂α.

2.5.3 3 dimensions

In 3-dimensions, we use the formalism and conventions of [35].22 The conformal group is

SO(3, 2), which has Sp(4,R) as a double cover. The most general Lorentz representation

is the 2ℓ-th symmetric power of the spinor representation of SO(2, 1), where ℓ ∈ 1
2N. An

operator Oα1···α2ℓ(x) lifts to an embedding space operator Oa1···a2ℓ(X) with 2ℓ indices for

the fundamental of Sp(4,R), satisfying the homogeneity property

Oa1···a2ℓ(λX) = λ−∆O−ℓOa1···a2ℓ(X). (2.65)

It is useful to introduce a polarization spinor Sa, and define

O(X,S) ≡ Sa1 · · ·Sa2ℓOa1···a2ℓ(X). (2.66)

The polarization spinors are constrained to satisfy

SaX
a
b = 0, where Xa

b ≡ Xm(Γm)ab, (2.67)

where (Γm)ab are generators of the Clifford algebra of SO(3, 2). For convenience, we also

introduce the notation

Xab = ΩacX
c
b, Xab = Xa

cΩ
cb, (2.68)

where Ωac = Ωac is the symplectic form for Sp(4,R).

Arbitrary finite-dimensional representations of SO(3, 2) can be obtained from tensors

of the spinor representation S. Thus, all the weight-shifting operators in 3d can be obtained

from products of weight-shifting operators for S. Under SO(3, 2) → SO(1, 1) × SO(2, 1),

we have the decomposition

S → (S)− 1
2
⊕ (S) 1

2
. (2.69)

Thus, we should be able to find differential operators with a fundamental index for Sp(4,R)

that take

D±±
a : [∆, ℓ] →

[
∆± 1

2
, ℓ± 1

2

]
. (2.70)

22In particular, we use Lorentzian signature in this section.
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Note that again the differential operators are labeled by weights of S, consistently

with (2.25). They are given by

D−+
a = Sa

D−−
a = Xab

∂

∂Sb

D++
a = 2(∆− 1)(∂X)abΩ

bcSc + Sa

(
SbΩ

bc(∂X)cd
∂

∂Sd

)

D+−
a = 4(∆− 1)(1 + ℓ−∆)Ωab

∂

∂Sb
− 2(1 + ℓ−∆)Xab(∂X)bcΩcd

∂

∂Sd

− Sa

(
∂

∂Sc
Xcd(∂X)deΩef

∂

∂Sf

)
. (2.71)

We have determined the coefficients by demanding that these operators preserve the ideal

generated by X2 and SaX
a
b. The differential operators (2.71) are analogous to χα and

∂
∂χα in the 1-dimensional case. By taking products of them, we can build weight-shifting

operators in arbitrary representations of SO(3, 2), analogous to the 1d operators (2.58).

See also appendix D.

2.5.4 4 dimensions

In 4d, we can use the embedding space formalism of [71, 75–77, 135, 136]. Our conventions

are those of [75]. A general Lorentz representation is now labeled by two weights (ℓ, ℓ),

where ℓ, ℓ ∈ Z≥0. (Spin-ℓ symmetric traceless tensor representations correspond to the case

ℓ = ℓ.) An operator Oα1···αℓα̇1···α̇ℓ(x) lifts to an embedding space operator

O(X,S, S) = Sa1 · · ·SaℓS
b1 · · ·SbℓOa1···aℓ

b1···bℓ
(X), (2.72)

where we have introduced polarization spinors Sa, S
a
transforming as left- and right-handed

spinors of SO(4, 2), or equivalently fundamentals and anti-fundamentals of SU(2, 2). The

polarization spinors satisfy

SaX
ab

= 0, S
a
Xab = 0, S

a
Sa = 0, (2.73)

where23

Xab ≡ Σm
abXm, X

ab ≡ Σ
ab
mX

m. (2.74)

Let us also introduce the shorthand notation

∂S,a ≡ ∂

∂S
a , ∂aS ≡ ∂

∂Sa
,

∂ab ≡ Σm
ab

∂

∂Xm
, ∂

ab ≡ Σ
mab ∂

∂Xm
. (2.75)

General representations of the conformal group SO(4, 2) can be obtained by tensor-

ing with the left and right-handed spinors. Thus, our algebra of differential operators is

23Our conventions for the conformal algebra and embedding space in 4d are those of [75].
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generated by those associated with the spinor representations. To label these operators,

it is convenient to use (2.25). Let us denote the weights so that the highest weight of

the Verma module for O is (2∆, ℓ, ℓ). Then the representations S and S consist of the

following weights,

Π(S) = {(−,+, 0), (−,−, 0), (+, 0,+), (+, 0,−)}, (2.76)

Π(S) = {(−, 0,+), (−, 0,−), (+,+, 0), (+,−, 0)}. (2.77)

Note that basis vectors for S are ea (so that we can contract them with Sa) and for S the

basis vectors are ea.

According to (2.25), the operators Da associated with S are then labeled by the

weights (2.77) of S∗ = S, and the operators Da associated with S are labeled by the

weights (2.76) of S∗
= S. These operators have the following explicit expressions,

Da
−0+ ≡ S

a
,

Da
−0− ≡ X

ab
∂S,b,

Da
++0 ≡ a∂

ab
Sb + S

a
(S∂∂S),

Da
+−0 ≡ bc∂aS + bS

a
(∂S∂S) + cXbc∂

ab
∂cS − S

a
(Xbc∂

bd
∂cS∂S,d),

D−+0
a ≡ Sa,

D−−0
a ≡ Xab∂

b
S ,

D+0+
a ≡ a∂abS

b
+ Sa(S∂∂S),

D+0−
a ≡ bc∂S,a + bSa(∂S∂S) + cX

bc
∂ab∂S,c − Sa(X

bc
∂bd∂S,c∂

d
S), (2.78)

where

a = 1−∆+
ℓ

2
− ℓ

2
, a = 1−∆− ℓ

2
+
ℓ

2
,

b = 2(ℓ+ 1), b = 2(ℓ+ 1),

c = −2 + ∆− ℓ+ ℓ

2
. (2.79)

The coefficients above come from requiring that the operators preserve the ideal generated

by the relations (2.73), together with X2 = 0. We have added these operators to the

CFTs4D Mathematica package described in [75].

3 Crossing for differential operators

The results of section 2 give us a large variety of conformally-covariant differential opera-

tors. In the present section we consider their action on conformally-invariant24 correlation

functions of local operators. The result of such an action is a conformally-covariant n-point

24We are making a distinction between conformally-covariant and conformally-invariant objects. For us,

the former carry finite-dimensional SO(d+ 1, 1) labels, whereas the latter do not.
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function, which can also be interpreted as a conformally-invariant (n + 1)-point function

that includes the degenerate field wa(x). We will first describe the structure of such cor-

relation functions and then establish a convenient graphical notation for the action of the

differential operators. This will help us elucidate a rich structure of such actions at the

end of this section.

3.1 Conformally-covariant tensor structures

Consider an n-point correlation function with an additional formal insertion of an element

eA of the finite-dimensional representation W of the conformal group SO(d+ 1, 1),

〈Oa1
1 (x1) · · · Oan

n (xn)〉A ≡ 〈Oa1
1 (x1) · · · Oan

n (xn)e
A〉. (3.1)

Note that this is a purely formal construct, i.e. this expression is simply a shorthand for a

function of n points which carries indices ai, A, and has transformation properties identical

to those satisfied by a correlation function under the assumption that

Uge
AU−1

g = g · eA, (3.2)

and g · eA is defined by (2.1).

As discussed in section 2.1, we can also view (3.1) as a (n + 1)-point conformally-

invariant correlation function with the primary wb(y) of W ,

〈Oa1
1 (x1) · · · Oan

n (xn)w
b(y)〉 ≡ 〈Oa1

1 (x1) · · · Oan
n (xn)e

A〉wb
A(y), (3.3)

subject to the conformal Killing differential equation satisfied by wb(y). This interpretation

will be useful to us later on. In this section we stick with (3.1).

Similarly to the usual conformally-invariant correlation functions, we have an expan-

sion in tensor structures,

〈Oa1
1 (x1) · · · Oan

n (xn)e
A〉 = T

a1...an,A
I (xi)g

I(u), (3.4)

which now carry the SO(d+ 1, 1) index A. Here u are the conformal cross-ratios of points

xi. The structures T
a1...an,A can be constructed using embedding space methods, since

there one explicitly works with objects which transform in fundamental representations of

SO(d+1, 1). In this subsection we are going to classify such tensor structures by extending

the conformal frame approach of [137, 138].

The basic idea is to maximally use conformal symmetry to bring as many xi as possible

to some standard positions x′i. The resulting configuration x′i will be invariant under the

subgroup Gn ⊂ SO(d+ 1, 1) of the conformal group that stabilizes n points. In particular

Gn =

{
SO(1, 1)× SO(d) n = 2,

SO(d+ 2−m) n ≥ 3,
(3.5)
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where m = min(n, d+ 2). The tensor T(x′i) transforms as an element in25

W ⊗
n⊗

k=1

(ρk)∆k
, (3.6)

and by construction is invariant under Gn. It is easy to check [138] that this is the only

restriction for the tensor Ta1...an,A(x′i) and the conformally-covariant tensor structures are

then in one-to-one correspondence with the invariants of Gn,
26

(
W ⊗

n⊗

k=1

(ρk)∆k

)Gn

. (3.7)

In practice we always use the decomposition (2.2) in this formula and identify the tensor

structures with

j⊕

i=−j

(
(Wi)i ⊗

n⊗

k=1

(ρk)∆k

)Gn

. (3.8)

3.2 Tensor structures and diagrams

Let us work through some examples of covariant n-point functions and the counting

rule (3.8). At the same time, we will introduce a useful diagrammatic language for de-

scribing tensor structures and differential operators.

3.2.1 Invariant two-point functions

Let us denote a conformally-invariant two-point structure by

〈O1O2〉 = O1 O2
. (3.9)

It is well-known that there is at most one such structure, but let us re-derive this fact in

the language of section 3.1, where it corresponds to the case n = 2 and W = •.
Given x1 and x2, we can apply a conformal transformation to set x1 = 0 and x2 = ∞.

Then the group G2 = SO(1, 1)×SO(d) which fixes the two points consists of dilatations and

rotations around 0. Sending the second operator to infinity has the effect that O2 effectively

changes the sign of its scaling dimension, and transforms in the reflected representation27

ρP2 under SO(d). Thus, two-point structures correspond to the G2-invariants in

(ρ1)∆1 ⊗ (ρP2 )−∆2 . (3.10)

There is at most one such invariant, which exists iff ρ1 = (ρP2 )
∗ and ∆1 = ∆2. The

dual-reflected representation, which we denote by (ρP2 )
∗ ≡ ρ†2 is the same as the complex

conjugate representation in Lorentzian signature.

25In writing a tensor product of representations of different groups, we assume that each representation

is restricted to the largest common subgroup. In (3.6), we implicitly restrict W to SO(1, 1) × SO(d) ⊂

SO(d+ 1, 1).
26The notation (ρ)H denotes the H-invariant subspace of ρ, where ρ is a representation of G and H ⊆ G.
27Given a representation ρ with generators ρµν the reflected representation is defined as ρPµν =

Pµ′

µ P ν′

ν ρµ′ν′ , where P is a spatial reflection matrix. Formally, conjugating by reflection is an outer au-

tomorphism of SO(d), and hence permutes the representations of SO(d).
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3.2.2 Differential operators

A differential operator DA : O → O′ takes a conformally-invariant structure for O to a

conformally-covariant structure for O′, or equivalently an invariant structure for O′ andW :

DA〈O · · ·〉 ∼ 〈eAO′ · · ·〉. (3.11)

We denote such a differential operator by

D(a)A = a

O

O′

W . (3.12)

The label a runs over the possible operators classified by theorem 2.1. We use a wavy line

to indicate a finite-dimensional representation.

3.2.3 Covariant two-point functions

Consider acting with a differential operator D(m)A : [∆1, ρ1] → [∆′
1, λ1] on an invariant

two-point function. In diagrammatic language, this is denoted by connecting an outgoing

arrow from the two-point function with an incoming arrow for the differential operator,

(D(m)A)ca〈Oa
1(x1)Ob

2(x2)〉 = m

O2

O′
1

W . (3.13)

The result can be interpreted as a covariant two-point structure for O′
1, O2, and W . Such

structures are counted by SO(1, 1)× SO(d)-invariants in

j/2⊕

i=−j/2

(Wi)i ⊗ (λ1)∆′
1
⊗ (ρP2 )−∆2 . (3.14)

Invariants exist whenever ∆′
1 = ∆2 − i = ∆1 − i and λ1 ∈ (Wi)

∗ ⊗ (ρP2 )
∗ = (Wi)

∗ ⊗ ρ1.
28

Note that these are exactly the conditions for the existence of DA in theorem 2.1. Thus,

the number of non-vanishing diagrams (3.13) is precisely equal to the number of tensor

structures for 〈O2O′
1e

A〉. In other words, all covariant two-point structures can be obtained

by acting with differential operators on an invariant two-point structure.

28We have assumed that ∆1 = ∆2 and ρ1 = (ρP2 )
∗ so that 〈O1O2〉 is nonvanishing.
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3.2.4 Invariant three-point functions

We denote conformally-invariant three-point structures by

〈O1O2O3〉(a) = a

O1

O2

O3
. (3.15)

The label a runs over possible tensor structures, which are classified by G3 = SO(d − 1)

singlets

(ρ1 ⊗ ρ2 ⊗ ρ3)
SO(d−1). (3.16)

A physical three-point function is a sum over tensor structures with different OPE coeffi-

cients λm,

〈O1O2O3〉 =
N3∑

m=1

λm 〈O1O2O3〉(m), (3.17)

where N3 = dim(ρ1 ⊗ ρ2 ⊗ ρ3)
SO(d−1). When there is a unique three-point structure

(N3 = 1), we often omit the index m.29

3.2.5 Covariant three-point functions

Consider now acting on an invariant three-point structure with a differential operator. Let

us begin with a three-point structure 〈O1O2O′
3〉(a), and suppose that O′

3 transforms in the

representation [∆3 + i, λ]. The label a runs over singlets in

(ρ1 ⊗ ρ2 ⊗ λ)SO(d−1). (3.18)

By theorem 2.1, we have a differential operator D(b)A : [∆3 + i, λ] → [∆3, ρ3] whenever

ρ3 ∈ (Wi)
∗ ⊗ λ ⇔ λ ∈Wi ⊗ ρ3. (3.19)

By acting with D(b)A on 〈O1O2O′
3〉(a), we can form a covariant three-point structure for

〈O1O2O3e
A〉,

(D(b)A)a3c〈Oa1
1 (x1)Oa2

2 (x2)O′c
3 (x3)〉(a) = a b

O1

O2 O3

W

O′
3

. (3.20)

29Since we never work with physical three-point functions (3.17), there is no danger of confusion.
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Let us count the number of diagrams (3.20) by summing over the allowed O′
3, a and b.

Taking into account the selection rule (3.19), we have

j∑

i=−j

∑

λ∈Wi⊗ρ3

dim (ρ1 ⊗ ρ2 ⊗ λ)SO(d−1) (3.21)

= dim




j⊕

i=−j

⊕

λ∈Wi⊗ρ3

ρ1 ⊗ ρ2 ⊗ λ




SO(d−1)

= dim




j⊕

i=−j

Wi ⊗ ρ1 ⊗ ρ2 ⊗ ρ3




SO(d−1)

.

According to (3.8), this is precisely the total number of covariant three-point structures

for 〈O1O2O3e
A〉. In other words, generically, every conformally-covariant three-point

structure can be obtained by acting with differential operators on conformally-invariant

three-point structures.

Note that according to the discussion in section 2.1 we can interpret the conformally-

covariant three-point functions as conformally-invariant four-point functions involving a

degenerate primary wa(x). Analogously, we can interpret (3.20) as conformal blocks for

these four-point functions. We have just proven a highly degenerate case of the folklore

theorem which states that the number of such conformal blocks is equal the dimension of

the space of degenerate four-point functions.30 Importantly, in our case this number is

finite. This brings us to a very powerful observation.

3.3 Crossing and 6j symbols

The diagrams (3.20) give a basis for the finite-dimensional space of covariant three-point

structures 〈O1O2O3e
A〉. However, this is not the only interesting basis. The distinguishing

feature of (3.20) is that it selects a particular operator O′
3 appearing in the O1 ×O2 OPE.

In other words, it diagonalizes the action of the Casimir (L1 + L2)
2 acting simultaneously

on O1,O2 (equivalently O3, w). However, we may wish to select an operator in a different

channel, e.g. O′
1 ∈ O2×O3. This would correspond to starting with a three-point structure

〈O′
1O2O3〉(m) and acting with a differential operator D(n)A : O′

1 → O1.

These two bases are related by a linear transformation, which gives a type of crossing

equation for differential operators,

a b

O1

O2 O3

W

O′
3

=
∑

O′
1,m,n

{
O1 O2 O′

1

O3 W O′
3

}ab

mn

m

n

O1

O2 O3

W

O′
1

. (3.22)

30In the non-degenerate case we have the number of families of conformal blocks and the number of

“functional degrees of freedom”.

– 22 –



J
H
E
P
0
2
(
2
0
1
8
)
0
8
1

In equations, (3.22) reads

D(b)A
x3

〈O1(x1)O2(x2)O′
3(x3)〉(a) =

∑

O′
1,m,n

{
O1 O2 O′

1

O3 W O′
3

}ab

mn

D(n)A
x1

〈O′
1(x1)O2(x2)O3(x3)〉(m).

