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Abstract

Anisotropic diffusion is a key concept in digital image denoising and restora-

tion. To improve the anisotropic diffusion based schemes and to avoid the

well-known drawbacks such as edge blurring and ‘staircasing’ artifacts, in this

paper, we consider a class of weighted anisotropic diffusion partial differen-

tial equations (PDEs). By considering an adaptive parameter within the usual

divergence process, we retain the powerful denoising capability of anisotropic

diffusion PDE without any oscillating artifacts. Well-balanced flow version of

the proposed scheme is considered which adds an adaptive fidelity term to the

usual diffusion term. The scheme is general, in the sense that, different diffusion

coefficient functions can be utilized according to the need and imaging modal-

ity. To illustrate the advantage of the proposed methodology, we provide some

examples, which are applied in restoring noisy synthetic and real digital images.

A comparison study with other anisotropic diffusion based schemes highlight

the superiority of the proposed scheme.
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1. Introduction1

Image denoising is one of the foremost tasks in digital image processing2

pipeline. There exist various methodologies for removing noise in images and3

the areas of image restoration and edge detection have been considered by many4

authors. Starting with the pioneering work of Perona and Malik [1], diffusion5

based partial differential equations (PDEs) are widely used in image noise re-6

moval and edge detection, see [2] for a review. Let u0 be the noisy image which7

needs to be restored by removing noise without removing salient structures in8

it. Mathematically, u0 : Ω → R represents a noisy version of a true image, and9

it is obtained by the following imaging process10

u0 = u+ n, (1)

here we assume that the noise process n is additive Gaussian noise with known11

mean and variance σn. The image domain Ω ⊂ R
2 is a bounded domain, usually12

a rectangle.13

The Perona-Malik scheme (PM) can be written as a time dependent PDE,14

for x ∈ Ω15

∂u(x, t)

∂t
= div (c (|∇u(x, t)|)∇u(x, t)) (2)

with u(x, 0) = u0(x), i.e. the input noisy image is the initial datum, and16

the above PDE is run for a finite time T > 0 to obtain the denoised image17

u(·, T ). The choice of the diffusion function c : [0,∞) → [0,∞) is important in18

controlling the smoothing and even enhancement of edges. In [1] the following19

two diffusion functions are considered20

cpm1(s) =
1

1 + (s/K)2
, cpm2(s) = exp (−(s/K)2) (3)

where K > 0 is the contrast parameter. By such choices of nonlinear functions,21

PM PDE (2) avoids the over-smoothing property of the heat equation. Good22

numerical results coupled with the fact that, theoretically, the PM PDE with23

diffusion functions (3) is ill-posed [3], generated an enormous interest in the24
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mathematical image processing community, see [2] for a review. Moreover, an25

anisotropic PDE such as (2) can be considered as a gradient descent of a suitable26

energy functional [4, 5, 6]. The success of the anisotropic diffusion can be27

attributed to the fact that the PDE can be effectively discretized [7].28

Though the PDE based schemes exhibit good denoising behavior, sometimes29

they can give artifacts such as staircasing or blocky regions. These drawbacks30

can occur due to various reasons, the primary one is the use of gradients to31

control diffusion. To avoid this, there have been efforts to use better control32

mechanisms for inhibiting diffusion in flat regions of the image. These tech-33

niques can be classified into three broad categories: (1) Use spatial or time34

regularization of the gradients [8, 9, 10, 11] (2) Use a separate PDE to get35

better diffusion coefficients [12, 13, 14, 15] (3) spatially adaptive diffusion co-36

efficients [16, 17, 18, 19, 20, 21, 22]. Though the spatial regularization reduces37

the effect of noise in gradient computations, it can still give staircasing effects38

and can have poor localization of edges. In coupled PDE based schemes, apart39

from the expense of solving another PDE to get the edge map, it can inherit the40

problems of the original diffusion PDE. Spatially adaptive diffusion coefficient41

based scheme tries to balance these issues by providing a robust edge map for42

the diffusion to act upon. Recently, nonlocal diffusion operators were considered43

in [23, 24, 25] with corresponding wellposedness results. Another approach is44

to use higher order diffusion models [26].45

Here we consider an adaptive scheme which is based on this methodology.46

Recently, Barcelos et al [27, 28] considered a well-balanced model inspired by the47

idea of mean curvature motion [29] and Nordstörm’s biased PDE [30] approach.48

In this paper, we generalize such a model and consider weighted anisotropic49

diffusion schemes which incorporates adaptive information computed from the50

image at scale t. Moreover, following Smolka [31] a modification of the im-51

age fidelity term is also done to improve the denoising capability of the PDE.52

Following [27], wellposedness of the proposed scheme is proved using the the-53

ory of viscosity solutions. Numerical examples in image denoising are given to54

highlight the proposed model.55
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(d) (e) (f)

Figure 1: Diffusion PDE denoising depends on good edge maps and if the noise persists

through the iterations, it leads to staircasing artifacts in the denoised version. (a) Original

Kikis image used in the experiments (b) Smoothed gradient |Gσ ⋆∇u| of the original image,

σ = 2 (Black signifies higher values and white lower) (c) Edge map of the original image

computed using the diffusion function cpm1 from (3) with K = 20 (d) Noisy image obtained

by adding Gaussian noise of σn = 30 to the original image (e) Smoothed gradient |Gσ ⋆∇u0|

of the noisy image, σ = 2 (f) Edge map of the noisy image computed using the diffusion

function cpm1 from (3) with K = 20.

