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We study the existence of weighted S-asymptotically ω-periodic mild solutions for a class of
abstract fractional differential equations of the form u′ = ∂−α+1Au + f(t, u), 1 < α < 2, where A
is a linear sectorial operator of negative type.

1. Introduction

S-asymptotically ω-periodic functions have applications to several problems, for example
in the theory of functional differential equations, fractional differential equations, integral
equations and partial differential equations. The concept of S-asymptotic ω-periodicity was
introduced in the literature by Henrı́quez et al. [1, 2]. Since then, it attracted the attention
of many researchers (see [1–10]). In Pierri [10] a new S-asymptotically ω-periodic space
was introduced. It is called the space of weighted S-asymptotically ω-periodic (or Sv-
asymptotically ω-periodic) functions. In particular, the author has established conditions
under which a Sv-asymptotically ω-periodic function is asymptotically ω-periodic and also
discusses the existence of Sv-asymptotically ω-periodic solutions for an integral abstract
Cauchy problem. The author has applied the results to partial integrodifferential equations.

We study in this paper sufficient conditions for the existence and uniqueness
of a weighted S-asymptotically ω-periodic (mild) solution to the following semi-linear
integrodifferential equation of fractional order

v′(t) =
∫ t

0

(t − s)α−2

Γ(α − 1)
Av(s)ds + f(t, v(t)), t ≥ 0, (1.1)
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v(0) = u0 ∈ X, (1.2)

where 1 < α < 2, A : D(A) ⊆ X → X is a linear densely defined operator of sectorial type on
a complex Banach space X and f : [0,∞) × X → X is an appropriate function. Note that the
convolution integral in (1.1) is known as the Riemann-Liouville fractional integral [11]. We
remark that there is much interest in developing theoretical analysis and numerical methods
for fractional integrodifferential equations because they have recently proved to be valuable
in various fields of sciences and engineering. For details, including some applications and
recent results, see the monographs of Ahn and MacVinish [12], Gorenflo and Mainardi [13]
and Trujillo et al. [14–16] and the papers of Agarwal et al. [17–23], Cuesta [11, 24], Cuevas
et al. [5, 6], dos Santos and Cuevas [25], Eidelman and Kochubei [26], Lakshmikantham et
al. [27–30], Mophou and N’Guérékata [31], Ahmed and Nieto [32], and N’Guérékata [33]. In
particular equations of type (1.1) are attracting increasing interest (cf. [5, 11, 24, 34]).

The existence of weighted S-asymptoticallyω-periodic (mild) solutions for integrodif-
ferential equation of fractional order of type (1.1) remains an untreated topic in the literature.
Anticipating a wide interest in the subject, this paper contributes in filling this important gap.
In particular, to illustrate our main results, we examine sufficient conditions for the existence
and uniqueness of a weighted S-asymptotically ω-periodic mild solution to a fractional
oscillation equation.

2. Preliminaries and Basic Results

In this section, we introduce notations, definitions and preliminary facts which are used
throughout this paper. Let (Z, ‖ · ‖Z) and (Y, ‖ · ‖Y ) be Banach spaces. The notation B(Z, Y )
stands for the space of bounded linear operators from Z into Y endowed with the uniform
operator topology denoted ‖ · ‖B(Z,Y ), and we abbreviate to B(Z) and ‖ · ‖B(Z) whenever
Z = Y . In this paper Cb([0,∞), Z) denotes the Banach space consisting of all continuous
and bounded functions from [0,∞) into Z with the norm of the uniform convergence. For a
closed linear operator B we denote by ρ(B) the resolvent set and by σ(B) the spectrum of B
(that is, the complement of ρ(B) in the complex plane). Set (λI − B)−1 the resolvent of B for
λ ∈ ρ(B).

2.1. Sectorial Linear Operators and the Solution Operator for
Fractional Equations

A closed and linear operator A is said sectorial of type μ if there are 0 < θ < π/2, M > 0
and μ ∈ R such that the spectrum of A is contained in the sector μ + Σθ := {μ + λ : λ ∈
C, | arg(−λ)| < θ} and ‖(λ −A)−1‖ ≤ M/|λ − μ|, for all λ/∈μ + Σθ.

In order to give an operator theoretical approach for the study of the abstract system
we recall the following definition.