(3.23)

Note that the sum over O′
1 is finite with O′

1 taking values in the tensor product O1 ⊗W .

The coefficients in this transformation are called Racah coefficients, or 6j symbols.31,,32

The 6j symbols for operator representations (generalized Verma modules) of the conformal

group have seen some recent interest for their role in the crossing equations for CFT four-

point functions [91–93]. Here, we have a degenerate form of these objects, where one of

the representations appearing is finite-dimensional. These degenerate 6j symbols enter

in a degenerate crossing equation (3.22) where the objects on both sides live in a finite

dimensional space. One can ask what happens if we consider 6j symbols with more finite-

dimensional representations. As we show in appendix D, such 6j symbols are related to

the algebra of conformally-covariant differential operators.

An analogy for understanding (3.22) is to consider a four-point function containing

at least one degenerate Virasoro primary in a 2d CFT. The shortening condition on

the degenerate primary implies that its four-point function lives in a finite-dimensional

space spanned by a finite number of conformal blocks. The crossing transformation for

these blocks is a finite-dimensional matrix. Similarly in (3.22), the left-hand side can be

interpreted as the conformal block for O′
3 exchange in a four-point function 〈O1O2O3w〉.

Because w satisfies a highly-constraining differential equation, the crossing transformation

for this block is a finite-dimensional matrix.

3.4 Examples

Because the space of covariant three-point structures is finite dimensional (its dimension is

given by (3.21)), it is straightforward to find the degenerate 6j symbols by direct computa-

tion: we apply differential operators on both sides and invert a finite-dimensional matrix.

Let us work through some examples.

3.4.1 6j symbols in 1 dimension

3-point functions. Before computing the 6j symbols, we need to choose a basis of three-

point structures. The three-point functions in 1-dimension are not completely trivial, and

it is important to get them right in order to have well-defined 6j symbols.

According to the discussion of section 2.5.2, there are two types of fields with different

“spins” s = ±. The fields with s = + are the usual scalars. The simplest three-point

function for the scalars is

〈Φ+
1 (χ1)Φ

+
2 (χ2)Φ

+
3 (χ3)〉(+) =

1

|χ1χ2|∆1+∆2−∆3 |χ2χ3|∆2+∆3−∆1 |χ3χ1|∆3+∆1−∆2
. (3.24)

31Technically, Racah coefficients and 6j symbols are sometimes defined to differ by various normalization

factors. We will not distinguish between them and use both terms to refer to the coefficients in (3.22).
326j symbols depend only on a set of representations and three-point structures. However, for brevity,

we often label them with operators Oi transforming in those representations, as in (3.22).
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Here we have added the label (+) to indicate that this is a parity-even three-point structure.

We need this because there in fact exists a parity-odd three-point structure,

〈Φ+
1 (χ1)Φ

+
2 (χ2)Φ

+
3 (χ3)〉(−)=

(χ1χ2)(χ2χ3)(χ3χ1)

|χ1χ2|∆1+∆2−∆3+1|χ2χ3|∆2+∆3−∆1+1|χ3χ1|∆3+∆1−∆2+1
.

(3.25)

This is related to the fact that unless we allow reflections, all conformal transformations

preserve the cyclic ordering of three points on the circle S1. One can see that this structure

is parity-odd from the parity transformation χ→ γ2χ.

We will compute the 6j symbols for differential operators in the fundamental represen-

tation which, according to (2.59), change the spin s. Therefore, we will also need the parity

even and parity odd structures for the three point function with two s = − operators,

〈Φ−
1 (χ1)Φ

+
2 (χ2)Φ

−
3 (χ3)〉(−)=

(χ3χ1)

|χ1χ2|∆1+∆2−∆3 |χ2χ3|∆2+∆3−∆1 |χ3χ1|∆3+∆1−∆2+1
, (3.26)

〈Φ−
1 (χ1)Φ

+
2 (χ2)Φ

−
3 (χ3)〉(+)=

(χ1χ2)(χ2χ3)

|χ1χ2|∆1+∆2−∆3+1|χ2χ3|∆2+∆3−∆1+1|χ3χ1|∆3+∆1−∆2
.

(3.27)

The difference between s = + and s = − tensor structures is in their transformation

properties under (2.55).

6j symbols. As noted above, we will specialize to W = F being the fundamental rep-

resentation of SL(2,R), which has weights ∆ = ±1
2 . The corresponding differential opera-

tors are

D+
α = ∂α, D−

α = χα. (3.28)

It will be convenient to contract each differential with a polarization spinor χ4, giving

χα
4D±

α . This spinor may be interpreted as the coordinate of the fourth operator in repre-

sentation [−1
2 ,−]. The operator χ4D+ is even under space parity, while the operator χ4D−

is odd under space parity.

The definition of 6j symbols in this case is

a

[∆1,s1]

[∆2,s2] [∆3,s3]

F

[∆3± 1
2 ,−s3]

=
∑

∆=∆1± 1
2

m

{
[∆1,s1] [∆2,s2] [∆,−s1]
[∆3,s3] F [∆3± 1

2 ,−s3]

}a·
m·

m

[∆1,s1]

[∆2,s2] [∆3,s3]

F

[∆,−s1] .

(3.29)

We don’t need to label the vertices for differential operators, since there is always a unique

choice of differential operator for the given dimensions. For example, on the left-hand
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side, when the internal line has dimension ∆3± 1
2 , the F -differential operator must be D∓.

The notation “·” on the 6j symbols means there is a unique corresponding structure or

differential operator.

It is now straightforward to compute the objects above. Let us take for example

s1 = s2 = +, s3 = − and specialize to the case when both sides of (3.29) are parity-odd.

For the left-hand side we then have,

+

[∆1,+]

[∆2,+] [∆3,−]

F

[∆3+
1

2
,+]

=
(χ4χ3)

|χ1χ2|∆1+∆2−∆3−1/2|χ2χ3|∆2+∆3−∆1+1/2|χ3χ1|∆3+∆1−∆2+1/2
,

−

[∆1,+]

[∆2,+] [∆3,−]

F

[∆3− 1

2
,+]

=
−(∆1+∆3−∆2−1/2)(χ4χ1)(χ1χ2)(χ2χ3)

|χ1χ2|∆1+∆2−∆3+3/2|χ2χ3|∆2+∆3−∆1+1/2|χ3χ1|∆3+∆1−∆2+1/2

+
(∆2+∆3−∆1−1/2)(χ4χ2)(χ1χ2)(χ3χ1)

|χ1χ2|∆1+∆2−∆3+3/2|χ2χ3|∆2+∆3−∆1+1/2|χ3χ1|∆3+∆1−∆2+1/2
.

(3.30)

For the right-hand side,

+

[∆1,+]

[∆2,+] [∆3,−]

F

[∆1+
1
2 ,−] =

(χ4χ1)(χ1χ2)(χ2χ3)

|χ1χ2|∆1+∆2−∆3+3/2|χ2χ3|∆2+∆3−∆1+1/2|χ3χ1|∆3+∆1−∆2+1/2

−

[∆1,+]

[∆2,+] [∆3,−]

F

[∆1− 1
2 ,−] =

(∆1+∆3−∆2−1/2)(χ4χ3)

|χ1χ2|∆1+∆2−∆3−1/2|χ2χ3|∆2+∆3−∆1+1/2|χ3χ1|∆3+∆1−∆2+1/2

+
−(∆1+∆2−∆3−1/2)(χ4χ2)(χ1χ2)(χ3χ1)

|χ1χ2|∆1+∆2−∆3+3/2|χ2χ3|∆2+∆3−∆1+1/2|χ3χ1|∆3+∆1−∆2+1/2
.

(3.31)
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After using the Schouten identity

(χ4χ1)(χ2χ3) + (χ4χ2)(χ3χ1) + (χ4χ3)(χ1χ2) = 0, (3.32)

we can solve for the 6j symbols

{
[∆1,+] [∆2,+] [∆1 +

1
2 ,−]

[∆3,−] F [∆3 +
1
2 ,+]

}+·
+·

= −∆1 +∆2 −∆3 − 1/2

2∆1 − 1
, (3.33)

{
[∆1,+] [∆2,+] [∆1 − 1

2 ,−]

[∆3,−] F [∆3 +
1
2 ,+]

}+·
−·

=
1

2∆1 − 1
, (3.34)

{
[∆1,+] [∆2,+] [∆1 +

1
2 ,−]

[∆3,−] F [∆3 − 1
2 ,+]

}−·
+·

= −(∆1 +∆3 −∆2 − 1/2) (∆1 +∆2 +∆3 − 3/2)

2∆1 − 1
,

(3.35)
{
[∆1,+] [∆2,+] [∆1 − 1

2 ,−]

[∆3,−] F [∆3 − 1
2 ,+]

}−·
−·

= −∆2 +∆3 −∆1 − 1/2

2∆1 − 1
. (3.36)

3.4.2 6j symbols in 3 dimensions

3-point functions It is also possible to find the general 6j symbols for the spinor rep-

resentation S of the 3d conformal group. To do that, it is convenient to use the conformal

frame basis of three-point structures from [138].33 To construct this basis, one contracts

the 3d primary operators with polarization spinors sα,

O(s, x) = sα1 · · · sα2ℓ
Oα1...α2ℓ(x). (3.37)

The three point-functions are then evaluated in the configuration

f3(s1, s2, s3) = 〈O1(s1, 0)O2(s2, e)O3(s3,∞)〉, (3.38)

where e = (0, 0, 1) and O(s3,∞) = limL→∞ L2∆3O(s3, Le). The polynomial f3 should

be invariant under boosts in the 0-1 plane. A basis for such polynomials is given by

the monomials

[q1q2q3] =
3∏

i=1

ξℓi+qi
i ξ

ℓ−qi
i , (3.39)

where si = (ξi, ξi) and qi = −ℓi . . . ℓi, subject to the constraint
∑

i qi = 0.

It will also be convenient to think about the covariant three-point functions as four-

point functions with the degenerate spinor primary wα(x) of dimension −1
2 . We construct

an analogous basis for four-point tensor structures by evaluating

〈O1(s1, 0)sαw
α(ze)O2(s2, e)O3(s3,∞)〉, (3.40)

33Our conventions in this section are those of [35, 72, 138].
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leading to a monomial basis [q1, q, q2, q3], where q = ±1
2 .

34 The configuration (3.40) is still

invariant under boosts in the 0-1 plane, so we again have the condition q +
∑
qi = 0. We

have introduced only one cross-ratio z because wα(x) is a degenerate field. In fact, the

general solution to its Killing equation is given by

w(x) = w0 + xµγµw1, (3.41)

and thus it is sufficient to know its values for x = ze to determine it completely. Note also

that this equation implies that a general four-point function of such form is linear in z.

To obtain these degenerate four-point functions, we think about the three-point func-

tions as four-point functions with an identity operator at coordinate x and act with the op-

erators

D±±
i = ΩabD−+

a,x D±±
b,xi

Σ∓∓
i , (3.42)

where x = ze, and Σ∓∓
i formally shifts the scaling dimension and spin of the operator i,

so that D±±
i doesn’t change the dimensions and spins.35 In this notation we have36

D±±
3 [q1q2q3] ≡ qi

[∆1, ℓ1]

[∆2, ℓ2] [∆3, ℓ3]

sαw
α

[∆3 ∓ 1
2 , ℓ3 ∓ 1

2 ]
,

D±±
1 [q1q2q3] ≡

qi

[∆1, s1]

[∆2, s2] [∆3, s3]

sαw
α

[∆1 ∓ 1
2 , ℓ1 ∓ 1

2 ]
. (3.43)

Our goal is therefore to find the transformation between the bases D±±
3 [q1q2q3] and

D±±
1 [q1q2q3]

6j symbols. It is obvious that since the operators D±±
i contain a finite number of

derivatives in the polarization spinors, they take a three-point structure [q1q2q3] to four-

point structures [q′1, q, q
′
2, q

′
3] for (3.40) with q

′
i differing from qi by only finite shifts. We can

say that D±±
i are local in q-space. It turns out that the inverse operation, which expresses

an arbitrary four-point function (3.40) in terms of D±±
i [q1q2q3], is also local in q-space. In

34Notice that we used a configuration different from the one used for four-point functions in [138].
35In other words, the components of D−+

a are essentially the conformal Killing spinors sαw
α
a (x).

36As in the 1d case, we omit the labels for the differential operators in the diagrams (3.43) because the

differential operator is always fixed by the given representations.
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this language the 6j symbols essentially give the composition of the inverse to D±±
1 with

D±±
3 and are thus also local in q-space. This allows us to write down a general expression

for these 6j symbols.

The number of shifts in q for which the 6j symbols are generically non-zero is however

rather large. We therefore take an indirect approach in this section, describing how the

6j symbols can be straightforwardly generated from relatively simple expressions. Our

strategy will be to write the action of D±±
1 and D±±

3 on [q1q2q3] in a form from which both

the direct action and the inverse can be easily obtained. One can then simply substitute

the inverse of D±±
1 into the expressions for D±±

3 [q1q2q3] to generate the general 6j symbols.

First, we evaluate the expressions for D±±
3 [q1q2q3] and D

±±
1 [q1q2q3]. This can be done

relatively easily in a computer algebra system. The result can be expressed in terms of the

four-point tensor structures [q1, q, q2, q3], for instance,

D−−
1 [q1q2q3] = z

(
ℓ1+q1+

1

2

)[
q1−

1

2
,+

1

2
, q2, q3

]
−z
(
ℓ1−q1+

1

2

)[
q1+

1

2
,−1

2
, q2, q3

]
.

(3.44)

We will now describe these actions in a compact form. We first define

A±
1 [q1q2q3] =

(
−D−−

1 ∓
(
ℓ1 ∓ q1 +

1

2

)
D−+

1

)
[q1q2q3]. (3.45)

These operators satisfy

A±
1 [q1q2q3] = ∓z (2ℓ1 + 1)

[
q1 ∓

1

2
,±1

2
, q2, q3

]
. (3.46)

Note that this solves the inversion problem for the linear terms z [q1, q, q2, q3] and is also

sufficient to find the action D−±
1 [q1q2q3]. We then define the analogous operators

B±
1 [q1q2q3] =

(
−D+−

1 ∓
(
ℓ1 ∓ q1 +

1

2

)
D++

1

)
[q1q2q3] + C±

1 [q1q2q3] , (3.47)

where the correction term C±
1 is a linear combination of A±

1 given below. The operators

B±
1 act on [q1q2q3] as follows,

((
∆1 ± q1 −

3

2

)
B±
1 +

(
ℓ1 ∓ q1 +

1

2

)
B∓
1

)
[q1q2q3] =

= 4 (2ℓ1 + 1)

(
∆1 −

3

2

)
(ℓ1 +∆1 − 1) (ℓ1 −∆1 + 2)

[
q1 ∓

1

2
,±1

2
, q2, q3

]
. (3.48)

This solves the inversion problem for the constant terms [q1, q, q2, q3] and is also sufficient

to write down the action of B±
1 and thus also of D+±

1 .

We can describe the action of D±±
3 and its inverse in a similar fashion. In particular,

we define

A±
3 [q1q2q3] =

(
−D−−

3 ∓
(
ℓ3 ∓ q3 +

1

2

)
D−+

3

)
[q1q2q3] , (3.49)

B±
3 [q1q2q3] =

(
−D+−

3 ∓
(
ℓ3 ∓ q3 +

1

2

)
D++

3

)
[q1q2q3]− C±

3 [q1q2q3] . (3.50)
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The correction term C±
3 is defined below. For these operators we have the analogue of (3.46)

A±
3 [q1q2q3] = ± (2ℓ3 + 1)

[
q1,±

1

2
, q2, q3 ∓

1

2

]
, (3.51)

and the analogue of (3.48),

B±
3 [q1q2q3] =− 4z (2ℓ3 + 1)

(
∆3 −

3

2

)(
∆3 ∓ q3 −

3

2

)[
q1,±

1

2
, q2, q3 ∓

1

2

]

+ 4z (2ℓ3 + 1)

(
∆3 −

3

2

)(
ℓ3 ∓ q3 +

1

2

)[
q1,∓

1

2
, q2, q3 ±

1

2

]
. (3.52)

We can use these expressions to find the action of D±±
3 and then substitute the expres-

sions (3.46) and (3.48) for the four-point functions z [q1, q, q2, q3] and [q1, q, q2, q3] in terms

of D±±
1 to find the 6j symbols. As a simple example, we find for ℓi = 0,

D−−
3 [000] =− ∆1 +∆2 −∆3 − 2

2 (2∆1 − 3)
D−−

1

([
−1

2
, 0,

1

2

]
+

[
1

2
, 0,+

1

2

])

+
1

8
(
∆1 − 3

2

)
(∆1 − 2)

D+−
1

([
−1

2
, 0,+

1

2

]
−
[
+
1

2
, 0,−1

2

])
, (3.53)

from where we can read off the for example the following 6j symbol,

{
[∆1, 0] [∆2, 0]

[
∆1 +

1
2 ,

1
2

]

[∆3, 0] S
[
∆3 +

1
2 ,

1
2

]
}[000](−−)

[− 1
2
,0,+ 1

2
](−−)

= −∆1 +∆2 −∆3 − 2

2(2∆1 − 3)
. (3.54)

The correction term C±
1 is given by

C±
1 [q1q2q3] =

(
ℓ1 + q1 ∓

1

2

)
(ℓ3 − q3)A±

1 [q1 − 1, q2, q3 + 1]

−
(
ℓ1 − q1 ±

1

2

)
(ℓ3 + q3)A±

1 [q1 + 1, q2, q3 − 1]

−
(
ℓ1 + q1 ∓

1

2

)
(ℓ2 − q2)A±

1 [q1 − 1, q2 + 1, q3]

+

(
ℓ1 − q1 ±

1

2

)
(ℓ2 + q2)A±

1 [q1 + 1, q2 − 1, q3]

∓ 2 (ℓ3 ∓ q3) (∆1 − 2)A∓
1 [q1 ∓ 1, q2, q3 ± 1]

± 2 (ℓ2 ∓ q2) (∆1 − 2)A∓
1 [q1 ∓ 1, q2 ± 1, q3]

± 2

(
∆1 ∓ q1 −

3

2

)(
∆1 +∆2 −∆3 −

3

2

)
A±

1 [q1, q2, q3]

± 2

(
ℓ1 ∓ q1 +

1

2

)(
∆1 −

3

2

)
A∓

1 [q1, q2, q3]. (3.55)

The correction term C±
3 is obtained from the above expression by replacing 1 ↔ 3 in the

coefficients, replacing A1 by A3, and exchanging the shifts applied to q1 and q3 in the

three-point structures. Note that C±
3 enters (3.50) with a minus sign.
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3.5 Differential bases from 6j symbols

The crossing equation (3.22) will be our key computational tool in this work. Using it,

we can perform a variety of calculations with differential operators. As a brief example,

consider contracting both sides of (3.22) with a differential operator D(c)
A : O1 → O′′

1 , which

we denote

O1 W

c

O′′
1

. (3.56)

Here, the incoming arrow for W indicates that this operator is associated to the dual

representation W ∗. Let us connect the incoming W line in (3.56) with the outgoing W line

in (3.22), i.e. contract the A indices. In equations, we find

D(c)
A,x1

D(b)A
x3

〈O1(x1)O2(x2)O′
3(x3)〉(a)

=
∑

O′,m,n

{
O1 O2 O′

1

O3 W O′
3

}ab

mn

D(c)
A,x1

D(n)A
x1

〈O′
1(x1)O2(x2)O3(x3)〉(m), (3.57)

where we have given the differential operators subscripts xi to indicate which leg they

act on.

