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1 Introduction

Concrete results in conformal representation theory have played a crucial role in the re-
cent resurgence of the conformal bootstrap [1-66]. Compact expressions for conformal
blocks with external scalars [67, 68] were crucial for the development of modern numerical
bootstrap techniques [1]. Subsequently, techniques for computing blocks of operators with
spin [35, 69-77] have led to universal numerical bounds on wide classes of CFTs [35, 66, 78],
in addition to analytical results like proofs of the conformal collider bounds [79-82] and
the average null energy condition [83], and new results on the Regge limit in CFTs [84-86].
In parallel developments, harmonic analysis on the conformal group [87] has played an
important role in several recent works [88-93], including the large-N solution of the SYK
model [94-97]. Relationships between Witten diagrams and conformal blocks have also
received recent attention [98-103].

More sophisticated analyses will require new results for operators with spin. Several
efficient techniques for dealing with spinning operators have been developed over the last
decade, including index-free/embedding-space methods [35, 69-71, 74, 104], the shadow
formalism in the embedding space [71], “differential bases” for three-point functions [35, 70],
and recursion relations [66, 72, 105]. While these methods are superior to naive approaches,
they still aren’t enough to solve some difficult problems. For example, the shadow formalism
lets one write integral expressions for general blocks, but the integrals are difficult to
evaluate in practice in all but the simplest cases. The differential basis approach lets one
compute spinning blocks in terms of simpler “seed blocks,” but doesn’t explain how to
compute the seed blocks.!

In this work, we introduce new tools that dramatically simplify computations in con-
formal representation theory, particularly involving operators with spin. The first key
idea is to consider a (fictitious) operator w(z) that transforms in a finite-dimensional

L A recursion relation for seed blocks in 3d was guessed in [72] by solving the Casimir equation order-by-
order in an OPE expansion. Expressions for seed blocks in 4d were derived in [77] by solving the Casimir
equation using a suitable ansatz.



representation W of the conformal group. By studying the OPE of this highly degener-
ate operator with a non-degenerate operator O(z), we find (in section 2) a large class of
conformally-covariant differential operators DY that can be used for computations. Here,
A=1,...,dimW is an index for W, and v is a weight vector of W (i.e. a common eigen-
vector of the Cartan subalgebra).?

The action of D on O(x) shifts the weights of O by the weights of v, in addition
to introducing a free A index. For this reason, we call DY a weight-shifting operator.
For example, weight-shifting operators can increase or decrease the spin of 0.2 Weight-
shifting operators can be written explicitly using the embedding space formalism [35, 69,
71, 74, 111-117], e.g. (2.44) in general spacetime dimensions, (2.71) in 3d, and (2.78) in
4d. However, our construction applies independently of the embedding space formalism,
and in fact works for generalized Verma modules of any Lie (super-)algebra.?

A second key observation is that weight-shifting operators obey a type of crossing
equation,

DY 1, (O1(21)O2(22) Os(w3)) @ = >~ {++-} DY, (O1(21)Oh(22) O3(w3)),  (1.1)
O b

which we derive in section 3. Here, a and b label conformally-invariant three-point struc-
tures that can appear in a correlator of the given operators. The coefficients {---} are
examples of 65 symbols (or Racah-Wigner coefficients) for the conformal group, which in
this case are computable with simple algebra. Equation (1.1) lets us move a covariant
differential operator acting on x1 to an operator acting on z5. As we will see, this provides
enough flexibility to perform a variety of computations involving weight-shifting opera-
tors. We also introduce a diagrammatic language that makes these computations easy
to understand.

As an application, in section 4 we focus on computing conformal blocks and under-
standing some of their properties. In section 4.3, we derive an expression for a general
conformal block involving operators (both external and internal) in arbitrary representa-

5 This generalizes

tions of SO(d) in terms of derivatives of blocks with external scalars.
the beautiful result of [70] for conformal blocks of symmetric traceless tensors (STTs).
Weight-shifting operators also explain where the differential operators of [70] come from

(as we discuss in section 3.5). Our formula can be simplified in special cases. For example,

2Some examples of such operators appear in the conformal tractor calculus, which originally deals with
the case of tensor W [106, 107]. The theory of local twistors [108-110] deals with the case of spinor W.
The primary interest of these theories is in curved conformal manifolds. Part of our results can be viewed
as a classification of differential operators involving tractor or local twistor bundles in the conformally flat
setting. It is an interesting question whether our results generalize to the curved setting.

When DY lowers the spin of O, its missing spin degrees of freedom are (roughly speaking) transferred
to the index A for W.

“Our construction is based on the “translation functor” of Zuckerman and Jantzen [118, 119].

5The rough idea is that weight-shifting operators allow us to exchange a tensor product W & Va ¢, where
W is finite-dimensional, and Va ¢ is the generalized Verma module of a symmetric traceless tensor (STT)
operator. This tensor product then contains many new types of generalized Verma modules that can include
operators in non-STT representations of SO(d).



in section 4.4 we give new expressions for so-called “seed blocks” in 3d and 4d CFTs in
terms of derivatives of scalar blocks.

Our techniques also give a new way to understand many identities and recursion rela-
tions satisfied by conformal blocks. In section 4.5, we rederive and explain diagrammatically
several identities relating scalar conformal blocks with different dimensions and spins.® In
section 4.6, we discuss how to use derivative-based expressions for blocks to find recur-
sion relations of the type introduced by Zamolodchikov [123, 124] and used in numerical
bootstrap computations [14, 22, 40, 51, 66, 125].

In section 5, we comment on some additional applications beyond computing conformal
blocks. Weight-shifting operators are helpful for studying inner products between conformal
blocks that appear in inversion formulae [90-93]. By integrating weight-shifting operators
by parts, one can reduce inversion formulae for spinning operators to inversion formulae
for scalars. In particular, one can express 6j symbols for arbitrary generalized Verma
modules of the conformal group in terms of 6; symbols for four scalar (and two STT)
representations. We pursue this idea in more detail in [126].

A related idea is “spinning-down” a crossing equation: by applying spin-lowering oper-
ators to both sides of a crossing equation, we can express it in terms of a crossing equations
for scalar operators. Spinning-down may be useful in the numerical bootstrap — it could
perhaps obviate the need to explicitly compute spinning blocks.

Finally, in section 6, we discuss further applications and future directions. We give
several details and examples in the appendices.

2 Weight-shifting operators

2.1 Finite-dimensional conformal representations

Let W be a finite-dimensional irreducible representation of SO(d + 1,1). We can think of
W in two different ways. Firstly, W is a vector space with basis e4 (A = 1,...,dim W),
in which the action of the conformal group is given by

g-et = Dpl(g)e?, (2.1)

where Dp“(g) are representation matrices.
Secondly, W is the conformal representation of a (very) degenerate primary operator
w?(z). Under the subgroup SO(1,1) x SO(d) C SO(d + 1,1) generated by dilatations and

rotations, W decomposes into a direct sum’

J
o1
W — EB(WZ-)i, j€gN. (2.2)
i=—j
Here, (p)a denotes a representation of SO(1,1) x SO(d) with dimension A and SO(d)
representation p. The dimensions in the decomposition (2.2) are integer-spaced and must

5These identities can also be understood using techniques from integrability [120-122].
j is equal to the sum of all Dynkin labels of W, with spinor labels counted with multiplicity %7 which
is the same as the length of the first row of the SO(d + 1, 1) Young diagram for W.



be invariant under the Weyl reflection A — —A, which implies that they are integers or
half-integers.®

The lowest-dimension summand in (2.2) is spanned by the multiplet w®(0) which has
scaling dimension —j and carries an index a for the SO(d) representation W_; (which is
always irreducible). Because it has the lowest dimension in W, it is annihilated by K, and
thus is a primary. The position-dependent operator w®(z) = e**w?(0) is a polynomial in
x of degree 2j because the representation W contains only 25 + 1 levels of descendants. In
other words, almost all descendants of w®(z) are null and this is reflected in the fact that
w®(x) satisfies a particular generalization of the conformal Killing equation that admits
only polynomial solutions.

We can relate these two pictures by expanding w®(x) in our basis

w(z) = w4 (x)e. (2.3)

The coefficients in this expansion w9 (x) are conformal Killing (spin-)tensors. As an exam-
ple, consider the adjoint representation H of the conformal group. Under SO(1,1) x SO(d),
it decomposes as (here and throughout, “e” denotes the trivial representation)

H- (D@ @eaHoe (O) (2.4)

The operator w*(x) is thus a vector with dimension —1. A basis for W = H is given by
ed € {K* D, M" P"}, and the coefficients w; (z) in this basis are the usual conformal
Killing vectors on RY,

wh(z) = K" — 22" D + (2,00 — x,05) M"* + (22" 'z, — z25MPY. (2.5)
In this case the differential equation satisfied by w*(x) is the usual conformal Killing
equation,

Hw” () + 0¥w(x) — trace = 0. (2.6)

2.2 Tensor products with finite-dimensional representations
Consider a primary operator O with SO(1,1) x SO(d) representation (p)a for generic A.

The conformal multiplet of O is a generalized Verma module which we denote Va, p.g Under
a conformal transformation 2’ = g(z), O transforms in the usual way'?

g+ 0%(x) = Q') p%(R(z') O (2),
Oz
= Oxv’

where R*, € SO(d) and p%(R™!) is the action of R~! in the representation p.

Q)R () (2.7)

8In general this Weyl reflection also acts non-trivially on the SO(d) representations.

“Recall that a generalized Verma module (also called a parabolic Verma module) is roughly-speaking
obtained by starting with a finite-dimensional representation of a subgroup (in this case SO(1,1) x SO(d))
and acting with arbitrary products of lowering operators (in this case the momentum generators P,). See,
e.g. [127]. This is the usual construction of long multiplets in conformal field theory.

'"When we think of O%(z) as an operator on a Hilbert space, then g - O%(z) means U,O*(z)U, ', where
U, is the unitary operator implementing g. Equation (2.7) should thus be understood as defining the

action of g on the value O(x) rather than the function O.



We would like to understand the decomposition of the tensor product
W QVa,p, (2.8)

when W is finite-dimensional. This is equivalent to finding primary operators built out
of w*(z) and O°(z). Formally, we must take an OPE between w®(z) and O%(z), treating
them as operators in decoupled theories.!! The simplest primary in the OPE is

w?(0) ® O%(0), (2.9)

which is primary because it vanishes under the action of the special conformal generator
1® K, + K, ® 1. This particular state is not generally in an irreducible representation
of SO(d). Decomposing it further, we obtain primary states in irreducible representations
A€ W_; ® p of SO(d) and with scaling dimensions A — j.

To find the other primaries in the OPE, we can use the following trick. Define M =
W ® Va,, and consider the factor space M’ = M/(®,P,M), i.e. treat all total derivatives
in M’ as zero. Then any two states in M differing by a descendant will be equal in M’. As
we show in appendix B, for generic A the tensor product M decomposes into a direct sum
of simple generalized Verma modules, and in this case it is easy to see that the non-zero
states in M’ are in one-to-one correspondence with the primary states in M.

We can easily find a basis for M’: given any expression of the form 9---9w*(0) ®
0---00(0), we can “integrate by parts” and move all the derivatives to act on w. Thus a

basis for M’ is given by the non-trivial states of the form'?

Oy +++ Oy w™(0) @ O(0). (2.10)

Note that because w has a finite number of non-zero descendants, M’ is finite-dimensional.

To find the primaries in M corresponding to this basis, we need to add total derivatives
with the same scaling dimension to the above basis elements. This leads to the following
ansatz with some undetermined coefficients ¢y,

10,y - O w(0) @ OP(0) + €20, - -+ Dy, w(0) @ D, OP(0) + ... (2.11)

After projecting onto an irreducible SO(d) representation A € W_;;,, ® p, we obtain an
ansatz for a primary in representation (A)a—jtm. We can fix the coefficients ¢ up to an
overall normalization by requiring that the state (2.11) is annihilated by 1 ® K, + K, ® 1.
In this way, we find a primary operator of scaling dimension A+ for each of the irreducible
components in W; ® p and every ¢ = —j,...,J.

It is not hard to confirm that these primaries account for all the states in W @ Va ,
by checking that the SO(1,1) x SO(d) characters agree. We thus conclude

J

W®RVa,= @ EB Vatin, (generic A). (2.12)
i=—J AeW;®p

1We are not assuming that w® (z) is an operator in a physical theory — it is simply a mathematical
object that serves as a useful tool for understanding consequences of conformal symmetry.

121 ©*(0) had null descendants (for example, if it itself were the primary of a finite-dimensional repre-
sentation), it would be possible that some of these states are total derivatives and thus vanish in M’. Since
we assume that A is generic, this does not happen.



As a simple example, consider the case where W = ] is the vector representation of
SO(d+1,1) and p is the trivial representation of SO(d). We have the decomposition

0= (0)-1® (D)o ® (¢)41, (2.13)
so the primary state of W is the scalar w(0) of scaling dimension —1. We thus find
0 Vae=Va-1,6D Va1 D Vatie. (2.14)

According to the above discussion, we have the following ansatz for the primaries in this
decomposition

Va-1e: ¢-(0) =w(0) ® O(0),
Varg: Vu(0) = t8,w(0) ® O(0) + taw(0) ® 8,0(0),
Vatie: 6+(0) = b10%w(0) @ O(0) + b20,w(0) @ O*O(0) + bsw(0) ® 9*0(0).  (2.15)

Recalling that 0, is the same as the action of P, and using the conformal algebra in
appendix A, we find

1K, +K,®1)-¢_(0)
1eK,+K,®1)-V,(0)
(1K, +K,®1)-6.:(0)

0,
25uu(At2 — tl)w(()) X O(O),
2(Aby — dby)d,w(0) @ O(0)

+2(by (20 — d + 2) — by) w(0) © 9,0(0). (2.16)

It follows that these states are primary if

t = At?)
Abs
bi=—7"(A-d+2), by=b3(28-d+2). (2.17)

We must assume that A is generic because e.g. for A = 1, V,, becomes a primary descendant
of ¢_, V, = 0,¢_. In this special case, there are not sufficiently many primaries to account
for all states of dimension A. In particular there is no combination of descendants which
gives 0,w(0)®@O(0), and consequently [ ® V) 4 does not decompose into generalized Verma
modules of primary operators. These subtleties will not be important in this work, and we
will always assume A to be generic.