Definition 2.1 (see [17]). Let A be a closed linear operator with domain D(A) in a Banach
space X. One calls A the generator of a solution operator for (1.1)-(1.2) if there are μ ∈ R

and a strongly continuous function Sα : R+ → B(X) such that {λα : Reλ > μ} ⊆ ρ(A) and
λα−1(λα − A)−1x =

∫∞
0 e−λtSα(t)xdt, for all Reλ > μ, x ∈ X. In this case, Sα(t) is called the

solution operator generated by A. By [35, Proposition 2.6], Sα(0) = I. We observe that the
power function λα is uniquely defined as λα = |λ|αei argλ, with −π < arg(λ) < π .
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We note that if A is a sectorial of type μ with 0 ≤ θ ≤ π(1 − α/2), then A is the
generator of a solution operator given by Sα(t) := (1/2πi)

∫
γ e

λtλα−1(λα −A)−1dλ, t > 0, where
γ is a suitable path lying outside the sector μ + Σθ (cf. [11]). Recently, Cuesta [11, Theorem 1]
proved that if A is a sectorial operator of type μ < 0 for some M > 0 and 0 ≤ θ ≤ π(1 − α/2),
then there exists C > 0 such that

‖Sα(t)‖B(X) ≤
CM

1 +
∣∣μ∣∣tα , t ≥ 0. (2.1)

Remark 2.2. In the remainder of this paper, we always assume that A is a a sectorial of type
μ < 0 and M,C, are the constants introduced above.

2.2. Weighted S-Asymptotically ω-Periodic Functions

We recall the following definitions.

Definition 2.3 (see [1]). A function f ∈ Cb([0,∞), Z) is called S-asymptotically ω-periodic if
there exists ω > 0 such that limt→∞(f(t + ω) − f(t)) = 0. In this case, we say that ω is an
asymptotic period of f(·).

Throughout this paper, SAPω(Z) represents the space formed for all the Z-valued S-
asymptotically ω-periodic functions endowed with the uniform convergence norm denoted
‖ · ‖∞. It is clear that SAPω(Z) is a Banach space (see [1, Proposition 3.5]).

Definition 2.4 (see [10]). Let v ∈ Cb([0,∞), (0,∞)). A function f ∈ Cb([0,∞), Z) is called
weighted S-asymptoticallyω-periodic (or Sv-asymptoticallyω-periodic) if limt→∞(f(t+ω)−
f(t))/v(t) = 0.

In this paper, SAPω(Z, v) represents the space formed by all the Sv-asymptotically
ω-periodic functions endowed with the norm

∥∥f∥∥SAPω(Z,v)
=
∥∥f∥∥∞ +

∥∥f∥∥v = sup
t≥0

∥∥f(t)∥∥Z + sup
t≥0

∥∥f(t +ω) − f(t)
∥∥
Z

v(t)
. (2.2)

Proposition 2.5. The space SAPv
ω(X) is a Banach space.

Proof. Let (fn)n∈N be a Cauchy sequence in SAPv
ω(X). From the definition of ‖ · ‖Sv

ω(Z), there
exists f ∈ Cb([0,∞), X) such that fn → f in Cb([0,∞), X). Next, we prove that fn → f in
SAPv

ω(X).
By noting that (fn)n is a Cauchy sequence, for ε > 0 given there existsNε ∈ N such that

‖fn − fm‖Sv
ω(Z) < ε, for all n,m ≥ Nε, which implies

∥∥(fn − fm
)
(t)

∥∥ < ε, ∀t ≥ 0, ∀n,m ≥ Nε,∥∥(fn − fm
)
(t +ω) − (

fn − fm
)
(t)

∥∥
v(t)

< ε, ∀t ≥ 0, ∀n,m ≥ Nε.
(2.3)
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Under the above conditions, for t ≥ 0 and n ≥ Nε we see that

∥∥fn(t) − f(t)
∥∥ +

∥∥(fn − f
)
(t +ω) − (

fn − f
)
(t)

∥∥
v(t)

= lim
m→∞

(∥∥fn(t) − fm(t)
∥∥ +

∥∥(fn − fm
)
(t +ω) − (

fn − fm
)
(t)

∥∥
v(t)

)