The composition of differential operators D(c)
A,x1

D(n)A
x1 on a single leg corresponds to a

bubble diagram

D(c)
A D(n)A =

O′
1

n

c

O′′
1

WO1
=

(
O′

1

O1 W

)cn

δO′
1O

′′
1
. (3.58)

This vanishes unless the representations for O′
1 and O′′

1 are the same, in which case it is

proportional to the identity (at least for generic scaling dimensions ∆′
1,∆

′). The reason

is that (3.58) represents a homomorphism between generalized Verma modules, which are

irreducible when the scaling dimensions are generic. The constant of proportionality, given

by the symbol in parentheses on the right-hand side of (3.58), is actually related to another

type of 6j symbol, as we explain in appendix D. For now, we take (3.58) as a definition of

these symbols.
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Using (3.58) with O′
1 = O′′

1 , we can simplify the right-hand side of (3.57) to obtain

a b

O1

O2 O3

W

c

O′
1

O′
3

=
∑

m,n

{
O1 O2 O′

1

O3 W O′
3

}ab

mn

(
O′

1

O1 W

)cn

m

O′
1

O2 O3

. (3.59)

The left-hand side of (3.59) is a conformally-invariant differential operator D(c)
A,x1

D(b)A
x3

acting on a three-point structure at two different points. The right-hand side is a sum of

structures where the representations at those points have been modified. The existence

of such invariant two-point differential operators was a key observation of [70]. Here, we

see that they factorize into a product of covariant differential operators, each acting on a

single point. Indeed, it is easy to verify that all “basic” differential operators in [70] are of

this form, with W being either the vector or the adjoint representations of the conformal

group. Furthermore, from the discussion in section 2.4 and appendix D it follows that

arbitrary compositions of the basic differential operators of [70] are also of the form (3.59)

with more complicated representations W . In this sense, (3.59) gives a more fundamental

point of view on such operators.

The main purpose of the differential operators in [70] was to raise the spins of the

operators they act on. Here, we see that it is also possible to lower spins, an idea that we

discuss briefly in section 5.

Another observation of [70] is that (3.59) can sometimes be inverted to express a basis

of tensor structures in terms of differential operators acting on simpler structures. For

example, when one of the operators Oℓ is a traceless-symmetric tensor, one can write

three-point structures involving Oℓ in terms of derivatives of three-pt structures involving

scalars. In our notation, this reads

O1

a

O2

Oℓ
=
∑

W,b,c

(. . . )

O1

b

c

O2

OℓW

φ1

φ2

. (3.60)

Here, the dashed lines denote scalar operators φ1, φ2. Note that the labels b, c determine

the dimensions of φ1, φ2 in terms of ∆O1 ,∆O2 , respectively. Thus, the right-hand side will

involve derivatives of scalar structures with dimensions shifted by half-/integers from those

of O1,O2. In equations, we write

〈O1O2Oℓ〉(a) = D
(a)O1O2

φ1φ2
〈φ1φ2Oℓ〉, (3.61)
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where D is a combination of derivatives ∂x1 , ∂x2 and formal operators Σi,j : ∆i → ∆i + j

that shift the dimensions ∆1,∆2. We have suppressed SO(d) indices in (3.61) for simplicity.

The coefficients (. . . ) expressing D
(a)O1O2

φ1φ2
in terms of products of weight-shifting op-

erators D(b)AD(c)
A are determined by inverting (3.59). In writing (3.60), there are infinitely

many possible choices of representation W and labels b, c. Generically, we expect that

it should always be possible to choose enough W, b, c’s to solve (3.60). This was shown

explicitly in [70] when O1,O2 are traceless-symmetric tensors.37

For simplicity, we will sometimes write (3.60) as

O1

a

O2

Oℓ
=

O1

O2

Oℓa . (3.62)

4 Conformal blocks

4.1 Gluing three-point functions

A general conformal block can be expressed as the integral of a product of three-point

functions. For simplicity, consider the case where the external and internal operators

are scalars. Given three-point functions 〈φ1(x1)φ2(x3)φ(x)〉 and 〈φ(y)φ3(x3)φ4(x4)〉, the
following object is a solution to the conformal Casimir equation with the correct transfor-

mation properties to be a conformal block,

1

N∆

∫
ddx ddy〈φ1(x1)φ2(x3)φ(x)〉

1

(x− y)2(d−∆)
〈φ(y)φ3(x3)φ4(x4)〉, (4.1)

where ∆ = ∆φ. This can be understood, for example, by writing the integral in a manifestly

conformally-invariant way [71].38,,39

37It would be interesting to characterize the minimal set of W ’s needed to build all possible structures.
38In Euclidean signature, we take the range of integration of x, y to be all of R

d. In this case (4.1)

produces a solution to the conformal Casimir equation with the wrong boundary conditions to be a conformal

block. However, the conformal block can be extracted by taking a suitable linear combination of analytic

continuations of the integral [71]. One can alternatively isolate the conformal block by performing the

integral in Lorentzian signature over a domain defined by the lightcones of the four points x1, x2, x3, x4 [139].

Calculations involving differential operators are insensitive to these issues because the differential operators

always transform trivially under monodromy. Thus, our methods allow us to study spinning versions of

any of the solutions to the Casimir equation.
39We expect that (4.1) only converges when ∆ lies on the principal series ∆ ∈ d

2
+ iR. We obtain a

general conformal block by analytically continuing in ∆.
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Let us denote the operation which glues two φ-correlators by40

|φ〉 ⊲⊳ 〈φ| ≡ 1

N∆

∫
ddx ddy|φ(x)〉 1

(x− y)2(d−∆)
〈φ(y)| = φ φ . (4.2)

We should choose the normalization N∆ by demanding that

φ φ = φ φ . (4.3)

That is, we demand that the shadow integral acting on a two-point function 〈φφ〉 gives

the identity transformation. In the case of scalars, this fixes the normalization factor to

be [67, 71, 87]

N∆ =
πdΓ(∆− d

2)Γ(
d
2 −∆)

Γ(∆)Γ(d−∆)
. (4.4)

For spinning operators, O glues to its dual-reflected representation O† — i.e. the

representation with which O has a nonzero two-point function,

|O∆,ρ〉 ⊲⊳ 〈O†

∆,ρ†
| ≡ O O†

≡ 1

N∆,ρ

∫
ddx ddy|O∆,α(x)〉

tαα(x− y)

(x− y)2(d−∆)
〈O†

∆,α(y)|. (4.5)

Here, tαα(x− y) is the tensor structure appearing in the two point function of the shadow

operators 〈ÕÕ†〉. We will not need the explicit expression, but simply the normalization

condition

O O = O O . (4.6)

A general conformal block is given by

W ab ≡ 〈O1O2O〉(a) ⊲⊳ (b)〈O†O3O4〉 = a b

O1

O2 O3

O4

O†O
. (4.7)

To perform computations with differential operators and shadow integrals, we must under-

stand how to move differential operators from one side of a shadow integration to another

— i.e. how to integrate by parts. This can be done purely diagrammatically, just from the

definition (4.6).

40Instead of thinking of the gluing operation (4.2) in terms of shadow integrals, we can alternatively think

of it as simply a sum over normalized descendants of φ. The only properties of the gluing procedure that we

use in this work are that it is bilinear, conformally-invariant, and satisfies the normalization condition (4.3).
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First, consider a two-point function. Moving a differential operator past a two-point

vertex is a special case of the definition of a 6j symbol,

c

O†

1 O′

W

O
=

∑

m

{
O† 1 O′†

O′ W O

}·c
·m m

O†

1 O′

W

O′† . (4.8)

A three-point vertex where one of the legs is the unit operator 1 is simply a two-point

vertex. We could of course omit the unit operator from the above diagram, but we have

temporarily included it to emphasize that (4.8) is a special case of (3.22).41 Again, the

notation “·” means there is a unique corresponding structure or differential operator.

Now, let us add shadow integrals onto both O andO′ in the above diagram. Using (4.6),

we find

cO O′†

W

O′

=
∑

m

{
O† 1 O′†

O′ W O

}·c
·m mO O′†

W

O†

(4.9)

Equation (4.9) essentially implements two integrations by parts in the double integral (4.2),

allowing us to move a differential operator from one side of a shadow integral to another.

In symbolic notation it has the form

|D(c)AO〉 ⊲⊳ 〈O′†| =
∑

m

{
O† 1 O′†

O′ W O

}·c
·m

|O〉 ⊲⊳ 〈D(m)AO′†|. (4.10)

4.2 Spinning conformal blocks review

The expression (4.7) for a general block can be combined with the “differential basis”

trick (3.60) to express certain conformal blocks as derivatives of scalar blocks [70]. Suppose

the exchanged operator O = Oℓ is a traceless-symmetric tensor of spin ℓ. Applying (3.60)

41To be precise, we have established (3.22) only for non-degenerate operators Oi. However, as explained

in section 3.2.3, the objects on either side of (4.8) span the space of covariant two-point functions, which

provides the missing ingredient.
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twice, we find

a b

O1

O2 O3

O4

OℓOℓ
=

O1

O2 O3

O4

a b
OℓOℓ

. (4.11)

Note that the right-hand side is a differential operator acting on conformal blocks with

external scalars. In equations (4.11) reads

G
(a,b)O1O2O3O4

∆,ℓ (xi) = D
(a)O1O2

φ1φ2
D

(b)O3O4

φ3φ4
Gφ1φ2φ3φ4

∆,ℓ (xi). (4.12)

The objects in (4.12) and (3.61) carry SO(d) indices which we have suppressed for simplicity.

Note that symmetric traceless tensors (STTs) are the only representations that can

appear in an OPE of two scalars. Because D
(a)OiOj

φiφj
can’t change the representation of

the exchanged operator, the expression (4.12) only works for conformal blocks with an

exchanged STT. This is sufficient to compute all bosonic blocks in 3d, since all bosonic

(irreducible) 3d Lorentz representations are STTs. However, in general there exist blocks

which cannot be computed using (4.12).

To compute more general blocks, an approach advocated in [70, 71] is to identify the

simplest set of blocks with general exchanged representations — so-called “seed” blocks —

compute them using some other method and apply the trick (4.12) to those.42 However,

our new techniques will make it simple to modify (4.11) and (4.12) to compute any type

of conformal block (including seed blocks).

4.3 Expression for general conformal blocks

The basic idea is to allow the differential operators acting on the left and right to be

conformally-covariant, instead of simply invariant,

G
(a,b)O1O2O3O4

O (xi) = D
(a)A
left D

(b)
rightAG

φ1φ2φ3φ4

∆,ℓ (xi), (4.13)

where A is an index for some finite-dimensional representation W of SO(d + 1, 1). The

exchanged operator then lives in the tensor product W ⊗V∆,ℓ, which can contain primaries

with more general Lorentz representations. We must be careful to choose D
(a)A
left and D

(b)
rightA

so that precisely one irreducible subrepresentation of W ⊗ V∆,ℓ contributes. However, this

can be done easily and systematically using the techniques we have developed.

42Seed blocks for 4d theories were classified in [76] and computed in [77] using the Casimir equation.

In 3d, there are two types of seed blocks: external scalars with exchange of spin ℓ ∈ Z, and external

fermion+scalars with exchange of spin-ℓ ∈ Z+ 1
2
. A recursion relation for the latter type of 3d seed block

was computed in [72].
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Let us begin with the object we would like to compute: a conformal block for the

exchange of an operator O transforming in V∆,ρ,

G
(a,b)O1O2O3O4

O (xi) = a b

O1

O2 O3

O4

O†O
. (4.14)

Let W be a finite-dimensional representation of the conformal group such that W ∗ ⊗ V∆,ρ

contains a spin-ℓ STT representation Oℓ. We can introduce a bubble of W and Oℓ in the

middle of the diagram, so that the shadow integral itself involves a spin-ℓ representation.

Note that

O m n O†

W

Oℓ
=
∑

p

{
O† 1 Oℓ

Oℓ W O

}·m
·p O p n O†

W

Oℓ

=
∑

p

{
O† 1 Oℓ

Oℓ W O

}·m
·p
(

O†

OℓW

)pn

O O† ,

(4.15)

where we have used (4.9) to move the differential operator D(m)A from one side of the

shadow integral to the other, and (3.58) to simplify a product of differential operators

D(p)AD(n)
A on a single leg. Thus, we have

G
(a,b)O1O2O3O4

O (xi) =
1

Mmn
a b

O1

O2 O3

O4

m n
O†OℓO

W

, (4.16)

where

Mmn ≡
∑

p

{
O† 1 Oℓ

Oℓ W O

}·m
·p
(

O†

OℓW

)pn

. (4.17)

We do not sum over m,n in (4.16) — rather we can choose any m,n such that Mmn

is nonzero.
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Now we use crossing to move the W vertices to the external legs. Let us focus on the

left-hand side of the diagram (4.16),

a m

O1

O2

Oℓ

W

O
=
∑

O′,r,s

{
O1 O2 O′

Oℓ W O

}am

rs

r

s

O1

O2

Oℓ

W

O′ (4.18)

Now O2 and O′ participate in a three-point vertex with an STT operator Oℓ, so we can

use (3.60) to obtain

=
∑

O′,r,s

{
O1 O2 O′

Oℓ W O

}am

rs

r

s

O1

O2

Oℓ

W

O′
. (4.19)

Thus, we find

D
(a)A
left 〈φ1φ2Oℓ〉 =

1√
Mmn

D(m)A
x 〈O1O2O(x)〉(a),

where D
(a)A
left ≡ 1√

Mmn

∑

O′,r,s

{
O1 O2 O′

Oℓ W O

}am

rs

D(s)A
x1

D
(r)O′O2

φ1φ2
, (4.20)

where the x subscript indicates that D(m)A
x acts on the operator O(x). Similarly,

D
(b)
rightA〈φ4φ3Oℓ〉 =

1√
Mmn

D(n)
A,x〈O4O3O†(x)〉(b)

D
(b)
rightA ≡ 1√

Mmn

∑

O′,t,u

{
O4 O3 O′

Oℓ W
∗ O†

}bn

tu

D(u)
x4,A

D
(t)O′O3

φ4φ3
. (4.21)

Together with (4.17), this gives (4.13).
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Schematically, applying D
(a)A
left D

(b)
rightA to a scalar block results in a graph with the

topology

=
∑

. (4.22)

The inner object is a conformal block for external scalars (dashed lines). Weight-shifting

operators dress it in a way such that (a component of) the tensor W ⊗Oℓ propagates from

left to right.

The above calculation has the advantage of being extremely general. However, it re-

quires us to make non-canonical choices of W and the differential operators m,n. Different

choices for these objects will result in naively different, but equivalent expressions for our

conformal block in terms of derivatives of scalar blocks. In some cases, to obtain the

simplest possible expression, we may want to proceed slightly differently.

4.4 Expression for seed blocks

Let us consider for example the problem of computing the seed blocks. For simplicity

of discussion, we will restrict to the case of even d. The case of odd d can be analyzed

similarly43 (for example, we construct the 3d seed block in section 4.4.1).

As mentioned above, seed blocks are the simplest conformal blocks that exchange a

primary O in a given SO(d) representation. In particular, we can always choose the external

operators in a way such that there exists a single three-point structure on either side of

the block, for example

O1

O2 O3

O4

O†O
, (4.23)

where O1 and O3 are scalars, while O2 and O4 transform in representations which are ob-

tained from that of O by, for example, removing the first row of the SO(d) Young diagram.