2.3 Covariant differential operators from tensor products

Consider now the primary state (2.11), and let us write it in the form

O(z) = e @ (D)0 (x), (2.18)
where the differential operators D4 are defined by'?
(DA)4O" (@) = oy, (10" - 00y () OV (2)
Fep - QR ()9 O (1) + . ) . (2.19)

13Note that Da depends explicitly on x. This is because P, acts non-trivially on W and thus these
operators are translation-covariant rather than translation-invariant.



Again, the ¢; are chosen so that O'¢(0) is a primary transforming in the representation
C

(M) ar. Here, T byt i

By construction, O’ transforms under a conformal transformation as

is a projector onto the SO(d) representation A € W_; ., ® p.

g 0(z) = Q) Ny (R (2')) 0"(a). (2.20)
On the other hand, we also have

g-0"(z)=g-e*®g (DAO)(2)
— Dy ()e” @ g (DAOY(x). (2.21)

It follows that
g+ (DA0)(z) = Qa ) Xa(R™ (') Da® (g7 1) (DO) (). (2.22)

In other words, D4 takes a primary operator that transforms in (p)a to a primary opera-
tor that transforms in (A)as, up to the additional action of the finite-dimensional matrix
Dp?(g~"). We summarize this situation by writing

Da:[A,p] = [A N (2.23)

Here, for all practical purposes [A, p] is just a convenient notation. We give it a precise
meaning in appendix B.

Notice that D4O has a lowered index for W, so it transforms in the same way as
the basis elements of the dual representation W*. For this reason, we will say that D4 is
associated with W*. Similarly, exchanging W and W*, D4 is associated with W. This
convention will be useful when we discuss the action of differential operators on tensor
structures in section 3.1.

This general construction shows that there exists a huge variety of conformally covari-
ant differential operators, corresponding to tensor products with different finite-dimensional
representations. In fact, as explained in appendix B, all conformally-covariant differential
operators acting on generic Verma modules arise in this way. For reference, let us summa-
rize this result in the following

Theorem 2.1. The conformally-covariant operators DA : (A, p] — [A — i, )] associated
with W are (for generic A) in one-to-one correspondence with the irreducible components
in the tensor product decomposition
J
W*® Va,p = GB EB Va—in- (2.24)

1=—j Ae(W;)*®p

When the Dynkin indices of p are sufficiently large, Brauer’s formula (also known as
Klimyk’s rule) [128, 129] implies that the tensor products simplify, giving

W*® VA,p = @ VA+5,p+7r~ (2.25)
(6,m)ell(W*)



Here, II(W*) denotes the weights of W* (with multiplicity). A consequence of (2.25) is
that for generic A, p, the number of differential operators acting on [A, p] and transforming
in W is equal to dim(W™*). Further, each operator is labeled by a weight vector of W* (i.e.
an element of W* which is an eigenvector of the Cartan subalgebra) and shifts (A, p) by
that weight. For this reason, we call the D4 weight-shifting operators.

One of the most important weight-shifting operators comes from the adjoint represen-
tation of the conformal group, W = H The tensor product H ® Va,p always contains
Va,, itself as a factor. The corresponding D4 : [A, p] — [A, p] are the usual differential
operators generating the action of the conformal algebra (see e.g. [130]),

1
DA =wh. 9+ %(a cw?) — 5(aﬂwf‘w)sw, (2.26)

where w?# are conformal Killing vectors (2.5), and S,,,, are the generators of SO(d) rotations
in the representation p.
2.4 Algebra of weight-shifting operators

What is the algebra of weight-shifting operators?'* Before answering this question, let us
rephrase our construction in a slightly different language. Recall from (2.18) and (2.19)
that we identify primaries in W ® Va , of the form

0°(0) = e @ (D)0 (0). (2.27)

Note that O"°(0) € W ® Va, but it transforms in the same way as the primary of Vas .
This means that (2.27) gives a homomorphism

D : VA’,)\ - W VA,p, (228)

defined by mapping the primary of Vas x to the right hand side of (2.27). The action of ®
on descendants follows by acting with P, ® 1 +1® P, on (2.27).

Composition of differential operators is equivalent to composition of the corresponding
homomorphisms in the opposite order. Specifically, suppose

Q1 Vary = W1 QVa,,
Dyt Var pir — Wo @ Var . (2.29)

Then

(1 X <I)1) o®y : VA”,p” — W @W1 ® VAJ)
(18 81)(@:(0"(2)) = o @ ef © Doy DysO(). (2:30)

Thus, to find the algebra of weight-shifting operators, we must express the right-hand side
of (2.30) in terms of homomorphisms associated to the irreducible factors of Ws ® W.

14The results of this section are not used in the rest of this work. The reader should feel free to skip this
section on first reading.



As we will see in the next section, the embedding formalism lets us define weight-
shifting operators that make sense even when p is a generic (i.e. not necessarily dominant)
weight. For example, the spin ¢ of a symmetric traceless tensor operator can be written
as 7z - %, where Z is a polarization vector. The operator Z - % is then well-defined when
acting on functions of non-integer homogeneity in Z.

The correct way to understand differential operators with generic weights is to con-
sider homomorphisms between Verma modules as opposed to generalized Verma modules.
Consider the triangular decomposition

g=g-Dhdgy, (2.31)

where b is the Cartan subalgebra, and gt are generated by positive/negative roots of g.
Let M) be the Verma module of g with highest-weight A\, and denote the corresponding
highest-weight vector by xy.'?

Let W be a finite-dimensional representation of g. For each weight-vector'® w € W,
we can construct a g-homomorphism

QY My — W ® M,, w=\—wtw, (2.32)
such that
PV(z\) =w@x,+.... (2.33)
Here, “...” is a sum of terms of the form

Car CapW @ € ay ;€ ay Ty, (2.34)

where e1,, € g4 are raising/lowering operators. Their coefficients are fixed by demanding
that ®Y(xy) is g4-primary, i.e. that it is killed by 1 ® eq + €4 ® 1 for all positive roots «.
Finally, the action of ®{ on g_-descendants of ) is fixed by g-invariance. The construction
of ®Y is completely analogous to the construction of ® in (2.28) above. The vector (2.33)
is the analog of the primary state (2.11).

Weight-shifting operators in the embedding space are in one-to-one correspondence
with the homomorphisms ®Y'. In particular, they are labeled by weight-vectors of W. This
is consistent with our argument based on Brauer’s formula in the previous section.

The homomorphisms (2.33) have been studied in [131]. Given two finite-dimensional
representations V, W with weight-vectors v € V, w € W, they satisfy the algebra

(L@ ®Y )0 @f = dyN e, (2.35)
where

J(\) € Aut(V @ W) (2.36)

5When A = (A, p) with p a dominant weight of so(d), then My is reducible and contains the generalized
Verma module Va , as a subfactor.
16Not to be confused with the conformal Killing tensors w” from the previous section.



is an invertible operator called the fusion operator. The fusion operator thus completely
encodes the algebra of weight-shifting operators. It satisfies a number of interesting prop-
erties, and is closely related to solutions of the Yang-Baxter equations and integrabil-
ity [131]. Most importantly for our discussion, the Arnaudon-Buffenoir-Ragoucy-Roche
equation gives an explicit expression for J(\) in terms of generators of g [132]. In princi-
ple, this answers the question posed at the beginning of this section. In practice, we will
not need such a general answer in this work. We leave further exploration of the fusion
operator and its applications to the future.

Another point of view on the algebra of weight-shifting operators is given by a special
kind of 65 symbols, as we explain in appendix D.

2.5 Weight-shifting operators in the embedding space

Our construction of weight-shifting operators is extremely general, but it is inconvenient
for computations because it is cumbersome to find the primary states (/. For practical
computations, we can use the embedding formalism [35, 69, 71, 74, 111-117], where the
conformal group acts linearly. The tradeoff is that coordinates in the embedding space
satisfy constraints and gauge redundancies, and we must take care to find differential
operators respecting these conditions. The above construction tells us precisely when this
should be possible.

The formalism described in [69] makes it easy to study operators in tensor representa-
tions of SO(d). Symmetric traceless tensors (STTs) of SO(d) are particularly simple. We
will describe this case first in order to make contact with the examples above. However,
our primary interest is in general representations, and for these it will be useful to use
specialized formalisms for different spacetime dimensions.

2.5.1 General dimensions

In the embedding formalism, the conformal compactification of R? is realized as the pro-
jective null cone in R4, We take the metric on R4H11 to be

d
X2 = N XX = —XTXT 4+ X, X" (2.37)
pn=1
A primary scalar O(x) lifts to a function on the null cone O(X) with homogeneity
O(\X) = A\"200(X). (2.38)

It is convenient to arbitrarily extend O(X) outside the null cone, introducing the gauge
redundancy

O(X) ~ O(X) + X2A(X). (2.39)

A tensor operator OFF¢( X)) lifts to a tensor O™ "¢ (X) in the embedding space, subject
to gauge redundancies and transverseness

O (X) O (X) 4 XA (X), (2.40)
Xmiomynml""me (X) = 0’ (241)
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in addition to the homogeneity condition (2.38). For symmetric tensors, it is useful to
introduce a polarization vector Z™ and define

O(X, Z) = O™ X) Zy. - Zm (2.42)

.
Because of (2.40), we must take Z - X = 0, and because of (2.41), we must identify
Z ~ Z + AX. Finally, when O™ "™ is traceless, we can impose Z2 = 0.

We can summarize these constraints as follows. Let I be the ideal generated by {X?, X -
7,72}, and let R be the ring of functions of (X, Z) invariant under Z — Z+\X. Symmetric
tensor operators are elements of R/(R N I) which are homogeneous in both X and Z. For
a differential operator in X, Z to be well-defined on this space, it must take R — R and
also preserve the ideal RN 1.

The construction in section 2.3 tells us when such operators should exist. For example,
consider the case where W = [ is the vector representation of SO(d + 1,1) and O(X, Z)
has spin ¢ and dimension A. Given the decomposition (2.13), we should be able to find
differential operators with a vector index in the embedding space, taking!”

DY A = [A 1,4,
DY [A] = [A - 1],
DO (A — [A 0+ 1],
DO A — [A+1,4. (2.43)

Our strategy for finding them is to start with a suitable ansatz and fix the coefficients by
requiring that D,,, preserve R and RN I. (We give more details in appendix C.) We find

D, = X,

DY = ((A—d+2-0)0" + X 9 (d—4+20) 0 —Za—2
mo mTMOX, ozr “"oz%)’

0
0+ _ .
Dyl =+ D)2+ X Z - 5,
0? 0* o 0

Xon o 4 eaZme gz
axm T CAmgxe T GAmga g T Al S S Tm

'D;zo = C1

o o 0 0\ o

where the coefficients ¢; are given in appendix C. For now, we simply quote

a__ (;llA). (2.45)

C2

" There will also exist differential operators producing other representations in the tensor product of the
vector and spin-¢ representations of SO(d) (generically there is also the hook Young diagram). According
to (2.25), when acting on general (non-STT) representations generically there are d + 2 operators corre-
sponding to the vector representation. However, to describe these we would need a formalism with more
polarization vectors as in [133].
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Thus, when acting on scalar operators O(X), D,i is proportional to the familiar Todorov
operator [134]

d o\ o 1, o B)
+0 = R T s Y
D0 <2+X ax) o 2X’“ax2+0(az>' (2.46)

This simplified version of D}0 (together with D,.) appears in tractor calculus, where it is
known as Thomas operator [106, 107].

The overall normalization of our differential operators is a convention. It is useful to
choose conventions where the coefficients ¢; are polynomials in A, £ of the smallest possible
degree. If we like, factors of A, £ can then be replaced with

0 0
A=-X - —, =7 —, 2.47
0X 07 ( )
so that D can be expressed without reference to the operator it acts on.

Note that when acting on scalar O there a unique non-vanishing operator of the lowest
scaling dimension, D,. According to theorem 2.1, this is true in general. From the
discussion in section 2.2 it follows that this operator should correspond to multiplication
by the conformal Killing tensor w%(x) as in (2.9). This gives a general way of finding
wY (x) from the embedding space formalism.

For example, one can check that the primary operator w(z) corresponding to the vector
representation of the conformal group is given by

w(z) = wm(r)e™ = ™D, = XMen, = ey + ate, + e, (2.48)
where e, ,e_ and e, form the light cone coordinate basis of the vector representation. It
solves the equation

0,0y w(z) — trace = 0. (2.49)

Let us now revisit the example from section 2.2. Let O(x) be a scalar primary of dimension
A, as in section 2.2. We then compute'®

e™ @ D, 00(z) = w(z) ® O(z),

€™ @ DA O(z) = 2" (Ad,w(x) ® O(x) + w(r) ® 9,0(x)),
A

e™ @ DHO0(z) = 6176210(95) ® O(x) + c19,w(r) ® 0*O(z) + cow(x) ® 9*O(w), (2.50)

where ¢; are as in (2.44). It is easy to see that this is consistent with (2.15) and (2.17).

