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ABSTRACT 
We address the issues of discovering significant binary 
relationships in transaction datasets in a weighted setting. 
Traditional model of association rule mining is adapted to 
handle weighted association rule mining problems where each 
item is allowed to have a weight. The goal is to steer the 
mining focus to those significant relationships involving items 
with significant weights rather than being flooded in the 
combinatorial explosion of insignificant relationships. We 
identify the challenge of using weights in the iterative process 
of generating large itemsets. The problem of invalidation of the 
“downward closure property” in the weighted setting is solved 
by using an improved model of weighted support 
measurements and exploiting a “weighted downward closure 
property”. A new algorithm called WARM (Weighted 
Association Rule Mining) is developed based on the improved 
model. The algorithm is both scalable and efficient in 
discovering significant relationships in weighted settings as 
illustrated by experiments performed on simulated datasets.  

Categories and Subject Descriptors 
H.2.8 [Database management]: Database applications – Data 
Mining 

Keywords 
Weighted Association Rule Mining, Weighted Support, 
Significant relationship, weighted downward closure property, 
WARM algorithm. 

1. Introduction 
Association Rule is an important type of knowledge 
representation revealing implicit relationships among the items 
present in large number of transactions. Given 

},...,,{ 21 niiiI =  as the items’ space, which is a set of items, a 

transaction may be defined as a subset of I, and a dataset may 
therefore be defined as a set D of transactions. X and Y are 
non-empty subsets of I. The support of an itemset X in a 
dataset D, denoted as supportD(X), is defined as 
countD(X)/|D|, where countD(X) is the number of transactions 
in D containing X. An itemset is said to be frequent (large) if 

its support is larger than a user-specified value (also called 
minimum support (min_sup)). An association is an implication 
of the form [ YX → , sup, conf], where IYIX ⊂⊂ , , 

and Ø=∩YX . The support of YX ∪  (sup) in the 
transactions is larger than min_sup, furthermore when X 
appears in a transaction, Y is likely to appear in the same 
transaction with a probability conf. Given a threshold of 
minimum support and confidence, methods of discovering 
association rules [4, 5, 6, 9] have become active research 
topics since the publication of Agrawal, Imielinski and Swami 
and Agrawal and Srikant papers [2, 3].  

 

However, the traditional association rule mining (ARM) model 
assumes that items have the same significance without taking 
account of their weight/attributes within a transaction or within 
the whole item space. But this is not always the case. For 
example, [wine  salmon, 1%, 80%] may be more important 
than [bread  milk, 3%, 80%] even though the former holds a 
lower support. This is because those items in the first rule 
usually come with more profit per unit sale, but the standard 
ARM simply ignores this difference. 
 
Several initiatives have been made. We identify the main 
challenge of adapting traditional association rule mining model 
in a weighted setting as the invalidation of the “downward 
closure property”, which is used to justify the efficient iterative 
process of generating and pruning large itemsets from its 
subsets.  
 
In order to tackle this challenge, we made adaptation on the 
traditional association rule mining model under the 
“significant – weighted support” metric framework instead of 
the “large – support” framework used in previous works. In 
this new proposed model, the iterative generation and pruning 
of significant itemsets is justified by a “weighted downward 
closure property”. 
 

2. Background and related work 
Most of the current work on the traditional Apriori algorithm 
[2] make use of the “large – support” metric framework.  
However these works still view items as having equal weights 
though trying to distinguish them using various methods. 
 

Wei Wang et al. proposed an efficient mining methodology 
for Weighted Association Rules (WAR) [12]. The idea is 
inspired by the fact that a numerical attribute can be assigned 
for every item which in turn judges the weight of the item in a 
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particular weight domain. For example, soda[4,6]  snack 
[3,5] is a targeted weighted association rule meaning that if a 
customer purchases soda in the quantity between 4 and 6 
bottles, he is likely to purchase 3 to 5 bags of snacks. WAR 
uses a two-fold approach where the frequent itemsets are 
generated through standard association rule mining algorithms 
without considering weight. Post-processing is then applied on 
the frequent itemsets during rule-generation to derive the 
maximum WARs. WAR doesn’t interfere with the process of 
generating frequent itemset. Rather, it focuses on how 
weighted association rules can be generated by examining the 
weighting factors of the items included in generated frequent 
itemsets. Therefore, we could classify this type of weighted 
association rule mining methods as a technique of post-
processing or maintaining association rules. 
 