43The complication in the case of odd d is that when O is a fermion, we cannot choose the external

operators so that there is a single tensor structure on each side of the seed block. Instead, the minimum is

two. This is related to the fact that the irreducible fermionic representations of SO(d − 1) are necessarily

chiral when d is odd.
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To express this seed block in terms of scalar blocks, let us first focus on the left three-

point structure. We can write

O1

O2

O
=

1

Cmn

n

m

O1

O2

O
Oℓ

W

O′
2 , (4.24)

where due to the uniqueness of the tensor structures, we are free to choose n,m and W as

long as O′
2 is a scalar and Oℓ is a STT. In what follows, we will perform manipulations with

the operator labeled by m, but we will leave n untouched. For this reason, it is convenient

to chooseW and n so that n is a 0-th order differential operator. According to theorem 2.1,

this means that the primary of W ∗ should transform in the same representation as O2, i.e.

(W ∗)−j = (Wj)
∗ = ρ2, where ρi is the SO(d) representation of Oi.

44 On the other hand,

the condition for existence of the structure on the left is

(ρ⊗ ρ2)
SO(d−1) 6= 0, (4.25)

where ρ is the representation of O. This is equivalent to saying that there is a STT in the

tensor product ρ⊗ ρ2 = ρ⊗ (Wj)
∗. In turn, this leads to

ρ ∈ STT⊗Wj . (4.26)

According to theorem 2.1, this implies that we can use an order-(2j+1) differential operator

associated to W ∗ in place of m.

We can now use (4.9) to move m to the right three-point structure to find the piece

∑

c

{
Oℓ 1 O†

O W ∗ Oℓ

}·m
·c cOℓ

O†

W

Oℓ

O3

O4

, (4.27)

to which we can apply a crossing transformation to find

=
∑

c

∑

O′
3,a,b

{
Oℓ 1 O†

O W ∗ Oℓ

}·m
·c
{
O3 O4 O′

3

Oℓ W
∗ O†

}·c
ab

b

aOℓ

O′
3

W

Oℓ

O3

O4

. (4.28)

44Such a W ∗ always exists. In fact, there are infinitely many choices differing by the value of j, and the

W ∗ with minimal j is obtained by prepending a 0 to the list of Dynkin labels of ρ2 (in the natural ordering

where the vector label is the first and the spinor labels are the last).
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We now use (3.60) to write the full seed block as

1

Cmn

∑

c

∑

O′
3,a,b

{
Oℓ 1 O†

O W ∗ Oℓ

}·m
·c
{
O3 O4 O′

3

Oℓ W
∗ O†

}·c
ab

O1

O2

n b

a

O′
3

W

Oℓ

O3

O4

.

(4.29)

The advantage of this over the more general (4.22) is that we have been able to choose the

differential operator n to be of zeroth order, and we also avoided acting with differential

operators on one of the legs. This reduces the order of the full differential operator acting

on the scalar conformal block relative to the general expression. Let us now consider

some examples.

4.4.1 Example: seed block in 3d

Our first example is the fermion seed block in 3 dimensions. The SO(3) representations are

labeled by a single (half-)integer ℓ. If ℓ is integral, then the representation is bosonic, and

operators Oℓ can be exchanged in a four-point function of scalars. If ℓ is half-integral, then

the representation is fermionic and Oℓ can be exchanged in a scalar-fermion four-point func-

tion45

〈ψ∆1(s1, x1)φ∆2(x2)φ∆3(x3)ψ∆4(s4, x4)〉. (4.30)

It is therefore possible to express any conformal block in terms of a scalar or fermion-scalar

block. The latter were computed in [72] by a Zamolodchikov type recursion relation. In

this section we will show how the fermion-scalar block can be expressed as a third-order

differential operator acting on a scalar conformal block, thus reducing all conformal blocks

in 3d to derivatives of scalar blocks.

For ease of comparison, we will follow the conventions of [72]. Let us review basic

properties of (4.30). On each side of conformal block there exist 2 three-point structures,

which can be defined using the 5d embedding formalism as

〈ψ∆1φ∆2O∆,ℓ〉(+) = +

ψ1

φ2

Oℓ =
〈S1S0〉〈S0X1X2S0〉ℓ−

1
2

X
∆1+∆2−∆+ℓ− 1

2
2

12 X
∆2+∆−∆1+ℓ− 1

2
2

20 X
∆1+∆−∆2+ℓ+1

2
2

01

,

45Since our analysis is purely kinematical, we will label operators by their scaling dimensions and spins.
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〈ψ∆1φ∆2O∆,ℓ〉(−) = −

ψ1

φ2

Oℓ =
〈S1X2S0〉〈S0X1X2S0〉ℓ−

1
2

X
∆1+∆2−∆+ℓ+1

2
2

12 X
∆2+∆−∆1+ℓ+1

2
2

20 X
∆1+∆−∆2+ℓ− 1

2
2

01

,

(4.31)

and analogously for the right three-point function (1 → 4, 2 → 3). Here the index 0 refers

to the intermediate operator Oℓ of dimension ∆, and we labeled the three-point structures

by their P -parity. Accordingly, there exist 4 conformal blocks, which can be expanded in

a basis of four-point tensor structures,

Gab
seed(s1, s4, xi) = a b

ψ1

φ2 φ3

ψ4

OℓOℓ
=

4∑

I=1

gabI (z, z)TI
4(s1, s4, xi). (4.32)

As indicated, there exist 4 four-point tensor structures T
I
4. Out of them, two structures

are parity-even and participate in conformal blocks G++, G−−, and two are parity-odd and

participate in G+− and G−+. We give their exact form in appendix E.

We now compute the seed blocks using the algorithm46 from section 4.4, and we will

use the spinor representation W = S of the 3d conformal group to translate traceless-

symmetric representations into fermionic representations. The first step is to write the left

three-point structures in the form (4.24). Let us define the scalar three-point structures as

〈φ∆1φ∆2O∆,ℓ〉 =

φ1

φ2

Oℓ
=

〈S0X1X2S0〉ℓ

X
∆1+∆2−∆+ℓ

2
12 X

∆2+∆−∆1+ℓ
2

20 X
∆1+∆−∆2+ℓ

2
01

. (4.33)

In (4.24) we will use the zeroth order operator D−+
a in place of n. For m we can take any

differential operator of the appropriate parity. A simple choice is to use D−+
a for the parity

even structure, and D−−
a for the parity-odd structure. We then have

〈ψ∆1φ∆2O∆,ℓ〉(±) =
1

C±
〈D−+

1 D−±
0 〉〈φ∆1+

1
2
φ∆2O∆+ 1

2
,ℓ∓ 1

2
〉. (4.34)

It is easy to find by a direct computation that

C+ = 1, C− = 2ℓ+ 1. (4.35)

46Because we want to follow the conventions of [72], some minor modifications to the algorithm are

required, such as reordering of the operators.
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Note that O∆+ 1
2
,ℓ∓ 1

2
is the operator which is going to be exchanged in the scalar block. If

we chose different operators for m (i.e. D+∓) in (4.24), then we would relate the seed block

to different scalar blocks (in particular, it doesn’t make sense to mix these choices).

Crossing of 2-point functions. The next step is to learn how to push the operators

D−±
a through the shadow integral. For that we need to fix the normalization of two-point

functions, which we choose to be

〈O∆,ℓ(S1, X1)O∆,ℓ(S2, X2)〉 = i2ℓ
〈S1S2〉2ℓ
X∆+ℓ

12

. (4.36)

The definition of 6j symbols (4.8) is in our case

D−±
2,a 〈O∆+ 1

2
,ℓ∓ 1

2
(S1, X1)O∆+ 1

2
,ℓ∓ 1

2
(S2, X2)〉 =

=

{
O∆+ 1

2
,ℓ∓ 1

2
1 O∆,ℓ

O∆,ℓ S O∆+ 1
2
,ℓ∓ 1

2

}·(−±)

·(+∓)

D+∓
1,a 〈O∆,ℓ(S1, X1)O∆,ℓ(S2, X2)〉. (4.37)

We can explicitly compute

{
O∆+ 1

2
,ℓ− 1

2
1 O∆,ℓ

O∆,ℓ S O∆+ 1
2
,ℓ− 1

2

}·(−+)

·(+−)

=
i

8ℓ(∆− 1)(∆− ℓ− 1)
, (4.38)

{
O∆+ 1

2
,ℓ+ 1

2
1 O∆,ℓ

O∆,ℓ S O∆+ 1
2
,ℓ+ 1

2

}·(−−)

·(++)

=
i(2ℓ+ 1)

4(∆− 1)(∆ + ℓ)
, (4.39)

and use these coefficients in (4.9) to arrive at (4.27). At this point, we have expressed the

seed block in the form

G±b
seed(s1, s4, xi) =

=
1

C±

{
Oℓ∓ 1

2
1 Oℓ

Oℓ S Oℓ∓ 1
2

}·(−±)

·(+∓)

ΩcdD−+
1,c 〈φ∆1+

1
2
φ∆2O∆+ 1

2
,ℓ∓ 1

2
〉 ⊲⊳ D+∓

0,d 〈O∆,ℓφ∆3ψ∆4〉(b),

(4.40)

where ⊲⊳ stands for shadow integral.

Crossing of three-point functions. Now we are going to perform the crossing trans-

formation on the right three-point function to write it as

D+∓
0,d 〈O∆,ℓφ∆3ψ∆4〉(b)=

∑

b′

{
φ∆3 ψ∆4 ψ∆3+

1
2

O∆,ℓ S O∆+ 1
2
,ℓ∓ 1

2

}b(+∓)

b′(−−)

D−−
3,d 〈O∆+ 1

2
,ℓ∓ 1

2
ψ∆3+

1
2
ψ∆4〉(b

′)

+

{
φ∆3 ψ∆4 ψ∆3−

1
2

O∆,ℓ S O∆+ 1
2
,ℓ∓ 1

2

}b(+∓)

b′(+−)

D+−
3,d 〈O∆+ 1

2
,ℓ∓ 1

2
ψ∆3−

1
2
ψ∆4〉(b

′).

(4.41)
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To proceed, we need to choose a basis of tensor structures for three-point functions of the

type 〈O∆+ 1
2
,ℓ∓ 1

2
ψ∆3±

1
2
ψ∆4〉. We define

t1 =
〈S1S2〉〈S3X1X2S3〉ℓ

Xℓ
12

+
〈S1S3〉〈S2S3〉〈S3X1X2S3〉ℓ−1

Xℓ−1
12

, (4.42)

t2 =
〈S1S2〉〈S3X1X2S3〉ℓ

Xℓ
12

+ 2
〈S1S3〉〈S2S3〉〈S3X1X2S3〉ℓ−1

Xℓ−1
12

, (4.43)

t3 =
〈S3X1X2S3〉ℓ−1

X
ℓ+ 1

2
12 X

− 1
2

23 X
− 1

2
31

X23〈S1S3〉〈S2X1S3〉, (4.44)

t4 =
〈S3X1X2S3〉ℓ−1

X
ℓ+ 1

2
12 X

− 1
2

23 X
− 1

2
31

X13〈S2S3〉〈S1X2S3〉, (4.45)

where the first two structures are parity-even and the second two are parity-odd.47 In

terms of these structures we set

〈ψ1ψ2Oℓ〉(b) =
tb

X
∆1+∆2−∆3−ℓ+1

2
12 X

∆2+∆3−∆1+ℓ
2

23 X
∆3+∆1−∆3+ℓ

2
31

. (4.46)

We can now compute the 6j symbols in (4.41). For example, the only non-vanishing

symbols for b = + and D++ on the left of (4.41) are





φ∆3 ψ∆4 ψ
∆3+

1

2
O∆,ℓ S O

∆+
1

2
,ℓ+

1

2





+(++)

1(−−)

=(−1)
ℓ+

1

2
(∆− 3

2
)(∆+ℓ+∆3−∆4−

1
2
)(∆+ℓ+∆3+∆4−

3
2
)

∆3−
3
2

,

(4.47)




φ∆3 ψ∆4 ψ
∆3+

1

2
O∆,ℓ S O

∆+
1

2
,ℓ+

1

2





+(++)

2(−−)

=(−1)
ℓ+

1

2
(∆+ℓ+∆3−∆4−

1
2
)((∆−1)(∆+ℓ+∆3+∆4−

5
2
)− 1

2
)

∆3−
3
2

,

(4.48)




φ∆3 ψ∆4 ψ
∆3−

1

2
O∆,ℓ S O

∆+
1

2
,ℓ+

1

2





+(++)

3(+−)

=(−1)
ℓ+

1

2
(∆+ℓ+∆3−∆4−

1
2
)

4(∆3−
3
2
)(∆3−2)

, (4.49)





φ∆3 ψ∆4 ψ
∆3−

1

2
O∆,ℓ S O

∆+
1

2
,ℓ+

1

2





+(++)

4(+−)

=(−1)
ℓ+

1

2
(∆−1)(∆+ℓ−∆3+∆4+

1
2
)

2(∆3−
3
2
)(∆3−2)

. (4.50)

The other symbols vanish due to space parity. The are 12 more non-vanishing 6j symbols

for other choices of b and of the operator on the left, which we won’t list here since they

represent only an intermediate step in our calculation.

47We choose this peculiar basis only for the purposes of presentation, because in it 6j symbols have the

simplest form. In practice we used the basis (3.39), in which we know the general 6j symbols for the spinor

representation.
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Differential basis. The final step is to express the three-point structures

〈O∆+ 1
2
,ℓ± 1

2
ψ∆3±

1
2
ψ∆4〉(b) in terms of derivatives acting on scalar thee-point structures. This

is standard, and this particular case was solved in [35], so we do not explain it in detail.

We only note that the operators which create the parity-even structures t1 and t2 should

be parity even,

t1, t2 ∼ 〈D++
3 D++

4 〉, 〈D−+
3 D−+

4 〉, (4.51)

while operators which create parity-odd structures have to be parity-odd,

t3, t4 ∼ 〈D−+
3 D++

4 〉, 〈D++
3 D−+

4 〉. (4.52)

The recursion relation. Assembling everything together, we arrive at the following

expressions for the seed blocks in terms of third-order differential operators acting on

scalar blocks,

G++
seed, G

−−
seed = v1〈D−+

1 D−−
3 〉〈D−+

3 D++
4 〉〈φ∆1+

1
2
φ∆2φ∆3+1φ∆4−

1
2
〉

+ v2〈D−+
1 D−−

3 〉〈D++
3 D−+

4 〉〈φ∆1+
1
2
φ∆2φ∆3φ∆4+

1
2
〉

+ v3〈D−+
1 D+−

3 〉〈D++
3 D++

4 〉〈φ∆1+
1
2
φ∆2φ∆3−1φ∆4−

1
2
〉

+ v4〈D−+
1 D+−

3 〉〈D−+
3 D−+

4 〉〈φ∆1+
1
2
φ∆2φ∆3φ∆4+

1
2
〉, (4.53)

G+−
seed, G

−+
seed = v1〈D−+

1 D−−
3 〉〈D++

3 D++
4 〉〈φ∆1+

1
2
φ∆2φ∆3φ∆4−

1
2
〉

+ v2〈D−+
1 D−−

3 〉〈D−+
3 D−+

4 〉〈φ∆1+
1
2
φ∆2φ∆3+1φ∆4+

1
2
〉

+ v3〈D−+
1 D+−

3 〉〈D−+
3 D++

4 〉〈φ∆1+
1
2
φ∆2φ∆3φ∆4−

1
2
〉

+ v4〈D−+
1 D+−

3 〉〈D++
3 D−+

4 〉〈φ∆1+
1
2
φ∆2φ∆3−1φ∆4+

1
2
〉. (4.54)

The coefficients vi are different for each of the blocks, and we give the explicit expressions

in appendix E. The scalar blocks in the above expressions for G+±
seed correspond to exchange

of [∆ + 1
2 , ℓ− 1

2 ], while for G−±
seed the exchanged primary is [∆ + 1

2 , ℓ+
1
2 ].

Decomposition into components. Note that the scalar conformal blocks have the

form

〈φ∆1φ∆2φ∆3φ∆4〉 =
1

x∆1+∆2
12 x∆3+∆4

34

(
x214
x224

)α(
x214
x213

)β

Gα,β
∆,ℓ(z, z), (4.55)

where α = −1
2∆12, β = 1

2∆34, and depend essentially only on α and β and not the

individual dimensions ∆i. We then see that e.g. for G++
seed we only need the scalar blocks

G
α− 1

4
,β− 1

4

∆+ 1
2
,ℓ− 1

2

and G
α− 1

4
,β+ 3

4

∆+ 1
2
,ℓ− 1

2

. There exists a second-order differential operator (see [140] and

section 4.5) which relates these two blocks,

G
α− 1

4
,β+ 3

4

∆+ 1
2
,ℓ− 1

2

(z, z) ∼ (∂z∂z + . . .)G
α− 1

4
,β− 1

4

∆+ 1
2
,ℓ− 1

2

(z, z). (4.56)
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In (4.53) only a first order operator acts on G
α− 1

4
,β+ 3

4

∆+ 1
2
,ℓ− 1

2

, and thus we can use (4.56) to re-

duce (4.53) to another third-order operator acting on the single scalar block. In particular,

we can write

G++
seed = g++

1 (z, z)
[−1

2 , 0, 0,−1
2 ] + [12 , 0, 0,

1
2 ]

2
+ g++

2 (z, z)
[−1

2 , 0, 0,
1
2 ] + [12 , 0, 0,−1

2 ]

2
, (4.57)

where the tensor structures are defined in appendix E and

g++
k (z, z) =

i(−1)ℓ−
1
2

ℓ(∆− ℓ− 1)(∆− 1)
(zz)−

∆1+∆2+
1
2

2 D++
k G

α− 1
4
,β− 1

4

∆+ 1
2
,ℓ− 1

2

(z, z). (4.58)

The differential operators D++
k are given by48

D++
1 (z, z) = z∂zDz − z∂zDz − (z∂z − z∂z)

zz

2(z − z)

(
(1− z)∂z − (1− z)∂z

)

+
(∆− ℓ)(∆− ℓ− 3)

4
(z∂z − z∂z) +

∆− ℓ− 3

2
(Dz −Dz), (4.59)

D++
2 (z, z) =∇zDz +∇zDz + (∇z +∇z)

zz

2(z − z)

(
(1− z)∂z − (1− z)∂z

)

− (∆− ℓ)(∆− ℓ− 3)

4
(∇z +∇z) +

(2ℓ+ 1)(∆− ℓ− 3)(∆− 3
2)

4
, (4.60)

where

Dz = z2(1− z)∂2z − (α′ + β′ + 1)z2∂z − α′β′z, α′ = α− 1

4
, β′ = β − 1

4
, (4.61)

∇z = z∂z +
z

z − z
, (4.62)

and Dz, ∇z are defined by exchanging z and z.