≤ 2ε,

(2.4)

which implies that ‖fn − f‖Sv
ω(Z) ≤ 2ε for n ≥ Nε and ‖fn − f‖Sv

ω(Z) → 0 as n → ∞.
To conclude the proof we need to show that f ∈ SAPv

ω(X). Let Nε as above. Since
fNε ∈ SAPv

ω(X), there exits Lε > 0 such that ‖fNε(t +ω) − fNε(t)‖/v(t) < ε for all t ≥ Lε. Now,
by using that ‖fNε − f‖Sv

ω(Z) ≤ 2ε, for t ≥ Lε we get

∥∥f(t +ω) − f(t)
∥∥

v(t)
≤

∥∥(f(t +ω) − fNε(t +ω)
) − (

f(t) − fNε(t)
)∥∥

v(t)

+

∥∥fNε(t +ω) − fNε(t)
∥∥

v(t)

< 2ε + ε,

(2.5)

which implies that limt→∞[(f(t +ω) − f(t))/v(t)] = 0. This completes the proof.

Definition 2.6. A function f ∈ C([0,∞) × Z, Y ) is called uniformly Sv-asymptotically ω-
periodic on bounded sets if for every bounded subset K ⊆ Z, the set {f(t, x) : t ≥ 0, x ∈ K}
is bounded and limt→∞‖f(t +ω, x) − f(t, x)‖Y/v(t) = 0, uniformly for x ∈ K. If v ≡ 1 we say
that f(·) is uniformly S-asymptotically ω-periodic on bounded sets (see [1]).

To prove some of our results, we need the following lemma.

Lemma 2.7. Let v ∈ Cb([0,∞), (0,∞)). Assume f ∈ C([0,∞) × Z, Y ) is uniformly Sv-
asymptotically ω-periodic on bounded sets and there is L > 0 such that

∥∥f(t, x) − f(t, y)
∥∥
Y ≤ L

∥∥x − y
∥∥
Z, ∀t ≥ 0, ∀x, y ∈ Z. (2.6)

If u ∈ SAPω(Z, v), then the function t → f(t, u(t)) belongs to SAPω(Y, v).
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Proof. Using the fact that R(u) = {u(t) : t ≥ 0} is bounded, it follows that f(·, u(·)) ∈
Cb([0,∞), Y ). For ε > 0 be given, we select Tε > 0 such that

∥∥f(t +ω, z) − f(t, z)
∥∥
Y

v(t)
≤ ε

2
,

‖u(t +ω) − u(t)‖Z
v(t)

≤ ε

2L
, (2.7)

for all t ≥ Tε and z ∈ R(u). Then, for t ≥ Tε we see that

∥∥f(t +ω, u(t +ω)) − f(t, u(t))
∥∥
Y

v(t)
≤

∥∥f(t +ω, u(t +ω)) − f(t, u(t +ω))
∥∥
Y

v(t)

+

∥∥f(t, u(t +ω)) − f(t, u(t))
∥∥
Y

v(t)

≤ ε

2
+ L

‖u(t +ω) − u(t)‖Z
v(t)

≤ ε

2
+
ε

2
= ε,

(2.8)

which proves the assertion.

Lemma 2.8. Let v ∈ Cb([0,∞), (0,∞)). Let u ∈ SAPω(X, v) and lα : [0,∞) → X be the function
defined by

lα(t) =
∫ t

0
Sα(t − s)u(s)ds. (2.9)

If v(t)tα−1 → ∞ as t → ∞ and Θ := supt≥0(1/v(t))
∫ t
0(v(t − s)/(1 + |μ|sα))ds < ∞, then

lα ∈ SAPω(X, v).

Proof. From the estimate ‖lα‖∞ ≤ CM|μ|−1/απ/α sin(π/α), it follows that lα ∈ Cb([0,∞), X).
For ε > 0 be given we select Tε > 0 such that

‖u(t +ω) − u(t)‖
v(t)

≤ ε,
CM(1 + 2α)‖u‖∞
(α − 1)

∣∣μ∣∣v(t)tα−1 ≤ ε, (2.10)
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for all t ≥ Tε. Under these conditions, for t ≥ 2Tε we have that

‖lα(t +ω) − lα(t)‖
v(t)

≤ 1
v(t)