Han et al. [7] proposed a solution where a concept hierarchy 
was used and association rules were classified into multiple 
conceptual levels of granularity. This idea inspires the work in 
[8] where the existing association rule model is extended to 
allow users to specify multiple threshold supports. In the 
extended model, the threshold support is expressed in terms of 
minimum item supports (MIS) of the items that appear in the 
rule. The main feature of this technique is that the user can 
specify a different threshold item support for each item, similar 
to the scenario of assigning weights to items. This technique 
can discover rare item rules without causing frequent items to 
generate too many unnecessary rules. Liu’s model also breaks 
the “downward closure property”. The problem is solved by 
using a “sorted closure property” where the items in the item 
space are sorted in ascending order of their MIS values.  
 

3. Preliminaries 
Let },...,,{ 321 iiiI =  be a set of distinct items and W be a 

set of non-negative real numbers. A pair (x, w) is called a 

weighted item where Ix∈  is an item and Ww∈  is the 
weight associated with x. A transaction is a set of weighted 
items, each of which may appear in multiple transactions with 
different weights. 
 

3.1 Weight settings 
Definition-1 Weighted attributes: weighting attributes 

),...,,( 21 kaaaA  are variables selected to calculate 

weights. Depending on the domain, there could be any variable 
ranging from item’s price in a supermarket domain to visitor 
page dwelling time in a web log mining domain.  
 

There are two types of weights – the item weight and the 
itemset weight: 

Definition-2 Item weight: Item weight is a value attached to 
an item representing its significance. We denote it as w(i). For 
example, in a supermarket setting, it could be the profit per 
unit sale of a certain item. In the web log mining setting where 
each item is a page visited in a click-stream/transaction, the 
weight can be related to a users average dwelling time on that 
page.  In other words, the item weight is a function of selected 
weighting attributes therefore denoted as w(i) = f(a).  

Definition-3 Itemset weight: Based on the item weight w(i), 
the weight of an itemset, denoted as w(is), can be derived from 
the weights of its enclosing items. One simple way is to 
calculate the average value of the item weights, denoted as: 

is

iw
isw

is

k
k∑

== 1

)(
)(  

Also bear in mind that an item weight is a special itemset 
weight when the itemset has only one item. 
 

Definition-4 Transaction weight: Transaction weight is a 
type of itemset weight. It is a value attached to each of the 
transactions. Usually the higher a transaction weight, the more 
it contributes to the mining result. In a supermarket scenario, 
the weight can be the “significance” of a customer who made a 
certain transaction.  
 

3.2 Weighting spaces 
Items can be weighted within different weighting spaces 
depending on different scenarios and mining focus.  
 
Definition-5 Weighting space: weighting space WS is the 
context within which the weights are evaluated 
(1) Inner-transaction space WSt: this space refers to the host 
transaction that an item is weighted in.  

(2) Item space WSI: this space refers to the space of the item 
collection that covers all the items appears in the transactions.  

(3) Transaction space WST: This space is defined for 
transactions rather than for items.  
 

4. Improved Model - Weighted Association 
Rule Mining 
In order to make use of the weight in the mining process, 
several new concepts have been adapted. Support is used in 
association rule mining. In weighted association rule mining 
(WARM), itemsets are no longer simply counted as they 
appear in a transaction. This change of counting mechanism 
makes it necessary to adapt traditional support to weighted 
support. The goal of using weighted support is to make use of 
the weight in the mining process and prioritize the selection of 
target itemsets according to their significance in the dataset, 
rather than their frequency alone.   
 

4.1 Weighted support – significant 
framework vs. support – large framework 
An itemset is denoted large if its support is above a pre-
defined minimum support threshold. In the WARM context, 
we say an itemset is significant if its weighted support is above 
a pre-defined minimum weighted support threshold.  
 