Naturally, e™ ® DY~ O(z) vanishes when O(z) is a scalar.

!8Recall that on the Poincare section we have X = (1,22 2#*) and Z = (0,2(x - 2), 2*) = 20, X where
the coordinates are ordered as (X1, X~ X*).
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2.5.2 1 dimension

To find the most general conformally-covariant differential operators, it is useful to employ
a formalism specialized to the given spacetime dimension. The simplest case is 1-dimension,
where the conformal group is Spin(2,1).!? The Lorentz group is Spin(1) = Zz (see below)
and the primary operators are labeled by a scaling dimension A and a spin s = +. We
will denote the corresponding Verma modules by Va ;. Because the global 2-dimensional
conformal group is a product of 1-dimensional groups, the results of this section can also
be applied in 2-dimensions.

Note that the double cover of the conformal group is Spin(2, 1) ~ SL(2,R). It acts by
Moébius transformations,

ab axr +b
. —be = 1. 2.51
<C ) :U—>C , ad — bc (2.51)

The subgroup which fixes the origin is given by b = 0. We can exclude special conformal
transformations by setting ¢ = 0. The remaining subgroup is a product of dilatations R
parametrized by |a| and the Lorentz group Zs parametrized by the sign of a. This is why
we say that Spin(1) = Zy.2"

The vector representation of Spin(2,1) is equivalent to the symmetric square of the
spinor represenation, and in the embedding formalism we can define

m /

X(aB) = Vap)Xm Vo) = Laar(Y™)" 8. (2.52)

In this notation the constraint X2 = 0 can be solved as

X(aB) = Xa X8 (2.53)

where x,, is a real spinor in the fundamental representation of SL(2,R). Note that x is
odd under the center of SL(2,R). This parametrization has the advantage that now the
embedding-space operators can be taken to depend on yq,

O(\x) = A"2290(yx), A>0. (2.54)

Notice that both xy and —yx correspond to the same X. The correct transformation property
of O(x) under this transformation comes from the Zs-spin,

O(=x) = sO(x). (2.55)

This property will be important for the construction of tensor structures in section 3.4.1.
The embedding formalism in terms of x is useful because the conformal group still
acts linearly, but now there is no analogue of the ideal I which needs to be preserved by

19We use the conventions of [35] for 24-1 dimensions.
20The fields which have spin s = + are the usual scalars on the circle. The fields which have s = — are
anti-periodic fermions.
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the embedding space differential operators. We have the following relation between x and
X derivatives,

o
O B O
(") X6 gxm- (2.56)

Using this relation in an arbitrary differential operator written in terms of x will automat-
ically produce the terms necessary to preserve the ideal I in X-space. For example, we can
recover the 1-dimensional version of the operator D0 (cf. (2.46)),

o 9 o 1\ o 1., &
my(ag) 9 0 AN D
O™ axaaXBOC(X 9X 2) ox, 2% oaxe (2:57)

A general embedding space differential operator is an arbitrary combination of x, and
Oa = %. The combinations irreducible under Spin(2,1) are

DIl a; = X(ar * Xog 0oy si1 - Oagy)s 0= —Jso ] (2.58)

Of course, we can also add combinations of y,0%, but these simply act as scalars due
to (2.54), so we can ignore this possibility. By construction, this differential operator
transforms in the spin-j representation of Spin(2, 1), changes the scaling dimension by i,
and exchanges bosons with fermions if j is half-integer,

DI (A, 8] = [A+1i, (=1)7s]. (2.59)

It is easy to find the group-theoretic interpretation for D7, Indeed, the spin-j repre-
sentation decomposes as

i—= @ U=1¥), (2.60)

i=—j

which means that for a generic A we have the tensor product decomposition

J
J©Vas = Vasi-s (2.61)

i=—j

Thus, we find explicitly the expected one-to-one correspondence between the differential
operators D’ and the terms in this tensor product. We also see explicitly that the dif-
ferential operators are labeled by the weights of the spin-j representation, in accordance
with (2.25).

Let us see what our operators look like in z-coordinate space. It is easy to check that
the usual Poincare section X = 1 corresponds to x! = =, x> = 1.2I We can therefore
write the embedding space operator in terms of the xz-space operator as (multiplying also

by sign x? for s = —)

1
O(x) = |X21!2AO (;) . (2.62)

21 And also to minus these values, since there is a redundancy x ~ —x.
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We therefore see that y; and yo derivatives act as

0 0
0 0

These formulas are valid for higher order derivatives if we follow the convention that A in
the last formula is increased by % by every 0Og.

2.5.3 3 dimensions

In 3-dimensions, we use the formalism and conventions of [35].22 The conformal group is
SO(3,2), which has Sp(4,R) as a double cover. The most general Lorentz representation
is the 2¢-th symmetric power of the spinor representation of SO(2, 1), where ¢ € %N. An
operator O 2¢(z) lifts to an embedding space operator O *2¢(X) with 2¢ indices for
the fundamental of Sp(4,R), satisfying the homogeneity property

Ouae(Z\X) = \Tho—tpua (X)), (2.65)
It is useful to introduce a polarization spinor S, and define
O(X,S) =84, -+ 54, 072 (X). (2.66)
The polarization spinors are constrained to satisfy
S X% =0, where X% = X"(T),)%, (2.67)

where (I';;,)%, are generators of the Clifford algebra of SO(3,2). For convenience, we also
introduce the notation

Xop = Qe X%, X% = X0 (2.68)

where Q4. = Q% is the symplectic form for Sp(4,R).

Arbitrary finite-dimensional representations of SO(3,2) can be obtained from tensors
of the spinor representation §. Thus, all the weight-shifting operators in 3d can be obtained
from products of weight-shifting operators for S. Under SO(3,2) — SO(1,1) x SO(2,1),
we have the decomposition

-1 (2.69)
Thus, we should be able to find differential operators with a fundamental index for Sp(4, R)
that take

1 1
DEE LA ] — [Ai2,€i2]. (2.70)

22In particular, we use Lorentzian signature in this section.
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Note that again the differential operators are labeled by weights of S, consistently
with (2.25). They are given by

D, " =5,
0

D™ = Xop——

@ S,
Dt—zH_ = 2(A - 1)(8X)abecSc + Sa (Sbec(aX)cd&(z)

d
0 0

+—- _ _ _ v _ be Y

D™ = 4(A = DL+ £ = A) s — 21+ € = A)Xup(0x)" Qe -
0 de 0
— Sa <aScXCd(aX) Qef an) . (271)

We have determined the coefficients by demanding that these operators preserve the ideal

generated by X? and S,X%, The differential operators (2.71) are analogous to X, and

32" in the 1-dimensional case. By taking products of them, we can build weight-shifting

operators in arbitrary representations of SO(3,2), analogous to the 1d operators (2.58).
See also appendix D.

2.5.4 4 dimensions

In 4d, we can use the embedding space formalism of [71, 75-77, 135, 136]. Our conventions
are those of [75]. A general Lorentz representation is now labeled by two weights (¢,7),
where ¢, € Z>o. (Spin-¢ symmetric traceless tensor representations correspond to the case
¢ = £.) An operator Q4147 () lifts to an embedding space operator

O(X,5,5) = Say S0, 5 - E%g;;;jg; (X), (2.72)
where we have introduced polarization spinors S,, S” transforming as left- and right-handed

spinors of SO(4,2), or equivalently fundamentals and anti-fundamentals of SU(2,2). The
polarization spinors satisfy

S, X" =0, §Xu4=0, 5°S,=0, (2.73)
where?3
Xy = EMX,,, XU =3%xm, (2.74)

Let us also introduce the shorthand notation

_ 9 o_ 9
a?,a = 8?6” aS = (‘3Sa’
_ «am 0 Sab _ omab 0

General representations of the conformal group SO(4,2) can be obtained by tensor-
ing with the left and right-handed spinors. Thus, our algebra of differential operators is

Z30ur conventions for the conformal algebra and embedding space in 4d are those of [75].
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generated by those associated with the spinor representations. To label these operators,
it is convenient to use (2.25). Let us denote the weights so that the highest weight of
the Verma module for O is (2A,¢,¢). Then the representations S and S consist of the
following weights,

I(S) = {(—,+,0), (=, —,0), (+,0,+), (+,0, )}, (2.76)

II(S) = {(-,0,+),(—,0,—), (+,+,0), (+,—,0)}. (2.77)

Note that basis vectors for S are e® (so that we can contract them with S;) and for S the
basis vectors are e,.

According to (2.25), the operators D® associated with S are then labeled by the

weights (2.77) of 8* = S, and the operators D, associated with S are labeled by the
weights (2.76) of S = S. These operators have the following explicit expressions,

a

Dy =8,
DLy = Xaba?,lw

Do =ad" Sy + 5"(S90s),

DYy = bed + b5 (9505) + Xy 05 — 5" (Xped 0505 ),

D, =45,
D, = X,08,
D, = 40,8 + S.(S095),
D, = bedg , + bSa(9505) + X “ud5.. — Sa(X “Dpadg O), (2.78)
where
¢ 7 _ ¢ 0

a = —A+§—§, a—l—A—§+§,

b=2({+1), b=2(+1)

Y (2.79)

The coeflicients above come from requiring that the operators preserve the ideal generated
by the relations (2.73), together with X? = 0. We have added these operators to the
CFTs4D Mathematica package described in [75].

3 Crossing for differential operators

The results of section 2 give us a large variety of conformally-covariant differential opera-
tors. In the present section we consider their action on conformally-invariant?* correlation
functions of local operators. The result of such an action is a conformally-covariant n-point

24We are making a distinction between conformally-covariant and conformally-invariant objects. For us,
the former carry finite-dimensional SO(d + 1, 1) labels, whereas the latter do not.
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function, which can also be interpreted as a conformally-invariant (n + 1)-point function
that includes the degenerate field w*(x). We will first describe the structure of such cor-
relation functions and then establish a convenient graphical notation for the action of the
differential operators. This will help us elucidate a rich structure of such actions at the
end of this section.

3.1 Conformally-covariant tensor structures

Consider an n-point correlation function with an additional formal insertion of an element
e? of the finite-dimensional representation W of the conformal group SO(d+1,1),

(O (1) - - O (@)Y = (09 (1) -+~ OF (wa)e). (3.1)

Note that this is a purely formal construct, i.e. this expression is simply a shorthand for a
function of n points which carries indices a;, A, and has transformation properties identical
to those satisfied by a correlation function under the assumption that

UgeAU;1 —g-et, (3.2)

and g - e? is defined by (2.1).
As discussed in section 2.1, we can also view (3.1) as a (n + 1)-point conformally-
invariant correlation function with the primary w®(y) of W,

(OF (21) -~ O (zn)w’ (y)) = (OF (1) -+ O (wn) e Ywi (y), (3-3)

subject to the conformal Killing differential equation satisfied by w®(y). This interpretation
will be useful to us later on. In this section we stick with (3.1).

Similarly to the usual conformally-invariant correlation functions, we have an expan-
sion in tensor structures,

(OH (1) - - O (w)e) = T (z)g" (u), (3.4)

which now carry the SO(d + 1,1) index A. Here u are the conformal cross-ratios of points
z;. The structures T4 can be constructed using embedding space methods, since
there one explicitly works with objects which transform in fundamental representations of
SO(d+1,1). In this subsection we are going to classify such tensor structures by extending
the conformal frame approach of [137, 138].

The basic idea is to maximally use conformal symmetry to bring as many x; as possible
to some standard positions x}. The resulting configuration 2 will be invariant under the
subgroup G,, C SO(d + 1,1) of the conformal group that stabilizes n points. In particular

(3.5)

g _ [300.1)x80(@) n=2,
"lS0(d+2-m)  n>3,
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where m = min(n, d + 2). The tensor T(z}) transforms as an element in?®

n
k=1
and by construction is invariant under G,. It is easy to check [138] that this is the only
restriction for the tensor T“l"‘a"’A(x;) and the conformally-covariant tensor structures are
then in one-to-one correspondence with the invariants of gn,%

n On
(W ® ®<pk>Ak> : (3.7)
k=1

In practice we always use the decomposition (2.2) in this formula and identify the tensor
structures with
j n Gn
& <(Wi)i®®(Pk)Ak> ~ (3.8)
i=—j k=1

3.2 Tensor structures and diagrams

Let us work through some examples of covariant n-point functions and the counting
rule (3.8). At the same time, we will introduce a useful diagrammatic language for de-
scribing tensor structures and differential operators.

3.2.1 Invariant two-point functions

Let us denote a conformally-invariant two-point structure by
(0109) = 0O ——+——09 - (3.9)

It is well-known that there is at most one such structure, but let us re-derive this fact in
the language of section 3.1, where it corresponds to the case n =2 and W = e.

Given z1 and x2, we can apply a conformal transformation to set 1 = 0 and x5 = oc.
Then the group Go = SO(1, 1) x SO(d) which fixes the two points consists of dilatations and
rotations around 0. Sending the second operator to infinity has the effect that Oy effectively
changes the sign of its scaling dimension, and transforms in the reflected representation?’

pg under SO(d). Thus, two-point structures correspond to the Ga-invariants in

(P1)as ® (p2)-a.- (3.10)

There is at most one such invariant, which exists iff p; = (pI')* and A; = A,. The

dual-reflected representation, which we denote by (p)* = pg is the same as the complex

conjugate representation in Lorentzian signature.

%5In writing a tensor product of representations of different groups, we assume that each representation
is restricted to the largest common subgroup. In (3.6), we implicitly restrict W to SO(1,1) x SO(d) C
SO(d+1,1).

