
Weighted Automata with Storage

Dissertation

zur Erlangung des akademischen Grades

Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt an der

Technischen Universität Dresden

Fakultät Informatik

eingereicht am

15. Mai 2020

von

Luisa Herrmann, M.Sc.

geboren am 22. Juni 1991 in Görlitz

Gutachter:

Prof. Dr.-Ing. habil. Dr. h.c./Univ. Szeged Heiko Vogler, Technische Universität Dresden
(Betreuer)

Prof. Dr. George Rahonis, Aristotle University of Thessaloniki

Fachreferent:

Prof. Dr. Dr. h.c. Manfred Droste, Universität Leipzig

Verteidigt am: 29. September 2020

Acknowledgments

This thesis has accompanied me for the past 4.5 years and with it both many insights and
many struggles. It would not have been possible to start and to finish this project without
those people who companioned and supported me all the time.

My supervisor, Heiko, gave me the opportunity to do research on the topic of this work
while I was still studying. I want to thank you for both your guidance and the freedom to
pursue my own research interests!

Many results in this thesis would not exist without the ideas and the efforts of my coauthors
Toni Dietze, Manfred Droste, Zoltán Fülöp, Johannes Osterholzer, and Heiko Vogler. Thank
you for many fruitful discussions and for sharing your knowledge with me!

I also want to thank George Rahonis who agreed to review this thesis. Thank you for your
time!

During the most time of my doctoral studies I was a scholarship holder in the research
training group QuantLA. Not only was I supported financially, but I also came into contact
with many interesting people some of which even became good friends.

Moreover, I want to thank my current and former colleagues at the Chair of Foundations
of Programming for many discussions and mutual motivation. And for great coffee breaks
which even outlasted COVID-19. In particular, my office mates Richard and Tobias always
had a friendly ear for my ideas – both in research and beyond. Thank you also, Toni, for
listening to my doubts and being a great conversational partner. And thank you, Kerstin, for
your great support – in a lot more ways than just administrative! Moreover, I want to thank
Johannes, Kilian, Richard, and Thomas for reading many of the following pages and for their
useful comments on them.

I am deeply grateful to my family and my friends for their continuous support. Not many
things are as helpful as this constant environment of loved ones who have been with me for
many years and seem to be taken for granted – which they are not!

My big gratitude goes to Johannes and his constant patience and encouragement. Especially
the last two month of writing this thesis were not easy due to the exit restrictions without
childcare. However, you were extremely supportive, ensured that I am able to work, and took
care of many things. Thank you!

Finally, I want to thank my son Michael who regularly reminded me that there are more
important things than work – in his words: “Mama, du fertig arbeiten?” Yes Michi, now I am!

iii

Contents

Introduction . 1

1 Fundamental Notions and Structures . 7

1.1 Mathematical Preliminaries . 8
1.2 Algebraic Structures . 12

1.2.1 Algebraic Fundamentals . 12
1.2.2 Monoids . 12
1.2.3 Lattices and Boolean Algebras . 13
1.2.4 Strong Bimonoids and Semirings . 14
1.2.5 Multioperator Monoids . 16
1.2.6 Valuation Monoids . 20

1.3 Languages and Weighted Languages . 22
1.3.1 Words, Languages, and Automata . 22
1.3.2 Weighted Languages and Weighted Automata 25

1.4 Tree Languages and Weighted Tree Languages 27
1.4.1 Trees, Tree Languages, and Tree Automata 27
1.4.2 Tree Homomorphisms . 34
1.4.3 Weighted Tree Languages and Weighted Tree Automata 35
1.4.4 Weighted Tree Homomorphisms . 42

1.5 Monadic Second-Order Logic . 45
1.5.1 Classical MSO Logic . 45
1.5.2 Weighted MSO Logic . 48
1.5.3 Multioperator Expressions . 50

2 Weighted Tree Automata with Storage . 53

2.1 Storage Types and Storage Behavior . 57
2.2 The Automaton Model . 62

2.2.1 Particular Restrictions . 69
2.3 Finite Storage Types . 75
2.4 Elimination of ǫ-Transitions . 78
2.5 The Support of (S,Σ, K)-wta . 85

2.5.1 Zero Generation Problem and Computability 85
2.5.2 Recognizability of Support Tree Languages 88
2.5.3 Emptiness of Support Tree Languages . 93

2.6 Closure Properties . 94
2.7 Chapter Conclusion . 96

v

Contents

3 Characterizations of (S,Σ, K)-Recognizable Weighted Tree Languages . 97
3.1 Storage Behavior on a Tree . 98
3.2 Characterization by Decomposition . 100

3.2.1 Separating the Storage . 101
3.2.2 Separating the Weights . 102
3.2.3 Combination of Separation Results . 105

3.3 Logical Characterization . 110
3.3.1 Expressions with Storage Behavior and a Logical Characterization . . 111
3.3.2 Comparison with [VDH16] . 115

3.4 Chapter Conclusion . 117

4 Linear (S,Σ, K)-wta and Inverse Linear Tree Homomorphisms 119
4.1 Linear (S,Σ, K)-Recognizable Tree Languages 122
4.2 Inverse Linear Alphabetic Tree Homomorphisms 126
4.3 Inverse Elementary Tree Homomorphisms . 134

4.3.1 Elementary Tree Homomorphisms of Type 1 135
4.3.2 Elementary Tree Homomorphisms of Type 2 145

4.4 Chapter Conclusion . 150

5 A Medvedev Characterization of Recognizable Weighted Tree Languages 151
5.1 Representable Weighted Tree Languages . 154
5.2 A Medvedev Characterization . 157

5.2.1 Restricted Representable Implies Recognizable 158
5.2.2 Recognizable Implies Restricted Representable 161

5.3 Comparison with Unrestricted MSO Logic . 165
5.4 Chapter Conclusion . 171

6 Weighted Symbolic Automata with Data Storage 173
6.1 Data Storage Types and Data Storage Behavior 176
6.2 Weighted Symbolic Automata with Data Storage 178

6.2.1 Particular Restrictions . 184
6.2.2 Closure Properties . 186

6.3 Data Storage for Symbolic Visibly Pushdown Automata 188
6.4 Data Storage for Weighted Timed Automata . 193
6.5 Weighted Symbolic MSO Logic with Storage Behavior 199
6.6 Chapter Conclusion . 210

Conclusion . 211

Index . 213

Bibliography . 219

vi

Introduction

Erst packt man, vielleicht, ihren

Schopf. Dann fliegt das linke

Vorderbein herzu, dann das rechte,

dann der Podex, dann eine

Hinterhaxe, Stück für Stück. Und

wenn man schon glaubt, die

Geschichte wäre komplett, kommt,

ratsch! noch ein Ohrläppchen

angebummelt.

(Erich Kästner)

Languages and Finite-State Automata

In this work we describe and investigate formal languages. A formal language (or simply
a language) is a set of finite strings, called words, with symbols from some finite alphabet.
One such language is the set Leven over the alphabet Σ = {a, b, c}: we let Leven consist of all
words w with an even number of occurrences of the symbol a, for example, cacba. As there
are infinitely many words that satisfy this requirement, Leven is an infinite set. Whereas our
description of this language is intuitively clear, it is not a formal specification.

So how can one formally describe an infinite set in a finite way? This question is an essential
part of formal language theory and there are many answers. One of the most fundamental
concepts of theoretical computer science is a finite-state automaton – a very simple device that
can recognize particular languages. Such an automaton consists of a finite set of states together
with state transitions. Every time the automaton reads a symbol during a computation, it can
change its current state if there is an appropriate transition allowing this state change. By
specifying particular states with which each computation on a word has to start and to end,
one can define the language recognized by the automaton. For example, the automaton

q0 q1

b, c
a

a

b, c

recognizes the language Leven where each computation starts and ends in state q0. Obviously,
as an automaton only uses finitely many states, it possesses a finite memory. Thus, a very
limited set of languages can be described by finite-state automata – those languages are also
called recognizable languages.

1

Introduction

Beyond Recognizability

One typical example of a language that is not recognizable by a finite-state automaton is the
language

Lab = {a
n bn | n ∈ N} .

To recognize a word w ∈ Lab, the number of as has to be memorized in order to compare
it afterwards with the number of bs following. However, this can not be done with finitely
many states.

Even though the recognizable languages are nice to handle (as they are representable by
very simple formalisms as automata), their limited expressiveness is a reason to consider more
complex language classes. One such class are the context-free languages where the language
Lab belongs to. These languages can be described by pushdown automata – finite-state
automata which additionally use a pushdown, i.e., a stack with access only to the topmost
element. Context-free languages include regular languages and are a valuable formalism in
many areas. Among others, they are used to describe syntactic properties of programming
languages [ASU86] or, in the context of linguistics, to describe the structure of sentences
[Cho56].

However, also the context-free languages are limited in their expressiveness. For example,
the language

Labc = {a
n bncn | n ∈ N}

can not be recognized by a pushdown automaton. It is a stack language – a language that can
be recognized by a finite-state automaton additionally using a stack.

There are many language classes of different complexity. However, besides their differences,
many such classes also possess similarities as their belonging to some superclass or common
closure properties. In the past, several approaches to group language classes by particular
properties were developed. A very prominent example was introduced by Ginsburg and
Greibach [GG69] – the concept of full abstract families of languages. A language class L is,
roughly speaking, a full abstract family of languages if certain closure properties are satisfied:
the class is closed under union, intersection with recognizable languages, homomorphisms,
inverse homomorphisms, concatenation, and Kleene plus. Among others, the recognizable
languages, the context-free languages as well as the stack languages are a full abstract family
of languages.

These three language classes also possess another interesting property: they can be recog-
nized by finite-state automata using an additional storage. This characteristic also applies to
many more language classes that already were investigated from the 60s of the last century
as, e.g., counter languages, nested stack languages, and iterated pushdown languages. And
indeed, all these classes can be described by a unifying framework: the concept of automata

with storage. It goes back to Scott [Sco67] as well as Hopcroft and Ullmann [UH67], who
started to abstract from a concrete memory and, therefore, described finite-state automata
working with an arbitrary storage. Such a storage is, roughly speaking, a memory set whose
elements (called configurations) can be tested by predicates and modified by instructions. A
similar approach was chosen by Ginsburg and Greibach [GG69] who introduced the concept

2

of abstract families of acceptors. They also proved that each class of languages L is a full
abstract family of languages if and only if it is recognized by an abstract family of acceptors.

In this work, we further extend and investigate automata with storage.

From Languages to Tree Languages

A disadvantage of using word languages is that words lack structure: in order to describe
which parts of a word belong together in a certain way, one has to introduce additional
symbols as, for example, brackets. Another way to overcome this deficiency is to step from
word languages to tree languages. A tree is a term that can be represented by a directed,
acyclic, finite graph with one root and where each node (except the root) has one predecessor
and each node has an ordered sequence of successors. Moreover, the nodes are labeled by
symbols from an alphabet. Hence, trees can be seen as generalizations of words as exemplified
by the following graphic:

c

a

a

b

b a a c c

a

b a

b b

Due to this clear order of the nodes, trees entail a hierarchical structure. Hence, trees and
tree languages are useful in many areas where data is structured in this way – for example in
the context of XML scheme languages [Sch12] or natural language processing [KG05].

Similar to the word case, there are various classes of tree languages of different complexity.
The most prominent example is the class of recognizable tree languages – the class of tree
languages recognized by finite-state tree automata. Tree automata are a natural generalization
of word automata just as trees are a generalization of words. Also other word language
classes have been carried over to the tree case. A well-known example are the context-free tree

languages that are recognized by pushdown tree automata. The reader might suppose that,
also in the tree case, the concept of tree automaton with storage can be used as a unifying
framework. And, indeed – this notion was introduced by Engelfriet [Eng86].

Weighted Languages

There exists another generalization of word (and tree) languages that has a long tradition
going back to Chomsky and Schützenberger [CS63]: instead of considering languages in a
qualitative setting (i.e., either a word or tree belongs to the language or not), a quantitative

setting was established by assigning weights to the elements of a language. Originally, those
weights equaled the grade of ambiguity of a word recognized by a context-free grammar, i.e.,
the number of possible derivations of this word. In the setting of automata, this corresponds
to the number of different possibilities of an automaton to recognize a word.