∫ω

0
‖Sα(t +ω − s)‖B(X)‖u(s)‖Xds

+
1

v(t)

∫Tε

0
‖Sα(t − s)‖B(X)‖u(s +ω) − u(s)‖Xds

+
1

v(t)

∫ t

Tε

‖Sα(t − s)‖B(X)‖u(s +ω) − u(s)‖Xds

≤ CM‖u‖∞
v(t)

(∫ t+ω

t

1
1 +

∣∣μ∣∣sα ds + 2
∫ t

t−Tε

1
1 +

∣∣μ∣∣sα ds
)

+
CMε

v(t)

∫ t−Tε

0

v(t − s)
1 +

∣∣μ∣∣sα ds

≤ CM(1 + 2α)‖u‖∞
(α − 1)

∣∣μ∣∣
1

v(t)tα−1
+ CMεΘ

≤ ε(1 + CMΘ),

(2.11)

which completes the proof.

3. Existence of Weighted S-Asymptotically ω-Periodic Solutions

In this section we discuss the existence of weighted S-asymptotically ω-periodic solutions
for the abstract system (1.1)-(1.2). To begin, we recall the definition of mild solution for (1.1)-
(1.2).

Definition 3.1 (see [5]). A function u ∈ Cb([0,∞), X) is called a mild solution of the abstract
Cauchy problem (1.1)-(1.2) if

u(t) = Sα(t)u0 +
∫ t

0
Sα(t − s)f(s, u(s))ds, ∀t ∈ R

+. (3.1)

Now, we can establish our first existence result.

Theorem 3.2. Assume f : [0,∞) ×X → X is a uniformly S-asymptotically ω-periodic on bounded
sets function and there is a mesurable bounded function Lf : [0,∞) → R

+ such that

∥∥f(t, x) − f
(
t, y

)∥∥ ≤ Lf(t)
∥∥x − y

∥∥, ∀t ∈ R, ∀x, y ∈ X. (3.2)

If Λ := CM(supt≥0
∫ t
0 Lf(s)/(1 + |μ|(t − s)α)ds) < 1, then there exits a unique S-asymptotically

ω-periodic mild solution u(·) of (1.1)-(1.2). Suppose, there is a function Lu : [0,∞) → R
+ such that

(1 + |μ|(·)α)Lu(·) ∈ L1([0,∞)) and ‖f(t + ω, x) − f(t, x)‖ ≤ Lu(t), for every x ∈ R(u) = {u(s) :
s ≥ 0} and all t ≥ 0. If v ∈ Cb([0,∞), (0,∞)) is such that (1/(v(t)(1 + |μ|tα)))e2αCM

∫ t
0 Lf (s)ds → 0

as t → ∞, then u(·) is weighted S-asymptotically ω-periodic.
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Proof. Let Fα : SAPω(X) → Cb([0,∞), X) be the operator defined by

Fαu(t) = Sα(t)u0 +
∫ t

0
Sα(t − s)f(s, u(s))ds := Sα(t)u0 + F1

αu(t). (3.3)

We show initially that Fα is SAPω(X)-valued. Since Sα(t)u0 → 0, as t → ∞, it is
sufficient to show that the function F1

α is SAPω(X)-valued. Let u ∈ SAPω(X). Using the fact
that f(·, u(·)) is a bounded function, it follows that F1

αu ∈ Cb([0,∞), X). For ε > 0 be given,
we select a constant Tε > 0 such that

sup
t≥Tε,s≥0

(∥∥f(t +ω, u(s)) − f(t, u(s))
∥∥ + ‖u(t +ω) − u(t)‖) <

ε

2
,

2CM
∥∥f(·, u(·))∥∥∞

∫∞

Tε

1
1 +

∣∣μ∣∣sα ds <
ε

2
.