The rest of the paper is organized as follows. Section 2.1 introduces the56

proposed weighted anisotropic diffusion scheme and a modification based on57

the well-balanced flow model of [27] is presented. Section 4 details the numer-58

ical aspects and shows comparison denoising results on noisy images. Finally,59

Section 5 concludes the paper.60
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(a) (b) (c) (d)

Figure 2: Edge stopping Vs adaptive diffusion coefficients: (a) Edge stopping function of

the noisy image (1+ |Gσ ⋆∇u0|
2)−1 (b) Inverse gradient based c(x, |∇u|) = α(x) |∇u|, where

α(x) = 1/(1+K |Gσ ⋆∇u0|
2) (c) Slowed diffusion c(x, |∇u|) = (Gσ⋆∇u)/(1+|Gσ ⋆∇u|2 /K2)

(d) Canny edge detector based c(x, |∇u|) = α(x) |∇u|, where α(x) = 1−Gσ ⋆Canny(u(x, t)).

2. Weighted well-balanced anisotropic diffusion61

2.1. Well-balanced flow equation62

The well-balanced flow (WBF) equation studied by Barcelos et al. [27, 28] is63

based on total variation and can be generalized to the divergence process such64

as the Perona-Malik diffusivity:65

∂u

∂t
= g |∇u| div (c (|∇u|)∇u)− λ(1− g)(u− u0) (4)

where g(u⋆∇Gσ) = (1+ |Gσ ⋆∇u|2)−1 is known as the edge stopping function.66

The pre-smoothing with Gσ(x) = (2πσ)−1 exp−(|x|2 /2σ), a Gaussian kernel of67

width σ, is used to avoid noisy oscillations from the gradient computations. If68

the diffusion function is c(s) = s−1 (total variation (TV) [32]) then we recover69

the model studied in [27]. This TV diffusion function, in a sense, represents70

the borderline case from a class of decreasing diffusion functions. More faster71

decreasing functions can also be used, for example [33], c(s) = s−2, though72

wellposedness results for (4) can not be obtained in these cases.73

2.2. Weighted anisotropic diffusion74

Figure 1 shows the synthetic image used in our experiments. It consists75

of homogeneous regions separated by strong edges, gradual slope and a circle76

object with noisy oscillations. Figures 1(b) & (c) show the smoothed gradient77
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and diffusion function cpm1 computed using the original image. These images78

show that the edge map of the image is captured by the diffusion coefficient79

and highlights its importance in restoration. The diffusion coefficient c used80

in the PDE (4) can be influenced greatly by noise and gradient computations81

can be oscillatory. Figures 1(e)&(f) show the smoothed gradient and diffu-82

sion function cpm1 values, respectively, computed using the noisy image |∇u0|.83

Clearly, an edge map obtained in this way can lead to diffusion leakage and fur-84

ther iterations can propagate these oscillations which gives staircasing artifacts.85

Moreover, these gradient based diffusion functions give rise to edge pruning un-86

der evolution [34]. Hence, we need to use an adaptive measure which can give87

a pixel-wise information to the diffusion function c(x, |∇u|) in the divergence88

process. We propose the following class of functions for the diffusion PDE (6):89

c(x, |∇u|) = α(x) cg(|∇u|) (5)

Here, α is the adaptive parameter estimated at each pixel x ∈ Ω. The function90

cg depends on the gradient image |∇u| and can be chosen similar to (3). Note91

that, similar adaptive diffusion function studied in [16] is done for TV gradient92

function, i.e cg(|∇u|) = |∇u|. Further, the proposed scheme (6) is modified to93

include the balance term of [27], and thus provides a well-balanced flow in terms94

of noise removal and edge preservation. Thus, we consider the following general95

model (Nordström’s biased version [30]) based on PM PDE from Eqn. (2):96

∂u

∂t
= g div (c (x, |∇u|)∇u)− λ(1− g)(u− u0) (6)

where the parameter λ balances the fidelity term and the usual divergence pro-97

cess. Here, we made the diffusion function c(x, |∇u|) to depend on the spatial98

variable x ∈ Ω as well as the magnitude of the gradient |∇u|, which implies the99

introduction of inhomogeneity into the PDE. For this reason we call the PDE100

in Eqn (6) as weighted and well-balanced flow (WWBF) equation.101

2.3. Choice of diffusion function, weight and other issues102

The original Perona-Malik diffusion functions (3) represent two different be-103

haviors with respect to the way the diffusion propagation is carried out. The104
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(a) t = 20 (b) t = 40 (c) t = 100 (d) t = 400

Figure 3: Effect of the balancing (fidelity term) on denoising the Kikis noisy image (σn = 30)

using the PM PDE (2) with cpm1. Each image shows the fidelity at different time stamps

t = 20, 40, 100, 200 (Black signifies higher values and white lower). Top row: classical fidelity