3

Introduction

Later this concept was transferred to other measures such as probabilities or simply values
from some appropriate weight algebra. In this sense, a weighted language as well as a weighted

tree language is nothing else than a mapping from the set of words or trees over some alphabet
to some arbitrary set, respectively. Often, this set is a particular algebra such as a semiring.

Also language accepting formalisms have been extended to the weighted setting by defining
weighted automata as well as weighted tree automata. Weighted automata are, roughly
speaking, finite-state automata were each transition carries a weight. By combining the
weights occurring during the recognition of a word w appropriately, the weight the automaton
assigns to w is computed.

This perspective of languages offers many advantages as it provides a finer graduation:
Words or trees are not only elements of a language but can be compared due to their assigned
values – depending on the respective weight algebra, a word can be “better” in terms of some
measure or “more probable” than another word. For this reason, weighted languages and
weighted automata are also interesting for practical applications. Among others, they are
used in natural language processing [KG05], speech recognition [MPR02], and digital image
compression [AK09].

The Aim of this Work

In this work, we bring together all three generalizations of word languages and finite-state
automata mentioned above: (i) from words to trees, (ii) by using an arbitrary storage type in
addition to a finite-state control, and (iii) by considering languages in a quantitative setting
using a weight structure. As a unifying framework, we investigate weighted tree automata

with storage.
In this thesis we will examine this automaton model and the language classes it recognizes

from different perspectives: among others, we will investigate automata-theoretic properties
such as the removal of ǫ-transitions or the recognizability of support tree languages, we will
show certain closure properties and two characterizations for the language classes associated
to our automaton model and we will extend this model (in the string case) to an infinite input
set. Thus, this work intends to comprise a broad theoretical investigation of weighted tree
automata with storage. This approach has a very nice implication: by instantiating the storage
type or the weight structure appropriately, we reobtain many automaton models mentioned
before. All the general results we show in this work thus also hold for the numerous instances
of our abstract model.

There are several interesting applications for the language classes described by particular
instantiations of weighted (tree) automata with storage. For the different dimensions (i.e.,
automata with storage, tree automata, and weighted automata) we already mentioned
application areas above. There are also examples for combinations of these dimensions:
Weighted context-free grammars were proposed for the modeling of RNA sequences [Mai07].
In [Den17, Den20], weighted automata with storage were used for coarse-to-fine parsing in
the context of natural language processing.

Thus, we do not want to exclude the possibility that our generalized automaton model
might be useful in some of these areas. However, this will be neither the focus nor the main
motivation of this work. Rather, the aim of this thesis is a theoretical investigation of a very

4

general automaton model in order to discover properties and relations which hold for all
instances of our formalism.

Outline and Contributions

This work is structured as follows.

Chapter 1 In this chapter we introduce the fundamentals needed for this thesis. We start
with mathematical notions and structures, recall the definitions of (weighted) word and
tree languages as well as the respective automaton models, and finally revise the basics of
(weighted) monadic second-order logic.

Chapter 2 In Chapter 2 our main automaton model is defined. For this, we first recall the
concept of a storage type (slightly modified for our setting) and storage behavior. Afterwards,
in Section 2.2 we give the definition of a weighted tree automaton over Σ with storage S and

weights in K, in the following called (S,Σ, K)-wta, where K is a complete M-monoid. We
compare this model with existing automaton models by showing different instantiations for
S and K . Moreover, we theoretically investigate (S,Σ, K)-wta:

In Section 2.3 we show that each finite storage type is redundant as it can be simulated by
the finite-state control of a weighted tree automaton (Theorem 2.3.2).

In Section 2.4 we examine the removal of ǫ-transition of (S,Σ, K)-wta. We obtain that
simple (S,Σ, K)-wta over compressible M-monoids can be made ǫ-free (Theorem 2.4.2).

In Section 2.5 we investigate the support tree languages of (S,Σ, K)-wta. We obtain that
those tree languages are (S,Σ)-recognizable if K is a commutative and complete (and, thus,
zero-sum free) strong bimonoid (Theorem 2.5.8).

Finally, in Section 2.6 we prove certain closure properties of the (S,Σ, K)-recognizable
weighted tree languages (i.e., the weighted tree languages recognizable by (S,Σ, K)-wta).

Chapter 3 In this chapter we present two characterization results for the class of weighted
tree languages recognizable by (S,Σ, K)-wta. In Section 3.2 we prove a characterization

by decomposition. We show that the (S,Σ, K)-recognizable weighted tree languages can be
represented by the combination of three elementary concepts: a tree transformation, an
alphabetic monomial mapping, and a recognizable tree language (Theorem 3.2.4). Moreover,
in Section 3.3 a logical characterization of the (S,Σ, K)-recognizable weighted tree languages
is shown (Theorem 3.3.3).

Chapter 4 In Chapter 4 we consider a subclass of the (S,Σ, K)-recognizable weighted tree
languages by introducing linear (S,Σ, K)-wta over commutative and complete semirings K –
particular (S,Σ, K)-wta that may copy a storage configuration at each node of an input tree
to at most one child tree of that node. We prove that linear (P�,Σ,B)-wta, where P is the
pushdown storage type and B the Boolean semiring, recognize exactly the linear monadic

context-free tree languages (Theorem 4.1.4 and Corollary 4.1.5).
The remaining part of this chapter is dedicated to prove that the weighted tree languages

recognizable by linear (S,Σ, K)-wta are closed under inverse application of linear tree homo-

morphisms (Theorem 4.1.6). The proof of this statement can be split into two parts: first,
we show the closure under inverse linear alphabetic tree homomorphisms (Lemma 4.2.1) and,

5

Introduction

afterwards, we show the closure under inverse elementary tree homomorphisms (Lemma 4.3.1).

Chapter 5 In this chapter we present a Medvedev characterization of (Σ, K)-recognizable
weighted tree languages (without storage) where K is an arbitrary semiring. For this, we
define the notion of representable weighted tree languages as well as an appropriate restriction.
We prove that the restricted representable weighted tree languages characterize the (Σ, K)-
recognizable weighted tree languages (Theorem 5.2.2). In contrast to our original publication
[Her17], we extended this characterization from commutative semirings to arbitrary semirings.

Moreover, we compare the representable weighted tree languages with the weighted
tree languages definable by unrestricted monadic second-order logic. We obtain that each
representable weighted tree language is definable (Theorem 5.3.5). However, the opposite
direction does not hold (Theorem 5.3.6).

Chapter 6 Finally, in Chapter 6 we consider weighted string automata with storage over
infinite input alphabets. For this we extend the concept of a storage type S to that of a data

storage type Sd and define K-weighted symbolic automata with data storage type Sd and input

D where K is a unital valuation monoid.
We show that this model captures two recently introduced automaton models. In Section 6.3

we define the storage type VP(N) and prove that weighted symbolic automata using VP(N)
are exactly the weighted version of symbolic visibly pushdown automata. Similarly, in Section
6.4 we define the storage type TIME(C) and show that weighted symbolic automata using
TIME(C) are equally expressive as weighted timed automata.

Finally, in Section 6.5 we show a logical characterization of the weighted languages recog-
nized by weighted symbolic automata with data storage.

6

Chapter 1

Fundamental Notions and Structures

In this chapter we introduce the foundations of this thesis – most of them are elementary
basics of mathematics and automata theory.

We start in Section 1.1 with the usual mathematical definitions for sets, relations, and
functions. In Section 1.2 we recall some basics from universal algebra and, afterwards,
introduce some algebraic structures that will be used in this work. In Section 1.3 elementary
definitions from formal language theory can be found. We recall some important language
classes and automaton models – both for the unweighted and for the weighted setting.
Afterwards, in Section 1.4 we mainly recall the content of Section 1.3 for the tree case:
we introduce recognizable tree languages, tree automata, pushdown tree automata, and
weighted tree automata. Additionally, we consider recognizable step languages and prove
some basics for weighted tree homomorphisms. Finally, in Section 1.5 we recall weighted
monadic-second order logic and two extensions of it to the weighted setting.

7

Chapter 1 Fundamental Notions and Structures

1.1 Mathematical Preliminaries

Sets A fundamental concept of mathematics is that of a set. For this work it suffices to treat
set theory in a naive way. Thus, we understand a set as a collection of definite, distinct objects,
called its elements. As usual, we mean by a ∈ A that a is an element of the set A.

From this definition well-known problems arise which we will neglect here. In the same
manner, we will not distinguish between sets and classes. For a comprehensive and axiomatic
introduction into set theory, we refer the reader to [Dei10].

We assume the reader to be familiar with the basic set theoretic notions such as the empty
set ;, set union ∪, set intersection ∩, set difference \, set equality =, subset ⊆, and strict
subset ⊂. We call two sets A and B disjoint if A∩ B = ;.

Let A be a set. We often use set builder notation, i.e., the set of all elements of A that
fulfill a property p is denoted by {a ∈ A | p(a)}. If A is clear from the context, we simply
write {a | p(a)}. The power set of A, denoted by P(A), is the set of all subsets of A, i.e.,
P(A) = {B | B ⊆ A}. A set A ⊆ P(A) is called a partition1 of A if

⋃
A= A and A1 ∩ A2 = ; for

each A1, A2 ∈ A with A1 6= A2.
We denote by N the set of natural numbers, i.e., the set of all nonnegative integers including

zero, and we let N+ be the set N \ {0}. For each n ∈ N we use [n] as an abbreviation for the
set {k ∈ N | 1≤ k ≤ n}. Thus, [0] = ;. We denote by Z the set of integers, i.e., in contrast to
N also negative integers are included. The set of real numbers is denoted by R and the set of
nonnegative real numbers is denoted by R≥0, i.e., R≥0 = {x ∈ R | x ≥ 0}. We let B = {0, 1} be
the set of Boolean numbers.

We assume the reader to be familiar with the usual arithmetic operations and relations
on N and R. Given a subset A of N, we denote by max A and min A the maximal respectively
minimal element of A with respect to ≤ if it exists. Clearly, this notion can be extended to R.
If A consists of two elements, say A= {a, b}, we sometimes write max(a, b) and min(a, b).

For n ∈ N and sets A1, . . . , An, the Cartesian product of A1, . . . , An, denoted by A1 × . . .× An,
is the set {(a1, . . . , an) | ai ∈ Ai , i ∈ [n]} consisting of so called n-tuples. A 2-tuple is sometimes
also called a pair. Given an n-tuple a = (a1, . . . , an) ∈ A1 × . . . An, we denote for each i ∈ [n]
by (a)i its ith component ai. Note that, if Ai = ; for some i ∈ [n], then A1 × . . .× An = ;.
Moreover, for n = 0 we obtain A1 × . . . × An = {()}, where () denotes the empty tuple. If
A1, . . . , An are all the same set A, then A1 × . . .× An corresponds to the Cartesian power An.

Now let us briefly recall the notion of cardinality of a set A, denoted by |A|. If A is finite, we
mean by |A| the number of its elements. We say that A is countable if we can assign to each
a ∈ A a natural number such that each n ∈ N is assigned to at most one element from A. In
particular, each finite set is countable. We note that, for each finite set A, |P(A)|= 2|A|. If A

is a singleton, i.e., it contains exactly one element, then sometimes A is identified with that
element.

Relations Let A and B be sets. A relation (over A and B) is a set R ⊆ A× B. If (a, b) ∈ R,
we will also write aRb. If (a, b) /∈ R, we sometimes write a✓Rb. We call A the domain of R

and denote it by dom(R). The inverse relation of R, denoted by R−1, is defined to be the

1We note that sometimes our definition of a partition is called a generalized partition as we allow the empty set
as an element.

8

1.1 Mathematical Preliminaries

relation R−1 = {(b, a) ∈ B × A | aRb}. For each subset A′ ⊆ A, we denote by R(A′) the set
{b ∈ B | ∃a ∈ A′ : aRb} and call it the image of A′ under R. Then the image of R is the set R(A).
In the same way we define for each subset B′ ⊆ B the preimage of B′ under R to be the set
R−1(B′) and call R−1(B) the preimage of R.

Now assume sets A, B, and C , and let R ⊆ A×B and S ⊆ B×C be relations. The composition

of R and S is the relation S ◦ R ⊆ A× C defined by S ◦ R = {(a, c) ∈ A× C | ∃b : aRb ∧ bSc}.
Thus, for each A′ ⊆ A we have (S ◦R)(A′) = S(R(A′)). Sometimes we write R ; S instead of S ◦R.
Note that (R1 ◦R2)◦R3 = R1 ◦ (R2 ◦R3) for compatible relations R1, R2, and R3. Consequently,
we often drop the parenthesis and simply write R1 ◦ R2 ◦ R3.