26The notation (p)¥ denotes the H-invariant subspace of p, where p is a representation of G and H C G.

2TGiven a representation p with generators puv the reflected representation is defined as pfl, =
P[j/P;’ ' purv', where P is a spatial reflection matrix. Formally, conjugating by reflection is an outer au-
tomorphism of SO(d), and hence permutes the representations of SO(d).
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3.2.2 Differential operators

A differential operator D4 : @ — @’ takes a conformally-invariant structure for O to a

conformally-covariant structure for O’, or equivalently an invariant structure for O’ and W:
DO - ) ~ (A0 ). (3.11)

We denote such a differential operator by

O/

p@A = W (3.12)

The label a runs over the possible operators classified by theorem 2.1. We use a wavy line
to indicate a finite-dimensional representation.

3.2.3 Covariant two-point functions

Consider acting with a differential operator D™4 : [Aq, p1] — [Af, \1] on an invariant
two-point function. In diagrammatic language, this is denoted by connecting an outgoing
arrow from the two-point function with an incoming arrow for the differential operator,

(DAY (OF (21) O (w2)) = W (3.13)

Os

The result can be interpreted as a covariant two-point structure for O}, Oz, and W. Such
structures are counted by SO(1,1) x SO(d)-invariants in

/2
D Wi ® M)a; @ (p3)-a,- (3.14)
i=—j/2

Invariants exist whenever Al = Ay —i = Ay —i and A\ € (W))* ® (p5)* = (W;)* @ p1. 28
Note that these are exactly the conditions for the existence of D4 in theorem 2.1. Thus,
the number of non-vanishing diagrams (3.13) is precisely equal to the number of tensor
structures for (OO e4). In other words, all covariant two-point structures can be obtained
by acting with differential operators on an invariant two-point structure.

28We have assumed that A1 = Ay and p1 = (pg)* so that (O102) is nonvanishing.

—90 —



3.2.4 Invariant three-point functions

We denote conformally-invariant three-point structures by

(@)

(010,05)) = O3 - (3.15)

O

The label a runs over possible tensor structures, which are classified by Gz = SO(d — 1)
singlets

(p1 ® pa ® pg) SO, (3.16)

A physical three-point function is a sum over tensor structures with different OPE coeffi-

cients A,
N3
(010,03) = > Ay, (010205)™), (3.17)
m=1
where N3 = dim(p; ® p2 ® p3)SO(d—1). When there is a unique three-point structure

(N3 = 1), we often omit the index m.?’

3.2.5 Covariant three-point functions

Consider now acting on an invariant three-point structure with a differential operator. Let
us begin with a three-point structure <(’)1(’)2(’)g)(a), and suppose that O transforms in the
representation [Az + 4, A]. The label a runs over singlets in

(p1 ® py @ X)3OU-D, (3.18)
By theorem 2.1, we have a differential operator D®)4 : [Az + 4, \] — [As, p3] whenever
ps€ (W) @\ & XeW;® ps. (3.19)

By acting with D®4 on <(’)1(92(9§>(a), we can form a covariant three-point structure for
(010,03¢%),

Oy O
(b) - (3.20)

(DO, (O (21)OF (1) O 2@ = (@)

O w

29Gince we never work with physical three-point functions (3.17), there is no danger of confusion.
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Let us count the number of diagrams (3.20) by summing over the allowed O}, a and b.
Taking into account the selection rule (3.19), we have

J

Y Y dim(pr @ pr @A) (3.21)
i=—j NeW;®p3
; SO(d-1) ; SO(d—1)
= dim @ @ p1 @ p2 @A = dim @Wi®P1®P2®P3
i=—j AeW;®p3 i=—j

According to (3.8), this is precisely the total number of covariant three-point structures
for (01020se?). In other words, generically, every conformally-covariant three-point
structure can be obtained by acting with differential operators on conformally-invariant
three-point structures.

Note that according to the discussion in section 2.1 we can interpret the conformally-
covariant three-point functions as conformally-invariant four-point functions involving a
degenerate primary w*(z). Analogously, we can interpret (3.20) as conformal blocks for
these four-point functions. We have just proven a highly degenerate case of the folklore
theorem which states that the number of such conformal blocks is equal the dimension of
the space of degenerate four-point functions.®* Importantly, in our case this number is
finite. This brings us to a very powerful observation.

3.3 Crossing and 63 symbols

The diagrams (3.20) give a basis for the finite-dimensional space of covariant three-point
structures (O 0203€A>. However, this is not the only interesting basis. The distinguishing
feature of (3.20) is that it selects a particular operator O appearing in the O; x O3 OPE.
In other words, it diagonalizes the action of the Casimir (L; + L2)? acting simultaneously
on 01,0y (equivalently Oz, w). However, we may wish to select an operator in a different
channel, e.g. O] € O3 x O3. This would correspond to starting with a three-point structure
(O0503)(™ and acting with a differential operator D4 : O] — O.

These two bases are related by a linear transformation, which gives a type of crossing
equation for differential operators,

@ O3
07 O3

04 0, 0, 01"
(@ @ = > {O;W"’O} o, - (2

O w
O1 w

39Tn the non-degenerate case we have the number of families of conformal blocks and the number of
“functional degrees of freedom”.
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In equations, (3.22) reads

ab
O 05 O
b 1} DO (1) Oa(2) O5(3)) ™.

Os W 0}

mn

DOAO1 (1) 0a(22) Oy (3))@ = 3 {

/
o1,m,n

(3.23)

Note that the sum over O] is finite with O} taking values in the tensor product O; @ W.
The coefficients in this transformation are called Racah coefficients, or 65 symbols.3!,3?
The 65 symbols for operator representations (generalized Verma modules) of the conformal
group have seen some recent interest for their role in the crossing equations for CFT four-
point functions [91-93]. Here, we have a degenerate form of these objects, where one of
the representations appearing is finite-dimensional. These degenerate 65 symbols enter
in a degenerate crossing equation (3.22) where the objects on both sides live in a finite
dimensional space. One can ask what happens if we consider 65 symbols with more finite-
dimensional representations. As we show in appendix D, such 65 symbols are related to
the algebra of conformally-covariant differential operators.

An analogy for understanding (3.22) is to consider a four-point function containing
at least one degenerate Virasoro primary in a 2d CEFT. The shortening condition on
the degenerate primary implies that its four-point function lives in a finite-dimensional
space spanned by a finite number of conformal blocks. The crossing transformation for
these blocks is a finite-dimensional matrix. Similarly in (3.22), the left-hand side can be
interpreted as the conformal block for O} exchange in a four-point function (O10203w).
Because w satisfies a highly-constraining differential equation, the crossing transformation
for this block is a finite-dimensional matrix.

3.4 Examples

Because the space of covariant three-point structures is finite dimensional (its dimension is
given by (3.21)), it is straightforward to find the degenerate 65 symbols by direct computa-
tion: we apply differential operators on both sides and invert a finite-dimensional matrix.
Let us work through some examples.

3.4.1 67 symbols in 1 dimension

3-point functions. Before computing the 65 symbols, we need to choose a basis of three-
point structures. The three-point functions in 1-dimension are not completely trivial, and
it is important to get them right in order to have well-defined 65 symbols.

According to the discussion of section 2.5.2, there are two types of fields with different
“spins” s = +. The fields with s = + are the usual scalars. The simplest three-point
function for the scalars is

(@F (1) @7 (x2) @3 (x3)) ) 1

T Paxa[BiFheBalyyx[Aerha iy gy [AatAi—de

(3.24)

31 Technically, Racah coefficients and 65 symbols are sometimes defined to differ by various normalization
factors. We will not distinguish between them and use both terms to refer to the coefficients in (3.22).

3264 symbols depend only on a set of representations and three-point structures. However, for brevity,
we often label them with operators O; transforming in those representations, as in (3.22).
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Here we have added the label (4) to indicate that this is a parity-even three-point structure.
We need this because there in fact exists a parity-odd three-point structure,

N n o w(e) (x1x2) (x2xs) (x3x1)
(@7 (x1)®3 (x2)®5 (x3)) ' = 12 AT A2 AT [y gy 3[R T A5 AT [y gy [R5+ A1 Ao F1”

(3.25)

This is related to the fact that unless we allow reflections, all conformal transformations
preserve the cyclic ordering of three points on the circle S'. One can see that this structure
is parity-odd from the parity transformation x — 72x.

We will compute the 67 symbols for differential operators in the fundamental represen-
tation which, according to (2.59), change the spin s. Therefore, we will also need the parity

even and parity odd structures for the three point function with two s = — operators,
_ + _ (=) _ (XSXl)
<(I)1 (Xl)(I)Q (XQ)q)g (X3)> - |X1X2|A1+A27A3‘X2X3‘A2+A3*A1 |X3X1|A3+A17A2+1 ’ (326)
_ 4 W) _ (xaxe) (xaxs)
<(I)1 (Xl)(I)Q (XZ)CI)3 (X3)> - |X1X2|A1+A27A3+1‘X2X3‘A2+A3*A1+1|X3X1|A3+A17A2 ’
(3.27)
The difference between s = + and s = — tensor structures is in their transformation

properties under (2.55).

65 symbols. As noted above, we will specialize to W = F being the fundamental rep-
resentation of SL(2,R), which has weights A = :I:%. The corresponding differential opera-
tors are

D} = 0,, D, = Xa- (3.28)

«

It will be convenient to contract each differential with a polarization spinor x4, giving
x§D=. This spinor may be interpreted as the coordinate of the fourth operator in repre-
sentation [—%, —]. The operator x4D7 is even under space parity, while the operator y4D~
is odd under space parity.

The definition of 65 symbols in this case is

[Asg, 59 [As, s3]
[A2, 5] [Asz, 53]
[ASi%v_t%] B [A1,81] [AZ’SZ] [A,—Sﬂ ae
- A;:tl {[A?”S?’} F [ASi%,_SS]} [A’_Sl] :
[Alasl] F
(A1, 51] F
(3.29)

We don’t need to label the vertices for differential operators, since there is always a unique
choice of differential operator for the given dimensions. For example, on the left-hand
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side, when the internal line has dimension Ag + %, the F-differential operator must be DF.

“on
.

The notation on the 65 symbols means there is a unique corresponding structure or
differential operator.

It is now straightforward to compute the objects above. Let us take for example

s1 = s2 = +, s3 = — and specialize to the case when both sides of (3.29) are parity-odd.
For the left-hand side we then have,
[Ag, +] [Ag, -]
1
Ant =
[ 3+27+] (x4x3)

T iz BT A2 85172y gy [AeF A= AIHL/2 |y gy |[Aat AL AaF1/27

[Ar,+] F
[Ag,+] [Asz, —]
1
Aot
[As 2’+] _ —(A1+A3—A>—1/2)(xax1) (X1x2) (X2x3)
- ‘XIXZ‘A1+A2_A3+3/2‘X2X3|A2+A3_A1+1/2|X3X1|A3+A1_A2+1/2
[Ar,+] F

(A2+A3—A1—1/2)(xaxz2)(X1x2) (x3X1)
‘X1X2|A1+A2_A3+3/2|X2X3|A2+A3_A1+1/2|X3X1|A3+A1_A2+1/2 '

(3.30)
For the right-hand side,
3,
(xax1)(x1x2)(x2x3)
+2, |X1X2|A1+A2—A3+3/2|X2X3|A2+A3—A1+1/2|X3X1|A3+A1—A2+1/2

3

(A1 +A3—-Ar—1/2)(xax3)
|X1X2|A1+A2_A3_1/2|X2X3|A2+A3_A1+1/2|X3X1 |AstA1—Az+1/2

[Ag, + A
il

[A1,+]

AQ, A

(A, +]

—(A1+A2-A3-1/2)(xax2) (x1x2) (x3x1)
[X1x2|A1 A2 AsH3/2|y gy 3| A2t As—Ait1/2 |y gy [AstAr—Aa+1/27

(3.31)

— 95—



After using the Schouten identity

(xax1)(x2x3) + (xaxz)(x3x1) + (xax3)(x1x2) = 0, (3.32)

we can solve for the 65 symbols

A+ A+ [Ar+ 3, -] A+ Ay —Ay—1/2 (3.3

A5, =] F  [Ag+3,+] +._ 2A; — 1 ’ '

AL+ [As 4] (A -5 - 1

{[Ag,—] F [A3+§,+]}_._2A1—1’ (3.34)

(A +] (Ao, +] [AT+ 3,11 T (AL A5 — Ay —1/2) (A + Ay + Ay — 3/2)

[As,—] F  [Az—3,+] +._ 2A; — 1 ’
(3.35)

AL 4] [Ag, 4+ [A =1, As+Ay— A —1/2

{[A?”_] F [A3—§7+]}_ - 2A; — 1 ' (3.36)

3.4.2 637 symbols in 3 dimensions

3-point functions It is also possible to find the general 65 symbols for the spinor rep-
resentation S of the 3d conformal group. To do that, it is convenient to use the conformal
frame basis of three-point structures from [138].33 To construct this basis, one contracts
the 3d primary operators with polarization spinors s,

O(8,2) = Say *** Say, O % (x). (3.37)
The three point-functions are then evaluated in the configuration

f3(81, 592, 53) = (Ol (81, 0)02(82, 6)03(83, OO)>, (3.38)

where e = (0,0,1) and O(s3,00) = limp_so L?*30(s3, Le). The polynomial f3 should
be invariant under boosts in the 0-1 plane. A basis for such polynomials is given by

the monomials

3
o —l—q;
[9192q3] = Hffﬁqui “, (3.39)
i=1

where s; = (§,&;) and ¢; = —¥¢; ... ¢;, subject to the constraint ), ¢; = 0.