The same reduction to a single block happens for G−−
seed. For G+−

seed and G−+
seed the

situation is a little trickier since there is a second order differential operator acting on the

“wrong” scalar block. However, it turns out that its second-order piece is in fact coming

precisely from the dimension shifting operator, and we again can reduce to a third-order

differential operator acting on a single scalar block. Explicit expressions for these blocks

can be written in a compact form given in appendix E together with an explanation of the

normalization conventions.

4.4.2 Example: seed blocks in 4d

In 4-dimensions the operators in a generic spin representation are labeled by 2 non-negative

integers49 ℓ and ℓ

O∆,ρ = O(ℓ,ℓ)
∆ . (4.63)

48In simplifying these expressions for the differential operators we made use of the quadratic Casimir

equation satisfied by the scalar conformal blocks.
49Notice a difference in conventions relative to the 3-dimensional case where ℓ can be half-integer for

fermionic operators.
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It is convenient to distinguish different classes of representations by a parameter p defined as

p ≡ |ℓ− ℓ|. (4.64)

Operators with p = 0 are the symmetric traceless tensors. Using (3.16) one can easily check

that any given four-point function can exchange operators with only a finite number of

different values of p. This implies that contrary to the 3-dimensional case, in 4-dimensions

we need infinitely many seed conformal blocks, parametrized by p.

A calculation of the general 4-dimensional seed conformal blocks was first performed

in [77], where the explicit expressions for p ≤ 8 were found. In this section we perform an

alternative computation of the seed blocks by using our new machinery and the strategy

outlined in section 4.4. Our approach is to express the p seed blocks in terms of the p− 1

seed blocks. Knowing such a relation allows one to apply it recursively p times to get an

expression of the p seed block in terms of the derivatives of the scalar p = 0 Dolan-Osborn

block [67, 68]. Since the latter is known in terms of 2F1 hypergeometric functions, this also

gives hypergeometric expressions for the seed blocks, equivalent to those in [77].50

Let us note that the explicit hypergeometric expressions of [77] are quite complex

already for p = 2. In numerical conformal bootstrap one usually requires simple rational

approximations to conformal blocks [8, 22, 30], which are hard to construct from these

expressions. On the other hand, our differential recurrence relation is rather simple, and

we thus hope that it will find applications in the numerical bootstrap.

As in section 2.5.4, it will be convenient to use the 6d embedding formalism described

in [71, 75–77, 136]. In what follows we use the conventions of [75], and all the computations

are performed using the Mathematica package described therein. To avoid repetition, the

notation and conventions from [75] will be used in this section without explanation.51

A simple choice for the seed four-point function where the operator O(ℓ,ℓ)
∆ with a given

p can be exchanged in the s-channel is52

〈F (0,0)
1 F (p,0)

2 F (0,0)
3 F (0,p)

4 〉. (4.65)

The conformal block associated to the exchange of O(ℓ,ℓ)
∆ in the seed 4-point function is

W
(p)

ℓ,ℓ
≡ 〈F (0,0)

∆1
F

(p,0)
∆2

O(ℓ,ℓ)
∆ 〉 ⊲⊳ 〈O(ℓ,ℓ)

∆ F
(0,0)
∆3

F
(0,p)
∆4

〉. (4.66)

We distinguish 2 cases depending on the sign of ℓ − ℓ. Using the convention of [77] we

50With normalization conventions derived in [75]. We performed the check for p ≤ 4.
51The only difference is that we avoid using the terminology of [75–77] in which “conformal partial waves”

refer to what we normally mean by conformal blocks, while “conformal blocks” refer to the coordinates in a

basis of four-point tensor structures. When there is a danger of misinterpretation, we call the latter simply

the components of conformal blocks. We do so to avoid the possible confusion with conformal partial waves

from harmonic analysis.
52The seed 4-point functions are chosen so that there is a unique conformal block for the exchange of

O
(ℓ,ℓ)
∆ . There is an ambiguity in choosing the seed 4-point function, here we use the convention of [77].
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define the “seed”53 and “dual seed” conformal blocks as

W
(p)
seed ≡W

(p)

ℓ,ℓ
, ℓ ≤ ℓ, (4.67)

W
(p)
dual seed ≡W

(p)

ℓ,ℓ
, ℓ ≥ ℓ. (4.68)

The seed and the dual seed conformal blocks can be further decomposed into components as

W
(p)
seed = K4

p∑

e=0

(−2)p−eH(p)
e (z, z)

[
Î
42
]e[

Î
42
31

]p−e
, (4.69)

W
(p)
dual seed = K4

p∑

e=0

(−2)p−eH
(p)
e (z, z)

[
Î
42
]e[

Î
42
31

]p−e
. (4.70)

The parameter e = 0, . . . , p labels the possible 4-point tensor structures. In this section

we focus solely on the seed blocks H
(p)
e (z, z). The case of the dual blocks H

(p)
e (z, z) is

completely analogous and will be addressed in appendix F.

The calculation essentially follows the algorithm in section 4.4, the main difference

being that we go from exchange of (ℓ, ℓ+ p) to (ℓ, ℓ+ p− 1) instead of going directly to an

STT exchange. The calculation is also largely analogous to the 3-dimensional calculation in

section 4.4.1. For convenience, we start the algorithm from the right three-point structure

instead of going from the left.

We first rewrite the right three-point function entering (4.66) as

〈O(ℓ+p,ℓ)
∆ F

(0,0)
∆3

F
(0,p)
∆4

〉 = (D−+0
0 · D4,−0+) 〈O(ℓ+p−1,ℓ)

∆+1/2 F
(0,0)
∆3

F
(0,p−1)
∆4+1/2〉. (4.71)

The subscript 0 indicates that D−+0
0 acts on the internal operator O. We would like to

move it across ⊲⊳ (integrate by parts) using the rule (4.10).

Crossing of 2-point functions. The definition of the 6j symbol entering (4.10) in the

present case is

D+0−
2 a 〈O(ℓ+p,ℓ)

∆ (X1, S1, S1)O(ℓ,ℓ+p)
∆ (X2, S2, S2)〉

= AD−+0
1 a 〈O(ℓ+p−1,ℓ)

∆+1/2 (X1, S1, S1)O(ℓ,ℓ+p−1)
∆+1/2 (X2, S2, S2)〉, (4.72)

where

A ≡
{

O(ℓ+p,ℓ)
∆ 1 O(ℓ+p−1,ℓ)

∆+1/2

O(ℓ,ℓ+p−1)
∆+1/2 S O(ℓ,ℓ+p)

∆

}·(+0−)

·(−+0)

= 2i (ℓ+ p)
(
∆− p

2
− 1
)(

∆− ℓ− p

2
− 2
)
. (4.73)

Applying (4.10) and (4.71) to (4.66) we arrive at

W
(p)
seed = A−1 (D+0−

0 · D4,−0+)〈F (0,0)
∆1

F
(p,0)
∆2

O(ℓ,ℓ+p)
∆ 〉 ⊲⊳ 〈O(ℓ+p−1,ℓ)

∆+1/2 F
(0,0)
∆3

F
(0,p−1)
∆4

〉, (4.74)

where D+0−
0 now acts on the left three-point function.

53In this paper we sometimes use “primal seed” to distinguish from the dual seeds.
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Crossing of 3-point functions. We now use the crossing equation for the 3-point func-

tion

D+0−
0 a 〈F (0,0)

∆1
F

(p,0)
∆2

O(ℓ,ℓ+p)
∆ 〉 =

2∑

n=1

B(n)D−−0
1 a 〈F (1,0)

∆1+1/2F
(p,0)
∆2

O(ℓ,ℓ+p−1)
∆+1/2 〉(n)+

2∑

n=1

C(n)D+0−
1 a 〈F (0,1)

∆1−1/2F
(p,0)
∆2

O(ℓ,ℓ+p−1)
∆+1/2 〉(n), (4.75)

where B(n) and C(n) denote the 6j symbols

B(n) ≡
{

F
(0,0)
∆1

F
(p,0)
∆2

F
(1,0)
∆1+1/2

O(ℓ,ℓ+p−1)
∆+1/2 S O(ℓ,ℓ+p)

∆

}·(+0−)

(n)(−−0)

,

C(n) ≡
{

F
(0,0)
∆1

F
(p,0)
∆2

F
(0,1)
∆1−1/2

O(ℓ,ℓ+p−1)
∆+1/2 S O(ℓ,ℓ+p)

∆

}·(+0−)

(n)(+0−)

. (4.76)

The 3-point functions in the right-hand side of (4.75) have the following form

〈F (1,0)
∆1+1/2F

(p,0)
∆2

O(ℓ,ℓ+p−1)
∆+1/2 〉(i) = K3[Î

32]p−1[Ĵ3
12]

ℓ−1

(
Î32K̂13

2

Î31K̂23
1

)
,

〈F (0,1)
∆1−1/2F

(p,0)
∆2

O(ℓ,ℓ+p−1)
∆+1/2 〉(i) = K′

3[Î
32]p−1[Ĵ3

12]
ℓ−1

(
Î13Î32

Î12Ĵ3
12

)
. (4.77)

Again, we can find the 6j symbols B(n) and C(n) by an explicit calculation,

B(1)=B(2)− ℓ(∆1+∆2+∆−ℓ−p−6)

4(∆1−2)

×
(
4(ℓ+p+1)(∆1−∆2+ℓ+

p

2
+1)+(∆1−∆2+∆+ℓ)(2∆−4ℓ−3p−6)

)
,

B(2)=−p(∆1−∆2+∆+ℓ)(2∆−2ℓ−p−4)(∆1+∆2+∆−ℓ−p−6)

4(∆1−2)
,

C(1)=−ℓ(2∆+p−2)(∆1−∆2−∆+ℓ+p+2)

4(∆1−3)(∆1−2)
,

C(2)=
p(−2∆+2ℓ+p+4)(∆1−∆2−∆+ℓ+p+2)

4(∆1−3)(∆1−2)
. (4.78)

Differential basis. The last step is to relate the 3-point functions entering (4.75) to

the seed 3-point functions 〈F (0,0)
∆′

1
F

(p−1,0)
∆′

2
O(ℓ,ℓ+p−1)

∆+1/2 〉 with shifted dimensions by using the

differential basis trick. This is standard [70, 76], so we simply note that we use the following

differential operators

〈F (1,0)
∆1+1/2F

(p,0)
∆2

O(ℓ,ℓ+p−1)
∆+1/2 〉(n) ∼ (D−+0

1 · D2,++0), (D1,++0 · D−+0
2 ),

〈F (0,1)
∆1−1/2F

(p,0)
∆2

O(ℓ,ℓ+p−1)
∆+1/2 〉(n) ∼ (D+0+

1 · D2,++0), (D1,−0+ · D−+0
2 ). (4.79)
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The recursion relation. Combining the expressions (4.74), (4.75), and the differential

basis (4.79) we find the following recursion relation

W
(p)
∆,ℓ; ∆1,∆2,∆3,∆4

=

A−1

(
v1(D−−0

1 · D4,−0+)(D−+0
1 · D2,++0)W

(p−1)

∆+ 1
2
,ℓ; ∆1+1,∆2−

1
2
,∆3,∆4+

1
2

+v2(D−−0
1 · D4,−0+)(D1,++0 · D−+0

2 )W
(p−1)

∆+ 1
2
,ℓ; ∆1,∆2+

1
2
,∆3,∆4+

1
2

+v3(D+0−
1 · D4,−0+)(D+0+

1 · D2,++0)W
(p−1)

∆+ 1
2
,ℓ; ∆1−1,∆2−

1
2
,∆3,∆4+

1
2

+v4(D+0−
1 · D4,−0+)(D1,−0+ · D−+0

2 )W
(p−1)

∆+ 1
2
,ℓ; ∆1,∆2+

1
2
,∆3,∆4+

1
2

)
, (4.80)

where the coefficients vi are given explicitly by

v1=
(∆+∆1−∆2+ℓ)(−∆−∆1+∆2+ℓ+2)(∆+∆1+∆2−ℓ−p−6)

4(∆1−2)(2∆2+p−4)
,

v2=
(−∆+∆1−∆2+ℓ+p+2)(∆+∆1−∆2−ℓ−2p−2)(∆+∆1+∆2−ℓ−p−6)

8(∆1−2)(∆1−1)
,

v3=
−∆+∆1−∆2+ℓ+p+2

4(∆1−3)(∆1−2)2(2∆2+p−4)
,

v4=−(−∆+∆1−∆2+ℓ+p+2)(−∆+∆1+∆2+ℓ+2p−2)(∆+∆1+∆2−ℓ−p−6)

8(∆1−3)(∆1−2)
. (4.81)

Decomposition into components. By using (4.69) one can write the recursion rela-

tion (4.80) at the level of components of the seed conformal blocks H
(p)
e (z, z).

First let us notice that according to [77] the components H
(p)
e (z, z) of the seed blocks

depend on the external scaling dimensions ∆i only via the quantities

ape ≡ a(p), bpe ≡ b(p) + p− e, cpe ≡ p− e, (4.82)

where

a(p) ≡ −∆1 −∆2 − p/2

2
, b(p) ≡ +

∆3 −∆4 − p/2

2
. (4.83)

Let us now analyze the expression (4.80). Almost all the conformal blocks entering the

right hand side of (4.80) correspond to the same parameters a(p) and b(p) (the difference

in p is compensated by a difference in ∆i). The only exception is the conformal block

W
(p−1)

∆+ 1
2
,ℓ; ∆1+1,∆2−

1
2
,∆3,∆4+

1
2

(4.84)

which contains a(p)−1 and b(p). Just as in the case of 3-dimensions in section 4.4.1, we can

use a dimension shifting operator to simplify the structure of the recursion relation (4.80).

The only difference is that we need to shift the external dimensions of a general seed block.

This can be done by generalizing the construction of dimension-shifting operator outlined

in section 4.5. We find

W
(p−1)

∆+ 1
2
,ℓ;∆1+1,∆2−

1
2
,∆3,∆4+

1
2

= E−1(D1,+−0 ·D−−0
2 )(D1,++0 ·D−+0

2 )W
(p−1)

∆+ 1
2
,ℓ;∆1,∆2+

1
2
,∆3,∆4+

1
2

,

(4.85)
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where

E ≡ −(p+ 1)(∆1 − 1)(∆1 − 2)(∆ +∆1 −∆2 + ℓ)(∆ +∆1 −∆2 − ℓ− 2). (4.86)

Note that this is in fact completely analogous to the differential basis trick, except that

instead of changing the external spins, we change the external dimensions.

Plugging the relation (4.85) in (4.80), stripping off the kinematic factor and decom-

posing this relation into components according to (4.69) one obtains a recursion relation

for the seed blocks of the form

H(p)
e (z, z) = − A−1

z − z

(
D0 H

(p−1)
e (z, z)− 2D1 H

(p−1)
e−1 (z, z) + 4cp−1

e−2zzD2 H
(p−1)
e−2 (z, z)

)
,

(4.87)

where the conformal block in the l.h.s. depends on [∆, ℓ; ∆1,∆2,∆3,∆4] while the con-

formal blocks in the r.h.s. depend on [∆ + 1
2 , ℓ; ∆1,∆2 +

1
2 ,∆3,∆4 +

1
2 ]. The differential

operators Di are given by

D0 ≡∇z[b
p−1
e ]D(p−1,e)

z −∇z[b
p−1
e ]D

(p−1,e)
z

+ k
(
D(p−1,e)

z −D
(p−1,e)
z

)
− (cp−1

e + 1)L[bp−1
e ]B

[
−k(k − 2)

1 + cp−1
e

]
, (4.88)

D1 ≡ z∇z[b
p−1
e−1 + cp−1

e−1]D
(p−1,e−1)
z − z∇z[b

p−1
e−1 + cp−1

e−1]D
(p−1,e−1)
z

+ k
(
zD(p−1,e−1)

z − zD
(p−1,e−1)
z

)

+ (2cp−1
e−1 + 1)zzL[bp−1

e−1](z − z)−1L[a]− (k − 2)(k − cp−1
e−1 − 1)(z − z)B[k], (4.89)

D2 ≡D(p−1,e−2)
z −D

(p−1,e−2)
z − L[a]B

[
k − cp−1

e−2 − 1
]
, (4.90)

where the coefficient k is

k ≡ 4−∆+ ℓ

2
+

3p

4
. (4.91)

The elementary differential operators54 used here are

D(a,b;c)
x ≡ x2(1− x)∂2x −

(
(a+ b+ 1)x2 − cx

)
∂x − abx, (4.92)

∇x[µ] ≡ −x(1− x)∂x + µx, (4.93)

L[µ] ≡ ∇z[µ]−∇z[µ], (4.94)

B[µ] ≡ zz

z − z
((1− z)∂x − (1− z)∂z) + µ, (4.95)

and we also use the following short-hand notation

D(p,e)
x ≡ D(ape ,b

p
e ;c

p
e)

x . (4.96)

54Exactly the same differential operators (except for ∇x[µ]) enter the quadratic Casimir equation for the

seed blocks [77]. Note that here the definition of L differs by a factor of z − z.