(1− g) |u(x, t)− u0(x)| Bottom row: adaptive fidelity (1− g) |u(x, t)− u(x, t− 1)|.

cpm1 prefers flat regions over edges and can inhibit higher gradients faster than105

the cpm2 function. To make the presentation simple, throughout the arti-106

cle we use the cpm1 diffusion function in all the PDEs. There exists various107

choices [17, 19, 21, 22] for the weight function α in Eqn. (6). The first choice is108

to use the classical inverse gradient approach [17], α(x) = (1+K |∇u0(x)|2)−1,109

the other two choices are the slowed diffusion approach [35], and the Canny110

edge detector based parameter [22], α(x) = 1 − Gσ ⋆ Canny(u(x, t)). Figure 2111

illustrate the usage of adaptive diffusion coefficient against the traditional edge112

stopping function in front of the divergence term. Note that the edge stopping113

function g acts as the ‘rate’ of the diffusion whereas the adaptive coefficient α114

controls the ‘amount’ of diffusion. In this sense, both the edge stopping function115

g and the adaptive parameter α give complementary information for solving the116

denoising problem. Table 1 provides a succinct comparison of different weight117

functions from the literature with respect to image restoration. We utilize the118

inverse gradient function as the weight in the numerical experiments reported119

here and observed similar results with other adaptive parameter based functions.120
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Table 1: Comparison of different weight functions for image denoising and restoration. Note

that Gσ is a Gaussian kernel, 1A is the indicator function for a set A, χc is a smooth edge

indicator function, V ar2
Nx

(u) is the local variance of the image function u, for more details

we refer to the corresponding references.

Ref. α(x) Advantages Disadvantages

[21] (1 + |Gσ ⋆∇u0(x)|2)−1 No staircasing artifacts Small-scale edges lost

[35] 1(0.5,1](Gσ ⋆∇u(x, t))/(1 + |Gσ ⋆∇u|2 /K2) No diffusion at edges Noise remain along edges

[19] 1 +Mcχc, Mc ≫ 0 constant Edge indication Excessive blurring

[22] 1−Gσ ⋆ Canny(u(x, t)) Retains multi-scale edges Cannot handle high noise

[36] exp
(

−Θ(V ar2Nx
(u(x, t)), θ)/δ

)

Contextual discontinuities Stippled pattern artifacts

[37] 1I + 1Icexp
(

− (|Gσ ⋆∇u(x)| /K)
2
)

Handles impulse noise Cannot handle textures

Note that the fidelity term in Eqn. (6) provides a complementary informa-121

tion using the noisy image u(x, 0) = u0(x). To further increase the denoising122

capability, we can make the classical image fidelity term (u(x, t) − u(x, 0)) in123

Eqn. (6) to be adaptive, i.e., (u(x, t) − u(x, t − 1)), see Smolka [31]. Figure 3124

shows the effect of fidelity on denoising the noisy Kikis image (Figure 1(d))125

using the PM PDE (2) with diffusion coefficient cpm1. Comparing the adap-126

tive approach (Figure 3, bottom row) with the classical fidelity (Figure 3, top127

row), we can see that the adaptive process keeps edge details as the iteration128

increases. This, in turn, will aid the proposed WWBF PDE (6) to smooth the129

noisy image without destroying the salient edges.130

Remark 1. The balancing term parameter λ can also be made adaptive, see131

Gilboa et al [38]. A spatially adaptive balance parameter λ(x) can keep the132

textural component in the restored image u, while keeping the fidelity constraint.133

Remark 2. Further generalizations of the well-balanced flow are also possible.134

For example, the diffusion coefficient can also be made to depend on the image135

u, i.e., c(x, u, |∇u|). Such a generalization can lead to different diffusion flows136

and can be designed to influence the restoration process.137

The wellposedness of the proposed PDE (6) can be proved using the vis-138
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cosity solution theory and its discretized version satisfies the usual scale-space139

properties as well.140

3. Theoretical considerations141

3.1. Preliminaries142

Following [27, 39], we study the proposed PDE143

∂u

∂t
= g(G ∗ ∇u) div (c (x, |∇u|)∇u)− λ(1− g(G ∗ ∇u))(u− u0) (7)

using the viscosity solution theory of P. L. Lions et al [40]. Here we admit144

generic convolution kernels G, which, in particular, can be the Gaussian kernels145

Gσ, and arbitrary spatial dimension n > 1.146

Throughout this section, we employ Einstein’s summation convention. Let147

us first introduce two auxiliary functions depending on x and p from R
n, a148

symmetric-matrix-valued one a and a vector one χ. We denote149

aij(x, p) = c(x, |p|)δij + cy(x, |p|)
pipj
|p| , (8)

150

χi(x, p) =
∂c(x, |p|)

∂xi
. (9)