In fact, the threshold values specified by the user are from the 
margin of significance of cost point of view. This method may 
be more meaningful than only specifying relatively arbitrary 
support threshold. For example, in the supermarket scenario, 
suppose we assign a weight to each of the items according to 



the profit it generates to the store, rather than simply counting 
and calculating the percentage of transactions that contain 
itemset. We calculate this according to the weighted support 
 

Definition-6 Weighted support: Weighted support WSP of an 
itemset.  A set of transactions T respects a rule R in the form A 

 B, where A and B are non-empty sub-itemsets of the item 
space I and they share no item in common. Its weighted 
support is the fraction of the weight of the transactions that 
contains both A and B relative to the weight of all transactions. 
This can be formulated as: 
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By this means, weighted support is modelled to quantify the 
actual quota of an itemset in the transaction space in weighted 
association rule mining scenario. 
The weighted support of an itemset can be defined as the 
product of the total weight of the itemset (sum of the weights 
of its items) and the weight of the fraction of transactions that 
the itemset occurs in. The goal of the weighted association rule 
mining is then changed to determining all rules that are above 
a user specified minimum weighted support threshold holding 
a minimum user specified confidence. In order to calculate 
weighted support of an itemset, we need a method to evaluate 
transaction weight.  
The transaction weight (tk) can be derived from weights of the 
items presented in the transaction. One may formulate it easily 
as the average weight of the items presented in the transaction. 
Note that )( kt tWS denotes the inner-transaction space for the 

kth transaction in transaction space WST. 
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This value is used to calculate the weighted support of a 
potentially significant itemset described in Definition-6. The 
itemset is then validated as significant if its weighted support 
is above the pre-defined minimum weighted support. This is 
further described in the following section relating to algorithm 
design. 
 

4.2 Challenges – Invalidation of the 
downward closure property 
The critical assumption made in the Apriori algorithm is that if 
the itemset is large, then all its subsets are also large. This 
allows the algorithm to build large itemsets of increasing size 
by adding items to itemsets that are already found to be large. 
 

In the case where item weight is used to adjust support values 
of the potentially large itemsets, the situation turns out to be 
considerably more complex. The assumption discussed in the 
preceding subsection does no longer hold. Because of the 
adjustment of the support, an itemset may be large even though 
some of its subsets are not large. This violates against the 

downward closure property as can be illustrated in 
Figure 1

. 

This also demonstrates that we cannot simply use the weight to 
bias the support value in the mining process. 
 
As shown in Figure 1, the weights of item A, C and D are 
deliberately biased so that A and C represent something of less 
important while D’s relatively high weight granting it more 
significance in the item space. We now inspect two large 

itemsets of size two and one large itemset of size 3 which is the 
combination of two large_2_itemsets. In traditional ARM 
when the weight is not considered, all of the three itemsets are 
large as their supports are above the threshold min_sup. 
However, if we consider item weights, calculate the weights of 
itemset according to Definition-3 and bias the support by 
multiplying it with the itemset weight, a new set of adjusted 
support (AS) values are obtained. 

Figure 1
 shows that although 

the AS of  itemset “AC” is now below the minimum support 
(0.3) and therefore “AC” no longer large, we cannot rule out 
the possibility of its superset, “ACD” being large as we do in 
traditional ARM. In this example, the high weight of item D 
gives rise to the weight of itemset “ACD” which in the end 
biases its adjusted support to be above the minimum support. 
 

The violation of the “downward closure property” was also 
addressed in [10] where a factor is assigned to adjust the 
minimum support threshold accordingly so that it relaxes the 
border restrained by the downward closure property. However, 
the degree of the relaxation varies in different circumstances. 
This requires a very delicate mechanism to provide a suitable 
value of the factor and in many cases, as the author also 
implies, it is extremely difficult to find a generic mechanism to 
determine the relaxation factor. 
 

4.3 Weighted downward closure property 
In this paper, the idea of replacing the support with 
significance is proposed for the first time and we argue that a 
“weighted downward closure property” can be retained by 
using weighted support. 
 