(3.4)

Then, for t ≥ 2Lε we see that

∥∥∥F1
αu(t +ω) − F1

αu(t)
∥∥∥ ≤

∫ω

0

∥∥Sα(t +ω − s)f(s, u(s))
∥∥ds

+
∫Tε

0

∥∥Sα(t − s)
[
f(s +ω, u(s +ω)) − f(s, u(s +ω))

]∥∥ds

+
∫Tε

0

∥∥Sα(t − s)
[
f(s, u(s +ω)) − f(s, u(s))

]∥∥ds

+
∫ t

Tε

∥∥Sα(t − s)
[
f(s +ω, u(s +ω)) − f(s, u(s +ω))

]∥∥ds

+
∫ t

Tε

∥∥Sα(t − s)
[
f(s, u(s +ω)) − f(s, u(s))

]∥∥ds

≤ CM
∥∥f(·, u(·))∥∥∞

(∫∞

t

1
1 +

∣∣μ∣∣sα ds +
∫∞

t/2

1
1 +

∣∣μ∣∣sα ds
)

+
ε

2
CMsup

τ≥0

∫ τ

0

Lf(τ − s)

1 +
∣∣μ∣∣sα ds

<
ε

2
+
ε

2
= ε,

(3.5)

which implies that F1
αu(t + ω) − F1

αu(t) → 0 as t → ∞, F1
αu ∈ SAPω(X) and hence

Fα(SAPω(X)) ⊂ SAPω(X). Moreover, from the above estimate it is easy to infer that
‖Fαu − Fαv‖ ≤ Λ‖u − v‖, for all u, v ∈ SAPω(X), Fα is a contraction and there exists a unique
S-asymptotically ω-periodic mild solution u(·) of (1.1)-(1.2).
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Next, we prove that last assertion. Let ξ : [0,∞) → R
+ be the function defined by

ξ(t) = ‖u(t +ω) − u(t)‖/v(t). For t ≥ 0, we get

ξ(t) ≤ ‖Sα(t +ω)u0 − Sα(t)u0‖
v(t)

+

∥∥F1
αu(t +ω) − F1

αu(t)
∥∥

v(t)

≤ 2CM‖u0‖
v(t)

(
1 +

∣∣μ∣∣tα) +
1

v(t)

∫ω

0
‖Sα(t +ω − s)‖B(X)

∥∥f(s, u(s))∥∥ds

+
1

v(t)

∫ t

0
‖Sα(t − s)‖B(X)

∥∥f(s +ω, u(s +ω)) − f(s, u(s))
∥∥ds

=
2CM‖u0‖

v(t)
(
1 +

∣∣μ∣∣tα) + I1 + I2.

(3.6)

Concerning the quantities I1 and I2, we note that

I1 ≤
CM

∥∥f(·, u(·))∥∥∞
v(t)

(∫ t+ω

t

1
1 +

∣∣μ∣∣sα ds
)

≤ CMω
∥∥f(·, u(·))∥∥∞

v(t)
(
1 +

∣∣μ∣∣tα) ,

I2 ≤ 1
v(t)

∫ t

0
‖Sα(t − s)‖B(X)

∥∥f(s +ω, u(s +ω)) − f(s, u(s +ω))
∥∥ds

+
1

v(t)

∫ t

0
‖Sα(t − s)‖B(X)

∥∥f(s, u(s +ω)) − f(s, u(s))
∥∥ds

≤ CM

v(t)

∫ t

0

Lu(s)
1 +

∣∣μ∣∣(t − s)α
ds +

CM

v(t)

∫ t

0

Lf(s)v(s)ξ(s)

1 +
∣∣μ∣∣(t − s)α

ds.

(3.7)

Using the estimates (3.7) in (3.6), we see that

v(t)
(
1 +

∣∣μ∣∣tα)ξ(t) ≤ CM
(
2‖u0‖ +

∥∥f(·, u(·))∥∥∞
)
+ CM

∫ t

0

1 +
∣∣μ∣∣tα

1 +
∣∣μ∣∣(t − s)α

Lu(s)ds

+ CM

∫ t

0

1 +
∣∣μ∣∣tα

1 +
∣∣μ∣∣(t − s)α

L(s)v(s)ξ(s)ds

≤ CM

(
‖u0‖ +

∥∥f(·, u(·))∥∥∞ + 2α
∫ t

0

(
1 +

∣∣μ∣∣sα)Lu(s)ds

)

+ 2α−1CM
∫ t

0
Lf(s)v(s)

(
1 +

∣∣μ∣∣sα)ξ(s)ds

≤ P + 2α−1CM
∫ t

0
Lf(s)v(s)

(
1 +

∣∣μ∣∣sα)ξ(s)ds,

(3.8)
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where P is a positive constant independent of t. Finally, by using the Gronwall-Bellman
inequality we infer that

lim
t→∞

‖u(t +ω) − u(t)‖
v(t)

= 0, (3.9)

which shows that u ∈ SAPω(X, v). This completes the proof.