Here δij is Kronecker’s delta, and cy is the partial derivative of c(x, y) with151

respect to the second variable.152

As usual, for the sake of simplification of the presentation, we consider the153

case of spatially periodic boundary conditions [39] for Eqn. (7). Namely, we154

assume that there is an orthogonal basis {bi} in R
n so that155

u(·, x) = u(·, x+ bi), x ∈ R
n, i = 1, . . . , n. (10)

The problem is complemented with the initial condition156

u(0, x) = u0(x), (11)

where x ∈ R
n, and u0 is Lipschitz and satisfies (10). Of course, c (and thus a157

and χ) should also satisfy the same spatial periodicity restriction (with respect158

to x but not to y or p).159
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Let us introduce the following algebraic notion. Given a diagonal matrix B,160

let mod(B) be the matrix whose entries are the absolute values of the entries of161

B. Furthermore, if B is an arbitrary symmetric matrix, it can be represented162

as Q⊤DQ, where D is a diagonal matrix and Q is an orthogonal one. Then163

we define mod(B) = Q⊤mod(D)Q. It is straightforward to check that this164

definition does not depend on a particular choice of D and Q. Observe also that165

mod(B) is always positive-semidefinite, whereas mod(B) = B when B itself is166

positive-semidefinite.167

We make the following assumptions:168

a, χ are continuous, bounded, periodic in x, continuously differentiable in x, (12)

and their x-derivatives are uniformly (w.r.t. p) bounded, (13)

169

aij(x, p)ξiξj ≥ C

[

mod

(

∂a(x, p)

∂xk

)]

ij

ξiξj , k = 1, . . . , n, ξ, x, p ∈ R
n, (14)

g : Rn → R, 0 ≤ g ≤ 1,
√
g is Lipschitz, (15)

170

G ∈ W 2
1 (R

n) (note that we do not assume it to be space-periodic), (16)

171

λ ≥ 0. (17)

Here and below C stands for a generic positive constant, which can take different172

values in different lines.173

Definition 1 (Viscosity solution). A function u from the space174

C([0, T ]× R
n) ∩ L∞(0, T,W 1

∞(Rn)) (18)

is a viscosity sub-/supersolution to (7), (10), (11) if, for any φ ∈ C2([0, T ]×R
n)

and any point (t0, x0) ∈ (0, T ]×Rn of local maximum/minimum of the function
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u− φ, one has

∂φ(t0, x0)

∂t
− g((u ∗ ∇G)(t0, x0)) div (c (x0, |∇φ(t0, x0)|)∇φ(t0, x0))

+ λ(1− g((u ∗ ∇G)(t0, x0)))(u(t0, x0)− u0(x0)) ≤ 0 / ≥ 0, (19)

and equalities (10), (11) hold in the classical sense. A viscosity solution is a175

function which is both a subsolution and a supersolution.176

3.2. Main result177

Theorem 1. i) The problem (7), (10), (11) has a viscosity solution in class178

(18) for every positive T . Moreover,179

inf
Rn

u0 ≤ u(t, x) ≤ sup
Rn

u0. (20)

ii) Assume that180

∣

∣

∣

∣

(

√

a(x, p)−
√

a(z, p)
)

ij

∣

∣

∣

∣

≤ C|x− z|, x, z, p ∈ R
n. (21)

Here
√

is the square root of a positive-semidefinite symmetric matrix [41].181

Then the solution is unique. Moreover, for any two viscosity solutions u and v182

to (7), the following estimate holds183

sup
Rn

|u(t, ·)− v(t, ·)| ≤ Φ(t) sup
Rn

|u(0, ·)− v(0, ·)| (22)

with some non-decreasing continuous scalar function Φ dependent on u and v.184

Proof. Note that (20) is a direct consequence of the definition of viscosity185

solution: to get the second inequality, one can put φ(t, x) = δt, then, at186

the point (t0, x0), t0 > 0, of the global maximum of u(t, x) − δt, (19) gives187

δ+λ(1−g((u∗∇G)(t0, x0)))(u(t0, x0)−u0(x0)) ≤ 0, whence u(t0, x0) < u0(x0),188

so we get a contradiction since u(t0, x0) − δt0 ≥ u0(x0) due to the fact that189

(t0, x0) is the global maximum point of u(t, x)−δt; thus the function u(t, x)−δt190

attains its global maximum at t = 0, and it remains to let δ → +0; similarly191

one derives the first one.192
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Now, we establish a formal a priori estimate for sup
Rn |∇u|. Observe that

(7) is equivalent to

∂u

∂t
= g(u ∗ ∇G)

[

aij(x,∇u)uxixj
+ χi(x,∇u)uxi

]

− λ(1− g(u ∗ ∇G))(u− u0). (23)

Fix T . Differentiating (23) with respect to each xk, k = 1, . . . , n, multiplying

by 2uxk
, and adding the results, we get

L(|∇u|2) := ∂|∇u|2
∂t

− gaij(x,∇u)
∂2

∂xi∂xj
|∇u|2

− g
∂aij(x,∇u)

∂pl
uxixj

∂

∂xl
|∇u|2

− gχi(x,∇u)
∂

∂xi
|∇u|2 − g

∂χi(x,∇u)