– 50 –



J
H
E
P
0
2
(
2
0
1
8
)
0
8
1

4.5 Dimension-shifting and spin-shifting

Using our techniques, we can explain some of the identities for scalar conformal blocks

which were derived by Dolan and Osborn in [140]. For the ease of comparison, in this

section we use the notation of [140], which we now briefly recall. The scalar conformal

block is defined as

〈φ∆1(x1)φ∆2(x2)|O∆,ℓ|φ∆3(x3)φ∆4(x4)〉=
1

x∆1+∆2

12 x∆3+∆4

34

(
x24

x14

)−2a(x14

x13

)2b
Fλ1λ2(a,b,x,x),

(4.97)

where x and x are the standard Dolan-Osborn coordinates denoted by z and z in the rest

of this paper,

xx =
x212x

2
34

x213x
2
24

, (1− x)(1− x) =
x223x

2
14

x213x
2
24

, (4.98)

and

a = −1

2
∆12, b =

1

2
∆34, (4.99)

while the parameters λi are defined as

λ1 =
1

2
(∆ + ℓ), λ2 =

1

2
(∆− ℓ). (4.100)

Operators Hk. Let us consider acting on (4.97) with the following contraction of the

vector operators (2.44),

−2D−0
1 · D−0

4 = −2X1 ·X4 = x214. (4.101)

The resulting four-point function will have scaling dimensions at positions 1 and 4 shifted

by −1. Accordingly, we can remove the prefactor for the new set of scaling dimensions to

find the resulting action of this operator on Fλ1λ2 ,

(xx)−
1
2Fλ1λ2(a, b, x, x). (4.102)

This operation is equivalent to the following diagram,

[∆1 − 1, 0]

[∆1, 0]

[∆2, 0]

[∆, ℓ]

[∆3, 0]

[∆4 − 1, 0]

[∆4, 0]

, (4.103)

and thus according to our general analysis can be expanded using the finite-dimensional

crossing (3.22) in terms of scalar conformal blocks with shifted external dimensions and

the internal representations appearing in

⊗ [∆, ℓ] = [∆− 1, ℓ]⊕ [∆, ℓ+ 1]⊕ [∆, ℓ− 1]⊕ [∆ + 1, ℓ]⊕ . . . , (4.104)
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where . . . represents non-STT representations which do not appear in a four-point function

of scalars. In the notation of [140], this corresponds to an equality of the form

(xx)−
1
2 Fλ1λ2 (a,b)=rFλ1−

1
2
λ2−

1
2

(
a+

1

2
, b+

1

2

)
+sFλ1+

1
2
λ2−

1
2

(
a+

1

2
, b+

1

2

)

+tFλ1−
1
2
λ2+

1
2

(
a+

1

2
, b+

1

2

)
+uFλ1+

1
2
λ2+

1
2

(
a+

1

2
, b+

1

2

)
, (4.105)

where the coefficients r, s, t, u are some combinations of the 6j symbols (3.22). This is pre-

cisely the equation (4.18) in [140]. Dolan and Osborn also introduce k-th order differential

operators Hk for k = 1, 2, 3, which act on Fλ1λ2 in the same way but with different sets of

coefficients rk, sk, tk, uk. In particular, they all increase a and b by 1
2 . In our formalism we

can also find 3 other operators with such a property,

D13 = D−0
1 · D+0

3 ,

D24 = D+0
2 · D−0

4 ,

D23 = D+0
2 · D+0

3 , (4.106)

all of which also exchange the vector representation in a way similar to (4.103), and thus

act in the same way as Hk. In fact, one can express Hk in terms of these operators, and

we provide explicit expressions in appendix G.

Operators Fk. Another class of operators introduced in [140] can be interpreted as

exchanges of the adjoint representation of conformal group. The simplest of such exchanges

is given by

F0 = 8D−0
1,[mD−0

2,n]D
−0,[m
3 D−0,n]

4 , (4.107)

whose action on the functions Fλ1λ2 is equivalent to

F0 =
1

x
+

1

x
− 1, (4.108)

which is precisely how F0 is defined in [140]. The action of this operator on a conformal

block corresponds to the following diagram,

[∆1 − 1, 0]

[∆1, 0]

[∆2 − 1, 0]

[∆2, 0] [∆, ℓ]

[∆3 − 1, 0]

[∆3, 0]

[∆4 − 1, 0]

[∆4, 0]

, (4.109)
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where the individual differential operators have indices in the vector representation and

are then joined into the adjoint representation ∈ ⊗ . Therefore, it decomposes into

scalar blocks appearing in the tensor product

⊗ [∆, ℓ] = [∆− 1, ℓ+ 1]⊕ [∆− 1, ℓ− 1]⊕ [∆ + 1, ℓ+ 1]⊕ [∆ + 1, ℓ− 1]⊕ [∆, ℓ]⊕ . . . ,

(4.110)

where “. . .” represents non-STT representations which do not appear in scalar conformal

blocks. Thus there exists an identity of the form

F0Fλ1 λ2 = r0Fλ1 λ2−1 + s0Fλ1−1λ2 + t0Fλ1+1λ2 + u0Fλ1 λ2+1 + w0Fλ1 λ2 , (4.111)

with coefficients r0, s0, t0, u0, w0 being some combinations of the 6j symbols (3.22). This is

precisely (4.28) of [140]. The operators Fk with k = 1, 2, 3 can be constructed analogously.

Operator D(ε). Finally, let us consider the identity (4.50) of [140], which is55

(xx)ε−b+1D(ε)(xx)b−εFλ1 λ2(a, b, x, x) = (λ1 + b)(λ2 + b− ǫ)Fλ1 λ2(a, b+ 1, x, x). (4.112)

We see that the left hand side of this expression gives a differential operator which shifts

b by 1. In our formalism, it is extremely easy to construct this operator, namely

(xx)ε−b+1D(ε)(xx)b−ε =
D+0

3 · D−0
4

(∆3 − 1)(d− 2−∆3)
. (4.113)

From the definition it is clear that it simply shifts b by 1. The coefficient in the right hand

side of (4.112) can be easily expressed in terms of 6j symbols (3.22).

4.6 Recursion relations for conformal blocks

In sections 4.3 and 4.4 we have managed to express an arbitrary conformal block in terms

of derivatives of scalar blocks, schematically

G∆,ρ =
∑

k

ck(∆)DkG
scalar
∆+δk,ℓk

, (4.114)

where [∆, ρ] is the representation of the exchanged operator, Dk are some ∆-independent

differential operators, and ck(∆) are rational functions. All ingredients in this formula

implicitly depend on the dimensions and representations of the external operators, as well

as on ρ. In practice we often have a generic spin parameter ℓ in ρ, and we can keep it

generic in this formula as we did in the examples in sections 4.4.1 and 4.4.2. The spins ℓk
are then finite shifts of ℓ, ℓk = ℓ+ δℓk.

Explicit examples of such expressions are given in (4.53), (4.54) and (4.80). They

readily allow us to compute the spinning conformal blocks numerically. But they also

allow us to analytically infer properties of the spinning blocks from the known properties

of the scalar blocks.

55Note that there is a typo in the second part of (4.43) in [140]. The correct definition is D(ε) = (xx)−
1

2H2.
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For example, a general method for numerical computation of conformal blocks is based

on Zamolodchikov recursion relations [123, 124]. The basic idea is that for certain values

∆i of the scaling dimension ∆ the generalized Verma module for the representation [∆, ρ]

has null descendants [∆′
i, ρ

′
i], which lead to poles in the conformal block for [∆, ρ] with the

residue being proportional to the conformal block for [∆′
i, ρ

′
i],

G∆,ρ ∼ Ri

∆−∆i
G∆′

i,ρ
′
i
, (4.115)

where Ri are certain coefficients, which in the case of spinning blocks generically are matri-

ces rotating the left and right three-point structures in G. For fixed ρ there are in general

several infinite families of poles ∆i. If we know the asymptotic behavior of the conformal

blocks for ∆ → ∞,

G∆,ρ ∼ r∆h∞,ρ, (4.116)

where r is the radial coordinate of [141, 142] and h∞,ρ is some relatively easily computable

function, then we can write the conformal block as a sum over residues [14, 105]. The

resulting approximation is perfectly suited for numerical applications based on semidefinite

methods [14, 22, 66].

To accomplish this program, one needs to understand the pole positions ∆i, the repre-

sentations of null states [∆′
i, ρ

′
i], and the residue matrices Ri. This data has been determined

for general scalar blocks [14, 22] as well as some examples of spinning blocks [66, 72, 105].

Although the classification of the poles ∆i and the null states [∆′
i, ρ

′
i] is known [105, 127,

143], the computation of the residue matrices Ri may not be an easy task.

Our expression (4.114) is perfectly suited for this problem. Indeed, from it the pole

structure of G∆,ρ is completely apparent. In particular, the poles in G∆,ρ are given by

the poles of the scalar blocks in the right hand side, and a finite56 number of poles of the

coefficients ck(∆). The residues of the poles are easy to compute. Indeed, any residue

is given by a sum of differential operators Dk acting on some scalar blocks. Using the

techniques of section 4.3, it is easy to express the action of Dk on a general scalar block as

a sum over conformal blocks which can appear for the given external operators,57

DkG
scalar
∆,ℓ ∼

∑

∆′,ρ′

G∆′,ρ′ . (4.117)

In other words, our techniques allow us to translate the known recursion relations for

scalar blocks into recursion relations for general conformal blocks. This approach has al-

ready been used in [66] for the exchange of traceless-symmetric representations. The new

ingredient here is that we can now derive the recursion relation for general internal repre-

sentations. For example, using the equations (4.53) and (4.54), we re-derived the recursion

relation of [72] for the scalar-fermion seed blocks exchanging a fermionic representation.

In [105] the residues of the conformal blocks were computed explicitly by considering

the action of the differential operators Di corresponding to the null states on the three-

point functions, and the behavior of the norm of the null state near the pole. We expect

56For a fixed ℓ.
57In particular, substituting these expressions in (4.114), we get a tautology.
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that the conformally-covariant differential operators can be useful also in this approach.

For example, the null state differential operators Di can be obtained by the translation

functor from a set of basic operators [144]. In our language this means that one can write

the operators Di as

Di ∝ DAD′
iDA, (4.118)

where D′
i are some simpler differential operators (for instance, many null states can be

obtained from D′ = d the exterior derivative acting on differential forms.). The action of

Di on a three-point function can then be computed by applying a crossing transformation

to move DA on a different leg and then acting with D′
i.

5 Further applications

5.1 Inversion formulae and “spinning-down” a four-point function

Orthogonality relations between conformal blocks are useful tools for analyzing crossing

symmetry. By exploiting orthogonality, we can derive inversion formulae that express OPE

data in terms of an integral of a conformal block against a four-point function [87, 134].

Applying an s-channel inversion formula to a t-channel conformal block expansion, we

can study crossing directly in terms of CFT data.58 The coefficients relating t-channel

blocks and s-channel blocks are sometimes called “crossing kernels.” Inversion formulae

and crossing kernels for scalar operators have been discussed recently in [90–93]. Here,

we briefly describe how our techniques are perfectly suited for studying inversion formulae

and crossing kernels for spinning operators. We will omit details, and simply highlight how

weight-shifting operators can be used in these computations. We leave detailed discussion

and examples for later work [126].

Our starting point is a conformally-invariant pairing between a four-point function of

operators Oi in representations [∆i, ρi] and a four-point function of shadow operators Õi

in representations [d−∆i, ρ
∗
i ]. This can be written

〈F,G〉 = 1

Vol(SO(d+ 1, 1))

∫ ( 4∏

i=1

ddxi

)
Fa1a2a3a4(xi)G

a1a2a3a4(xi)

= F G

O1

O2 O3

O4

. (5.1)

In our diagrammatic language, an incoming line for O is equivalent to an outgoing line for

Õ, and connecting lines means contracting indices and integrating over Euclidean space.

58Note that the integral in an inversion formula in general does not commute with the sum over conformal

blocks in the t-channel, so this analysis must be done carefully.
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To get a finite result for 〈F,G〉, we must divide by the volume of the conformal group acting

on all four points xi. In practice, this means gauge-fixing and inserting the appropriate

Faddeev-Popov determinant.

Consider first the case of scalar operators Oi. An orthogonal basis with respect to

the pairing 〈·, ·〉 is given by linear combinations of blocks that are single-valued in Eu-

clidean space,

F∆,ℓ =
1

2
(G∆,ℓ + S∆,ℓGd−∆,ℓ) , (5.2)

where ∆ = d
2 + iν is restricted to the principal series.59 The constant S∆,ℓ depends on

∆, ℓ and the external dimensions ∆i, and will not be important for the current discussion.

We call the F∆,ℓ “Euclidean partial waves.” Orthogonality follows from the fact that the

Casimir operator is self-adjoint with respect to 〈·, ·〉, together with the fact that F∆,ℓ is

single-valued so there are no boundary contributions from integrating by parts. See [90]

for more details.

A four-point function of scalars has a Euclidean partial wave decomposition of the form

g(xi) = 1 +
∑

ℓ

∮ d
2
+i∞

d
2
−i∞

d∆

2πi
c(∆, ℓ)F∆,ℓ(xi) + discrete series. (5.3)

The decomposition (5.3) is not the usual conformal block decomposition, but it is closely

related. When g(xi) is a four-point function in a unitary CFT, we expect that c(∆, ℓ) has

(shadow-symmetric) simple poles in ∆ on the real axis

c(∆, ℓ) ∼
∑

i

−c∆i,ℓ

(
1

∆−∆i
+

S−1
∆,ℓ

d−∆−∆i

)
. (5.4)

We can then deform the ∆-contour in (5.3) to the right for G∆,ℓ and to the left for Gd−∆,ℓ

to obtain

g(xi) = 1 +
∑

∆i,ℓ

c∆i,ℓG∆i,ℓ(xi). (5.5)

Thus, positions of poles in c(∆, ℓ) encode the spectrum of the theory, and the residues

encode products of OPE coefficients.60

For spinning operators, the Euclidean partial waves F
(a,b)
∆,ρ and their coefficients

c(a,b)(∆, ρ) are additionally labeled by a pair of three-point structures (a, b). An inver-

sion formula for the coefficients is given by61

M (c,d)(a,b)(∆, ρ)c(a,b)(∆, ρ) = 〈F̃ (c,d)
∆,ρ , g〉, (5.6)

59We must also include the so-called “discrete series” in non-even dimensions [87].
60When deforming the ∆-contour, one must take into account poles in the blocks themselves, which

interact in an intricate way [87, 88, 90].
61We sum over raised and lowered pairs of three-point structures (a, b).
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where, roughly speaking,62

〈F̃ (c,d)
∆′,ρ′ , F

(a,b)
∆,ρ 〉 ∼M (c,d)(a,b)(∆, ρ)δρρ′δ(∆−∆′). (5.7)

Pictorially,

〈F̃ (c,d)
∆,ρ , g〉 = c d g

OO†

O1

O2O3

O4

. (5.8)

One of our main observations is that spinning conformal blocks can be written as

derivatives of scalar blocks. Schematically, we have

F̃ spin
∆,ρ = DF scalar

∆,ℓ ,

D =
∑

t

dt(∆, ρ)tABCDD(a)A
1 D(b)B

2 D(c)C
3 D(d)D

4 . (5.9)

The operators D(ai)Ai

i are spin-raising operators transforming in Wi, acting on the point

xi. Here, t runs over invariant tensors in (W1 ⊗W2 ⊗W3 ⊗W4)
∗.

To compute the pairing (5.8), it is useful to integrate D by parts,

〈F̃ spin
∆,ρ , g〉 = 〈F scalar

∆,ℓ ,D∗g〉 (5.10)

where D∗ is the adjoint of D under the pairing 〈·, ·〉, given by replacing each D(a)
i with its

adjoint (D(a)
i )∗ (since we can integrate by parts individually on each leg). The adjoints

(D(ai)
i )∗ are spin-lowering differential operators, and the right-hand side of (5.10) is a

pairing between scalar four-point functions. We can thus proceed to study it in the same

way as we study four-point functions of scalars. For example, one can derive spinning

versions of the CFT Froissart-Gribov formula [90] using these techniques.63 We call this

trick “spinning-down” a four-point function.

62We are neglecting an additional term proportional to δ(∆+∆′ −d) that is unimportant for the current

discussion.
63One of the consequences of the Froissart-Gribov formula is that CFT data can be analytically continued

in spin. When non-STTs can appear as internal operators, analytic continuation in spin can be understood

by expressing V∆,ρ as a subrepresentation of V∆′,ℓ ⊗W for some fixed W , and then analytically continuing

in ℓ. This is equivalent to analytically continuing in the length of the first row of the Young diagram for ρ.
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In pictures, the right-hand side of (5.10) is

〈F̃ spin
∆,ρ , g〉 ∼

∑

t

g

t

, (5.11)

where the dashed lines represent scalars.

5.2 6j symbols for infinite-dimensional representations

If we plug in a t-channel partial wave for g, then we can simplify (5.11) further by using

crossing to move the differential operators to the internal leg:

=

t

=
∑{

· · ·
}4

t

=
∑{

· · ·
}4(

· · ·
)

(5.12)

The symbol {· · · }4 represents a product of four 6j symbols of the type in (3.22), and the

factor (· · · ) is the result of taking a conformally-invariant product of differential operators
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on the right internal leg. For simplicity, we have omitted labels and shown only the topology

of the various diagrams. Dashed lines represent scalar operators, and solid lines represent

operators with spin.