Example 3.3. We set X = L2[0, π], A = −ραI with 0 < ρ < 1. Let g : R → R be a function
such that |g(x) − g(y)| ≤ Lg‖x − y‖, for all x, y ∈ R and let f : [0,∞) ×X → X be defined by
f(t, x)(ξ) = e−t

α
g(x(ξ)), ξ ∈ [0, π]. We observe that

∥∥f(t +ω, x) − f(t, x)
∥∥
L2 ≤

√
2
(
e−(t+ω)α − e−t

α
)(√

Lg‖x‖L2 +
∣∣g(0)∣∣√π

)
, (3.10)

whence f is S-asymptotically ω-periodic on bounded sets. By Theorem 3.2 we conclude that
if Lg < α sin(π/α)/πρ−1, then there is a unique S-asymptotically ω-periodic mild solution
u(·) of (1.1)-(1.2). Moreover u ∈ SAPω(X, 1/(1 + ραt)).

Theorem 3.4. Let v ∈ Cb([0,∞), (0,∞)). Assume G ∈ SAPω(B(X), v), 1/v(t)tα−1 → 0 as t →
∞ and

Λ := CM‖G‖SAPω(B(X),v)

[ ∣∣μ∣∣−1/απ
α sin(π/α)

+ω sup
t≥0

(
1

v(t)
(
1 +

∣∣μ∣∣tα)
)

+ 2Θ

]
< 1, (3.11)

where Θ is the constant introduced in Lemma 2.8.Then there is a unique weighted S-asymptotically
ω-periodic mild solution of

u′(t) =
∫ t

0

(t − s)α−2

Γ(α − 1)
Au(s)ds +G(t)u(t), t ≥ 0,

u(0) = u0 ∈ X.

(3.12)

Proof. The proof is based in Lemmas 2.7 and 2.8. Let Γ : SAPω(X, v) → Cb([0,∞), X) be the
map defined by

Γu(t) = Sα(t)u0 +
∫ t

0
Sα(t − s)G(s)u(s)ds = Sα(t)u0 + Γ1u(t), t ≥ 0. (3.13)

We show initially that Γ is SAPω(X, v)-valued. From the estimate

‖Sα(t +ω)u0 − Sα(t)u0‖
v(t)

≤ 2CM‖u0‖∣∣μ∣∣
1

v(t)tα (3.14)

we have that Sα(·)u0 ∈ SAPω(X, v).
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Let u ∈ SAPω(X, v). From Lemma 2.7, we have that s → G(s)u(s) is a weighted S-
asymptoticallyω-periodic function and by Lemma 2.8 we obtain that Γu ∈ SAPω(X, v). Thus,
the map Γ is SAPω(X, v)-valued. In order to prove that Γ is a contraction, we note that for
u ∈ SAPω(X, v) and t ≥ 0,

‖Γ1u(t)‖ ≤ CM

∫ t

0

1
1 +

∣∣μ∣∣(t − s)α
‖G(s)‖‖u(s)‖ds

≤ CM

(∫ t

0

1
1 +

∣∣μ∣∣sα ds
)
‖G‖∞‖u‖∞

≤ CM
∣∣μ∣∣−1/απ

α sin(π/α)
‖G‖∞‖u‖∞,

(3.15)

so that,

‖Γ1u‖∞ ≤ CM
∣∣μ∣∣−1/απ

α sin(π/α)
‖G‖SAPω(B(X),v)‖u‖SAPω(X,v). (3.16)

On the another hand, for t ≥ 0 we see that

‖Γ1u(t +ω) − Γ1u(t)‖
v(t)

≤ 1
v(t)

(∫ω

0
‖Sα(t +ω − s)‖B(X)ds

)
‖G‖∞‖u‖∞

+
1

v(t)

∫ t

0
‖Sα(t − s)‖B(X)‖G(s +ω)u(s +ω) −G(s)u(s)‖ds

≤ CMω

v(t)
(
1 +

∣∣μ∣∣tα)‖G‖∞‖u‖∞

+
CM

v(t)