It will also be convenient to think about the covariant three-point functions as four-
point functions with the degenerate spinor primary w®(x) of dimension —%. We construct
an analogous basis for four-point tensor structures by evaluating

(O1(s1,0)sqw(ze)O2(s2,€)O3(s3,0)), (3.40)

330ur conventions in this section are those of [35, 72, 138].
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leading to a monomial basis [q1, ¢, g2, ¢3], where g = j:%.34 The configuration (3.40) is still
invariant under boosts in the 0-1 plane, so we again have the condition g + »_ ¢; = 0. We
have introduced only one cross-ratio z because w®(x) is a degenerate field. In fact, the
general solution to its Killing equation is given by

w(x) = wo + 2w, (3.41)

and thus it is sufficient to know its values for x = ze to determine it completely. Note also

that this equation implies that a general four-point function of such form is linear in z.
To obtain these degenerate four-point functions, we think about the three-point func-

tions as four-point functions with an identity operator at coordinate x and act with the op-

erators
D = D, IDEESFET, (3.42)

where x = ze, and EEFJF formally shifts the scaling dimension and spin of the operator i,

so that Dij[i doesn’t change the dimensions and spins.®® In this notation we have?3®
[Ag, £o] [As, £3]
[As T 5,03 F 3]
D= [q1423] = @ ;
[Alv el] Sawa

[Ag,82]  [As, s3]

Dfi [1q2q3] = (A F %, 2= %] . (3.43)

[Aq, s1] SqW

Our goal is therefore to find the transformation between the bases D?jfi[qlngg] and
D:I::I:
1 [71923]

67 symbols. It is obvious that since the operators Diii contain a finite number of
derivatives in the polarization spinors, they take a three-point structure [g1¢2¢s] to four-
point structures (¢}, ¢, ¢5, ¢5] for (3.40) with ¢ differing from ¢; by only finite shifts. We can
say that Diii are local in ¢-space. It turns out that the inverse operation, which expresses
an arbitrary four-point function (3.40) in terms of DijEi [q19243], is also local in g-space. In

34Notice that we used a configuration different from the one used for four-point functions in [138].

35In other words, the components of Dy T are essentially the conformal Killing spinors s,w¢ ().

36 As in the 1d case, we omit the labels for the differential operators in the diagrams (3.43) because the
differential operator is always fixed by the given representations.
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this language the 65 symbols essentially give the composition of the inverse to D{Ei with
D;fi and are thus also local in g-space. This allows us to write down a general expression
for these 65 symbols.

The number of shifts in ¢ for which the 65 symbols are generically non-zero is however
rather large. We therefore take an indirect approach in this section, describing how the
6j symbols can be straightforwardly generated from relatively simple expressions. Our
strategy will be to write the action of Dfi and D?jfi on [g1g2q3) in a form from which both
the direct action and the inverse can be easily obtained. One can then simply substitute
the inverse of Dfi into the expressions for Déti[qquQ3] to generate the general 65 symbols.

First, we evaluate the expressions for Dgci[qlngg] and chi [q192¢3]. This can be done
relatively easily in a computer algebra system. The result can be expressed in terms of the
four-point tensor structures [ql, q,q2, q3], for instance,

__ 1 1 1 1 1 1
Dy q1q2q3) = = <51+Q1+2) {Q1—2,+2,Q27Q3} -z <51—Q1+2) [Q1+7_7(I27¢I3:| .

27 2

(3.44)

We will now describe these actions in a compact form. We first define

__ 1 _
AT [q1g20s] = <D1 F (fl Fa+ 2> Dy *) [919243)]- (3.45)
These operators satisfy
1 1

AT [192q3) = F= (201 + 1) [ql ¥ £ (&#]3} : (3.46)

Note that this solves the inversion problem for the linear terms z [q1, q, ¢2,¢3] and is also
sufficient to find the action Dy + [¢1G2q3]. We then define the analogous operators

_ 1
By [q1g243) = (—Dl+ F <€1 Faq+ 2> Df*) [q19203) + CF [q1923] (3.47)

where the correction term Cli is a linear combination of .Ali given below. The operators
Bf act on [g1g2qs] as follows,

3 1
<(A1 tq1 — 2) B + (fl Fq+ 2> Bf) [q1G293] =

3 1 1
=4(20,+1) (Al - 2) (b1 +A1—1) (6 — A1 +2) {(h F 571576]2,613 . (3.48)

This solves the inversion problem for the constant terms [q1, ¢, g2, ¢3] and is also sufficient
to write down the action of Bli and thus also of Dfi.
We can describe the action of D?jfi and its inverse in a similar fashion. In particular,

we define
__ 1 _
A5 [q14203) = <—D3 F (63 Fqz+ 2) Dy +> [q19243] , (3.49)
_ 1
BE [q19203) = (—D3+ F <f3 Faqz+ 2) D;+> [q19203) — C5 [q1923] - (3.50)
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The correction term ngf is defined below. For these operators we have the analogue of (3.46)

1 1
AT [q1g203) = £ (203 + 1) [qh +5,42,03 F 2] , (3.51)

and the analogue of (3.48),

3 3 1 1
By [q192q3) = — 42 (205 + 1) <A3 - 2) <A3 Faq3— 2) [QL i? q2,q3 F 2}

3 1 1 1
+4z (203 + 1) <A3 - 2) (fs F a3+ 2) [Ch, F5 a0+ 2} - (3.52)
We can use these expressions to find the action of Déti and then substitute the expres-
sions (3.46) and (3.48) for the four-point functions z [¢1, q, g2, ¢3] and [q1, ¢, g2, ¢3] in terms
of chi to find the 65 symbols. As a simple example, we find for ¢; = 0,

_ Aj+Ag—A3—2 1 1 1 1
D = — D I — — et
3 [OOO] 2(2A1—3) 1 <|: 27072:|+|:2707+2:|>

TR 31) T (H’“;] - [*i’o’_;D B

from where we can read off the for example the following 65 symbol,

{[Ah 0] [A2,0] [A (3.54)

[000}(——)
1+ __A1+A2—A3—2
[Ag, 0] S [Ag +

2(2A, — 3)

N N[
N[ |

2]
2]

[_%’07""%](__)

The correction term Cli is given by
+ 1 +
Crlngas] =( i+ a1 F 5 ) (= g3) AT [0 — 1,g2, g3 + 1]

1
b—q £ 2> (3 +q3) AT [q1 + 1, g2, 43 — 1]

2

1

— <€1 +qF ) (b3 — qz)«‘ﬁE (g1 —1,q2 + 1, g3]
1

<€1 —q = 2) (b2 + q2) AT @1 + 1,q2 — 1, g3]

2

2

3 3
+2 (Al Faq1— 2) <A1 + Ay — Az — 2) AT (01, 42, g3]

1 3
+9 (el Faq+ 2) <A1 — 2) AT a1, 92, g3)- (3.55)

The correction term C?jf is obtained from the above expression by replacing 1 <> 3 in the
coeflicients, replacing A; by As, and exchanging the shifts applied to ¢; and ¢3 in the
three-point structures. Note that C3~ enters (3.50) with a minus sign.
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3.5 Differential bases from 635 symbols

The crossing equation (3.22) will be our key computational tool in this work. Using it,
we can perform a variety of calculations with differential operators. As a brief example,
consider contracting both sides of (3.22) with a differential operator DX) : 01 — Of, which
we denote

Oy w

(3.56)

1"
Ol

Here, the incoming arrow for W indicates that this operator is associated to the dual
representation W*. Let us connect the incoming W line in (3.56) with the outgoing W line
in (3.22), i.e. contract the A indices. In equations, we find

D) DOAO; (1) Oa(12) O (3)) (@

Az T x3
ab
01 Oy O]
=2 {@; W O}} D), DO} (21)Oa(w2)Os(ag) ™, (357)
O’ m,n 3) mn

where we have given the differential operators subscripts x; to indicate which leg they
act on.
The composition of differential operators Dl(f)xnglL)A on a single leg corresponds to a

bubble diagram

, cn
Dg)p(n)A - o, T <01 %/) Soror- (3.58)

1"
Ol

This vanishes unless the representations for O] and O} are the same, in which case it is
proportional to the identity (at least for generic scaling dimensions A’, A’). The reason
is that (3.58) represents a homomorphism between generalized Verma modules, which are
irreducible when the scaling dimensions are generic. The constant of proportionality, given
by the symbol in parentheses on the right-hand side of (3.58), is actually related to another
type of 65 symbol, as we explain in appendix D. For now, we take (3.58) as a definition of
these symbols.
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Using (3.58) with O] = O, we can simplify the right-hand side of (3.57) to obtain
Oy O3 Oo O3

(9:/3 , ab , cn
= . (3.99
@) Z{ngog} ((’)1W (3.59)
w

m,n mn
O1

G o

01

The left-hand side of (3.59) is a conformally-invariant differential operator DEE’LIDS;)A
acting on a three-point structure at two different points. The right-hand side is a sum of
structures where the representations at those points have been modified. The existence
of such invariant two-point differential operators was a key observation of [70]. Here, we
see that they factorize into a product of covariant differential operators, each acting on a
single point. Indeed, it is easy to verify that all “basic” differential operators in [70] are of
this form, with W being either the vector or the adjoint representations of the conformal
group. Furthermore, from the discussion in section 2.4 and appendix D it follows that
arbitrary compositions of the basic differential operators of [70] are also of the form (3.59)
with more complicated representations W. In this sense, (3.59) gives a more fundamental
point of view on such operators.

The main purpose of the differential operators in [70] was to raise the spins of the
operators they act on. Here, we see that it is also possible to lower spins, an idea that we
discuss briefly in section 5.

Another observation of [70] is that (3.59) can sometimes be inverted to express a basis
of tensor structures in terms of differential operators acting on simpler structures. For
example, when one of the operators Oy is a traceless-symmetric tensor, one can write
three-point structures involving Oy in terms of derivatives of three-pt structures involving
scalars. In our notation, this reads

O
O1
O, 4
R
O =20 w0 (3.60)
W.b,c e - ¢2
02
Os

Here, the dashed lines denote scalar operators ¢1, ¢2. Note that the labels b, ¢ determine
the dimensions of ¢1, ¢2 in terms of Ap,, Ap,, respectively. Thus, the right-hand side will
involve derivatives of scalar structures with dimensions shifted by half-/integers from those
of O1,0s. In equations, we write

(010,00 = 75171 (616:00), (3.61)
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where Z is a combination of derivatives 0;,, 0., and formal operators 3;; : A; — A; + 5
that shift the dimensions Ay, Ay. We have suppressed SO(d) indices in (3.61) for simplicity.

The coefficients (...) expressing 9;?2;3102 in terms of products of weight-shifting op-

erators D(b)Afo) are determined by inverting (3.59). In writing (3.60), there are infinitely
many possible choices of representation W and labels b,c. Generically, we expect that
it should always be possible to choose enough W,b,c’s to solve (3.60). This was shown
explicitly in [70] when 07, Oy are traceless-symmetric tensors.3

For simplicity, we will sometimes write (3.60) as

Oy
Oy
0, = \I;»_)_ O, - (3.62)
Os
Os

4 Conformal blocks

4.1 Gluing three-point functions

A general conformal block can be expressed as the integral of a product of three-point
functions. For simplicity, consider the case where the external and internal operators
are scalars. Given three-point functions (¢1(z1)p2(z3)¢(z)) and (d(y)ps(x3)Pa(zs)), the
following object is a solution to the conformal Casimir equation with the correct transfor-
mation properties to be a conformal block,

(x_y)12(d—A) (0(y)d3(w3)Pa(z4)), (4.1)

1
e / Az dy(p1 (1) da(w3)P(x))
A
where A = Ag. This can be understood, for example, by writing the integral in a manifestly

conformally-invariant way [71] 38, ,39

371t would be interesting to characterize the minimal set of W’s needed to build all possible structures.

38In Euclidean signature, we take the range of integration of x,y to be all of R%. In this case (4.1)
produces a solution to the conformal Casimir equation with the wrong boundary conditions to be a conformal
block. However, the conformal block can be extracted by taking a suitable linear combination of analytic
continuations of the integral [71]. One can alternatively isolate the conformal block by performing the
integral in Lorentzian signature over a domain defined by the lightcones of the four points z1, z2, z3, z4 [139].
Calculations involving differential operators are insensitive to these issues because the differential operators
always transform trivially under monodromy. Thus, our methods allow us to study spinning versions of
any of the solutions to the Casimir equation.

39We expect that (4.1) only converges when A lies on the principal series A € g + «R. We obtain a
general conformal block by analytically continuing in A.
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Let us denote the operation which glues two ¢-correlators by’

’¢>N<¢|EAZ/ddg;ddyW(a?»@_y;w_A)(cb(y)\ e e xeaag. (42)

We should choose the normalization AMa by demanding that
P--x-- - -Xmx-=p T P --<--0¢ - (4.3)
That is, we demand that the shadow integral acting on a two-point function (p¢) gives

the identity transformation. In the case of scalars, this fixes the normalization factor to
be [67, 71, 87]

N = e 2 . (4.4)

For spinning operators, @ glues to its dual-reflected representation Of — i.e. the
representation with which O has a nonzero two-point function,

Oa) (O} 1= 0 s ot

= i [ e aiosn@) TS Okl 6

Here, t*®(x — y) is the tensor structure appearing in the two point function of the shadow
operators (OOT). We will not need the explicit expression, but simply the normalization
condition

0 X——0 = 0——0- (4.6)
A general conformal block is given by

(92 03

W = (0,0,0) s O(OT0304) = (a X b) - (4.7)

(91 04

To perform computations with differential operators and shadow integrals, we must under-
stand how to move differential operators from one side of a shadow integration to another
— i.e. how to integrate by parts. This can be done purely diagrammatically, just from the
definition (4.6).