Equation (5.12) expresses an inner product of general spinning blocks in terms of inner

products of scalar blocks. Such inner products are examples of 6j symbols for the confor-

mal group, where all the representations are infinite-dimensional principal series represen-

tations. The corresponding graphs have the topology of a tetrahedron. The equality (5.12)

is an example of a general set of relations between infinite-dimensional 6j symbols that we

can derive as follows. We start with a tetrahedron graph and introduce a bubble with a

finite-dimensional representation W on one of the lines. We can then move the vertices of

the bubble to a different internal line and collapse it.

=

(
· · ·
)

=
∑(

· · ·
){

· · ·
}2

=
∑(

· · ·
){

· · ·
}3

=
∑(

· · ·
)2{

· · ·
}4

(5.13)

The above is essentially the pentagon identity for a mixture of finite-dimensional (de-

generate) and infinite-dimensional representations. Because the crossing kernel for degen-

erate four-point functions is so simple, the pentagon identity becomes a useful tool for

computing infinite-dimensional crossing kernels. The 6j symbol for six scalar representa-

tions of the conformal group was computed in [145] in terms of a four-fold Mellin-Barnes

integral. That result, along with relations of the type illustrated in (5.13) in principle

allows one to compute an arbitrary 6j symbol.
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6 Discussion

In this work, we introduced new mathematical tools for computations in conformal repre-

sentation theory. These include the construction of weight-shifting operators summarized in

theorem 2.1, the observation that they satisfy the crossing equation (3.22), and our discus-

sion of how weight-shifting operators interact with conformally-invariant projectors (4.9).

For concrete computations, we introduced the embedding space operators (2.44), (2.71),

and (2.78). We explored in detail how these tools can be applied to compute conformal

blocks. We also discussed some applications to harmonic analysis and inversion formulae.

We plan to expand on the latter in future work [126].

However, many directions remain unexplored. One natural question is how weight-

shifting operators interact with short multiplets of the conformal group. For simplicity, we

specialized to simple generalized Verma modules (long multiplets) in this paper. However,

we expect new phenomena in the presence of shortening conditions. Some questions include:

how is the tensor product decomposition (2.12) modified for short multiplets? How are

shortening conditions reflected in the zeros and poles of 6j symbols? Is the spinning-down

procedure of section 5.1 useful when external operators are in short multiplets?

Our construction of weight-shifting operators and their crossing equations is very gen-

eral. As noted in the introduction, it also applies to generalized Verma modules of any

Lie (super-)algebra.64 In particular, supersymmetric weight-shifting operators should be

useful for computing and studying superconformal blocks and tensor structures. It will

be interesting to construct such operators and explore their applications. The question

of how weight-shifting operators interact with shortening conditions becomes even more

interesting in the superconformal case, since there are a wide variety of interesting short

superconformal multiplets (see e.g. [146]).

As discussed in section 2.4, the algebra of weight-shifting operators is governed by the

fusion matrix J(λ), which is closely related to solutions to the Yang-Baxter equation and

integrability [131]. Does this structure have an interesting role to play in conformal field

theory? Is it related to the “superintegrability” of conformal blocks discussed in [120–122]?

It may also be interesting to explore the role of weight-shifting operators in holographic

calculations.65 We expect that they should help in the computation of Witten diagrams

for operators with spin. Natural questions include: what is the flat-space limit of weight-

shifting operators? Are they useful for amplitudes calculations (for example are they related

to the differential operators introduced in [148])? Weight-shifting operators may also be

helpful for exploring spinning amplitudes in the conformal basis of [149].
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A Conformal algebra

We use the following conventions for the conformal algebra,

[D,Kµ] = −Kµ, [D,Pµ] = Pµ, (A.1)

[Kµ, Pν ] = 2δµνD − 2Mµν , (A.2)

[Mµν , Pρ] = δνρPµ − δµρPν , (A.3)

[Mµν ,Kρ] = δνρKµ − δµρKν , (A.4)

[Mµν ,Mρσ] = δνρMµσ − δµρMνσ + δνσMρµ − δµσMρν , (A.5)

and all other commutators vanish. In Lorentzian signature, all generators are anti-

Hermitian. In Euclidean signature D = D†, K = P † and M is anti-Hermitian. Notice

how (A.2) expresses the conformal Killing equation for the adjoint representation by say-

ing that the rank-2 symmetric traceless tensor does not appear among level-1 descendants

of the primary Kµ.

B Verma modules and differential operators

In the main text we have seen that for every irreducible component V∆′,ρ in the tensor

productW⊗V∆,ρ there is a conformally-covariant differential operator DA : [∆, ρ] → [∆′, λ]

with a W ∗-index A. Here we would like to state this relation more carefully and show that

there is in fact a one-to-one correspondence.

Theorem B.1. For generic ∆ the decomposition (2.12) holds. The irreducible compo-

nents in the tensor product decomposition (2.12) are in one-to-one correspondence with the

conformally-covariant differential operators DA : [∆, ρ] → [∆′, λ] with an index A trans-

forming in a finite-dimensional representation W of SO(d+ 1, 1).

Proof. First we show that the tensor product decomposition (2.12) holds. The discussion

in section 2.2 essentially shows that the characters on the both sides agree. This statement

holds for all ∆. This however does not necessarily imply (2.12) as an isomorphism between

the representations. So our first step is to construct the isomorphism (2.12).

We can define on W ⊗ V∆,ρ a conformally-invariant inner product, induced from the

inner products on W and V∆,ρ. Suppose that there is a submodule Y ⊆ W ⊗ V∆,ρ. If the

conformally-invariant inner product is non-degenerate66 on Y , it follows that Y is in fact

66Note that if the inner-product is non-degenerate but not positive-definite, there still can exist subspaces

on which it is degenerate. Finite-dimensional representations of non-compact groups such as SO(d + 1, 1)

or SO(d, 2) necessarily have indefinite inner products.
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a direct summand,

M ≡W ⊗ V∆,ρ = Y ⊕ Y ⊥. (B.1)

Starting from this observation, it is a standard argument to show that (2.12) holds. We

reproduce it here for completeness. The states (2.9) are always primary because they have

the smallest possible scaling dimension ∆ − j. We can decompose them into mutually

orthogonal irreducibles of SO(d). Considering all the descendants of these states we form

the submodule

Y−j =
⊕

λ∈W−j⊗ρ

V∆−j,λ. (B.2)

For generic ∆ the generalized Verma modules in this sum are irreducible, and thus the

inner product is non-degenerate (otherwise the null states form a submodule). By (B.1)

we then have

M = Y−j ⊕M1, M1 ≡ Y ⊥
−j . (B.3)

We can now look at the states of the smallest scaling dimension inside of M0. These all

are again primary, and we can consider the submodule Y−j+1 which they generate. Since

we already know (2.12) as a character identity, we know that

Y−j+1 =
⊕

λ∈W−j+1⊗ρ

V∆−j+1,λ. (B.4)

Again, from (B.1) we find

M1 = Y−j+1 ⊕M2. (B.5)

We then continue recursively until we exhaust all states as controlled by (2.12) as a char-

acter identity. Collecting everything together, we arrive at (2.12) as a direct sum decom-

position.

From the discussion in the main text it follows that the primaries which we identify in

the tensor product W ⊗ V∆,ρ give rise to conformally-covariant differential operators. At

the same time, as observed in section 2.4, they give rise to homomorphisms (2.28). In fact,

there is a one-to-one correspondence between these objects.

Lemma B.2. For any fixed ∆,∆′, ρ, λ the conformally-covariant differential operators

DA : [∆, ρ] → [∆′, λ] are in a one-to-one correspondence with the homomorphisms of

the form (2.28).

The map implied by this lemma is essentially constructed in section 2.3. Looking at it one

can easily convince oneself that the lemma is almost a tautology. We give a formal proof

later in this appendix.

Given lemma B.2, to finish the proof of the theorem it only remains to show that

generically the only homomorphisms of the form (2.28) are those which come from the

embeddings of the direct summands in (2.12). This follows immediately from Schur’s

lemma and the fact that Verma modules are irreducible for generic scaling dimensions.
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Proof of lemma B.2. For W = •, lemma B.2 is standard material in representation theory

of generalized Verma modules [150], and we need to only slightly modify it by introducing

the non-trivial W . Let us give an elementary review of the proof with the appropriate

modifications.

First, we need to give the precise meaning to [∆, ρ], which is in fact a vector bundle.

The sections of [∆, ρ] are the functions fa(x) on the conformal sphere Sd with index a in

ρ which transform as67

(gf)a(x) = Ω(x)−∆ρab(R(x))f
b(g−1x), g ∈ SO(d+ 1, 1). (B.6)

We also associate a vector bundle W to W . The sections of W are the functions fA which

transform as

(gf)A(x) = DA
B(g)fB(g

−1x). (B.7)

The conformally-covariant differential operator DA is then a differential operator between

the vector bundles

D : [ρ, λ] → W ⊗ [∆′, λ], (B.8)

which commutes with the action of the conformal group. We will refer to this property

as equivariance. The idea now is to note that if we know that D is equivariant, then it is

completely specified by its action at zero, i.e. by the expression

(Df)aA(0) = derivatives of f at 0. (B.9)

Indeed, let tx be the translation which takes 0 to x. Then we can compute Df at any x

by writing

(Df)aA(x) = (txDt−xf)
a
A(x) = DA

B(tx)(Dt−xf)
a
B(0), (B.10)

and using (B.9) for t−xf . As usual, the only condition the expression (B.9) has to satisfy

in order for this construction to be self-consistent is that it has to be equivariant with

respect to the transformations which fix the origin — in our case with respect to dilatations,

rotations and special conformal transformations, the algebra of which we will denote by p.68

Instead of studying this condition in detail, we can just map it to the similar problem

for Verma modules. If D is of order k, the equation (B.9) can be understood as the map

D : Jk
0 [∆, ρ] →W ⊗ J0

0 [∆
′, λ], (B.11)

where Jk
0 [∆, ρ] is the space of k-jets of sections of [∆, ρ] at 0, i.e. the space of formal power

series of sections of [∆, ρ] around the origin, truncated to k-th order. One can extend

67The difference with (2.7) comes from the fact that here we are defining the action on functions rather

than operators, and the appearance of g−1 in the argument of f on the right hand side is dictated by

compatibility with the group multiplication (gh)f = g(h(f)).
68This is not to be confused with the subalgebra generated by translations. We use this notation to be

consistent with the mathematics literature, where p stands for “parabolic”.
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the action of conformal algebra to these jets, and the problem of finding a p-equivariant

map (B.9) is equivalent to finding p-equivariant maps (B.11). Using (B.10) we can extend

such maps to so(d+ 1, 1)-equivariant maps

D : J∞
0 [∆, ρ] →W ⊗ J∞

0 [∆′, λ], (B.12)

between the formal power series. These are the same as Verma module homomor-

phisms because V∆,ρ consists of the states like ∂µ1 · · · ∂µnOa(0), which are naturally lin-

ear functionals on the formal power series J∞
0 [∆, ρ]. In fact, one can show that as

so(d+ 1, 1)-representations,

V∆,ρ ≃ (J∞
0 [∆, ρ])∗ . (B.13)

Thus by taking the dual of (B.12) we obtain a homomorhism

D∗ :W ∗ ⊗ V∆′,λ → V∆,ρ. (B.14)

As usual, we can replace W ∗ on the left with a W on the right: we can define D′(v) =

eA ⊗D∗(e∗A ⊗ v), so that

D′ : V∆′,λ →W ⊗ V∆,ρ (B.15)

is a homomorphism of the form (2.28). All the steps that we took to get from the differential

operator DA to D′ were invertible, so we get a one-to-one correspondence.

C Weight-shifting operators for the vector representation

Let us give more detail about the computation of the weight-shifting operators for the vector

representation (2.44). Recall that traceless symmetric tensor operators are homogeneous

elements of R/(R∩ I), where R is the ring of functions of X,Z ∈ R
d+1,1 that are invariant

under Z → Z+λX (equivalently they are killed by X · ∂
∂Z ), and I is the ideal generated by

{X2, X ·Z,Z2}. For a differential operator D to be well-defined on R/(R∩I), it must satisfy

DR ⊆ R, (C.1)

D(R ∩ I) ⊆ R ∩ I. (C.2)

Because we are searching for homogeneous differential operators, it suffices to consider

their action on homogeneous elements of R. It is not hard to convince oneself that a general

homogeneous element of R can be written as a linear combination of functions of the form

f∆,ℓ(X,Z) ≡ (X · Y )−∆−ℓ((Z · P )(X ·Q)− (Z ·Q)(X · P ))ℓ, (C.3)

for various Y, P,Q.

To find the weight-shifting operators D(a)
m , we start by enumerating conformally-

covariant terms with the correct homogeneity in X and Z, modulo X · ∂
∂X , Z · ∂

∂Z , and

X · ∂
∂Z (which act as −∆, ℓ, and 0, respectively). There are a finite number of such terms,

and this leads to the ansatz (2.44) with undetermined coefficients that are functions of ∆, ℓ.
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To fix the coefficients, it suffices to check (C.1) and (C.2) for a sufficient number of

functions. In particular, we impose (C.1) in the form
(
X · ∂

∂Z

)
D(a)

m f∆,ℓ(X,Z) = 0, (C.4)

and (C.2) in the form

D(a)
m ((S ·Z)2(X ·X)−2(S ·X)(S ·Z)(X ·Z)+(S ·X)2(Z ·Z))f∆+2,ℓ−2(X,Z)∈R∩I

D(a)
m ((X ·X)(Z ·Z)−(X ·Z)2)f∆+2,ℓ−2(X,Z)∈R∩I

D(a)
m ((X ·X)(Z ·S)−(X ·S)(X ·Z))f∆+2,ℓ−1(X,Z)∈R∩I

D(a)
m (X ·X)f∆+2,ℓ(X,Z)∈R∩I (C.5)

where S, Y, P,Q ∈ R
d+1,1 are arbitrary vectors. (Because of (C.1), to check whether the left

hand sides of (C.5) are in R ∩ I, it suffices to check whether they are in I. That is, we set

X2, X ·Z,Z2 to zero and check whether the result is zero.) These conditions are sufficient

to fix the unknown coefficients. In particular, for the most complicated weight-shiting

operator D+0
m , we find

c1 =

(
d

2
−∆− 1

)
(∆ + ℓ− 1)(d−∆+ ℓ− 2)

c2 = −1

2
(∆ + ℓ− 1)(d−∆+ ℓ− 2)

c3 = −
(
d

2
−∆− 1

)
(∆ + ℓ− 2)

c4 = −
(
d

2
−∆− 1

)
(d−∆+ ℓ− 2)

c5 =
d

2
+ ℓ− 2

c6 =
d

2
−∆− 1

c7 = −1

2
. (C.6)

D 6j symbols and the algebra of operators

In this appendix we consider the crossing equation which is obtained by replacing O1

in (3.22) by a finite-dimensional representation,69

a b

U

O2 O3

V

O′
3

=
∑

W,m,n

{
U O2 W

O3 V O′
3

}ab

mn
m

n

U

O2 O3

V

W .

(D.1)

69We then find a third finite-dimensional representation arising from the tensor product of the first two.
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Here, the sum is overW ∈ U⊗V . Since restricting O1 to a finite-dimensional representation

changes the counting of structures on both sides, we should check that the numbers still

agree. Let us assume that ∆3 = ∆2−l. According to theorem 2.1, the number of structures

on the left is

∑

i+k=l

dim(ρ∗2 ⊗ Ui ⊗ Vk ⊗ ρ3)
SO(d), (D.2)

while the number of structures on the right is

∑

W∈U⊗V

dim(ρ∗2 ⊗Wl ⊗ ρ3)
SO(d) × dim(U ⊗ V ⊗W ∗)SO(d+1,1). (D.3)

These numbers are the same due to

⊕

W∈U⊗V

dim(U ⊗ V ⊗W ∗)SO(d+1,1) ×Wl ≃
⊕

i+k=l

Ui ⊗ Vk. (D.4)

The crossing transformation (D.1) defines the algebra of weight-shifting operators for

general ρ2 and generic ∆2. In section 2.4 we described the same algebra in the situa-

tion when both ρ2 and ∆2 are generic. As in section 2.4, (D.1) essentially expresses the

associativity of the tensor product.

As a simple application, suppose that U = V ∗ and let us contract U and V indices

in (D.1) to form the bubble diagram,

a b

U

O2 O3

O′
3

=
∑

W,m,n

{
U O2 W

O3 U
∗ O′

3

}ab

mn
m

n

U

O2 O3

W .

(D.5)

The tadpole on the right can be non-zero only if W = • is the representation of the identity

operator 1. But then m exists only if ∆2 = ∆3 and ρ2 = ρ3. In this case there exists a

unique structure for both n and m. We can erase the line for the trivial W , and the U -loop

gives a factor of dimU . We thus find

a b

U

O2 O3

O′
3

= (dimU)

{
U O2 1

O3 U
∗ O′

3

}ab

·· O2 O3
(D.6)

We thus conclude

(
O3

O′
3 U

)ba

= (dimU)

{
U O3 1

O3 U
∗ O′

3

}ab

··
. (D.7)
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The algebra (D.1) also shows tells us how to compose the two-point operators of [70].

Indeed, suppose we have a composition of two two-point operators, ignoring the opera-

tor labels,

O1 O′
1

O2 O′
2

U V . (D.8)

We can apply (D.1) at the top and at the bottom to find, schematically,

O1 O′
1

O2 O′
2

U V =
∑

W,W ′,...