Let A be a set. A relation R ⊆ A× A is also called a (binary) relation on A. The identity

relation I DA on A is defined to be I DA = {(a, a) | a ∈ A}. If A is clear from the context, then
we sometimes just write I D. We say that a relation R on A is

• reflexive if I DA ⊆ R,

• symmetric if R= R−1,

• antisymmetric if R∩ R−1 ⊆ I DA,

• transitive if R ◦ R ⊆ R, and

• total if R∪ R−1 = A× A.

If a relation is reflexive, symmetric, and transitive, then it is called an equivalence relation.
Let ∼ be an equivalence relation on a set A and let a ∈ A. The equivalence class of a (induced

by ∼), denoted by [a]∼, is the set [a]∼ = {a
′ ∈ A | a ∼ a′}. By the quotient set A/∼ we mean

the set of all equivalence classes induced by ∼, i.e., A/∼ = {[a]∼ | a ∈ A}. Note that A/∼
forms a partition of A.

A relation ≤ on a set A is called a partial order if it is reflexive, transitive, and antisymmetric.
A partial order that is also total is called a linear order. Given a partial order ≤ on a set A, we
denote the relation ≤ \I DA by <.

Let A be a set and R a relation on A. The transitive closure of R, denoted by R+, is the
smallest relation S ⊇ R on A that is transitive. Moreover, the relation R+ ∪ I DA is called the
reflexive transitive closure of R and denoted by R∗. Finally, we set Rn = Rn−1 ◦R for each n≥ 1
and R0 = I DA.

Functions Let A and B be sets. A relation f ⊆ A× B is a function or mapping if f (a) is a
singleton for each a ∈ A. In this case we write f (a) = b in preference of b ∈ f (a) and use
the conventional notation f : A→ B instead of f ⊆ A× B. The set of all functions of the form
f : A→ B is denoted by BA. We say that a function f : A→ B is

• injective (or an injection) if f (a) = f (a′) implies a = a′ for every a, a′ ∈ A,

• surjective (or a surjection) if f (A) = B, and

• bijective (or a bijection) if it is injective and surjective.

9

Chapter 1 Fundamental Notions and Structures

Let A and B be sets, A′ ⊆ A, and g : A′→ B. We say that a function f : A→ B extends g (or
is an extension of g), if f (a′) = g(a′) for each a′ ∈ A′.

Let n ∈ N, let A1, . . . , An be sets, and let i ∈ [n]. A function f : A1 × . . .× An→ Ai is called
the ith projection if f (a1, . . . , an) = ai for each (a1, . . . , an) ∈ A1 × . . .× An.

Sometimes in this work we allow functions to be partial. A relation f ⊆ A× B is a partial

function if | f (a)| ≤ 1 for each a ∈ A. We say that f (a) is defined if | f (a)| = 1 and f (a) is
undefined otherwise.

Convention. As usual, we agree that function application is left associative and, thus, avoid

additional brackets. This means, given a function h: A→ CB and some elements a ∈ A, b ∈ B,

we often write h(a)(b) instead of (h(a))(b).

Operations Let A be a set and let n ∈ N. An n-ary operation (on A) is a function f : An→ A

and we denote the set of all n-ary operations on A by Ops(n)(A). We let

Ops(A) =
⋃

n∈N
Ops(n)(A) .

Moreover, for each B ⊆ Ops(A) and k ∈ N we set B(k) = B ∩Ops(k)(A). As usual, we refer to a
0-ary operation f : A0→ A as a constant and identify f with its image. Moreover, 1-ary and
2-ary operations are called unary and binary, respectively. For a binary operation ∗: A2→ A

we often write a ∗ a′ instead of ∗(a, a′) for each a, a′ ∈ A.
Let A be a set, let ∗ and + be binary operations on A and let 0 ∈ A. We say that 0 is

• an absorbing element of ∗ if 0 ∗ a = 0= a ∗ 0 and

• a neutral element of ∗ if 0 ∗ a = a = a ∗ 0.

for each a ∈ A. Note that absorbing and neutral elements are unique. Furthermore, we say
that ∗ is

• associative if (a ∗ b) ∗ c = a ∗ (b ∗ c),

• commutative if a ∗ b = b ∗ a,

• left-distributive over + if a ∗ (b+ c) = (a ∗ b) + (a ∗ c),

• right-distributive over + if (b+ c) ∗ a = (b ∗ a) + (c ∗ a),

• distributive over + if it is right- and left-distributive over +, and

• idempotent if a ∗ a = a

for each a, b, c ∈ A.

Families and matrices Given two sets A and I , we define an (I-indexed) family (of elements

in A) as a function f from I to A. In this context, I is also called an index set. Instead of f we
write (ai | i ∈ I) where ai = f (i) for all indices i ∈ I .

Now let A, I , and J be sets. An (I × J)-matrix M (over A) is a mapping M : I × J → A. For
each i ∈ I , j ∈ J we call the element M(i, j) the (i, j)-entry of M and sometimes write Mi, j

instead.

10

1.1 Mathematical Preliminaries

Asymptotic complexity Sometimes in this work we want to describe the limiting behavior
of a function. For this, we use asymptotic notation. Let f : N→ R. We let

O(f) = {g ∈ RN | ∃c > 0 ∃n0 ∈ N ∀n≥ n0 : g(n)≤ c · f (n)}

and we call f an asymptotic upper bound of each g ∈O(f). As usual, from now on we will
write g(n) ∈O(f (n)) instead of g ∈O(f).

11

Chapter 1 Fundamental Notions and Structures

1.2 Algebraic Structures

1.2.1 Algebraic Fundamentals

Alphabets An alphabet is a finite and non-empty set whose elements are called symbols.
A ranked alphabet is a tuple (Σ, rk) where Σ is an alphabet and rk: Σ → N is a function
assigning a rank to each symbol in Σ. We will usually write Σ instead of (Σ, rk) and assume
the function rk implicitly.

Now let Σ be a ranked alphabet. For each n ∈ N we denote rk−1(n) by Σ(n) and the
symbols in Σ(n) are sometimes called n-ary. Symbols of rank 1 or 2 are often called unary

or binary, respectively. To show the rank of a symbol σ ∈ Σ(n) for some n ∈ N explicitly,
we write σ(n). In particular, this notation is used when introducing ranked alphabets by
writing, e.g., Σ = {α(0),γ(1),σ(2)}. The maximal rank of a ranked alphabet Σ is given by
max rk(Σ) =max{i ∈ N |Σ(i) 6= ;}. We say that Σ is non-trivial if Σ(0) 6= ;.

Sometimes we want to build a new ranked alphabet ∆ from a ranked alphabet Σ and some
finite set A by using the cross product Σ ×A. When doing so, we adopt the ranks from Σ, i.e.,
if σ ∈Σ(n) for some n ∈ N, then (σ, a) ∈∆(n) for each a ∈ A.

Algebras Let Σ be a ranked alphabet. For each n ∈ N, a symbol in Σ(n) can be interpreted as
an n-ary operation. For this, we recall the notion of Σ-algebras. For an excellent introduction
to the topic of universal algebra, we recommend [BS06, BS81]. Other standard references
are [Grä08] and [Wec92].

A Σ-algebra is a pair (A, ·A) where A is a set (called the carrier set) and ·A is a family
(σA | σ ∈Σ) of functions such that σA : Ak→ A for each k ∈ N, σ ∈Σ(k). We identify (A, ·A)
with its carrier set A and, if A is clear from the context, we denote a function σA just by σ.
Moreover, we often write (A,σ1, . . . ,σn) instead of (A, ·A) if Σ = {σ1, . . . ,σn} for some n ∈ N
with rk(σ1)≥ . . .≥ rk(σn). In this case, for the sake of brevity, we do not specify Σ and call
(A,σ1, . . . ,σn) just an algebra. An algebra is finite if its carrier set is finite.

Let (A, ·A) be a Σ-algebra and let B ⊆ A. A Σ-algebra (B, ·B) is called a subalgebra of A if

σB(b1, . . . , bk) = σA(b1, . . . , bk)

for each k ∈ N, σ ∈ Σ(k), and b1, . . . , bk ∈ B. Let H ⊆ A be nonempty. Then there is a
smallest subset B ⊆ A containing H such that (B, ·B) is a subalgebra of A, called the subalgebra

generated by H. If H is finite, then we say that (B, ·B) is finitely generated.

Homomorphisms Now let (A, ·A) and (B, ·B) be two Σ-algebras. A mapping h: A→ B is
called a homomorphism (from (A, ·A) to (B, ·B)) if for each k ∈ N, σ ∈Σ(k), and a1, . . . , ak ∈ A

h(σA(a1, . . . , ak)) = σB(h(a1), . . . , h(ak)) .

1.2.2 Monoids

A monoid, a set together with an associative binary operation and a neutral element, is a
fundamental algebraic structure all weight structures we consider in this work are based on.
As, sometimes, it is not sufficient for our purposes to apply the monoid’s operation finitely
often, we will also recall here how to equip a monoid with an infinitary operation.

12

1.2 Algebraic Structures

Monoids A monoid is an algebra (M , ·, 1) where 1 ∈ M and · is an associative binary
operation having 1 as its neutral element. Given a monoid (M , ·, 1), we call each monoid
(N , ·, 1) with N ⊆ M a submonoid of M .

A monoid (M , ·, 1) is commutative if · is commutative. Commutative monoids are sometimes
denoted (M ,+, 0) instead. Moreover, we call M idempotent if · is idempotent and locally finite

if each finitely generated submonoid is finite.
Let (M ,+, 0) be a commutative monoid. We call M zero-sum free if a + b = 0 implies

a = b = 0 for every a, b ∈ M .
Let in the following (M , ·, 1) be an arbitrary monoid. An element 0 ∈ M with 0 6= 1 that is

an absorbing element of · will sometimes be called a zero. Now let 0 be a zero of M . We say
that M is zero-divisor free if a · b = 0 implies a = 0 or b = 0 for every a, b ∈ M .

For each n ∈ N and a ∈ M , the n-fold product a · . . . · a is often abbreviated by an and we
let a0 = 1.

Convention. As usual, finite sums ai1
+ . . .+ ain

(respectively, finite products ai1
· . . . · ain

) are

abbreviated by
∑

i∈{i1,...,in}
ai (respectively,

∏
i∈{i1,...,in}

ai). Whenever the order of the elements

ai in the sum or product is important, we state it where the notation is used.

Complete monoids In various parts of this work we can not ensure that the index sets of
sums
∑

are finite. Thus, we recall the notion of completeness (cf. [Eil74, HW98, DK09])
that is based on infinitary summations as extension of finite sums.

Let A be a set and I a countable index set. An infinitary summation over A is a mapping∑
I : AI → A. Instead of

∑
I(ai | i ∈ I) we write

∑
i∈I ai .

We say that a monoid (M ,+, 0) is complete if it has an infinitary summation
∑

I over M for
each countable index set I such that

(i)
∑

i∈; ai = 0,
∑

i∈{ j} ai = a j ,
∑

i∈{ j,k} ai = a j + ak for j 6= k, and

(ii)
∑

j∈J (
∑

i∈I j
ai) =
∑

i∈I ai if
⋃

j∈J I j = I and I j ∩ Ik = ; for j 6= k.

Moreover, a complete monoid M is called completely idempotent if
∑

I m = m for each m ∈ M

and countable index set I . Each complete monoid is commutative.

1.2.3 Lattices and Boolean Algebras

Here we recall the definition of a lattice which we will afterwards use as basis for Boolean
algebras. Moreover, lattices are also useful as particular weight structures of automata.
Boolean algebras will be used in Chapter 6 as label structures of symbolic automata to provide
predicates over some infinite input set.

Lattices There are two common ways to define lattices – as particular partially ordered
sets or as algebraic structures satisfying certain axioms. As this work is based on universal
algebra, we choose the second one.

A lattice is an algebra (L,∨,∧) with two binary operations ∨ and ∧ such that

(i) ∨ and ∧ are commutative,

13

Chapter 1 Fundamental Notions and Structures

(ii) ∨ and ∧ are associative, and

(iii) a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a for all a, b ∈ L.