“OInstead of thinking of the gluing operation (4.2) in terms of shadow integrals, we can alternatively think
of it as simply a sum over normalized descendants of ¢. The only properties of the gluing procedure that we
use in this work are that it is bilinear, conformally-invariant, and satisfies the normalization condition (4.3).
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First, consider a two-point function. Moving a differential operator past a two-point
vertex is a special case of the definition of a 65 symbol,

o ot 1 o)™
= Z{O, W O} ot (4.8)

ot W

A three-point vertex where one of the legs is the unit operator 1 is simply a two-point
vertex. We could of course omit the unit operator from the above diagram, but we have
temporarily included it to emphasize that (4.8) is a special case of (3.22).*! Again, the

W
.

notation means there is a unique corresponding structure or differential operator.

Now, let us add shadow integrals onto both O and O in the above diagram. Using (4.6),
we find

o’ ot 1 ot ot
) o= Z{O’ W (’)} 10) X ot (49)

O \? X o) ?
w

w
Equation (4.9) essentially implements two integrations by parts in the double integral (4.2),
allowing us to move a differential operator from one side of a shadow integral to another.
In symbolic notation it has the form

oOw 0

m

T /'i' o C
‘D@A@N(@/qzz{o 10 } |0) pa (DA (4.10)

*m

4.2 Spinning conformal blocks review

The expression (4.7) for a general block can be combined with the “differential basis”
trick (3.60) to express certain conformal blocks as derivatives of scalar blocks [70]. Suppose
the exchanged operator O = Oy is a traceless-symmetric tensor of spin ¢. Applying (3.60)

*1T0 be precise, we have established (3.22) only for non-degenerate operators O;. However, as explained
in section 3.2.3, the objects on either side of (4.8) span the space of covariant two-point functions, which
provides the missing ingredient.
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twice, we find

02 03

@ o ) @ o ’
- ¢ e _ »> ¢ 9 ¢ <« . (4.11)

(91 04
01 04

Note that the right-hand side is a differential operator acting on conformal blocks with
external scalars. In equations (4.11) reads

G(Aa:é))(91(’)2(93(’)4 (-%) _ @d()t:)d)(;h Oq 9;?;2304 G(Zl7f2¢3¢4 (ZL‘Z) (4‘12)
The objects in (4.12) and (3.61) carry SO(d) indices which we have suppressed for simplicity.

Note that symmetric traceless tensors (STTs) are the only representations that can
appear in an OPE of two scalars. Because .@éﬁ?ﬁj can’t change the representation of
the exchanged operator, the expression (4.12) only works for conformal blocks with an
exchanged STT. This is sufficient to compute all bosonic blocks in 3d, since all bosonic
(irreducible) 3d Lorentz representations are STTs. However, in general there exist blocks
which cannot be computed using (4.12).

To compute more general blocks, an approach advocated in [70, 71] is to identify the
simplest set of blocks with general exchanged representations — so-called “seed” blocks —
compute them using some other method and apply the trick (4.12) to those.*> However,
our new techniques will make it simple to modify (4.11) and (4.12) to compute any type
of conformal block (including seed blocks).

4.3 Expression for general conformal blocks

The basic idea is to allow the differential operators acting on the left and right to be
conformally-covariant, instead of simply invariant,

a,b)0102030 a)A (b
Gah010:0:01 (1 (@450

hghtAC:(Zl,fﬂ)gq54 (1'2)7 (413)

where A is an index for some finite-dimensional representation W of SO(d + 1,1). The
exchanged operator then lives in the tensor product W ® Va ¢, which can contain primaries
with more general Lorentz representations. We must be careful to choose 91((;2’4 and .@fibg)ht A
so that precisely one irreducible subrepresentation of W & Va , contributes. However, this

can be done easily and systematically using the techniques we have developed.

“2Seed blocks for 4d theories were classified in [76] and computed in [77] using the Casimir equation.
In 3d, there are two types of seed blocks: external scalars with exchange of spin ¢ € Z, and external
fermion+scalars with exchange of spin-¢ € Z + % A recursion relation for the latter type of 3d seed block
was computed in [72].
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Let us begin with the object we would like to compute: a conformal block for the
exchange of an operator O transforming in Va ,,

Os O3

G(a,b)01020304 (
(@]

01 04

Let W be a finite-dimensional representation of the conformal group such that W* @ Va ,
contains a spin-¢ STT representation ;. We can introduce a bubble of W and Oy in the

middle of the diagram, so that the shadow integral itself involves a spin-f representation.
Note that

OZ OT 1 Oz " Oe
O w OTzzp:{OZWo O ——X w ot
P
W W
¥ ot1 0, ot \"
“Zow o ow | O —=—X—=0"
P

(4.15)

where we have used (4.9) to move the differential operator D™ from one side of the
shadow integral to the other, and (3.58) to simplify a product of differential operators
D(p)ADgL) on a single leg. Thus, we have

02 03
O T
an W
01 W 04

a,b)0102030
GEQ 1010203 4($i)

where
ot 10" [ ot \"
Mo = . 4.17
ol N an
p
We do not sum over m,n in (4.16) — rather we can choose any m,n such that M,
is nonzero.
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Now we use crossing to move the W vertices to the external legs. Let us focus on the
left-hand side of the diagram (4.16),

@
Oy

10 0,0, 0"
Q @ Or = Z {(’)g W (9} o’ (4.18)

O w
O w

Now Oy and O’ participate in a three-point vertex with an STT operator O, so we can
use (3.60) to obtain

Thus, we find
2 ($16200) = anpém)A@lOzO(x))(a),
e o= e SO ROL e
where the x subscript indicates that Dg(cm)A acts on the operator O(x). Similarly,
@ffg)htA<¢4¢3Oe>= X/%MDXQC’L;O;;OT(:E)W’)

Together with (4.17), this gives (4.13).
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a)A (b
A D

\}; ;(/
b =D § e § (4.22)

The inner object is a conformal block for external scalars (dashed lines). Weight-shifting

Schematically, applying 4 to a scalar block results in a graph with the

topology

operators dress it in a way such that (a component of) the tensor W ® O, propagates from
left to right.

The above calculation has the advantage of being extremely general. However, it re-
quires us to make non-canonical choices of W and the differential operators m,n. Different
choices for these objects will result in naively different, but equivalent expressions for our
conformal block in terms of derivatives of scalar blocks. In some cases, to obtain the
simplest possible expression, we may want to proceed slightly differently.

4.4 Expression for seed blocks

Let us consider for example the problem of computing the seed blocks. For simplicity
of discussion, we will restrict to the case of even d. The case of odd d can be analyzed
similarly*? (for example, we construct the 3d seed block in section 4.4.1).

As mentioned above, seed blocks are the simplest conformal blocks that exchange a
primary O in a given SO(d) representation. In particular, we can always choose the external
operators in a way such that there exists a single three-point structure on either side of

P
\% °© © (4.23)

01 04

the block, for example

where O; and O3 are scalars, while Oy and O, transform in representations which are ob-
tained from that of O by, for example, removing the first row of the SO(d) Young diagram.

43The complication in the case of odd d is that when O is a fermion, we cannot choose the external
operators so that there is a single tensor structure on each side of the seed block. Instead, the minimum is
two. This is related to the fact that the irreducible fermionic representations of SO(d — 1) are necessarily
chiral when d is odd.
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To express this seed block in terms of scalar blocks, let us first focus on the left three-
point structure. We can write

@)
Oy
M _ 01 , (4.24)
K mn K O,
01 Ol

where due to the uniqueness of the tensor structures, we are free to choose n,m and W as
long as O} is a scalar and Oy is a STT. In what follows, we will perform manipulations with
the operator labeled by m, but we will leave n untouched. For this reason, it is convenient
to choose W and n so that n is a 0-th order differential operator. According to theorem 2.1,
this means that the primary of W* should transform in the same representation as Os, i.e.
(W*)_; = (W;)* = pa, where p; is the SO(d) representation of O;.** On the other hand,
the condition for existence of the structure on the left is

(p @ pa)3O=1 £ 0, (4.25)

where p is the representation of @. This is equivalent to saying that there is a STT in the
tensor product p ® ps = p ® (W;)*. In turn, this leads to

p€STT & W;. (4.26)

According to theorem 2.1, this implies that we can use an order-(2j+1) differential operator
associated to W* in place of m.
We can now use (4.9) to move m to the right three-point structure to find the piece

W Os
o, 1 0" O g ot # L7
C oC
O4
to which we can apply a crossing transformation to find
O3
7\[

SO IR S " fos 00001 " O % (4.28)
- O W* 0, o, wrot [ x a S

¢ Of,ab .C ab

Oy

44Qych a W™ always exists. In fact, there are infinitely many choices differing by the value of j, and the
W* with minimal j is obtained by prepending a 0 to the list of Dynkin labels of p2 (in the natural ordering
where the vector label is the first and the spinor labels are the last).
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We now use (3.60) to write the full seed block as

@) O3

7\[

w (b)

\ o,
x ;
1 o, 1 0" [o; 0, 04" N OV

G 2 Z {0 W og} {oz w* of o
¢ Os,ab oC ab / «
I)i \

O o,

(4.29)

The advantage of this over the more general (4.22) is that we have been able to choose the
differential operator n to be of zeroth order, and we also avoided acting with differential
operators on one of the legs. This reduces the order of the full differential operator acting
on the scalar conformal block relative to the general expression. Let us now consider
some examples.

4.4.1 Example: seed block in 3d

Our first example is the fermion seed block in 3 dimensions. The SO(3) representations are
labeled by a single (half-)integer ¢. If ¢ is integral, then the representation is bosonic, and
operators Oy can be exchanged in a four-point function of scalars. If ¢ is half-integral, then
the representation is fermionic and Oy can be exchanged in a scalar-fermion four-point func-

tion?®

<¢A1 (517 $1)¢A2 ($2)¢A3 ($3)¢A4 (543 $4)> (4'30)

It is therefore possible to express any conformal block in terms of a scalar or fermion-scalar
block. The latter were computed in [72] by a Zamolodchikov type recursion relation. In
this section we will show how the fermion-scalar block can be expressed as a third-order
differential operator acting on a scalar conformal block, thus reducing all conformal blocks
in 3d to derivatives of scalar blocks.

For ease of comparison, we will follow the conventions of [72]. Let us review basic
properties of (4.30). On each side of conformal block there exist 2 three-point structures,
which can be defined using the 5d embedding formalism as

P2
X -1
(+) _ _ (5150) (S0 X1X250)" 2
<¢A1¢A20A,E> - Or = Aj+Dg—A+—L  AptA-Aj+0-L  AjfA-Agyet ]
X12 : X20 : XOl :
(31

43Gince our analysis is purely kinematical, we will label operators by their scaling dimensions and spins.
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b2

5

—1
<51X250><SQX1X250> 2
Ag+Ag—A+e+L  Agra-Ajterl  Ajta-Agte-]

2 2 2
X12 X20 XOl

(YA, 02,0n0) ) = O; =

)

(31
(4.31)

and analogously for the right three-point function (1 — 4, 2 — 3). Here the index 0 refers
to the intermediate operator Oy, of dimension A, and we labeled the three-point structures
by their P-parity. Accordingly, there exist 4 conformal blocks, which can be expanded in
a basis of four-point tensor structures,

®2 ®3

\ 1
\ 1

x Of Oe 7 4
Ggged(slv 84,7;) = a X b = Zg?b(%?)ﬂ‘i(sl, s4,7;). (4.32)
I=1

() Py

As indicated, there exist 4 four-point tensor structures TZ. Out of them, two structures
are parity-even and participate in conformal blocks G™,G~~, and two are parity-odd and
participate in GT~ and G~F. We give their exact form in appendix E.

We now compute the seed blocks using the algorithm?® from section 4.4, and we will
use the spinor representation W = S of the 3d conformal group to translate traceless-
symmetric representations into fermionic representations. The first step is to write the left
three-point structures in the form (4.24). Let us define the scalar three-point structures as

P2
E (S0 X1X250)"
(92,00,0n,0) = y—— 0Oy T T A 48,-ATL  DAgtA-A L A HA-AyHL (4.33)
y’l X12 : X20 : XOl :

1
1

b1

In (4.24) we will use the zeroth order operator D, ™ in place of n. For m we can take any
differential operator of the appropriate parity. A simple choice is to use D, T for the parity
even structure, and D, ~ for the parity-odd structure. We then have

(Y, 02,0n0) P = c

|
?<Dl +DO i><¢A1+%¢A20A+%7E:‘:%>- (434)

It is easy to find by a direct computation that

Cp=1 C_.=20+1. (4.35)

46Because we want to follow the conventions of [72], some minor modifications to the algorithm are
required, such as reordering of the operators.
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Note that Op 1 (gl I8 the operator which is going to be exchanged in the scalar block. If
27 2

we chose different operators for m (i.e. DTF) in (4.24), then we would relate the seed block

to different scalar blocks (in particular, it doesn’t make sense to mix these choices).

Crossing of 2-point functions. The next step is to learn how to push the operators
D, * through the shadow integral. For that we need to fix the normalization of two-point
functions, which we choose to be

;20 (S192)%

(On,e(S1, X1)On 0(S2, X2)) = Arl
X12

(4.36)

The definition of 65 symbols (4.8) is in our case
D;,;t<OA+%,€$%(Sla Xl)OA%,e;%(S%X?» =

0 1 o o(—%)

1 1 Al

:{ A"‘273:':2 } DiCT(OA,Z(SlaXl)OA,Z(S%XQ»‘ (4'37)
«(

@) S Op1pr1

We can explicitly compute

0A+%,e—% 1 Oay R _ i (4.38)
One SOnp1p1 (A -1)(A—-¢—1) '

“(+-)

Opsiepr 1 Ong '(")_ i(20+1) (439)
Oae S Onarig (b 4A-1)(A+0) .