∂pl
uxi

∂

∂xl
|∇u|2

= −2gaij(x,∇u)uxkxi
uxkxj

+ 2∇g(u ∗ ∇G) ·
(

u ∗ ∂∇G

∂xk

)

aij(x,∇u)uxixj
uxk

+ 2g
∂aij(x,∇u)

∂xk
uxixj

uxk
+ 2∇g(u ∗ ∇G) ·

(

u ∗ ∂∇G

∂xk

)

χi(x,∇u)uxi
uxk

+ 2g
∂χi(x,∇u)

∂xk
uxi

uxk
− 2λ(1− g)uxk

uxk
+ 2λ(1− g)(u0)xk

uxk

+ 2λ∇g(u ∗ ∇G) ·
(

u ∗ ∂∇G

∂xk

)

(u− u0)uxk
. (24)

At this point, we need the following generalization of [39, Lemma 2.6].193

Lemma 1. Let A and B be quadratic matrices of order n. Assume that B is194

symmetric, and there is a constant M ≥ 0 such that195

MAijξiξj ≥ mod(B)ijξiξj , ∀ξ ∈ R
n. (25)

Then for any matrix U (of the same order but not necessarily symmetric) one196

has197

Tr2(BU⊤) ≤ M‖B‖Tr(UAU⊤), (26)

where ‖ · ‖ denotes the operator norm of a matrix.198

Proof. Formulas (25) and (26) are invariant with respect to orthogonal changes

of bases. Thus, without loss of generality we may assume that B is already
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diagonalized by an orthogonal transform. Then

Tr2(BU⊤) = (BiiUii)
2 ≤ ‖B‖|Bii|U2

ii

= ‖B‖(mod(B))iiU
2
ii ≤ ‖B‖(mod(B))iiUkiUki

= ‖B‖(mod(B))ijUkiUkj ≤ M‖B‖AijUkiUkj = M‖B‖Tr(UAU⊤).

199

This lemma gives opportunity to discharge the undesired influence of the

second and the third terms in the right-hand side of (24). For the third one,

due to the lemma, (14) and Cauchy’s inequality, we have

∣

∣

∣

∣

2g
∂aij(x,∇u)

∂xk
uxixj

uxk

∣

∣

∣

∣

≤ Cg |uxk
|
√

aij(x,∇u)uxkxi
uxkxj

≤ gaij(x,∇u)uxkxi
uxkxj

+ C|∇u|2. (27)

Since our assumptions yield200

∣

∣

∣

∣

u ∗ ∂∇G

∂xk

∣

∣

∣

∣

≤ C, (28)

and201

|∇g| ≤ C
√
g, (29)

an application of the lemma with A = B = a and M = 1 implies

∣

∣

∣

∣

2∇g(u ∗ ∇G) ·
(

u ∗ ∂∇G

∂xk

)

aij(x,∇u)uxixj
uxk

∣

∣

∣

∣

≤ C |uxk
|
√

gaij(x,∇u)uxkxi
uxkxj

≤ gaij(x,∇u)uxkxi
uxkxj

+ C|∇u|2. (30)

The sum of the absolute values of the subsequent terms of the right-hand202

side of (24) does not exceed C(1 + |∇u|2). Thus,203

L(|∇u|2) ≤ C(1 + |∇u|2), (31)

so204

L
(

e−Ct(1 + |∇u|2)
)

≤ 0. (32)
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From the weak maximum principle for the weakly parabolic operator L one205

easily concludes that206

|∇u|2 ≤ C. (33)

Using (20) and (33), by means of the approach from [39] we can get the207

uniform Hölder estimate208

|u(t, x)− u(s, x)|2 ≤ C|t− s|. (34)

Then, following [43, 39], we approximate our problem by well-posed ones in209

the sense of [42, Chapter 5]. Due to (20), (33) and (34), the solutions of these210

problems are uniformly bounded and equicontinuous on [0, T ] × R
n. Then we211

can select a uniformly converging sequence of approximate solutions, and pass212

to the limit in the viscosity sense using the general consistency/stability results213

from [40]. The uniqueness of solutions follows from the stability estimate (22).214

This bound may be shown by revisiting the proof of a similar bound in [43, 39].215

We only point out that the matrix Γ [39, p. 159] is replaced by216

Γ∗ =







g1Λ1
√
g1g2

√
Λ1

√
Λ2

√
g1g2

√
Λ2

√
Λ1 g2Λ2






, (35)

where

Λ1 = a

(

x0,
|x0 − y0|2(x0 − y0)

ε

)

, Λ2 = a

(

y0,
|x0 − y0|2(x0 − y0)

ε

)

,

and the notation within is taken from [39]. Note that the 2n× 2n-matrix Γ∗ is217

symmetric and positive-semidefinite.218

219

4. Numerical Results220

4.1. Comparison with other schemes221

The proposed scheme is compared with related diffusion based denoising222

schemes from the literature. To make a fair comparison we utilize the same223

diffusion function cpm1 from (3) in all the compared schemes and the contrast224
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parameter K is fixed using the original criteria given in [1], see [44, 45] for225

other choices. Moreover, the edge stopping function g(ξ) = (1 + |ξ|)−1 is fixed226

wherever applicable and the classical fidelity term is utilized unless otherwise227

stated.228

(a) Perona and Malik [1] - Anisotropic Diffusion (AD) Eqn. (2) with cpm1229

in (3):230

∂u

∂t
= div

(

∇u

1 + |∇u|2 /K2

)