From these axioms it follows that ∨ and ∧ are idempotent [Heb20, Folgerung 2.2], which is
often regarded as additional axiom.

To utilize lattices for our purposes, we recall some restrictions of them. A lattice (L,∨,∧)
is called bounded if there are two elements ⊥,⊤ ∈ L such that ∨ has ⊥ as its neutral element
and ∧ has ⊤ as its neutral element. In this case L is denoted by (L,∨,∧,⊥,⊤). Moreover, a
lattice (L,∨,∧) is distributive if for all elements x , y, z ∈ L the identity

x ∧ (y ∨ z) = (x ∧ y)∨ (x ∧ z)

holds.

Now we are prepared to define Boolean algebras.

Boolean algebras A Boolean algebra is an algebra (B,∨,∧,¬,⊥,⊤) where

(i) (B,∨,∧,⊥,⊤) is a bounded, distributive lattice and

(ii) ¬ is a unary operation such that x ∧¬x =⊥ and x ∨¬x =⊤ for each x ∈ L.

Example 1.2.1. Let A be a set. Then the power set algebra (P(A),∪,∩,¬,;, A) with ¬ being
the set-theoretical operation complement, given by ¬B = A\ B for each B ∈ P(A), forms a
Boolean algebra. �

Sometimes it is desirable to generate a Boolean algebra from a given set. For this, the
following closure is helpful. Given a Boolean algebra (B,∨,∧,¬,⊥,⊤) and a set A⊆ B we
define the Boolean closure of A (under B), denoted by BC(A), as the smallest subalgebra
(B′,∨,∧,¬,⊥,⊤) of B such that A⊆ B′. Clearly, BC(A) is again a Boolean algebra.

Lemma 1.2.2 ([GH09, Chap. 11, Cor. 2]). Let (B,∨,∧,¬,⊥,⊤) be a Boolean algebra and let

Π ⊆ B be finite. Then BC(Π) is finite as well. In particular, BC(Π) has at most 22|Π| elements.

1.2.4 Strong Bimonoids and Semirings

In the following we recall an intensively investigated structure which is especially useful in
the field of weighted automata: Semirings allow by their two operations to connect weights
within a run of an automaton as well as to sum over several runs. Later, also the more general
structure of strong bimonoids proved useful for weighted automata [DSV10].

Strong bimonoids A strong bimonoid is an algebra (K ,+, ·, 0, 1) such that

(i) (K ,+, 0) is a commutative monoid,

(ii) (K , ·, 1) is a monoid, and

(iii) · has 0 as its absorbing element.

14

1.2 Algebraic Structures

We say that K is commutative or zero-divisor free if (K , ·, 1) is commutative or zero-divisor free,
respectively. Moreover, K is idempotent, zero-sum free, or complete if (K ,+, 0) is so, respectively.
We note that each complete strong bimonoid is zero-sum free [Gol99, Proposition 22.28].

Convention. We note that we use as convention that, given a strong bimonoid (K ,+, ·, 0, 1),
the operation · binds more strongly than +. For this reason, we avoid brackets by writing, e.g.,

a+ b · c instead of a+ (b · c). This convention carries over to infinite summations.

Example 1.2.3. Many examples for strong bimonoids can be found in [DSV10, Example 1].
Let us here recall two of them:

• The strong bimonoid (N∞,+, min,0,∞) with N∞ = N ∪ {∞} and with the usual
extensions of + and min to N∞ is called in [DSV10] tropical bimonoid. Note that + is
not distributive over min as, e.g., min{1, 2+ 3} 6=min{1, 2}+min{1, 3}.

• Each bounded lattice (L,∨,∧,⊥,⊤) is a strong bimonoid. Note that ⊥ is the absorbing
element of ∧: By using axiom (iii) from the definition of lattices and the fact that ⊥ is
the neutral element of ∨, we obtain ⊥=⊥∧ (⊥∨ a) =⊥∧ a for each a ∈ L. �

Semirings A semiring is a strong bimonoid (K ,+, ·, 0, 1) where additionally the condition

(iv) · distributes over +

holds. The notions of commutative, idempotent, zero-sum free, and zero-divisor free carry over
from strong bimonoids, respectively. Moreover, K is called complete if (K ,+, 0) is complete
and distributivity holds for its infinitary summation, i.e.,

a · (
∑
i∈I

ai) =
∑
i∈I

a · ai and (
∑
i∈I

ai) · a =
∑
i∈I

ai · a

for each countable index set I , family (ai | i ∈ I) of elements in K , and a ∈ K . Finally, we call
K locally finite if both monoids, (K ,+, 0) and (K , ·, 1), are locally finite.

Example 1.2.4. Here we recall semiring examples from [DK09], some of them we will also
use in this work.

• The Boolean semiring B is the semiring ({0, 1},∨,∧, 0, 1) with truth values 0 and 1 and
where ∨ and ∧ are the logical disjunction and conjunction, respectively. The Boolean
semiring is complete and commutative.

• The semiring N of natural numbers is given by (N,+, ·, 0, 1). Note that this semiring is
commutative but not complete.

• To obtain a complete semiring of natural numbers we can extend the semiring N to
N∞ = (N∪ {∞},+, ·, 0, 1) where∞ is the absorbing element of + and n ·∞ =∞ =

∞· n for each n ∈ (N+ ∪ {∞}).

• The semiring R≥0 of nonnegative reals is the semiring (R≥0,+, ·, 0, 1). Note that R≥0 is
commutative but not complete.

15

Chapter 1 Fundamental Notions and Structures

• The tropical (or min-plus) semiring (N∪ {∞},min,+,∞, 0) is commutative and com-
plete.

• The arctic (or max-plus) semiring (N ∪ {−∞,∞}, max,+,−∞, 0) where∞ is the
absorbing element of max and n +∞ = ∞ = ∞ + n for each n ∈ N ∪ {∞} is
commutative and complete.

• Let Σ be an alphabet. The semiring (P(Σ∗),∪, ·,;, {ǫ}), where · denotes the concate-
nation of languages as defined in Section 1.3, is called the semiring of formal languages

(over Σ). This semiring is complete but not commutative.

• Each bounded, distributive lattice (A,∨,∧,⊥,⊤) is a commutative, idempotent, and
locally finite semiring [DG00]. �

Using the distributivity law for complete semirings, the following helpful observation can
be made.

Observation 1.2.5. Let K be a complete semiring, let IA and IB be two countable index sets, and

let (ai | i ∈ IA) and (b j | j ∈ IB) be two families of elements in K. Then

∑
i∈IA

(
∑
j∈IB

ai · b j) =
∑
i∈IA

(ai ·
∑
j∈IB

b j) = (
∑
i∈IA

ai) · (
∑
j∈IB

b j) .

1.2.5 Multioperator Monoids

Now let us recall the definition of a multioperator monoid – the most general weight structure
we will use in this work to consider tree automata in a quantitative setting. It was originally
introduced by Kuich [Kui97, Kui00b] as a distributive Ω-monoid which is a generalization of
distributive F -magmas of Courcelle [Cou86]. Later, not necessarily distributive multioperator
monoids were studied in [SVF09] and [FSV12]. We will use this latter version in our work.

The idea of multioperator monoids is to generalize the multiplication of a semiring to
arbitrary algebra operations. Thus, to each tree position of rank n an n-ary operation can be
assigned. The obtained tree (or term) of operations then can be evaluated in the respective
algebra which results in a single value.

Let (K ,+, 0) be a commutative monoid and let n ∈ N. The n-ary constant zero function
0n ∈ Ops(n)(K) is defined by 0n(k1, . . . , kn) = 0 for every k1, . . . , kn ∈ K. Moreover, we say
that an operation f ∈ Ops(n)(K) is absorptive if for every k1, . . . , kn ∈ K , and i ∈ [n], the
equality ki = 0 implies f (k1, . . . , kn) = 0.

M-Monoids A multioperator monoid (for short: M-monoid) is a tuple (K ,+, 0,Ω) such that

(i) (K ,+, 0) is a commutative monoid,

(ii) Ω ⊆ Ops(K),

(iii) I DK ∈ Ω
(1) and 0n ∈ Ω

(n) for every n ∈ N, and

(iv) each operation ω ∈ Ω(n) is absorptive for every n ∈ N.

16

1.2 Algebraic Structures

We note that in [SVF09, FSV12] such an M-monoid was called absorptive. Even if, properly
speaking, an M-monoid is not a Σ-algebra as defined in this work (as we allow an arbitrary
number of operations), we will call it in later sections a weight algebra.

Now let (K ,+, 0,Ω) be an M-monoid. We say that K is complete if (K ,+, 0) is so. Moreover,
K is distributive if for every n ∈ N and operation ω ∈ Ω(n) the distributivity law holds, i.e.,

ω(k1, . . . , ki−1, k+ k′, ki+1, . . . , kn)

=ω(k1, . . . , ki−1, k, ki+1, . . . , kn) +ω(k1, . . . , ki−1, k′, ki+1, . . . , kn)

for every i ∈ [n] and k, k′, k1, . . . , ki−1, ki+1, . . . , kn ∈ K. Finally, a distributive M-monoid
(K ,+, 0,Ω) is called completely distributive if the distributivity law carries over to infinitary
summations, i.e., for each n ∈ N, ω ∈ Ω(n), j ∈ [n], k1, . . . , k j−1, k j+1, . . . , kn ∈ K , countable
index set I , and family (ai | i ∈ I) over K the equality

ω(k1, . . . , k j−1,
∑

i∈I ai , k j+1, . . . , kn) =
∑

i∈I ω(k1, . . . , k j−1, ai , k j+1, . . . , kn)

holds. This concept was introduced as complete DM-monoid in [Kui97].

Now let us consider some examples of M-monoids.

Example 1.2.6. The structure (N∪{∞},+, 0,Ω) is a complete M-monoid, where + is extended
to sum over countable index sets in the obvious way, Ω = {0n | n ∈ N} ∪ {minn | n ∈ N}, and
minn is the n-ary minimum function (both 0n and minn extended to N∪ {∞}). We note that
I DN∪{∞} =min1. �

Example 1.2.7. The M-monoid ({0,1},∨, 0,Ω), also denoted by B,2 is called the Boolean

M-monoid, where for each n ∈ N we have Ω(n) = {0n,∧n} with

∧n(k1, . . . , kn) = 1 ⇔ k1 = . . .= kn = 1

for every k1, . . . , kn ∈ {0,1}. We note that ∧1 = I D{0,1}. Clearly, ∨ can be extended to an
infinitary summation

∨
I : {0, 1}I → {0, 1} for each countable index set I such that B becomes

a complete M-monoid (letting
∨

i∈I ki = 1 if and only if ki = 1 for some i ∈ I). �

The M-monoids of the last two examples look very similar to strong bimonoids and semirings
we showed before. Indeed, each strong bimonoid (and, thus, each semiring) induces an
M-monoid which will become clear with the next example.

Example 1.2.8. In [FMV09, Definition 8.5] it is described how to build an M-monoid for
simulating a given semiring. The same procedure works for strong bimonoids:

Let (K ,+, ·, 0, 1) be a strong bimonoid. We have to simulate the multiplication · of K with
operations of the M-monoid. For this, we define for each rank n ∈ N and each element k ∈ K

the n-ary multiplication with k as the mapping muln,k : Kn→ K where we set

muln,k(k1, . . . , kn) = k1 · . . . · kn · k

2The reader might notice, that this denotation introduces an ambiguity. However, it will always be clear from
the context (and, indeed, not crucial) whether we mean the Boolean M-monoid or the Boolean semiring.

17

Chapter 1 Fundamental Notions and Structures

for every k1, . . . , kn ∈ K. Now we construct the M-monoid (K ,+, 0,Ω) by letting Ω(n) =

{muln,k | k ∈ K} for each n ∈ N. We note that 0n =muln,0 for each n ∈ N and I DK =mul1,1.
The M-monoid resulting from this construction for some strong bimonoid (or even semiring)

K is often denoted by M(K). We note that if K is a semiring, then M(K) is a distributive
M-monoid. Moreover, it can easily be checked by the reader that if K is a complete semiring,
then M(K) is completely distributive.