As illustrated in Figure 2, items in the transaction dataset are 
assigned with weights. We use the similar approach of 
building lattice tree for significant itemsets, i.e., itemsets with 
weighted support above threshold.  
 

min_sup= 0.3 transactions
items weight A          B          C          D
A 0.85 B          D
B 1 A          D
C 0.85 A          B          D          E
D 1.55 A          B          C          D       E
E 1 B          C          E

large 2&3 itemsets weight support large?t by weight large?
AC 0.85 0.333333 yes 0.283333 no
AD 1.2 0.666667 yes 0.8 yes

ACD 1.0833333 0.333333 yes yes0.361111111

 

Figure 1 support adjusted by item weight 



As can be noted in Figure 3, for each itemset, weighted 
support (the number at the bottom of each itemset box) is 
calculated by using the formula given in Definition-6. If an 
itemset’s weighted support is below the threshold, the itemset 
is not significant and we mark it in dotted background 
comparing to the broken edge which means that it is not large 
(support below threshold).  
 

 

Figure 2 Data source with weights 

 

As may be noted, if an itemset is marked with dotted 
background, then any of its supersets in the upper layer of the 
lattice can not be significant. This property, denoted as 
“weighted downward closure property”, is valid under the 
“weighted support – significant” framework. It justifies the 
efficient mechanism of generating and pruning significance 
iteratively. We will give the algorithm in section 5. 
 
We also briefly prove that the “weighted downward closure 
property” is always valid in the “weighted support – 
significant” framework. 
 
Proof: Given an itemset X not significant over the transaction 

space WST, i.e., wspXwsp min_)( < . For any itemset 

Y, YX ⊂ , i.e. superset of X, if a transaction t has all the 

items in Y, i.e. tY ⊂ , then that transaction must also have all 

the items in X, i.e. tX ⊂ . We use tt1 to denote a set of 
transactions each of which has all the items in X, i.e. 

)},1(,11{ tXtttTtttt ⊂∈∀⊆ . Similarly we 

have )},2(,22{ tYtttTtttt ⊂∈∀⊆ . Since YX ⊂ , 

we have 21 tttt ⊆ . Therefore 

∑∑
∈∈

≥
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definition of weighted support, 
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, the denominator stays the 

same, therefore we have )()( YwspXwsp ≥ . Because 

wsp(X) < min_wsp, we get wsp(Y) < min_wsp, we have proved 
that Y is not significant. 
 

 

Figure 3 The lattice of significant itemsets using weighted 
downward closure property 

 
We provide a concrete example to illustrate this in Figure 3.  
Itemset AC appears in transaction 1, 3 and 5 in Figure 2, 
therefore the WSP(AC)=(1.0375+1.0375+1.13)/6.777=0.473. 
It can be easily found that the occurrence of its superset ACE 
is only possible when AC appears in that transaction. In this 
case, itemset set ACE only appears in transaction 5, therefore 
WSP(ACE)=1.13/6.667=0.169, which is obviously less than 
WSP(AC), so if AC is not significant, its superset ACE is 
impossible to be significant, hence there is no need to calculate 
its weighted support. 

5. Simulation 
In this section, we use Excel to simulate the process of 
constructing significant itemset lattice. This simulation not 
only helps analyzing the new model behavior but also 
illustrates the key operations in weighted association rule 
mining.  

 
Figure 4 The lattice of significant itemsets with weights 

adjustment (Scheme 1 - high weights for "C","E") 

 



In Figure 4, item C and E are assigned relatively high weights, 
which are denoted as weighting scheme 1. This is compared to 
simulation illustrated in Figure 5 where items A and C are 
highlighted with relatively high weights (weighting scheme 2).  
 
min_wsp= 0.4

original 
transaction 

weight 
weight(tk)

Transaction 
weight using 
normed item 
weight 
weight'(tk)

nomalized 
over WST

transactions

items weight 3 0.231 0.215 A     B     C     D

A 5 0.385 1 0.077 0.072 B     D
B 1 0.077 3 0.231 0.215 A     D
C 5 0.385 2 0.154 0.144 A     B     D     E
D 1 0.077 2.6 0.200 0.187 A     B     C     D     E
E 1 0.077 2.33333333 0.179 0.167 B     C     E

sum 13 1.000 sum 13.9333333 1.072 1.000

the Lattics of significant items 16
10.51%

0.187
Level 5 ABCDE

17.15% 10.51% -0.87% 10.51%
0.402 0.187 0.330 0.187

Level 4 ABCD ABCE ABDE BCDE

17.15% 8.33% -0.87% 17.15% 10.51% -0.87% 22.44% 5.95% -0.87% 10.51%
0.402 0.545 0.330 0.402 0.187 0.330 0.215 0.354 0.330 0.187