(b) Catté et al [8] - Smoothed Gradient based anisotropic diffusion (SG) with231

cpm1 in (3):232

∂u

∂t
= div

(

∇u

1 + |∇Gσ ⋆ u|2 /K2

)

(c) Rudin et al [32] - Total Variation (TV) (2) with c(s) = (ǫ + s2)−1/2,233

ǫ = 10−6:234

∂u

∂t
= div





∇u
√

ǫ+ |∇u|2





(d) El Falah and Ford [29] - Mean Curvature Motion (MCM), Eqn. (4) with235

λ = 0:236

∂u

∂t
=

1

1 + |∇u|2
div

(

∇u

1 + |∇u|2 /K2

)

(e) Barcelos et al [27] - Well-Balanced Flow (WBF):237

∂u

∂t
= g(|∇Gσ ⋆ u|) div

(

∇u

1 + |∇u|2 /K2

)

− λ(1− g(|∇Gσ ⋆ u|))(u− u0)

(f) Shi and Chang [9] - Modified Smoothed Gradient based anisotropic diffu-238

sion (MSG):239

∂u

∂t
= |∇Gσ ⋆ u| div

( ∇Gσ ⋆ u

|∇Gσ ⋆ u|

)

− |∇Gσ ⋆ u|λ(Gσ ⋆ u− u0)

Further, similar adaptive schemes which utilize different diffusion coefficient240

functions are also compared.241

15



(a) Weickert [46] - Edge Enhancing Diffusion (EED):242

PM PDE (2) with the diffusion function:243

c(|∇u|) =











exp (−0.234 |∇u|) if |∇u| ≥ K

0 if |∇u| < K

(b) Weickert [47] - Coherence Enhancing Diffusion (CED):244

PM PDE (2) with the diffusion function constructed using the structure245

tensor, see [47] for more details. The eigenvalues of D are chosen as, for246

µ1, µ2 eigenvalues of the structure tensor, α ∈ (0, 1), C > 0: λ1 = α, and247

λ2 =











α if µ1 = µ2

α+ (1− α) exp
(

−C
(µ1−µ2)2

)

else

(c) Kačur and Mikula [48, 35] - Slowed Anisotropic Diffusion (SAD):248

∂u

∂t
= div

(

∇Gσ ⋆ u

1 + |∇Gσ ⋆ u|2 /K2
∇β(x, u)

)

with β(x, u) = 0 for u ∈ [0, 0.5] and β(x, u) = u for u ∈ (0.5, 1].249

(d) Strong [16] - Adaptive TV (ATV):250

∂u

∂t
= div





α(x)∇u
√

ǫ+ |∇u|2





with α(x) = (1 + |∇u0|)−1, ǫ = 10−6.251

(e) Kusnezow et al [19] - Adaptive Linear Diffusion (ALD):252

∂u

∂t
= αdiv (∇u)

with α = (1+Mcχc), Mc ≫ 0 constant and χc is a smooth edge indicator253

function.254

(f) Prasath and Singh [22] - Edge detector based Anisotropic Diffusion (EAD)255

∂u

∂t
= div

(

α(x)∇u

1 + |∇u|2 /K2

)

with α(x) = 1−Gσ ⋆ C(u(x, t)), C - Canny edge detector output.256
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In the comparison results, apart from using the proposed adaptive fidelity term257

based WWBF (see Eqn. (6) and Section 2.3),258

∂u(x, t)

∂t
= g div (c (x, |∇u|)∇u(x, t))− λ(1− g)(u(x, t)− u(x, t− 1)),

we also utilize the weighted Linear Diffusion (WLD) - using the proposed weight259

in a linear diffusion framework,260

∂u

∂t
= g div (α(x)∇u)− λ (1− g) (u(x, t)− u(x, t− 1)).

4.2. Implementation details261

The additive operator splitting (AOS) scheme which is proven to be effective262

in diffusion PDE based image processing [7] is used to implement the schemes.263

The images were scaled to the interval [0, 1]. It can be described briefly as264

follows: In 1-D with matrix-vector notation, the iterative scheme is,265

U t+1 =
[

1− τA(U t)
]−1

U t,

where τ is the time step, A(U t) = [aij(U
t)], and266

aij(U
t) :=























γt
i+γt

j

2h2 j ∈ Ni

−∑k∈Ni

γt
i+γt

k

2h2 j = i

0 otherwise

with γi = αigi and h discretization step size. For n-D images the semi-implicit267

scheme is written as268

U t+1 =

[

1− τ
n
∑

l=1

Al(U
t)

]−1

U t. (36)