In [ÉK03, Example 1.1 and 1.2] two more possibilities to simulate semirings by M-monoids
are given. �

The following example shows that M-monoids can also be used for more complex calcula-
tions such as, e.g., a discounting function.

Example 1.2.9 (cf. [TO15, Example 2]). Let λ = (λi | i ∈ N+) be a family of elements
in R≥0 and let Re = R≥0 ∪ {−∞,∞}. Then we denote by Kλ

D I S C
the complete M-monoid

(Re , max,−∞,Ωλ
D I S C
), where max is extended to Re in the obvious way and

Ωλ
D I S C

= {ω(n)
a,λ | n ∈ N, a ∈ Re} ∪ {I DRe} .

For each n ∈ N and a, a1, . . . an ∈ Re we let

ω
(n)

a,λ(a1, . . . , an) = a+λ1 · a1 + . . .+λn · an,

where the commutative operations + and · on reals are extended to −∞ and∞ as follows:
We let for each a ∈ R≥0 ∪ {∞}

−∞+ a = −∞+−∞= −∞, ∞+ a =∞,

and
−∞· a = −∞·−∞= −∞, ∞· a =∞.

We note that 0n is given by ω
(n)

−∞,λ for each n ∈ N. It is easy to see that each operation of

Kλ
D I S C

is absorptive. �

Compressible M-monoids Now we want to recall some restrictions of M-monoids that go
beyond the usual limitations and, finally, allow us to define compressible M-monoids. Let
(K ,+, 0,Ω) be a complete M-monoid.

In [FMV09, Definition 3.1], the sum of two operationsω1,ω2 ∈ Ops(n)(K)was defined to be
the n-ary operation ω1+ω2 given by (ω1+ω2)(k1, . . . , kn) =ω1(k1, . . . , kn)+ω2(k1, . . . , kn)

for every k1, . . . , kn ∈ K . We extend this sum to an infinite summation as follows. Let n≥ 0, I

be a countable index set, and (ωi | i ∈ I) a family of operations in Ops(n)(K). We define the
operation
∑

i∈I ωi in Ops(n)(K) by letting

!∑
i∈I

ωi

�
(k1, . . . , kn) =
∑
i∈I

ωi(k1, . . . , kn) (1.1)

for every k1, . . . , kn ∈ K . We say that K is completely 1-sum closed if (
∑

i∈I ωi) ∈ Ω
(1) for every

countable index set I and family (ωi | i ∈ I) of operations in Ω(1).

18

1.2 Algebraic Structures

Moreover, we introduce a modified version of the composition closure defined in [FMV09,
Definition 3.1 and 4.3]. Let ω1 ∈ Ops(1)(K) and ω2 ∈ Ops(n)(K) for some n ∈ N. The
composition of ω1 and ω2 is the operation ω1 ◦ω2 ∈ Ops(n) defined by

(ω1 ◦ω2)(k1, . . . , kn) =ω1(ω2(k1, . . . , kn)) (1.2)

for every k1, . . . , kn ∈ K . We say that K is (1, n)-composition closed if ω1 ◦ω2 ∈ Ω
(n) for every

ω1 ∈ Ω
(1) and ω2 ∈ Ω

(n). Moreover, K is (1,∗)-composition closed if it is (1, n)-composition
closed for every n ∈ N .

The following statement follows easily from the corresponding definitions.

Lemma 1.2.10 ([FHV17, Observation 6.2.]). For each countable index set I , family (ωi | i ∈ I)

of operations in Ops(1)(K), n≥ 0, and ω ∈ Ops(n)(K), we have
∑

i∈I (ωi ◦ω) =
!∑

i∈I ωi

�
◦ω.

Proof. Let I be a countable index set, (ωi | i ∈ I) a family of operations in Ops(1)(K), n≥ 0,
and ω ∈ Ops(n)(K). Then

(
∑
i∈I

(ωi ◦ω))(k1, . . . , kn) =
∑
i∈I

((ωi ◦ω)(k1, . . . , kn)) (1.1)

=
∑
i∈I

!
ωi(ω(k1, . . . , kn))

�
(1.2)

= (
∑
i∈I

ωi)(ω(k1, . . . , kn)) (1.1)

= ((
∑
i∈I

ωi) ◦ω)(k1, . . . , kn) (1.2)

for every k1, . . . , kn ∈ K . �

Finally, we call K compressible if it is (1,∗)-composition closed, completely 1-sum closed,
and completely distributive.

Example 1.2.11. Each M-monoid associated with a complete semiring is compressible. The
fact that such an M-monoid is completely 1-sum closed and completely distributive can be
derived from the generalized distributivity law of the complete semiring. In particular, the
Boolean M-monoid is compressible. �

Matrices over unary operations Let (K ,+, 0) be a complete and commutative monoid and
let I be a finite set. Moreover, let V and W be (I × I)-matrices over Ops(1)(K). We define the
product V ·W of V and W by

(V ·W)i1,i2 =
∑
j∈I

Vi1, j ◦Wj,i2

for every i1, i2 ∈ I . Note that, although the set I is not ordered, the expression
∑

j∈I Vi1, j ◦Wj,i2

is well-defined, because the monoid (Ops(1)(K),+, 0) is commutative. Moreover, for every
n ∈ N we define the (I × I)-matrix W n over Ops(1)(K) by induction as follows: let W 0 = E

and W n =W ·W n−1 for every n ≥ 1, where E is the unit matrix over Ops(1)(K) defined by
Ei1,i2 = I DK if i1 = i2 and 01 otherwise for every i1, i2 ∈ I . Finally, we define W ∗ =

∑
n∈NW n,

where
!∑

n∈NW n
�

i1,i2
=
∑

n∈NW n
i1,i2

for every i1, i2 ∈ I .

19

Chapter 1 Fundamental Notions and Structures

1.2.6 Valuation Monoids

The concept of a valuation monoid goes back to [DM10, DM11] who introduced this weight
structure to generalize the product operation of a semiring. This extension was motivated
by the wish to model quantitative aspects of technical systems as, for example, the average
consumption of some resource. A suitable weight calculation for such applications often needs
a “global” consideration of weights which is not possible in semirings. Hence, [DM10, DM11]
used a valuation function to combine weights in a global manner. Later, in [DV13] valuation
monoids were extended to unital valuation monoids by using a unit element 1.

Properly speaking, a unital valuation monoid is not an algebra as defined above as it uses
infinitely many operations (to allow an arbitrary number of parameters for the valuation
function). However, this subtlety is immaterial in this work and, thus, we nevertheless speak
about a (weight) algebra.

Unital valuation monoid A unital valuation monoid is a tuple (K ,+, val, 0, 1) such that

1. (K ,+, 0) is a commutative monoid and

2. val: K∗→ K is a mapping such that

a) val(k) = k for each k ∈ K ,

b) val(k0k′) = 0 for every k, k′ ∈ K∗,

c) val(k1k′) = val(kk′) for every k, k′ ∈ K∗, and

d) val(ǫ) = 1.

Remark 1.2.12. We note that valuation monoids were introduced in [DM10, DM11] as a
structure (K ,+, val, 0)with a mapping val: K+→ K satisfying conditions 1, 2(a), and 2(b). As
shown in [DV13], each valuation monoid can easily be extended to a unital valuation monoid:
Using a new element 1 not in K , one can define a unital valuation monoid (K ′,+′, val′, 0, 1)
such that K ′ = K ∪ {1}, +′ extends + with k+′ 1 = k for each k ∈ K ′, and val′ extends val (cf.
[DV13, Example 1]). Ã

We refer the reader to [DV13] for a number of examples for unital valuation monoids. Let
us recall here that the valuation function can capture each binary operation and, thus, each
strong bimonoid can be simulated by a unital valuation monoid.

Example 1.2.13. Let (K ,+, ·, 0, 1) be a strong bimonoid. It is clear that K can be viewed as
a unital valuation monoid (K ,+, val, 0, 1), where for every n ∈ N and k1, . . . , kn ∈ K we let
val(k1 . . . kn) = k1 · . . . · kn (see [DV13]).

In particular, we consider the Boolean semiring B= ({0, 1},∨,∧, 0, 1), which can be simu-
lated by the Boolean unital valuation monoid B = ({0, 1},∨, val, 0, 1), where for every n ∈ N
and b1, . . . , bn ∈ {0, 1} we have val(b1 . . . bn) = b1 ∧ . . .∧ bn. �

Next we want to consider an example for a valuation mapping that provides more func-
tionality than the product operation of a strong bimonoid.

Example 1.2.14 ([DV13, Example 1 (2.)]). Unital valuation monoids can be used to compute
averages. For this consider Kavg = (R∪{−∞,∞}, sup, avg,−∞,∞) where sup denotes the

20

1.2 Algebraic Structures

least upper bound,

avg(a1 . . . an) =
1
n
·
∑

1≤i≤n

ai

for every n ≥ 1 and a1, . . . , an ∈ R ∪ {−∞}, and + and · are extended as usual to −∞.
Note that∞ is removed from each sequence by requirement 2(a) in the definition of unital
valuation monoids and, moreover, avg(ǫ) =∞. �

21

Chapter 1 Fundamental Notions and Structures

1.3 Languages and Weighted Languages

In this section we recall some fundamental notions from formal language theory. After
introducing the usual basics for words and languages, we consider two prominent language
classes: the class of recognizable languages as well as the class of context-free languages.
Moreover, we also recall the concept of a weighted language and a weighted automaton.

For a comprehensive introduction to formal language theory and weighted languages, we
refer the reader to [Sak09] and [DKV09].

1.3.1 Words, Languages, and Automata

Note that all of the following definitions can be extended straightforwardly to the case of
infinite alphabets. Thus, here we only consider a (finite) alphabet as introduced.

Words Let Σ be an alphabet. A word (over Σ) is a finite sequence of symbols from Σ, i.e, if
Σ = {a, b}, then aab is a word over Σ. The set of all words over Σ is denoted by Σ∗.

Let w= a1 . . . an for some n ∈ N and a1, . . . , an ∈Σ. The length of w, denoted by |w|, is n.
If n= 0, then we call w the empty word and denote it by ǫ. We set Σ+ =Σ∗ \ {ǫ}. For some
set Γ ⊆Σ, we define

|w|Γ = |{i ∈ [n] | ai ∈ Γ }|

and if Γ = {a} we briefly write |w|a. We let pos(w) = {1, . . . , |w|} denote the set of positions

of w. Moreover, for each i ∈ [n], the label of w at i, denoted by w(i), is ai. Given a word
v = b1 . . . bm for some m ∈ N and b1, . . . , bm ∈Σ, the concatenation of w and v, denoted by
w · v, is

w · v = a1 . . . an b1 . . . bm .

Often we simply write wv instead of w · v.

Remark 1.3.1. In the usual way, in this work we do not distinguish between the set of words
over Σ of length n and the Cartesian power Σn. Accordingly, we will identify (a1, . . . , an)

with a1 . . . an and () with ǫ. Clearly, Σ∗ =
⋃

n∈NΣ
n. Ã

Remark 1.3.2. It is quite common in formal language theory to consider words over some
alphabet Σ in an algebraic setting. Indeed, the structure (Σ∗, ·,ǫ) is a free monoid over Σ

[Wec92, Section 3.2, Example 1]. Thus, for each monoid B and mapping h: Σ → B there
is a unique homomorphism h′ : Σ∗→ B that extends h. In the further, we identify h and h′.
Moreover, for each L ⊆Σ∗ we let h(L) =

⋃
w∈L h(w).

Given an alphabet ∆, each mapping of the form h: Σ→∆ as well as its extension h′ : Σ∗→
∆∗ is called a relabeling. Ã

Partial orders on words Let Σ be an alphabet. In the following we will define two partial
orders on Σ∗: the prefix order and the lexicographic order.

Given two words v, w ∈ Σ∗, we let v ⊑ w if w = vu for some u ∈ Σ∗ and in this case we
call v a prefix of w.

Let ≤ be a partial order on Σ. Then the lexicographic order ≤lex on Σ∗ is defined as follows.
Given two words v, w ∈Σ∗, we let v ≤lex w if

22

1.3 Languages and Weighted Languages

• v ⊑ w or

• there are a, b ∈Σ with a < b and u, y, z ∈Σ∗ such that v = ua y and w= ubz.

Obviously, if ≤ is total, then ≤lex is total as well.