{· · · }2

O1 O′
1

O2 O′
2

U V

W

W ′

, (D.9)

where {· · · }2 is a product of two 6j symbols. By Schur’s lemma, the bubble diagram in

the middle can be non-zero only if W = W ′, in which case it is a scalar. This scalar can

be determined from finite-dimensional 6j symbols. We thus arrive at

O1 O′
1

O2 O′
2

U V =
∑

W,...

{· · · }3

O1 O′
1

O2 O′
2

W , (D.10)

where {· · · }3 are some coefficients involving three 6j symbols, and the sum is over W ∈
U ⊗ V .

E Seed blocks in 3d

Basis of four-point tensor structures. For the four-point tensor structures we use

the conformal frame structures

[q1q2q3q4] (E.1)

that we introduced in section 3.4.2. It is analogous to the basis used in [138], but we make

a different choice of the conformal frame,

x1 = (0, 0, 0),

x2 =

(
z − z

2
, 0,

z + z

2

)
,

x3 = (0, 0, 1),

x4 = (0, 0,+∞). (E.2)

The configuration used in section 3.4.2 corresponds then to z = z.
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In terms of these structures, for parity-even four-point functions (G++
seed and G−−

seed) we

use the basis

G = g1(z, z)
[−1

2 , 0, 0,−1
2 ] + [12 , 0, 0,

1
2 ]

2
+ g2(z, z)

[12 , 0, 0,−1
2 ] + [−1

2 , 0, 0,
1
2 ]

2
, (E.3)

and for parity-odd four-point functions (G+−
seed and G−+

seed) we use the basis

G = g1(z, z)
[−1

2 , 0, 0,−1
2 ]− [12 , 0, 0,

1
2 ]

2
+ g2(z, z)

[12 , 0, 0,−1
2 ]− [−1

2 , 0, 0,
1
2 ]

2
. (E.4)

We will now provide explicit expressions for g±±
i (z, z).

Explicit expressions for g
±±

i
(z, z). First we strip off some normalization factors,

g++
k (z, z) =

i(−1)ℓ−
1
2

ℓ(∆− ℓ− 1)(∆− 1)
(zz)−

∆1+∆2+
1
2

2 D++
i G

α− 1
4
,β− 1

4

∆+ 1
2
,ℓ− 1

2

(z, z),

g−−
k (z, z) =

i(−1)ℓ−
1
2

(ℓ+ 1
2)(∆ + ℓ)(∆− 1)

(zz)−
∆1+∆2+

1
2

2 D−−
i G

α− 1
4
,β− 1

4

∆+ 1
2
,ℓ+ 1

2

(z, z),

g+−
k (z, z) =

i(−1)ℓ−
1
2

ℓ(∆− ℓ− 1)(∆− 1)
(zz)−

∆1+∆2+
1
2

2 D+−
i G

α− 1
4
,β+ 1

4

∆+ 1
2
,ℓ− 1

2

(z, z),

g−+
k (z, z) =

i(−1)ℓ−
1
2

(ℓ+ 1
2)(∆ + ℓ)(∆− 1)

(zz)−
∆1+∆2+

1
2

2 D−+
i G

α− 1
4
,β+ 1

4

∆+ 1
2
,ℓ+ 1

2

(z, z). (E.5)

Here, α = −(∆1 − ∆2)/2 and β = (∆3 − ∆4)/2, where ∆i are the dimensions of the

external operators in (4.30). To write down the expressions for D±±
i , we introduce the

following operators,

Dz = z2(1− z)∂2z − (α′ + β′ + 1)z2∂z − α′β′z,

dz = z∂z,

∇z =
1

z − z
dz(z − z) = z∂z +

z

z − z
,

d̃z = (1− z)dz − α′z,

∇̃z = (1− z)∇z − (α′ − 1)z, (E.6)

as well as their conjugates which are obtained by exchanging z and z. The variables α′

and β′ in the above formulas are equal to the parameters of the scalar conformal blocks

Gα′,β′

∆′,ℓ′(z, z) on which the differential operators act in (E.5).

The differential operators D±±
i are given by70

D±±
1 = dzDz − dzDz − (dz − dz)

zz

2(z − z)

(
(1− z)∂z − (1− z)∂z

)

+ a±±(dz − dz) + b±±(Dz −Dz),

D±±
2 =∇zDz +∇zDz + (∇z +∇z)

zz

2(z − z)

(
(1− z)∂z − (1− z)∂z

)

− a±±(∇z +∇z) + c±±, (E.7)

70Note again that in order to simplify these expressions we made use of the quadratic Casimir equation

satisfied by the scalar conformal blocks.
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where coefficients a±±, b±± and c±± are given below and, additionally, in D+− and D−+

the operators d and ∇ need to be replaced by d̃ and ∇̃ respectively. We have

a++ = a+− =
(∆− ℓ)(∆− ℓ− 3)

4
,

b++ = b+− =
∆− ℓ− 3

2
,

c++ = c+− =
(2ℓ+ 1)(∆− ℓ− 3)(∆− 3

2)

4
, (E.8)

and the coefficients for parity-odd left structure are obtained by replacing ℓ→ −ℓ− 1,

a−− = a−+ =
(∆+ ℓ+ 1)(∆ + ℓ− 2)

4
,

b−− = b−+ =
∆+ ℓ− 2

2
,

c−− = c−+ = −(2ℓ+ 1)(∆ + ℓ− 2)(∆− 3
2)

4
. (E.9)

Normalization conventions. Our normalization conventions are fixed by our choice of

two-point functions (4.36), the scalar-fermion three-point functions (4.31) and the scalar

three-point functions (4.33). These conventions agree with [72]. In particular, if the scalar

blocks are normalized as

Gα,β
∆,ℓ(z, z) ∼

(−1)ℓ(1)ℓ
(1/2)ℓ

(zz)∆/2Pℓ

(
z + z

2
√
zz

)
, z, z ≪ 1, (E.10)

where Pℓ are Legendre polynomials, then the resulting seed blocks G±±
seed are normalized as

in [72] with their cO = 1. To obtain the blocks at other values of cO, one should divide our

formulas by cO.

The coefficients vi. For G++ we have

v1=− i(−1)ℓ−
1

2 (−2∆−2∆3−2∆4+2ℓ+9)(2∆+2∆3−2∆4+2ℓ−1)(−2∆−2∆3+2∆4+2ℓ+1)

64(∆−1)(2∆3−3)(2∆4−3)ℓ(−∆+ℓ+1)
,

v2=− i(−1)ℓ−
1

2 (−2∆−2∆3−2∆4+2ℓ+9)(−2∆+2∆3−2∆4+2ℓ+3)(−2∆−2∆3+2∆4+2ℓ+3)

128(∆−1)(∆3−1)(2∆3−3)ℓ(−∆+ℓ+1)
,

v3=− i(−1)ℓ−
1

2 (−2∆+2∆3−2∆4+2ℓ+3)

64(∆−1)(∆3−2)2 (2∆3−3)(2∆4−3)ℓ(−∆+ℓ+1)
,

v4=
i(−1)ℓ−

1

2 (−2∆−2∆3−2∆4+2ℓ+9)(−2∆+2∆3−2∆4+2ℓ+3)(−2∆+2∆3+2∆4+2ℓ−3)

128(∆−1)(∆3−2)(2∆3−3)ℓ(−∆+ℓ+1)
. (E.11)

For G−− we have

v1=− i(−1)ℓ−
1

2 (2∆+2∆3−2∆4+2ℓ+1)(−2∆−2∆3+2∆4+2ℓ+3)(2∆+2∆3+2∆4+2ℓ−7)

32(∆−1)(2∆3−3)(2∆4−3)(2ℓ+1)(∆+ℓ)
,

v2=− i(−1)ℓ−
1

2 (2∆+2∆3−2∆4+2ℓ−1)(2∆−2∆3+2∆4+2ℓ−1)(2∆+2∆3+2∆4+2ℓ−7)

64(∆−1)(∆3−1)(2∆3−3)(2ℓ+1)(∆+ℓ)
,

v3=− i(−1)ℓ−
1

2 (2∆−2∆3+2∆4+2ℓ−1)

32(∆−1)(∆3−2)2 (2∆3−3)(2∆4−3)(2ℓ+1)(∆+ℓ)
,

v4=
i(−1)ℓ−

1

2 (2∆−2∆3−2∆4+2ℓ+5)(2∆−2∆3+2∆4+2ℓ−1)(2∆+2∆3+2∆4+2ℓ−7)

64(∆−1)(∆3−2)(2∆3−3)(2ℓ+1)(∆+ℓ)
. (E.12)
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For G+− we have

v1 =
i(−1)ℓ−

1
2 (−2∆− 2∆3 − 2∆4 + 2ℓ+ 9) (−2∆− 2∆3 + 2∆4 + 2ℓ+ 3)

64(∆− 1) (∆3 − 1) (2∆3 − 3) (2∆4 − 3) ℓ(−∆+ ℓ+ 1)
,

v2 = − i(−1)ℓ−
1
2 (−2∆− 2∆3 − 2∆4 + 2ℓ+ 7) (2∆− 2∆3 − 2∆4 + 2ℓ+ 3)

128(∆− 1) (2∆3 − 3) ℓ(−∆+ ℓ+ 1)
×

× (−2∆− 2∆3 + 2∆4 + 2ℓ+ 3) (2∆ + 2∆3 + 2∆4 + 2ℓ− 7) ,

v3 = − i(−1)ℓ−
1
2 (−2∆ + 2∆3 − 2∆4 + 2ℓ+ 3) (−2∆− 2∆3 + 2∆4 + 2ℓ+ 3)

64(∆− 1) (∆3 − 2) (2∆3 − 3) (2∆4 − 3) ℓ(−∆+ ℓ+ 1)
,

v4 = − i(−1)ℓ−
1
2 (−2∆ + 2∆3 − 2∆4 + 2ℓ+ 1) (2∆− 2∆3 + 2∆4 + 2ℓ− 1)

128(∆− 1) (∆3 − 2) 2 (2∆3 − 3) ℓ(−∆+ ℓ+ 1)
. (E.13)

For G−+ we have

v1 = − i(−1)ℓ−
1
2 (2∆ + 2∆3 − 2∆4 + 2ℓ− 1) (2∆ + 2∆3 + 2∆4 + 2ℓ− 7)

32(∆− 1) (∆3 − 1) (2∆3 − 3) (2∆4 − 3) (2ℓ+ 1)(∆ + ℓ)
,

v2 =
i(−1)ℓ−

1
2 (−2∆− 2∆3 − 2∆4 + 2ℓ+ 9) (2∆ + 2∆3 − 2∆4 + 2ℓ− 1)

64(∆− 1) (2∆3 − 3) (2ℓ+ 1)(∆ + ℓ)
×

× (−2∆ + 2∆3 + 2∆4 + 2ℓ− 1) (2∆ + 2∆3 + 2∆4 + 2ℓ− 5) ,

v3 =
i(−1)ℓ−

1
2 (2∆ + 2∆3 − 2∆4 + 2ℓ− 1) (2∆− 2∆3 + 2∆4 + 2ℓ− 1)

32(∆− 1) (∆3 − 2) (2∆3 − 3) (2∆4 − 3) (2ℓ+ 1)(∆ + ℓ)
,

v4 =
i(−1)ℓ−

1
2 (−2∆ + 2∆3 − 2∆4 + 2ℓ+ 3) (2∆− 2∆3 + 2∆4 + 2ℓ+ 1)

64(∆− 1) (∆3 − 2) 2 (2∆3 − 3) (2ℓ+ 1)(∆ + ℓ)
. (E.14)

F Dual seed blocks in 4d

In this appendix we provide the final expression for the dual seed conformal blocks recursion

relation omitting all the derivations. All the quantities below carry a bar to distinguish

them from their analogous in the seed case.

By performing the calculation completely analogous to the one in section 4.4.2, we find

that the dual seed conformal blocks obey the following recursion relation

W
(p)
∆, ℓ;∆1,∆2,∆3,∆4

=

A−1

(
v1 (D−−0

1 ·D4,−0+)(D−+0
1 ·D2,++0)W

(p−1)

∆− 1
2
, ℓ;∆1+1,∆2−

1
2
,∆3,∆4+

1
2

+v2 (D−−0
1 ·D4,−0+)(D1,++0 ·D−+0

2 )W
(p−1)

∆− 1
2
, ℓ;∆1,∆2+

1
2
,∆3,∆4+

1
2

+v3 (D+0−
1 ·D4,−0+)(D+0+

1 ·D2,++0)W
(p−1)

∆− 1
2
, ℓ;∆1−1,∆2−

1
2
,∆3,∆4+

1
2

+v4 (D+0−
1 ·D4,−0+)(D1,−0+ ·D−+0

2 )W
(p−1)

∆− 1
2
, ℓ;∆1,∆2+

1
2
,∆3,∆4+

1
2

)
, (F.1)
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where the coefficients are71

A = − i (ℓ+ p)(∆ +∆3 −∆4 + ℓ+ p− 2)

2∆ + 2ℓ+ p− 2
(F.2)

and

v1 =
(∆−∆1 −∆2 + ℓ+ p+ 2)(−∆−∆1 +∆2 + ℓ+ p+ 2)

2(∆1 − 2)(2∆ + p− 4)(2∆2 + p− 4)
,

v2 = −(∆−∆1 −∆2 + ℓ+ p+ 2)(∆−∆1 +∆2 + ℓ+ 2p− 2)

4(∆1 − 2)(∆1 − 1)(2∆ + p− 4)
,

v3 = − 1

2(∆1 − 3)(∆1 − 2)2(2∆ + p− 4)(2∆2 + p− 4)
,

v4 = −(∆−∆1 −∆2 + ℓ+ p+ 2)(∆ +∆1 +∆2 + ℓ+ 2p− 6)

4(∆1 − 3)(∆1 − 2)(2∆ + p− 4)
. (F.3)

Analogously to the primal seed case, we replace one of the conformal blocks on the right

hand side of (F.1) by using the dimension-shifting operator

W
(p−1)

∆−

1

2
, ℓ; ∆1+1,∆2−

1

2
,∆3,∆4+

1

2

= E−1
(D1,+−0 ·D

−−0

2 )(D1,++0 ·D
−+0

2 )W
(p−1)

∆−

1

2
, ℓ; ∆1,∆2+

1

2
,∆3,∆4+

1

2

,

(F.4)

where

E ≡ (p+ 1)(∆1 − 2)(∆1 − 1)(∆+∆1 −∆2 + l+ p− 2)(−∆−∆1 +∆2 + l+ p+ 2). (F.5)

Decomposition into components. Plugging the relation (F.4) in (F.1), stripping off

the kinematic factor and decomposing this relation into four-point tensor structures ac-

cording to (4.70) one obtains a recursion relation for the components of seed blocks of the

form analogous to (4.87)

H
(p)
e (z, z) = −A′−1

z − z

(
D0 H

(p−1)
e (z, z)− 2D1 H

(p−1)
e−1 (z, z) + 4cp−1

e−2zzD2 H
(p−1)
e−2 (z, z)

)
,

(F.6)

where the blocks in the l.h.s. depend on [∆, ℓ; ∆1, ∆2, ∆3, ∆4] and the blocks in the r.h.s.

depend on [∆− 1
2 , ℓ; ∆1, ∆2 +

1
2 , ∆3, ∆4 +

1
2 ].

The overall coefficient is

A′ ≡ −
(
∆+

p

2
− 2
)
(∆ +∆1 −∆2 + l + p− 2)A. (F.7)

The differential operators Di are given by the expression (4.88)–(4.90) with the parameter

k replaced by k

k ≡ ∆+ ℓ

2
+

3p

4
. (F.8)

71Here A is not the 6j symbol analogous to A, but simply an overall coefficient.
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G Operators Hk

First, let us define normalized versions of operators (4.106),

D̂13 =
D−0

1 · D+0
3

(∆3 − 1)(d−∆3 − 2)
,

D̂24 =
D+0

2 · D−0
4

(∆2 − 1)(d−∆2 − 2)
,

D̂23 =
D+0

2 · D+0
3

(∆3 − 1)(d−∆3 − 2)(∆2 − 1)(d−∆2 − 2)
. (G.1)

In terms of these, the operators Hk have the following expressions,72

H1 =
D̂13 − D̂24

∆+
12 −∆+

34

+
1

4
(∆+

12 +∆+
34 − 2ε)(xx)−

1
2 ,

H2 =
D̂13 + D̂24

2
+

∆+
12 +∆+

34

2
H1 −

∆+
12(∆

+
12 − 2ε) + ∆+

34(∆
+
34 − 2ε)

8
(xx)−

1
2 ,

H3 =
2D̂23

∆+
12 +∆+

34 − 4ε− 2
− (∆+

12 +∆+
34 − 2(ε− 1))H2 + (2c2 +∆+

12∆
+
34)H1 + κ0(xx)

− 1
2 ,

(G.2)

where we defined73

∆+
ij = ∆i +∆j , ε =

d− 2

2
, (G.3)

and the Casimir eigenvalues and the coefficient κ0 are given by

c2 = λ1(λ1 − 1) + λ2(λ2 − 2ǫ− 1),

c4 = (λ1 − λ2)(λ1 − λ2 + 2ε)(λ1 + λ2 − 1)(λ1 + λ2 − 1− 2ε),

κ0 =
(∆+

12 − 2ε)(∆+
34 − 2ε)(∆+

12∆
+
34 + 4c2)− 4(c4 − c2(c2 + 2ε))

4(∆+
12 +∆+

34 − 4ε− 2)
. (G.4)

Note that the identity for the operator H3 is valid up to quadratic and quartic Casimir

equations (i.e. only when acting on scalar conformal blocks Fλ1λ2(a, b)).
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