2
and use these coefficients in (4.9) to arrive at (4.27). At this point, we have expressed the

seed block in the form

Gl (s1, 54, m3) =
o (—4)
1 JOr1 1 O cdpy—+ - b
2 o, P O 1050 DT Ot
(4.40)

where 1 stands for shadow integral.

Crossing of three-point functions. Now we are going to perform the crossing trans-
formation on the right three-point function to write it as

Pas Ya, Ya,qn v
b 3 4 Az+= _ I
DS T (Onedastoa,) P =) {C’)A,e S OA:l ? }b/( )D3,d <OA+%,Z:F%wA3+%¢A4>( )

b 27£:F%
b(+F)
¢A3 7/1A4 q/JA _1 } ’
+ e D {(Op 1 ym1a. 10A ).
{OAJ S OA—F%,E:F% b () ) +3:4F3 373 4

(4.41)
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To proceed, we need to choose a basis of tensor structures for three-point functions of the
type (OAJF%’@F%wAﬁ%wm). We define

<5152><53X1X253>£ + <SlS:3><SQS3><S3X1X2$3>£71
X1, X3!
<5152><53X1X253>€ <5153><5253><53X1X253>871
? + 2 /—1
X12 X12

53 X1 X585)¢1
t3:< 321 213> — X93(5155)(S2.X153), (4.44)

1 1 _1
Xf; : X232 X312
S5 X1 X585) 61
ty = ( ;1;1 E;3>_1X13<S253><SIX2S3>7 (4.45)
X12 2X232 X312

t) =

: (4.42)

2= , (4.43)

where the first two structures are parity-even and the second two are parity-odd.*” In
terms of these structures we set
t
b b
<¢1¢QOZ>( ) = A +Ay—A3—0l+1  AptA3-A1+f  AgtA]—Agtl (4.46)
X9 ’ Xy3 2 Xy 7

We can now compute the 6 symbols in (4.41). For example, the only non-vanishing
symbols for b = + and D' on the left of (4.41) are

+(+4)
as Yay 1 1, ) .
Mg+ ()7 Ao RA A~ A A+ Art A=)
Oap S O 1 1 As—3 ’
A+§,K+§ 1(=—)
(4.47)
+H(++
bas Ya, U1 ) 1 ) i
A3+§ _ (_1)84-5 (AHL+A3 =D —5)(A=1)(A+l4+A3+As—5) = 5)
OA,K S O 1 1 A3_g ’
A+§,Z+§ 2(——)
(4.48)
H(++
Oas Yoy ¥ 1 ) L A AL
375 :(_1)Z+§( + +33— 4—5)’ (4‘49)
Oay § O 1 1 4(As—3)(A3z—2)
A+§’Z+§ 3(4-)
()
Pa Yau Yy 1 L NN N
379 :(_1)€+§( —1)( +3— 3+A4+3) (4.50)
Oaray § O 1 1 2(Asz—5)(As—2)
A+§,€+§ A(4-)

The other symbols vanish due to space parity. The are 12 more non-vanishing 65 symbols
for other choices of b and of the operator on the left, which we won’t list here since they
represent only an intermediate step in our calculation.

4TWe choose this peculiar basis only for the purposes of presentation, because in it 65 symbols have the
simplest form. In practice we used the basis (3.39)7 in which we know the general 65 symbols for the spinor
representation.
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Differential basis. The final step is to express the three-point structures
(OaL 1gl Ypgs 1 ¥a,)®) in terms of derivatives acting on scalar thee-point structures. This
is standard, and this particular case was solved in [35], so we do not explain it in detail.
We only note that the operators which create the parity-even structures ¢; and to should
be parity even,

t1, t2 ~ <D;+D2_+>7 <D3_+D4_+>7 (4'51)
while operators which create parity-odd structures have to be parity-odd,
ts, ty ~ (D3 TDYT), (Dy DL ). (4.52)

The recursion relation. Assembling everything together, we arrive at the following
expressions for the seed blocks in terms of third-order differential operators acting on
scalar blocks,

Groed> Groed = 01Dy "D3 (D3 "D ) (0, 1 188,0054164,- 1)

+v2(Dy D5 WDy Dy NG, 4100000500, 1 1)

+v3(Dy D5 /(D3 DL NP, 1680005104, 1)

+va(Dy DTN (Dy D N b, 41000 PA5 B, 41, (4.53)
Groad> G = 01Dy "D (D5 D7) (0, 1 168,005 0A, 1)

+ 02Dy D3 D D N bp, 1 102,0054108,41)

+ v3 <D1_+,D§__><D3_+,D2_+><¢A1+%¢A2 TSNy

(DT D) (D DT (B4 10800010, 1) (454)

The coeflicients v; are different for each of the blocks, and we give the explicit expressions

in appendix E. The scalar blocks in the above expressions for G;eid correspond to exchange
of [A+ £,¢— 3], while for G;eeid the exchanged primary is [A + 1,0+ 1].

Decomposition into components. Note that the scalar conformal blocks have the

form
1 a2\ (7 g -
<¢A1¢A2¢A3¢A4> = TAI+Ds Aat+Aa <2 — GZ’%(Z,Z), (455)
Ty Ty T24 13 ’
where o = —%Alg, 8 = %A34, and depend essentially only on « and S and not the
individual dimensions A;. We then see that e.g. for G:e:d we only need the scalar blocks
_1g_1 _lg.3
G" 41’6 4 and G° 41’B+‘1‘. There exists a second-order differential operator (see [140] and
At+5.0—35 A+5 -5
section 4.5) which relates these two blocks,
GA+4%7€72(2', Z) ~ (0,07 + .. ')GA:%,Efg (2,%). (4.56)
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a—t.5+3
A+ie-L°
duce (4.53) to another third-order operator acting on the single scalar block. In particular,

In (4.53) only a first order operator acts on G and thus we can use (4.56) to re-

we can write

[_%70707_%]+[%70707 %] [_%70707%]+[%70707_%]

G;;Jerd = ngr(sz) 2 + g;+(27§) 9 5 (457)
where the tensor structures are defined in appendix E and
++ — Z(_]-)Zi% — ,w ++ afi,ﬁfi —
q (z’z)ZE(A—E—l)(A—l)(ZZ) 2 D) GAJF%’zi%(z,z). (4.58)
The differential operators ”DZJF are given by*®
D (2,7) =20:D,, — 20,D5 — (20, — z@)ﬁ (1= 2)0. — (1 - 2)2%)
A—-0OA—-0-3 A—/¢-3
B0B 9o 29+ 22— o), (1.59)
D4 (2,2) =V.Ds + VD, + (V. + Vg)%((l —2)0, — (1 - 7)0%)
A—-0)(A—-10-3 20+ 1)(A—¢—3)(A-23
4 4
where
2 2 ! / 2 Y / 1 ! 1
D,=2°(1-2)0; — (o +8 +1)2°0, —a'f'z, « :a—z,ﬂ :6—17 (4.61)
V. =20, + ——, (4.62)
z—Z
and Dz, V3 are defined by exchanging z and Zz.
The same reduction to a single block happens for G_ ;. For G:egd and G;e:d the

situation is a little trickier since there is a second order differential operator acting on the
“wrong” scalar block. However, it turns out that its second-order piece is in fact coming
precisely from the dimension shifting operator, and we again can reduce to a third-order
differential operator acting on a single scalar block. Explicit expressions for these blocks
can be written in a compact form given in appendix E together with an explanation of the
normalization conventions.

4.4.2 Example: seed blocks in 4d

In 4-dimensions the operators in a generic spin representation are labeled by 2 non-negative

integers®® ¢ and ¢

Op, = 0D, (4.63)

48In simplifying these expressions for the differential operators we made use of the quadratic Casimir
equation satisfied by the scalar conformal blocks.

““Notice a difference in conventions relative to the 3-dimensional case where ¢ can be half-integer for
fermionic operators.
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It is convenient to distinguish different classes of representations by a parameter p defined as
p=1|l—1. (4.64)

Operators with p = 0 are the symmetric traceless tensors. Using (3.16) one can easily check
that any given four-point function can exchange operators with only a finite number of
different values of p. This implies that contrary to the 3-dimensional case, in 4-dimensions
we need infinitely many seed conformal blocks, parametrized by p.

A calculation of the general 4-dimensional seed conformal blocks was first performed
in [77], where the explicit expressions for p < 8 were found. In this section we perform an
alternative computation of the seed blocks by using our new machinery and the strategy
outlined in section 4.4. Our approach is to express the p seed blocks in terms of the p — 1
seed blocks. Knowing such a relation allows one to apply it recursively p times to get an
expression of the p seed block in terms of the derivatives of the scalar p = 0 Dolan-Osborn
block [67, 68]. Since the latter is known in terms of 9 F} hypergeometric functions, this also
gives hypergeometric expressions for the seed blocks, equivalent to those in [77].5

Let us note that the explicit hypergeometric expressions of [77] are quite complex
already for p = 2. In numerical conformal bootstrap one usually requires simple rational
approximations to conformal blocks [8, 22, 30], which are hard to construct from these
expressions. On the other hand, our differential recurrence relation is rather simple, and
we thus hope that it will find applications in the numerical bootstrap.

As in section 2.5.4, it will be convenient to use the 6d embedding formalism described
in [71, 75-77, 136]. In what follows we use the conventions of [75], and all the computations
are performed using the Mathematica package described therein. To avoid repetition, the

notation and conventions from [75] will be used in this section without explanation.®!

A simple choice for the seed four-point function where the operator (’)(AM) with a given

p can be exchanged in the s-channel is®?

(FOOFPOFOO FOP, (4.65)
The conformal block associated to the exchange of O(AZ’Z) in the seed 4-point function is
0,0 ,0) A0 —=(€,£) 1+(0,0) 1-(0,
W = (FLOFEO0LY) b0 (O FLOFLT). (4.66)

We distinguish 2 cases depending on the sign of ¢ — ¢. Using the convention of [77] we

"OWith normalization conventions derived in [75]. We performed the check for p < 4.

51The only difference is that we avoid using the terminology of [75-77] in which “conformal partial waves”
refer to what we normally mean by conformal blocks, while “conformal blocks” refer to the coordinates in a
basis of four-point tensor structures. When there is a danger of misinterpretation, we call the latter simply
the components of conformal blocks. We do so to avoid the possible confusion with conformal partial waves
from harmonic analysis.

52the seed 4-point functions are chosen so that there is a unique conformal block for the exchange of
O(AM). There is an ambiguity in choosing the seed 4-point function, here we use the convention of [77].
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define the “seed”®® and “dual seed” conformal blocks as

Ws(ei})d = Wé(’zzj)a 14 S zv (467)
W((izl)l)al seed = We(’lzj)a 14 > Z (468)

The seed and the dual seed conformal blocks can be further decomposed into components as

p
W = K4 Y (27 HD (2, 7)[12)°[13]", (4.69)

e=0

®) - ®)
T \P —eT7\P —\ [T ersy —e

Wdual seed — IC4 Z(_2)p He (Z, Z) [H42] [Héﬂp . (470)

e=0
The parameter e = 0,...,p labels the possible 4-point tensor structures. In this section

we focus solely on the seed blocks J20% )(z,E). The case of the dual blocks ng ) (2,2) is
completely analogous and will be addressed in appendix F.

The calculation essentially follows the algorithm in section 4.4, the main difference
being that we go from exchange of (¢,¢+ p) to (¢, + p — 1) instead of going directly to an
STT exchange. The calculation is also largely analogous to the 3-dimensional calculation in
section 4.4.1. For convenience, we start the algorithm from the right three-point structure
instead of going from the left.

We first rewrite the right three-point function entering (4.66) as

@K PIEQVF) = (D, Daoy) OW T ESOEOT T @)
The subscript 0 indicates that D, 0 acts on the internal operator @. We would like to
move it across < (integrate by parts) using the rule (4.10).

Crossing of 2-point functions. The definition of the 6 symbol entering (4.10) in the
present case is

D@0 (X1, 81, 81)0% ) (X, 55, 8,))

_ —(l+p—14 _ , _ _
= AD;, (08 (1, 81,5108 (X, 52,52)), (4.72)

where

A=S i oy } =2t (A-g-1)(A-E-5-2). (473)

Applying (4.10) and (4.71) to (4.66) we arrive at

—1 50— —A(t+p—1,6) (0, —
W, = AN (D" Do )(FQOFEY 0L ) b (@0 FLOFSTTY), (a74)

seed —

where @J *~ how acts on the left three-point function.