Formal languages Let Σ be an alphabet. A (formal) language (over Σ) is a set L ⊆Σ∗ of
words over Σ.

Let L, L′ ⊆Σ∗ be two languages. In addition to the usual set-theoretic operations L ∪ L′,
L ∩ L′, and L \ L′, we will use the following operations between languages: We let the
concatenation of L and L′, denoted by L · L′, be defined as L · L′ = {wv | w ∈ L, v ∈ L′}.
Note that we sometimes omit the operator · and briefly write LL′ instead. Moreover, we
can iterate the concatenation of languages by letting L0 = {ǫ}, Ln = L · Ln−1 for each n≥ 1,
L∗ =
⋃

i∈N L i , and L+ =
⋃

i∈N+
L i .

We note that formal languages are possibly infinite sets. To describe those sets yet in a finite
way, numerous language accepting or generating formalisms, such as automata, grammars,
logics, and many more, were established and investigated. Not only do they differ in their
functionality, but also in their expressiveness (i.e., in which languages they are able to
describe). In the following we want to recall some very prominent classes of languages
together with respectively one appropriate language formalism.

Recognizable languages

One of the most fundamental language classes in formal language theory is the class of
recognizable languages – the class of languages that can, among others, be generated by
regular grammars, expressed by regular expressions, defined by monadic second order logic,
or (which we will use here) accepted by finite-state automata.

Finite state automata Let Σ be an alphabet. A finite-state automaton over Σ (or a Σ-

automaton) is a tuple A= (Q,Q0,Q f , T) where

• Q is a finite set (its elements called states),

• Q0 ⊆Q and Q f ⊆Q (their elements called initial and final states, resp.), and

• T ⊆ (Q×Σ ×Q) (its elements called transitions).

For each transition τ = (q, a, q′) in T we let ⊢τ be the binary relation on the set Q ×Σ∗

such that for each w ∈Σ∗ we have

(q, aw) ⊢τ (q′, w) .

The computation relation of A is the binary relation ⊢=
⋃

τ∈T ⊢
τ. A computation of A for w is

a sequence

ζ0 ⊢
τ1 ζ1 · · · ⊢

τn ζn

23

Chapter 1 Fundamental Notions and Structures

such that n ∈ N, τ1, . . . ,τn ∈ T , ζ0, . . . ,ζn ∈Q×Σ∗ such that ζ0 = (w, q0) and ζn = (ǫ, q f) for
some q0 ∈Q0, q f ∈Q f , and ζi−1 ⊢

τi ζi for each i ∈ [n]. We denote the set of all computations
of A for w by ΘA(w). Then the language recognized by A, denoted by L(A), is the set

L(A) = {w ∈Σ∗ | ΘA(w) 6= ;}.

We say that a language L ⊆Σ∗ is Σ-recognizable if there is a Σ-automaton A with L(A) = L.
The class of all Σ-recognizable languages will be denoted by RE C(Σ).

Context-free languages

We proceed with a language class that includes all regular languages but is strictly greater than
RE C(Σ) – the class of context-free languages. In the following we use pushdown automata,
introduced by Schützenberger [Sch63], to describe this class. But we note that, as for the
recognizable languages, there are many ways to define context-free languages.

Pushdown automata Let Σ be an alphabet. A pushdown automaton over Σ (or a Σ-pda) is
a tuple A= (Q,Γ ,γ0,Q0,Q f , T) where

• Q is a finite set (its elements called states),

• Γ is an alphabet (called the pushdown alphabet),

• γ0 ∈ Γ (called the initial pushdown symbol),

• Q0 ⊆Q and Q f ⊆Q (their elements called initial and final states, resp.), and

• T ⊆Q× (Σ ∪ {ǫ})× Γ ×Q× Γ ∗ (its elements called transitions).

The semantics of a Σ-pda A= (Q,Γ ,γ0,Q0,Q f , T) is defined as follows. For each transition
τ= (q, a,γ, q′,ω) in T we let ⊢τ be the binary relation on the set Q×Σ∗ × Γ ∗ such that for
each w ∈Σ∗ and µ ∈ Γ ∗ we have

(q, aw,γµ) ⊢τ (q′, w,ωµ).

The computation relation ofA is the binary relation ⊢=
⋃

τ∈T ⊢
τ. Then the language recognized

by A, denoted by L(A), is the set

L(A) = {w ∈Σ∗ | (q0, w,γ0) ⊢
∗ (q f ,ǫ,µ) for some q0 ∈Q0, q f ∈Q f ,µ ∈ Γ ∗}.

We say that a language L ⊆Σ∗ is context-free (over Σ) if there is a Σ-pda A with L(A) = L.
The class of all context-free languages over Σ will be denoted by CF(Σ).

Other classes of languages

Obviously, there are more language classes than RE C(Σ) and CF(Σ). Two prominent exam-
ples, completing the Chomsky hierarchy, are the classes of context-sensitive languages and
recursively enumerable languages, recognized by linear bounded automata and Turing machines,
respectively.

24

1.3 Languages and Weighted Languages

Many language classes were defined by using automaton models with some additional
memory (similar to a pushdown automaton). Examples are counter automata [Gre69, VP75],
nested stack automata [Aho69], or iterated pushdown automata [AU, Mas74]. To unify these
approaches, several abstract automaton models with arbitrary storage were introduced – we
will give a survey in the introduction of Chapter 2.

1.3.2 Weighted Languages and Weighted Automata

In the previous section, a language classifies words in a Boolean way (i.e., either a word
belongs to the language or not). However, there is also a great interest in a finer graduation.
This can be obtained by assigning to each word a value from some algebra – such a mapping
is called a weighted language. Intuitively, one might think of some measures such as the word
length, a probability, or similar, a weighted language assigns to a word.

Indeed, the concept of weighted languages is known for a long time. Already in [CS63],
Chomsky and Schützenberger proposed to assign to each word generated by a grammar the
count of its ambiguity. Later, different weight structures such as semirings [Eil74, KS86] or
strong bimonoids [DSV10] were used to assign (and connect) weight values.

Here we recall weighted languages over unital valuation monoids [DM10, DM11, DV13].
As it was shown in Example 1.2.13, this weight structure subsumes the ones mentioned
before.

Thus, in the remaining Section 1.3 we let (K ,+, val, 0, 1) denote an arbitrary unital valuation
monoid.

Weighted languages Let Σ be an alphabet. A (K-)weighted language (over Σ) is a mapping
of the form s : Σ∗→ K . We denote the set of all such mappings by K〈〈Σ∗〉〉.

Let s ∈ K〈〈Σ∗〉〉. The support of s, denoted by supp(s), is defined as supp(s) = {w ∈ Σ∗ |
s(w) 6= 0}.

Now let s, s′ ∈ K〈〈Σ∗〉〉 and L ⊆Σ∗. We define the weighted language (s ∩ L) ∈ K〈〈Σ∗〉〉 for
each w ∈Σ∗ by

(s ∩ L)(w) =

¨
s(w) if w ∈ L, and

0 otherwise.

Moreover, the sum of s and s′, denoted as s+s′, is the weighted language given by (s+s′)(w) =

s(w) + s′(w) for each w ∈Σ∗.

Remark 1.3.3. While usually the domain of a weighted language is a finite alphabet, in
Chapter 6 we will use mappings of the form s : D∗ → K for some non-empty but possibly
infinite set D. As the concepts and operations defined above carry over easily, we will call
those mappings also weighted languages and use the introduced notions for them as well. Ã

Recognizable weighted languages

Just as its unweighted counterpart, a recognizable weighted language can be described by a
language accepting formalism – a weighted automaton. Weighted automata, going back to
[Sch61, CS63], are finite-state automata where, additionally, each transition carries a weight
from some weight structure. To assign a value to some input word w, this weight structure

25

Chapter 1 Fundamental Notions and Structures

needs two operations: one operation to connect all weights occurring in a computation of
the automaton for w and one operation to “sum” over the weights of all computations for w.

As weighted languages, weighted automata were defined over several weight structures
such as semirings [Eil74, KS86] or strong bimonoids [DSV10]. Here, we stay in the setting
of unital valuation monoids and recall unital valuation monoid-weighted automata [DM10,
DM11, DV13].

Weighted finite-state automata Let Σ be an alphabet and let K be a unital valuation
monoid. A weighted finite-state automaton over Σ and K (or a (Σ, K)-automaton) is a tuple
A= (Q,Q0,Q f , T, wt) where

• (Q,Q0,Q f , T) is a Σ-automaton (called the underlying Σ-automaton) and

• wt : T → K (called the weight assignment).

Let w ∈Σ∗. The notion of a computation of A for w and the set ΘA(w) of all computations
of A for w carry over from As underlying Σ-automaton. Now let θ = ζ0 ⊢

τ1 . . . ⊢τn ζn be a
computation in ΘA(w) for some n ∈ N, ζ0, . . . ,ζn ∈ Q ×Σ∗, and τ1, . . . ,τn ∈ T . We define
the value wt(θ) ∈ K , called the weight of θ , by

wt(θ) = val(wt(τ1) . . . wt(τn)) .

The weighted language recognized by A is the K-weighted language JAK: Σ∗→ K defined for
each w ∈Σ∗ by

JAK(w) =
∑

θ∈ΘA(w)

wt(θ) .

A weighted language r : Σ∗→ K is (Σ, K)-recognizable, if there is a (Σ, K)-automaton A with
JAK= r. We denote the class of all (Σ, K)-recognizable weighted languages by RE C(Σ, K).

More classes of weighted languages

Weighted language acceptors were not only introduced for recognizable weighted languages
but for several classes of weighted languages. Weighted pushdown automata [KS86] recognize
semiring-weighted context-free languages and were later extended to weighted pushdown

automata over unital valuation monoids [DV13]. In [RT19], the concept of weighted context-
free grammars over bimonoids (where, in contrast to strong bimonoids, the sum is not
necessarily commutative) was introduced. Also in [KS86], weighted counter automata and
a first version of weighted automata with storage (using matrices of rewrite operations to
represent storage types) over commutative semirings were introduced. In [HV15, HDV19],
the classes of languages recognizable by weighted automata with storage over unital valuation
monoids were considered.

26

1.4 Tree Languages and Weighted Tree Languages

1.4 Tree Languages and Weighted Tree Languages

This section recalls some basics from the theory of formal tree languages and weighted tree
languages. After considering the definition of a tree as well as several tree functions, we
will address tree languages. As in the word case, we consider two particular classes of tree
languages: the recognizable tree languages and the context-free tree languages. Moreover,
we recall some basic definitions for tree homomorphisms.

We proceed similarly in the weighted setting: after introducing weighted tree languages,
we recall weighted tree automata, recognizable step functions and, finally, weighted tree
homomorphisms.

1.4.1 Trees, Tree Languages, and Tree Automata

Trees Let Σ be a ranked alphabet and let H be a set. The set of trees (over Σ and indexed by

H), denoted by TΣ(H), is the smallest set T such that

• H ⊆ T and

• σ(ξ1, . . . ,ξn) ∈ T for every n ∈ N, σ ∈Σ(n), and ξ1, . . . ,ξn ∈ T .

If H = ;, then we simply write TΣ instead of TΣ(H). We usually denote the tree α() by α

for each α ∈Σ(0). Moreover, for each n ∈ N, ξ ∈ TΣ(H), and γ ∈Σ(1) the tree γ(. . . (γ(ξ))),
where γ occurs n-times consecutive, is abbreviated as γn(ξ).

Example 1.4.1. Consider the ranked alphabet Σ = {σ(2),γ(1),α(0)} and the set H = {x}. Then

ξ= σ(α,γ2(x))

is a tree over Σ indexed by H. In this work we often use a graphical representation to depict
a tree, i.e., the graph

σ

α γ

γ

x

represents the tree ξ. �

Σ-term algebras In universal algebra, TΣ(H) is an important example of a Σ-algebra: a
Σ-term algebra is given by the structure (TΣ(H), ·TΣ) where ·TΣ = (·σ | σ ∈Σ) and, for each

n ∈ N, σ ∈Σ(n), and ξ1, . . . ,ξn ∈ TΣ(H), we let ·σ(ξ1, . . . ,ξn) = σ(ξ1, . . . ,ξn).
It is well known that for each Σ-algebra A and mapping h: H → A there is a unique

homomorphism h′ : TΣ(H)→ A that extends h (cf. [Wec92, Theorem 4]).