The matrix Al = (aijl)ij corresponds to derivatives along the l-th coordinate269

axis.270

Remark 3. The spatial step size h = 1 is fixed as the pixel grid has the natural271

spacing of size one. Further the time step τ = 0.2, pre-smoothing parameter272

σ = 1, and fidelity parameter λ = 1 are fixed for all the experiments reported273

here.274
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Remark 4. Under the AOS type discretization (36), the proposed WWBF275

scheme (6) satisfies the usual scale space properties, see [7] for more details.276

Moreover the maximum-minimum principle also holds, see Theorem 1.277

4.3. Visual comparison278

Figure 4 shows the comparison of non-adaptive diffusion schemes based279

restoration results for a noisy (Gaussian noise, σn = 25) Lena gray-scale image.280

In each pair, left image shows the 156 × 156 crop of the restored image and281

the right image shows the contour view to highlight the movement of level-sets282

under different schemes. Note that, the proposed approach gives better result283

even with linear diffusion, see Figure 4(g) which corresponds to WLD scheme284

result. As can be seen by comparing the contour maps of each scheme, the285

proposed scheme’s result in Figure 4(h) gives better result in terms denoising286

as well as staircasing artifact free restoration.287

To compare the adaptive diffusion schemes in a fair manner we utilize a test288

image synthetically generated consist of a slope, strong edges and a circle with289

oscillations. Figure 5 shows the comparison results for the noisy Kikis image290

(σn = 30 is added to the original image, see Figure 1(d)) by different adaptive291

diffusion schemes. The Perona-Malik, TV based schemes such as EED, CED,292

SAD, ATV inherit the original staircasing artifacts whereas WWBF performs293

better than other schemes in terms of edge preservation without oscillations, see294

Figure 5(h).295

Finally, to show the effect of the adaptive fidelity term in different adaptive296

schemes we perform experiments on a synthetic Circles gray-scale image which297

has multiple circular regions with different piecewise constant regions. Figure 6298

shows the comparison of the adaptive schemes SAD, ATV, ALD, and EAD299

with the same adaptive fidelity chosen as in our WWBF scheme, i.e., (u(x, t)−300

u(x, t − 1)). As can be seen the WWBF scheme preserves edges without any301

blocky artifacts. Moreover, the adaptive fidelity term captures the circular302

edges thereby balances the adaptive diffusion near the edges. Supplementary303

MATLAB .fig files are provided to show 3D visualizations of resultant images304
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Comparison results for Lena image, cropped 156 × 156 image (in each sub-figure,

the right image shows the contour view of the left image). (a) AD [1] (b) SG [8] (c) TV [32]

(d) MCM [29] (e) WBF [27] (f) MSG [9] (g) Proposed scheme with linear diffusion (WLD)

(h) Proposed scheme with nonlinear diffusion (WWBF).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: Adaptive schemes comparison results on Kikis 128× 128 synthetic image, (in each

sub-figure, the right image shows the surface form of the left image): (a) EED [46] (b) CED [47]

(c) SAD [48] (d) ATV [16] (e) ALD [19] (f) EAD [22] (g) Original image and its surface form

given for comparison (h) Proposed scheme with nonlinear diffusion (WWBF).
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Adaptive schemes comparison results on Circles 120 × 120 synthetic image, (in

each sub-figure, right image shows the resultant and left image adaptive fidelity term at the

final iteration in surface format): (a) SAD [48] (b) ATV [16] (c) ALD [19] (d) EAD [22] (e)

Original image and its edge map given in surface format for comparison. Note that artifacts

are due to jpeg compression which appear near edges. (f) Proposed scheme with nonlinear

diffusion (WWBF). Supplementary MATLAB .fig files are provided to show 3D visualizations

of resultant images shown here.
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shown on the left of each sub-figure.305

Remark 5. Other non-adaptive diffusion schemes such as AD, SG, TV, MCM,306

WBF, MSG and directional diffusion models such as EED, CED do not utilize307

an adaptive weight as in our case (see Eqn. (5)). Moreover, the adaptive data308

fidelity term did not provide any visually improved denoising results for these309

schemes, hence we omit the images in Figure 6 for brevity.310

4.4. Quantitative comparison and discussion311

To compare the schemes quantitatively we utilize two commonly used error312

metrics in the image denoising literature, one is the classical peak signal to313

noise ratio (PSNR) [2], and the other is the mean structural similarity measure314

(MSSIM) [49]:315

1. PSNR is given in decibels (dB). A difference of 0.5 dB can be identified316

visually. Higher PSNR value indicates optimum denoising capability.317

PSNR(u) := 20 ∗ log 10
(

umax√
MSE

)

dB

where MSE = (mn)−1
∑∑

(u− u0), m× n denotes the image size, umax318

denotes the maximum value, for example in 8-bit images umax = 255.319

2. MSSIM index is in the range [0, 1]. The MSSIM value near one implies320

the optimal denoising capability of the scheme [49] and is mean value of321

the SSIM metric. The SSIM is calculated between two windows ω1 and322

ω2 of common size N ×N ,323

SSIM(ω1, ω2) =
(2µω1

µω2
+ c1)(2σω1ω2

+ c2)