53In this paper we sometimes use “primal seed” to distinguish from the dual seeds.
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Crossing of 3-point functions. We now use the crossing equation for the 3-point func-
tion

2
=+0—, (0,0 .0) (0,0 n)a=——0, (1,0 ,0) AL +p—1)\ (n
Do (FOVFLO00H) =3 BOD ESY,  FEO 0 D) 4

n=1
2
n)~+0— (0,1) (p,0) AL l+p—1)\ (n
ZC( )Dla <FA171/2FAp2 0A+172 >( )7 (4.75)
n=1

where B and C(™) denote the 65 symbols

(0,0) (p,0) 1-(1,0) «(+0-)
B = Fa; FApz Far1/2
- O(Z7€+p_1) 8 O(Z,Z-}—p) 9
Atl/2 A (n)(=—0)

0,0 0) (0,1 « (+0-)
= ot o olltn (4.76)
Atl/2 4 (n)(+0-)
The 3-point functions in the right-hand side of (4.75) have the following form
, 0) A(ELtp—1)r (i o [(2R13
<ﬁﬂﬁﬁ%&%Dwz&mmqﬁr%ﬂé37
0, 0) A(ELtp—1)1 (i o 13732
@ﬂﬁﬁ@@%W:mMNwm«m%. (4.77)
Again, we can find the 65 symbols B and C™ by an explicit calculation,
4(A1—-2)
x (4(€+p+1)(A17A2+€+g+1)+(A17A2+A+€)(2A74€—3p—6)) ,
B@) _ CP(A1 =D+ A+0)(2A-20—p—4)(A1+ A2+ A—L—p—6)
B 4(A1—2) ’
4(A1-3)(A1-2) ’
@ _ p(—2A+2€+p+4)(A1—AQ—A-FE—HH-Q). (4.78)

4(A1-3)(A1-2)

Differential basis. The last step is to relate the 3-point functions entering (4.75) to
the seed 3-point functions (Fg),l’O)ng,z_l’O) C’)(Aéﬁr;;l)) with shifted dimensions by using the
differential basis trick. This is standard [70, 76], so we simply note that we use the following
differential operators

1,0 0) i (6L+p—1) (n =—+0 =—+0
<Fél+)1/2F£pg )O(AJ}DQ ho o~ (D Dy ko), (Do Dy ),

’ [,é — n —+0 ——40
(P, FEOOT Y™~ (DT Dy 40), (D10t Dy ). (4.79)

»
2
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The recursion relation. Combining the expressions (4.74), (4.75), and the differential
basis (4.79) we find the following recursion relation

(p) _
WAL Ay A Az A =

1 ———0 —~—10 (p—1)
A <Ul (Dl D47—0+)(D1 D2,++U) WA+%’Z; Ar+1,02-1 Az A+

—0 —~—+10 (p—1)
+v2(Pr - Pa04)(Pryv0- D )WA+§,e; A1 Ao+3,05,A0+5

=+0— =0+ (p—1)
+U3(D1 D47—0+)(D1 D2,++U) WA+%’Z; Ar-1,02-1 Az.0,+1

+0— ~—+10 —1
+0a(DY" - Da—04) (D104 - Dy >ng’+;?&A1,A2+;A3,A4+§>, (4.80)

where the coefficients v; are given explicitly by

(A+A1—Ag+0)(—A—= A1+ Ao +042) (A+ A1+ Ay —{—p—6)
4(A1—-2)(2A2+p—4) ’

(—A+A1 Do +l+p+2)(A+ A1 Ay —L—2p—2)(A+ A1+ Ay —L—p—6)
8(A1—2)(A1-1) ’

vy = —A+A1—=Ag+L+p+2

4(A1 —3>(A1 —2)2(2A2 +p—4) ’

(—A+A1—Dg+l+p+2)(—A+ A1+ Ag+0+2p—2)(A+ A1+ Ay — L —p—6)

8(A1—3)(A1—2)

V1 =

Vo =

vi=— . (4.81)

Decomposition into components. By using (4.69) one can write the recursion rela-
tion (4.80) at the level of components of the seed conformal blocks J20% )(2,2).

First let us notice that according to [77] the components HY )(2,2) of the seed blocks
depend on the external scaling dimensions A; only via the quantities

a=a?, Ww=bpP)tp—e P=p—e, (4.82)

where

A1 - R —p/2 :+A3*A4*p/2.

2 ’ 2
Let us now analyze the expression (4.80). Almost all the conformal blocks entering the

a®) = (4.83)

right hand side of (4.80) correspond to the same parameters a?) and b (the difference
in p is compensated by a difference in A;). The only exception is the conformal block

(p—1)
WA+%,E; A1+1,A27%,A3,A4+% (484)

which contains a® —1 and b®). Just as in the case of 3-dimensions in section 4.4.1, we can

use a dimension shifting operator to simplify the structure of the recursion relation (4.80).

The only difference is that we need to shift the external dimensions of a general seed block.

This can be done by generalizing the construction of dimension-shifting operator outlined

in section 4.5. We find

Wép-i-%l,)ﬁ;A1+1,A2—%7A3,A4+% =€ (Dit 0Dy )(Drsvo Dy +O)Wép+%l?é;A17A2+%7A3,A4+%7
(4.85)
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where
E=—(p+ 1A —1)(A1 =2)(A+ A1 = Ay + O)(A+ Ay — Ay — £ —2). (4.86)

Note that this is in fact completely analogous to the differential basis trick, except that
instead of changing the external spins, we change the external dimensions.

Plugging the relation (4.85) in (4.80), stripping off the kinematic factor and decom-
posing this relation into components according to (4.69) one obtains a recursion relation
for the seed blocks of the form
HP) (2,7) = — A~ Do HP Y (z,7) — 2Dy H? [V (2,2) + 4*"1 22Dy HP V(2,7

E) = ( 1 2,Z) +4c,_52ZDy H,”, (z,z)) ,
(4.87)
where the conformal block in the lLh.s. depends on [A,/; Al, Ao, Az, A4} while the con-
formal blocks in the r.h.s. depend on [A + A A1, Ay + , A3, Ay + ] The differential
operators D; are given by

Do = V(g |D¢™) — V. [
(p—1.e) (r—10)\ _ ( p—1 1| Kk(k—2)
H‘;(D - Dz ) (€ +1)L[bE ]B[ a1 (4.88)

Dy =2V} + DY) 2w i) + DT
+k (2Dt —zplrtent)
+ 7} + D2ZL ) (2 — ) Lla] — (k—2)(k— &7} — 1)(z — 2)BlK],  (4.89)

e

Dy =DWP-1e=2) _ pr=le=d _ pp [k - 1] : (4.90)
where the coefficient k is
4—A+0  3p
= 4 = 491
k 5 + 1 (4.91)

The elementary differential operators® used here are

DLbe) = 22(1 — 2)9% — ((a+b+1)z* — cx) 0, — aba, (4.92)
Vilp = —2(1 — )0, + px, (4.93)
L{p] = Vz[u] = Vzu], (4.94)
ZZ
Bl = 2 (1 -2~ (1 -2)02) + (195)
and we also use the following short-hand notation
DPe) = plae.beice) (4.96)

54 Exactly the same differential operators (except for V[u]) enter the quadratic Casimir equation for the
seed blocks [77]. Note that here the definition of L differs by a factor of z — Z.
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4.5 Dimension-shifting and spin-shifting

Using our techniques, we can explain some of the identities for scalar conformal blocks
which were derived by Dolan and Osborn in [140]. For the ease of comparison, in this
section we use the notation of [140], which we now briefly recall. The scalar conformal
block is defined as

1 —2a 2b .
(03, (21)922(22) O el 20 (3) 83, (0)) =z o (22) 7 (24) " Pun(abea),
(4.97)

where x and T are the standard Dolan-Osborn coordinates denoted by z and Z in the rest

of this paper,

vr = TR (1 (1) = B0 (4.98)
T13%24 T13%24
and
a= —1A12, b= }A34, (4.99)
2 2
while the parameters A; are defined as
A\ = %(AM), Ao = %(A o). (4.100)

Operators Hjy. Let us consider acting on (4.97) with the following contraction of the
vector operators (2.44),

—2D; % D% = —2X; - Xy =23, (4.101)

The resulting four-point function will have scaling dimensions at positions 1 and 4 shifted
by —1. Accordingly, we can remove the prefactor for the new set of scaling dimensions to
find the resulting action of this operator on F), y,,

(22) "2 Fy,, (0, b, 2, ). (4.102)

This operation is equivalent to the following diagram,

[As, 0] [As3,0]
Koag
p——x——¢ ) (4.103)
[A,0] ¥ < [84,0]
gj’\/VV\/\/WVWV\/\-)Q
X m \
[Al - 170] [A4 — 1,0]

and thus according to our general analysis can be expanded using the finite-dimensional
crossing (3.22) in terms of scalar conformal blocks with shifted external dimensions and
the internal representations appearing in

ORAd=[A-LO&Al+1]a[Al-1B[A+1,0. .., (4.104)
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where ... represents non-STT representations which do not appear in a four-point function
of scalars. In the notation of [140], this corresponds to an equality of the form

1 1 1 1 1
(xx)"2 F,», (a,b) :TFM_%/\T% <a+2,b+2> +SF/\1+%A2—§ <a+2,b+2>
1 1 1 1
FUEN 13,41 a+§ab+§ Fuly 141 a+§,b—|—§ ., (4.105)

where the coefficients 7, s, ¢, u are some combinations of the 65 symbols (3.22). This is pre-
cisely the equation (4.18) in [140]. Dolan and Osborn also introduce k-th order differential
operators Hy, for k = 1,2, 3, which act on F),), in the same way but with different sets of
coefficients ry, s, tg, ui. In particular, they all increase a and b by % In our formalism we
can also find 3 other operators with such a property,

Dy3 =Dy Dy,

Doy = D3 D;°,

Doz = D0 - DY, (4.106)
all of which also exchange the vector representation in a way similar to (4.103), and thus

act in the same way as Hy. In fact, one can express Hj in terms of these operators, and
we provide explicit expressions in appendix G.

Operators Fi. Another class of operators introduced in [140] can be interpreted as
exchanges of the adjoint representation of conformal group. The simplest of such exchanges
is given by

Fo = 8Dy 0, Dy 0 D D 0, (4.107)
whose action on the functions Fj, ), is equivalent to

11
»FO = —+ - — 1’ (4108)
x x

which is precisely how Fp is defined in [140]. The action of this operator on a conformal
block corresponds to the following diagram,

[Ag —1,0] [As —1,0]
\); ;(I
[A27 O]Q’\:\\-SE [A, E] ,’(I [A37 0]
» e { , (4.109)
[Al? O] /)—I t(\ [A47 0]
¥ X
[Al - 1’0] [A4 — 1,0]
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where the individual differential operators have indices in the vector representation and
are then joined into the adjoint representation H € [ ® 1. Therefore, it decomposes into
scalar blocks appearing in the tensor product

Held=A-1(t+1]eA-1(-1eA+L(+1]ao[A+10-1B[A ...,
(4.110)

13 ”

where represents non-STT representations which do not appear in scalar conformal

blocks. Thus there exists an identity of the form
FoFx\ ng = T0F N xo—1 + 50E N —1 00 + t0F N 4120 T U0EN Aot1 + WoFN A, (4.111)

with coefficients 7, so, to, up, wo being some combinations of the 65 symbols (3.22). This is
precisely (4.28) of [140]. The operators Fj with £ = 1,2,3 can be constructed analogously.

Operator D). Finally, let us consider the identity (4.50) of [140], which is®®
(2Z)F D (2T)  Fy, 2y (a,b, 2, F) = (A +b)(Aa +b— €)Fy, 2, (a,b+ 1,2, 7). (4.112)

We see that the left hand side of this expression gives a differential operator which shifts
b by 1. In our formalism, it is extremely easy to construct this operator, namely

D;_O . fD4—O .
(Az —1)(d—2— Ay)

(2z)F 70 IDE) (27)0 e = (4.113)
From the definition it is clear that it simply shifts b by 1. The coefficient in the right hand
side of (4.112) can be easily expressed in terms of 6j symbols (3.22).

4.6 Recursion relations for conformal blocks

In sections 4.3 and 4.4 we have managed to express an arbitrary conformal block in terms
of derivatives of scalar blocks, schematically

Gap =y (D) DyGRYS . (4.114)
k

where [A, p] is the representation of the exchanged operator, Dy are some A-independent
differential operators, and ci(A) are rational functions. All ingredients in this formula
implicitly depend on the dimensions and representations of the external operators, as well
as on p. In practice we often have a generic spin parameter ¢ in p, and we can keep it
generic in this formula as we did in the examples in sections 4.4.1 and 4.4.2. The spins ¢
are then finite shifts of ¢, £, = £ + 6/}.

Explicit examples of such expressions are given in (4.53), (4.54) and (4.80). They
readily allow us to compute the spinning conformal blocks numerically. But they also
allow us to analytically infer properties of the spinning blocks from the known properties
of the scalar blocks.

5*Note that there is a typo in the second part of (4.43) in [140]. The correct definition is D) = (27)~ 2.
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For example, a general method for numerical computation of conformal blocks is based
on Zamolodchikov recursion relations [123, 124]. The basic idea is that for certain values
A; of the scaling dimension A the generalized Verma module for the representation [A, p]
has null descendants [A], p/], which lead to poles in the conformal block for [A, p] with the
residue being proportional to the conformal block for [A], pl],

Gap~ A}—%ZAZ-G N

where R; are certain coefficients, which in the case of spinning blocks generically are matri-

o (4.115)

ces rotating the left and right three-point structures in G. For fixed p there are in general
several infinite families of poles A;. If we know the asymptotic behavior of the conformal
blocks for A — oo,

Gap~ oo p, (4.116)

where 7 is the radial coordinate of [141, 142] and h« , is some relatively easily computable
function, then we can write the conformal block as a sum over residues [14, 105]. The
resulting approximation is perfectly suited for numerical applications based on semidefinite
methods [14, 22, 66].

To accomplish this program, one needs to understand the pole positions A;, the repre-
sentations of null states [Af, p/], and the residue matrices R;. This data has been determined
for general scalar blocks [14, 22] as well as some examples of spinning blocks [66, 72, 105].
Although the classification of the poles A; and the null states [AL, p}] is known [105, 127,
143], the computation of the residue matrices R; may not be an easy task.

Our expression (4.114) is perfectly suited for this problem. Indeed, from it the pole
structure of G