27

Chapter 1 Fundamental Notions and Structures

Positions, height, and size Let Σ be a ranked alphabet, H a set, and ξ ∈ TΣ(H). We define
the set of positions pos(ξ) ⊆ N∗ of ξ and the height ht(ξ) ∈ N of ξ by structural induction on
ξ as follows. For every x ∈ H we let

pos(x) = {ǫ} and ht(x) = 0 .

For each α ∈Σ(0) we let

pos(α) = {ǫ} and ht(α) = 1 .

Finally, if ξ= σ(ξ1, . . . ,ξn) for some n≥ 1, σ ∈Σ(n), and ξ1, . . . ,ξn ∈ TΣ(H), we let

pos(ξ) = {ǫ} ∪ {iv | i ∈ [n], v ∈ pos(ξi)} and ht(ξ) = 1+max{ht(ξi) | i ∈ [n]} .

We abbreviate |pos(ξ)| by |ξ| and call it the size of ξ.
Sometimes we call an element v ∈ pos(ξ) also a node of ξ and the root of ξ refers to the

node ǫ. Moreover, each node v ∈ pos(ξ) with v1 /∈ pos(ξ) is called a leaf of ξ.

Subtrees, labels, and symbol occurrences LetΣ be a ranked alphabet, H a set, ξ ∈ TΣ(H),
and v ∈ pos(ξ). The subtree of ξ at position v, denoted by ξ|v, and the root symbol of ξ,
denoted by root(ξ), are defined as follows. If ξ= x for some x ∈ H, then pos(x) = {ǫ} and
we let

x |ǫ = x and root(x) = x .

Now let ξ = σ(ξ1, . . . ,ξn) for some n ∈ N, σ ∈Σ(n), and ξ1, . . . ,ξn ∈ TΣ(H). Then we define

ξ|ǫ = ξ and root(ξ) = σ .

Moreover, if v 6= ǫ, let i ∈ [n] and v′ ∈ N∗ such that v = iv′. Then

ξ|iv′ = ξi |v′ .

We set sub(ξ) = {ξ|v | v ∈ pos(ξ)} and call each ζ ∈ sub(ξ) a subtree of ξ. Moreover, we let
the label of ξ at position v, denoted by ξ(v), be defined as ξ(v) = root(ξ|v).

For every subset A⊆Σ ∪H we let posA(ξ) = {v ∈ pos(ξ) | ξ(v) ∈ A} and |ξ|A = |posA(ξ)|.
We abbreviate pos{a}(ξ) by posa(ξ) and |ξ|{a} by |ξ|a for each a ∈Σ ∪H.

Paths and tree traversal Let Σ be a ranked alphabet, H a set, and ξ ∈ TΣ(H). Moreover,
let n ∈ N and v1, . . . , vn ∈ pos(ξ). We say that v1 . . . vn is a path from v1 to vn if there are
l1, . . . , ln−1 ∈ N such that vi li = vi+1 for each i ∈ [n− 1]. If, moreover, v1 = ǫ and vn is a leaf,
then we call v1 . . . vn a path of ξ. Let v1 . . . vn be a path of ξ. The sequence ξ(v1) . . .ξ(vn) is
called a path word of ξ. The set of all path words from the root to some leaf node of ξ is
denoted by paths(ξ).

Sometimes we need to fix an order in which all nodes of a tree are visited. For this, we use
a linear order on the positions of the tree with the following intuition: at each position v, first
the subtrees are visited from left to right before visiting v itself. Formally, the depth-first post-

order3, denoted by ⊑dp⊆ pos(ξ)2, is defined as follows. Given two positions v1, v2 ∈ pos(ξ),
we let v1 ⊑dp v2 if

3We note that in the literature this order is often referred to as depth-first left-to-right traversal. However, since
this term does not reflect that subtrees are visited first, we use another notation here.

28

1.4 Tree Languages and Weighted Tree Languages

• v2 ⊑ v1 or

• there are u ∈ pos(ξ), i, j ∈ N with i < j, and w1, w2 ∈ N
∗ such that v1 = uiw1 and

v2 = u jw2.

Yield Let Σ be a ranked alphabet, H a set, and ξ ∈ TΣ(H). The yield of ξ, denoted by
yd(ξ) ∈ (Σ(0) ∪H)∗, is inductively defined as follows. If ξ ∈Σ(0) ∪H, then

yd(ξ) = ξ.

Now let ξ= σ(ξ1, . . . ,ξn) for some n≥ 1, σ ∈Σ(n), and ξ1, . . . ,ξn ∈ TΣ(H). Then

yd(ξ) = yd(ξ1) . . . yd(ξn).

Finally, let T ⊆ TΣ . We set yd(T) =
⋃

ξ∈T yd(ξ) and call it the yield language of T.

Variables, contexts, and composition We fix a countable set X = {x1, x2, . . .} of variables

and let Xn = {x1, . . . , xn} for each n ∈ N. When considering X1 we sometimes abbreviate x1

by x . We assume that X is disjoint from each ranked alphabet considered in this work. A tree
ξ ∈ TΣ(Xn) is called linear if, for each i ∈ [n], the variable x i occurs at most once in ξ.

Now let H be a set and ξ ∈ TΣ(H ∪ X1). We say that ξ is a context if there is exactly one
position ρ ∈ pos(ξ) with ξ(ρ) = x1. We denote the set of all such contexts over Σ and H by
CΣ(H, X1). If H = ;, we write CΣ(X1) instead. The composition of a context ξ ∈ CΣ(H, X1)

and a tree ζ ∈ TΣ(H ∪ X), denoted by ξ · ζ, replaces x1 in ξ by ζ. Formally, ξ · ζ denotes the
tree ξ′ ∈ TΣ(H ∪ X) such that

pos(ξ′) = pos(ξ)∪ρ · pos(ζ)

and, for each ρ′ ∈ pos(ξ′),

ξ′(ρ′) =

¨
ξ(ρ′) if ρ 6⊑ ρ′

ζ(ρ′′) if ρ′ = ρρ′′ for some ρ′′ ∈ N∗,

where ρ denotes the position of x1 in ξ.
The notion of replacing a variable by a tree can be enhanced from contexts to arbitrary

trees from TΣ(X): For each ξ ∈ TΣ(X), k ∈ N, and ξ1, . . . ,ξk ∈ TΣ(X) we denote by

ξ[ξ1, . . . ,ξk]

the tree ζ that is obtained from ξ by replacing, for each i ∈ [k], each occurrence of x i by ξi .

Tree languages and tree transformations For every ranked alphabet Σ, each subset of
TΣ is called a (formal) tree language (over Σ).

Let Σ and ∆ be two ranked alphabets. A tree transformation from Σ to ∆ is a mapping
h: TΣ → P(T∆).

29

Chapter 1 Fundamental Notions and Structures

Example 1.4.2. Consider the ranked alphabet Σ = {σ(2),α(0),β (0)}. We let TE V E N ⊆ TΣ denote
the tree language consisting of trees ξ of the form

σ

z1 σ

z2 ...
σ

zn−1 zn

where n≥ 2, zi ∈ {α,β} for each i ∈ [n], and |ξ|α is even. For example, the tree

ζ=

σ

α σ

α β

is an element of TE V E N . �

Example 1.4.3. Consider again the ranked alphabet Σ = {σ(2),α(0),β (0)}. We let Tαβ ⊆ TΣ
denote the tree language consisting of trees of the form

ξ=

σ

z1 σ

z2 ...
σ

zn−1 zn

where n≥ 2, zi ∈ {α,β} for each i ∈ [n], and |ξ|α = |ξ|β . For example, the tree

σ

α σ

β σ

β α

is an element of Tαβ whereas the tree ζ ∈ TE V E N from Example 1.4.2 is not an element of
Tαβ . �

Convention. At several positions of this work we consider a tree ξ ∈ TΣ of the form ξ =

σ(ξ1, . . . ,ξn) for some n ∈ N, σ ∈Σ(n), and ξ1, . . . ,ξn ∈ TΣ . In the further, we will often avoid

the quantifications for n, σ, and ξ1, . . . ,ξn and assume that they are of the above form.

As in the string case, also tree languages can be described by various formalism as, e.g.,
grammars, automata, and logics, that may differ in their expressiveness.

30

1.4 Tree Languages and Weighted Tree Languages

Recognizable Tree Languages

Here we recall the class of tree languages that is recognized by tree automata which go back
to Thatcher and Wright [TW68] as well as Doner [Don70]. Recognizable tree languages can
be understood as a generalization of the recognizable languages to the tree case.

Tree automata Let Σ be a ranked alphabet. A tree automaton over Σ (or a Σ-ta) is a tuple
A= (Q, F,δ) where

• Q is a finite set (its elements called states) such that Q ∩Σ = ;,

• F ⊆Q (its elements called final states), and

• δ = (δσ | σ ∈ Σ) is a family of relations δσ ⊆ Qn ×Q for each n ∈ N and σ ∈ Σ(n)

(called the transition relations).

Now let ξ ∈ TΣ . We say that each mapping κ: pos(ξ)→Q is a run (of A on ξ). Moreover,
a run κ is valid if

(κ(v1) . . .κ(vn),κ(v)) ∈ δξ(v)

for each v ∈ pos(ξ) and n = rk(ξ(v)). We denote the set of all runs of A on ξ by RunA(ξ)

and the set of all valid runs of A on ξ by Runv
A
(ξ). Now let κ ∈ RunA(ξ) and v ∈ pos(ξ). The

subrun of κ at position v, denoted by κ|v : pos(ξ|v)→Q, is defined by

κ|v(v
′) = κ(vv′)

for each v′ ∈ pos(ξ|v). Obviously, if κ ∈ Runv
A
(ξ), then κ|v ∈ Runv

A
(ξ|v).

The tree language recognized by A is the set

L(A) = {ξ ∈ TΣ | ∃κ ∈ Runv
A
(ξ): κ(ǫ) ∈ F}.

A tree language L ⊆ TΣ is called Σ-recognizable if there is a Σ-ta A such that L(A) = L. We
denote the class of all Σ-recognizable tree languages by RT(Σ).

We call a Σ-ta A total deterministic (or a Σ-dta) if δσ is a function of type Qk→Q for each
k ∈ N and σ ∈ Σ(k). We say that a tree language L ⊆ TΣ is deterministically Σ-recognizable

if there is a Σ-dta A such that L(A) = L. It is well known that Σ-dta and Σ-ta are equally
expressive:

Lemma 1.4.4 ([TW68, Theorem 1]). Let L ⊆ TΣ . Then L is deterministically Σ-recognizable

if and only if it is Σ-recognizable.

Example 1.4.5. Recall the ranked alphabet Σ = {σ(2),α(0),β (0)} and the tree language TE V E N

from Example 1.4.2. This tree language can be recognized by the Σ-ta AE V E N = (Q, F,δ)
where

Q = {qα, qβ , qe, qo}, F = {qe},

and
δα = {(ǫ, qα)}, δβ = {(ǫ, qβ)},

31

Chapter 1 Fundamental Notions and Structures

δσ ={(qαqα, qe), (qβqβ , qe), (qαqo, qe), (qβqe, qe)}

∪{(qαqβ , qo), (qβqα, qo), (qαqe, qo), (qβqo, qo)}.

Intuitively, AE V E N remembers with its states qe and qo whether an even or odd number of α’s
has already been processed: each occurrence of the symbol α forces a switch between qe and
qo in the state control. �

The tree language in the above example is Σ-recognizable as not the concrete number of α’s
in a tree is important but only the fact whether there occurs an even or an odd number. This
is a finite information that can be processed with the states of a finite-state tree automaton. In
contrast, to recognize the tree language Tαβ from Example 1.4.3, the concrete number of α’s
and β ’s has to be handled in order to compute the difference. This cannot be accomplished
by a tree automaton which can be shown by a pumping argument [Eng15, Theorem 3.71].
Thus, to recognize this tree language, one needs more expressive tree acceptors. Indeed, we
will show in the later Example 2.2.1 that a tree automaton enriched by a counter storage type
is able to recognize Tαβ .