(µ2
ω1

+ µ2
ω2

+ c1)(σ2
ω1

+ σ2
ω2

+ c2)

where µωi
the average of ωi, σ

2
ωi

the variance of ωi, σω1ω2
the covariance,324

c1, c2 stabilization parameters, see [49] for more details.325

Table 2 shows the comparison results using these two metrics for all schemes326

without data adaptive fidelity term. Corresponding PSNR and MSSIM values327

are given for each of the schemes and clearly our scheme performs better than328

or on par with other diffusion schemes in general. We also include comparison329
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results with corresponding data adaptive fidelity term described in Section 2.3.330

As can be noted, the proposed scheme performs well for a variety of images331

(taken from the standard test images USC-SIPI database) for both data fidelity332

versions. Note that the PSNR values are closer together when adaptive fidelity333

is used (SAD, ATV, ALD, EAD, and our WWBF) in Table 2, but MSSIM values334

indicate a better performance of the proposed approach. Thus, the proposed335

adaptive WWBF flow preserves salient structures (edges) when compared with336

other nonlinear heat diffusion flows. The Baboon image consist of texture parts337

and hence the proposed WWBF scheme can not obtain optimal PSNR/MSSIM338

values. To alleviate this a spatially adaptive fidelity parameter λ = λ(x) can be339

incorporated, see Section 2.3. Following [28] automatic selection of parameters340

is one of the current research being carried out. Moreover, the image restoration341

model studied here can be used in other image processing algorithms such as342

inpainting [50, 51] and edge detection [27] as well.343

5. Conclusions344

Well-balanced flow is based on a nonlinear diffusion PDE which is utilized345

in image noise removal and edge detection successfully. In this paper, a new346

variant of the flow is considered by using weights in the divergence diffusion pro-347

cess. This improves the denoising capabilities as well as the multi-scale detail348

preservation of the corresponding PDE. Numerical experiments on noisy images349

shows the proposed scheme’s performs well on a variety of images. Extensive ex-350

periments indicate the improvements over other classical diffusion and adaptive351

diffusion schemes.352
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Table 2: PSNR (dB) and MSSIM comparison for standard test images with and without

adaptive fidelity term for different diffusion based schemes. Noisy image is obtained by adding

Gaussian noise of strength σn = 25 to the original image of size 256×256 except for the image

Kikis which has σn = 30 and size 128 × 128. Each row indicates the PSNR/MSSIM values

for different test images. Overline indicate the PDE is used with adaptive data-fidelity and

best results are indicated by boldface.

Scheme Ref. Kikis Lena House Peppers Baboon

Noisy 18.56/0.1683 20.14/0.3866 20.14/0.2732 20.14/0.3426 20.14/0.4643

AD [1] 33.32/0.9081 26.32/0.7752 28.87/0.8300 27.37/0.8170 23.48/0.4687

SG [8] 29.09/0.9036 23.26/0.6708 24.94/0.7657 23.09/0.7291 22.35/0.3653

TV [32] 33.47/0.9414 27.05/0.7951 30.18/0.8520 28.30/0.8389 23.61/0.4899

MCM [29] 30.87/0.9238 23.97/0.6943 25.89/0.7855 24.02/0.7501 22.44/0.3723

WBF [27] 33.19/0.9111 26.46/0.7827 28.94/0.8286 27.63/0.8289 23.54/0.4802

MSG [9] 33.23/0.9273 26.53/0.7826 29.30/0.8370 27.31/0.8327 23.34/0.4627

EED [46] 35.23/0.9530 27.23/0.7980 30.68/0.8554 28.44/0.8435 23.47/0.4685

CED [47] 30.87/0.9238 23.97/0.6943 25.89/0.7855 24.02/0.7501 22.44/0.3723

SAD [48] 34.57/0.9593 25.85/0.7559 29.18/0.8375 26.93/0.8030 22.90/0.4133

ATV [16] 33.68/0.9435 27.26/0.7972 30.39/0.8541 28.51/0.8410 23.82/0.4920

ALD [19] 28.48/0.9378 20.70/0.5965 23.23/0.7346 20.58/0.6248 20.84/0.3105

EAD [22] 34.24/0.9600 24.88/0.7247 28.17/0.8221 25.72/0.7719 22.47/0.3762

WLD 32.81/0.9423 23.87/0.7126 27.03/0.8088 23.91/0.7306 20.73/0.3557

WWBF 37.00/0.9499 27.12/0.7815 30.92/0.8584 28.27/0.8109 22.98/0.4417

SAD 34.45/0.9601 24.05/0.7595 27.82/0.8409 24.36/0.8109 20.00/0.4211

ATV 30.96/0.9481 24.69/0.8028 28.93/0.8581 26.09/0.8483 22.67/0.5004

ALD 26.09/0.9407 19.58/0.6053 21.36/0.7562 18.84/0.6490 19.08/0.3279

EAD 33.78/0.9658 22.80/0.7203 26.77/0.8339 24.96/0.7740 21.58/0.3836

WLD 33.71/0.9652 24.90/0.7269 28.63/0.8293 25.77/0.7692 22.40/0.3693

WWBF 38.54/0.9696 27.42/0.7965 31.27/0.8621 28.73/0.8356 23.46/0.4533
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