∫ t

0

1
1 +

∣∣μ∣∣(t − s)α
‖G(s +ω) −G(s)‖B(X)‖u(s +ω)‖ds

+
CM

v(t)

∫ t

0

1
1 +

∣∣μ∣∣(t − s)α
‖G(s)‖B(X)‖u(s +ω) − u(s)‖ds

≤ CMω

v(t)
(
1 +

∣∣μ∣∣tα)‖G‖∞‖u‖∞

+ CM

(
1

v(t)

∫ t

0

v(t − s)
1 +

∣∣μ∣∣sα ds
)
‖G‖v‖u‖∞

+ CM

(
1

v(t)

∫ t

0

v(t − s)
1 +

∣∣μ∣∣sα ds
)
‖G‖∞‖u‖v,

(3.17)
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from which we obtain that

sup
t≥0

‖Γ1u(t +ω) − Γ1u(t)‖
v(t)

≤ CM‖G‖SAPω(B(X),v)

[
ωsup

t≥0

(
1

v(t)
(
1 +

∣∣μ∣∣tα)
)

+ 2Θ

]
‖u‖SAPω(X,v).

(3.18)

By noting that G(s) is a linear operator for all t ≥ 0 and combining (3.16) and (3.18)
we obtain that

‖Γu1 − Γu2‖SAPω(X,v) ≤ Λ‖u1 − u2‖SAPω(X,v), (3.19)

for all u1, u2 ∈ SAPω(X, v), which shows that Γ is a contraction on SAPω(X, v) and hence
there is a unique Sv-asymptotically ω-periodic mild solution. The proof is complete.

To complete this paper, we examine the existence and uniqueness of weighted S-
asymptotically ω-periodic mild solutions for the following fractional differential equation

∂αt u(t, x) = ∂2xu(t, x) − νu(t, x) + ∂α−1t

(∫x

0
βa(t)u(t, ξ)dξ

)
, t ∈ R

+, x ∈ [0, π], (3.20)

with boundary conditions

u(t, 0) = u(t, π) = 0, t ≥ 0, (3.21)

u(0, x) = u0(x), x ∈ [0, π], (3.22)

where u0 ∈ L2[0, π] and a ∈ Cb([0,∞),R). In what follows we consider the spaceX = L2[0, π]
and letA be the operator given byAu = u′′−νu, (ν > 0)with domainD(A) = {u ∈ X : u′′ ∈ X,
u(0) = u(π) = 0}. It is well known that A is sectorial of type negative.

Proposition 3.5. Let v ∈ Cb([0,∞), (0,∞)) satisfying conditions of Lemma 2.8 and let a ∈
SAPω(R, v). If |β| is small enough, then the problems (3.20)–(3.22) has a unique Sv-asymptotically
ω-periodic mild solution.

Proof. Problem (3.20)–(3.22) can be expressed as an abstract fractional differential equation
of the form (3.12), where u(t)(x) = u(t, x), for t ≥ 0, x ∈ [0, π]. We define

(
G(t)φ

)
(ξ) = βa(t)

∫ ξ

0
φ(τ)dτ, ξ ∈ [0, π], t ≥ 0. (3.23)

We have the following estimates:

∥∥G(t)φ
∥∥
L2 ≤ π

∣∣β∣∣|a(t)|∥∥φ∥∥L2 , t ≥ 0, φ ∈ X, (3.24)
∥∥G(t +ω)φ −G(t)φ

∥∥
L2 ≤ π

∣∣β∣∣|a(t +ω) − a(t)|∥∥φ∥∥L2 , t ≥ 0, φ ∈ X. (3.25)
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estimate (3.25), we get

‖G(t +ω) −G(t)‖B(X)

v(t)
≤ π

∣∣β∣∣ |a(t +ω) − a(t)|
v(t)

, t ≥ 0. (3.26)

Since a ∈ SAPω(R, v) we obtain that G ∈ SAPω(B(X), v). Moreover, we have the inequality

‖G‖SAPω(B(X),v) ≤ π
∣∣β∣∣‖a‖SAPω(R,v). (3.27)

If we choose |β| small enough, we have that condition (3.11) is fulfilled. By Theorem 3.4,
the problems (3.20)–(3.22) has a unique Sv-asymptotically ω-periodic (mild) solution. This
finishes the proof.
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