Level 3 ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

8.33% 17.15% 12.33% -0.87% 12.18% -8.06% -0.48% 17.15% 5.95% -0.87%
0.545 0.402 0.761 0.330 0.569 0.617 0.498 0.402 0.354 0.330

Level 2 AB AC AD AE BC BD BE CD CE DE
12.33% -6.16% 12.18% 0.00% -0.48%

0.761 0.785 0.569 0.833 0.498
Level 1 A B C D E

number of sig itemsets:

nomalized over WSI

Figure 5 The lattice of significant itemsets with 
weights adjustment (Scheme 2 - high weights for 

"A","C") 
The structure of the algorithm resembles the Apriori [2], the 
different point is the use of weighted support justified by the 
“weighted downward closure property” under the adapted 
framework. Due to the space limitation, interested readers are 
suggested to read [11] for detailed information. 
 

It can be concluded that the by assigning weights to items and 
using WARM, the selection of significant itemsets is steered to 
those itemsets containing or having relationships to high 
weight items.  

 

6. Experiments 
Various synthetic datasets are generated using procedure 
described in [1]. Part of the items in the item space are selected 
and assigned with a relatively high weight.  X-axis refers to the 
high weight used. Y-axis denotes the number of significant 
itemsets generated using WARM.  Scalability is also studied 
by scale up dataset size. 

 

6.1 Selection of significant itemsets 
Figure 6 lists three of the graphs.  Different datasets are used 
for different diagrams. The number of significant itemsets is 
illustrated in terms of the high weight being assigned to parts 
of the items. As can be noticed, increasing the high weight 
doesn’t necessarily increase the overall amount of significant 
itemsets; rather, it always makes those itemsets containing high 
weight items more likely to have a higher weighted support, 
hence holding more chances to become significant. Those 

itemsets containing no high weight items become relatively 
less likely to be significant.  
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Figure 6 Number of significant itemsets biased with weight 

in various datasets 

 

6.2 Scalability 
We now show how the weighted associations rule mining 
scales up as the dataset size increases. Two factors are used to 
increase the dataset size. In Figure 7, the number of 
transactions increases from 0.1 million to 1 million. The 
datasets used for this experiment are 
t5.n1000.I4.S1000.c0.5.u0.5.T(100k-1000k).db.  

 

In Figure 8, the average transaction size varies from 10 to 50. 
Five different minimum weighted supports ranging from 0.1% 
to 5% are used for both cases. The times are relative time 
which has been normalized against the first data point across 



the x-axis. The graph shows that the new algorithm scales 
approximately linearly. 
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Figure 7  Scale-up experiment - number of transactions 
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Figure 8 Scale-up experiment - average transaction size 

 

7. Summary and conclusions 
In this paper, we identify the limitation of the traditional 
Association Rule Mining model, in particular, its incapacity 
for treating units differently. We proposed that weight can be 
integrated in the mining process to solve this problem. We 
identify the challenge faced when making improvement 
towards using weight, in particular the invalidation of 
downward closure property.  
 
A set of new concepts are proposed to adapt weighting in the 
new setting. Among them is the proposal of using “weighted 
downward closure property” as a replacement of the original 
“downward closure property”. This is proved as valid and 
justifies the effective mining strategy in the new framework of 
“weighted support – significant”. The new framework is 
designed to replace the original “support – large” framework in 
order to tackle the problem in weighted settings. 
 
Through studying the simulation of the lattice building, 
conclusion is drawn that weight can be used to steer the 
mining focus to those important itemsets with high degree of 
significance. This is further proven by experiments on 

synthetic datasets. The experiments show that the mining 
results in the weighted setting conform to the expected 
hypothesis. The experiments also show that the algorithm is 
scalable. 
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