Remark 1.4.6. We note that there are tree languages with the same number of α’s and β ’s
in their yield which are Σ-recognizable. However, the trees of such a tree language have a
particular structure (different from the trees in Tαβ) as they, intuitively, encode derivation
trees of a context-free grammar. This connection is substantiated by a prominent theorem of
[Tha67], stating that a language L is context-free if and only if it is the yield language of a
recognizable tree language T . Ã

Context-Free Tree Languages

Similar to the recognizable languages, also the context-free languages have been generalized
from the word to the tree case. The class of context-free tree languages goes back to Rounds
[Rou69] who introduced context-free tree grammars.

Here, again we recall an automaton model to describe context-free tree languages: push-

down tree automata. This formalism was introduced by Guessarian [Gue83]. However, to
smooth the ways to later results of this work, we will show here an equivalent model of
[FK00]. These pushdown tree automata can be seen as a variant of Guessarian’s automata,
using a string pushdown instead of a tree pushdown and accepting with empty pushdown
storage. It was already shown in [Gue83] that both models are equally expressive.

Pushdown tree automata Let Σ be a ranked alphabet. A pushdown tree automaton over Σ

(or Σ-pta) is a tuple A= (Q,Γ , q0,γ0, T) where

• Q is a finite set (its elements called states) such that Q ∩Σ = ;,

• Γ = Γ0 ∪ Γ1 is an alphabet such that Γ0 6= ; and Γ0 and Γ1 are disjoint (called the
pushdown alphabet),

• q0 ∈Q (called the initial state),

• γ0 ∈ Γ0 (called the initial pushdown symbol), and

32

1.4 Tree Languages and Weighted Tree Languages

• T is a finite and non-empty set (its elements called transitions) such that each transition
has one of the following forms:

q(α,γ)→ α (1)

q(σ(x1, . . . , xn),δ)→ σ(q1(x1,π1), . . . , qn(xn,πn)) (2)

where α ∈ Σ(0), γ ∈ Γ0, n ≥ 1, q, q1, . . . , qn ∈ Q, σ ∈ Σ(n), δ ∈ Γ1, and π1, . . . ,πn ∈
Γ ∗1Γ0 ∪ Γ

∗
1 (called read transitions), or one of the following forms:

q(x ,γ)→ q′(x ,π1) (3)

q(x ,δ)→ q′(x ,π2) (4)

where q, q′ ∈Q, γ ∈ Γ0, δ ∈ Γ1, π1 ∈ Γ
∗
1Γ0, and π2 ∈ Γ

∗
1Γ0 ∪ Γ

∗
1 (called ǫ-transitions).

The semantics of a Σ-pta A= (Q,Γ , q0,γ0, T) is defined as follows. We denote by ID the set
Q× TΣ × Γ

∗
1Γ0. For each transition τ in T we let ⊢τ be the binary relation on the set TΣ(ID)

such that for each ζ1,ζ2 ∈ TΣ(ID) we have

ζ1 ⊢
τ ζ2

if there are ζ̂ ∈ CΣ(ID, X1), ζ̂1, ζ̂2 ∈ TΣ(ID) such that ζ1 = ζ̂ · ζ̂1 and ζ2 = ζ̂ · ζ̂2, and one of
the following conditions holds:

• τ= q(α,γ)→ α is a read transition of form (1), ζ̂1 = (q,α,γ), and ζ̂2 = α,

• τ = q(σ(x1, . . . , xn),δ) → σ(q1(x1,π1), . . . , qn(xn,πn)) is a read transition of form
(2), ζ̂1 = (q,σ(ξ1, . . . ,ξn),δw) for some ξ1, . . . ,ξn ∈ TΣ and w ∈ Γ ∗1Γ0, and ζ̂2 =

σ((q1,ξ1, π̄1), . . . , (qn,ξn, π̄n)), where π̄i = πiw if πi ∈ Γ
∗
1 and π̄i = πi otherwise for

each i ∈ [n],

• τ = q(x ,γ)→ q′(x ,π) is an ǫ-transition of form (3), ζ̂1 = (q,ξ,γ) for some ξ ∈ TΣ ,
and ζ̂2 = (q

′,ξ,π),

• τ= q(x ,δ)→ q′(x ,π) is an ǫ-transition of form (4), ζ̂1 = (q,ξ,δw) for some ξ ∈ TΣ
and w ∈ Γ ∗1Γ0, and ζ̂2 = (q

′,ξ, π̄) where π̄= πw if π ∈ Γ ∗1 and π̄= π otherwise.

The computation relation of A is the binary relation ⊢A=
⋃

τ∈T ⊢
τ. Then the language

recognized by A, denoted by L(A), is the set

L(A) = {ξ ∈ TΣ | (q0,ξ,γ0) ⊢
∗
A
ξ}.

We say that a tree language L ⊆ TΣ is context-free (over Σ) if there is a Σ-pta A with L(A) = L.
The class of all context-free tree languages over Σ will be denoted by CFT(Σ).

33

Chapter 1 Fundamental Notions and Structures

More Classes of Tree Languages

Besides RT(Σ) and CFT(Σ), more classes of tree languages were considered in the literature.
One example is the class of tree languages generated by tree adjoining grammars [JLT75, JS97].
It was shown in [KR10, GO15] that this class corresponds to the class of tree languages
generated by linear monadic context-free tree grammars which, in turn, is recognized by a
instance of our linear weighted tree automata with storage from Chapter 4 (as stated in
Corollary 4.1.5).

In [Eng86, EV86] very general classes of tree languages were defined by introducing regular

tree grammars with storage.

1.4.2 Tree Homomorphisms

Here we recall the notion of a tree homomorphism and mention some particular tree homo-
morphisms we will use in this work.

Tree homomorphisms Let Σ and ∆ be ranked alphabets. A mapping h: Σ→ T∆(X), where
h(σ) ∈ T∆(Xn) for each n ∈ N and σ ∈Σ(n), is called a tree homomorphism. In the usual way,
h can be uniquely extended to a mapping h′ : TΣ(X)→ T∆(X) by letting h′(x i) = x i for each
x i ∈ X and, for each n ∈ N, σ ∈Σ(n), and ξ1, . . . ,ξn ∈ TΣ(X),

h′(σ(ξ1, . . . ,ξn)) = h(σ)[h′(ξ1), . . . , h′(ξn)] .

In the further we identify h and h′. Moreover, when we consider trees without variables, we
sometimes write h: TΣ → T∆.

Particular tree homomorphisms Let h: TΣ(X)→ T∆(X) be a tree homomorphism. We say
that h is

• linear if h(σ) is linear and

• alphabetic if ht(h(σ))≤ 1

for each σ ∈Σ. Moreover, h is a relabeling if, for each n ∈ N and σ ∈Σ(n),

h(σ) = δ(x1, . . . , xn)

for some δ ∈ ∆(n). Finally, h is elementary if there are n, k ∈ N, σ ∈ Σ(n), δ1 ∈ ∆
(n−k+1),

δ2 ∈∆
(k) with δ1,δ2 /∈Σ, and l ∈ [n− k+ 1] such that

h(σ) = δ1(x1, . . . , x l−1,δ2(x l , . . . , x l+k−1), x l+k, . . . , xn)

and h(γ) = γ(x1, . . . , xm) for each m ∈ N, γ ∈Σ(m) \ {σ}.

Now let us recall a decomposition of linear tree homomorphisms that will be useful in later
parts of this work:

Lemma 1.4.7 ([AL80, Lemma 10]). Let h: TΣ(X)→ T∆(X) be a linear tree homomorphism.

There are a k ∈ N and tree homomorphisms f1, . . . , fk such that h= fk ◦ . . . ◦ f1 and, for each

i ∈ [k], fi is either linear and alphabetic or elementary.

34

1.4 Tree Languages and Weighted Tree Languages

1.4.3 Weighted Tree Languages and Weighted Tree Automata

As in the word case, also tree languages have been investigated in a quantitative setting:
instead of simply accepting or rejecting a tree as an element of a tree language, a weighted
tree language assigns to each tree a value (such as, e.g., a probability or the number of
occurrences of some pattern in the tree). And again, weighted tree languages were stud-
ied for a plenty of weight algebras – for instance, fields [BR82], semirings [AB87, ÉK03],
strong bimonoids [Rad10], multioperator monoids [Kui97, SVF09, FMV09], or tree valuation
monoids [DGMM11].

Here, we will first recall K-weighted tree languages for some arbitrary set K . We will see
that K can be the carrier set of different algebras such as semirings or M-monoids. Afterwards,
we will step back to semirings when introducing weighted tree automata and recognizable
step functions in order to prepare the concepts used in Chapter 5.

Weighted tree languages Let Σ be a ranked alphabet and let K be a set. We denote the set
of all mappings of the form r : TΣ(X)→ K by K〈〈TΣ(X)〉〉. Each element r ∈ K〈〈TΣ〉〉 is called a
(K-)weighted tree language (over Σ).

Convention. When considering a weight structure as, e.g., a multioperator monoid Kex =

(K ,+, 0,Ω), it may be the case that the identifier Kex of this structure differs for reasons of clarity

from its carrier set K. However, in this case we assume that Kex stands for K and, thus, allow to

define weighted tree languages of the form r : TΣ → Kex.

Example 1.4.8. Let Σ = {σ(2),α(0)} be a ranked alphabet. Moreover, consider the semiring
(P({σ,α}∗),∪, ·,;, {ǫ}) of formal languages over {σ,α}.

We define the weighted tree language rpaths : TΣ → P({σ,α}∗) by letting

rpaths(ξ) = {σn . . .σ1 | n ∈ N,σ1, . . .σn ∈Σ,σ1 . . .σn ∈ paths(ξ)}

for each ξ ∈ TΣ . Thus, intuitively, rpaths maps each tree to the set of its inverted paths words,
i.e., path words read from right to left. For example,

rpaths

σ

α σ

α α

= {ασ,ασσ} .

�

Example 1.4.9. Recall the tree language TE V E N ⊆ TΣ from Example 1.4.2 over the ranked
alphabet Σ = {σ(2),α(0),β (0)}. Moreover, let N∞+

−
= N∪ {−∞,∞} and consider the arctic

semiring (N∞+
−
, max,+,−∞, 0).

We define the weighted tree language rE,Y D : TΣ → N∞+
−

by letting

rE,Y D(ξ) =

¨
|ξ|α if ξ ∈ TE V E N

−∞ otherwise

35

Chapter 1 Fundamental Notions and Structures

for each ξ ∈ TΣ . Thus, rE,Y D maps each tree in TE V E N to the number of its positions labeled
by α, e.g.,

rE,Y D

σ

α σ

α β

= 2 ,

and all other trees to −∞. �

Example 1.4.10. Recall the tree language Tαβ ⊆ TΣ from Example 1.4.3 over the ranked
alphabet Σ = {σ(2),α(0),β (0)}, Moreover, let Re = R≥0 ∪ {−∞,∞} and consider the dis-
counting M-monoid Kλ

D I S C
= (Re ,max,−∞,Ωλ

D I S C
) from Example 1.2.9 for λ= (λi | i ∈ N+)

with λi = 0.5i−1 for each i ∈ N+.
We define the weighted tree language rD I S C : TΣ → Kλ

D I S C
as follows. For each ξ ∈ TΣ with

yd(ξ) = z1 . . . zn for some n ∈ N, z1, . . . , zn ∈Σ
(0), we let

rD I S C(ξ) =

¨
λ1 · z̃1 +λ2 · z̃2 + . . .+λn · z̃n if ξ ∈ Tαβ
−∞ otherwise,

where for each i ∈ [n]

z̃ i =

¨
1 if zi = β

2 if zi = α
.

Intuitively, this weighted tree language sorts trees of the same size regarding their yields: the
more α’s occur in the beginning of the yield, the higher the value a tree gets by rD I S C .

For example, we obtain

rD I S C

σ

α σ

α σ

β β

= 3.375 > 3.125= rD I S C

σ

α σ

β σ

α β

�

Now we will show how the usual functions on tree languages are defined in the weighted
setting. For this, we need certain operations of an algebra. Thus, in the following we will
assume semirings as weight structure.

Convention. In the remaining section, we let (K ,+, ·, 0, 1) denote an arbitrary semiring.

Characteristic weighted tree languages and support For each L ⊆ TΣ we define the
characteristic weighted tree language ✶L : TΣ → K by letting ✶L(ξ) = 1 if ξ ∈ L and 0 otherwise.
We let

supp(r) = {ξ ∈ TΣ | r(ξ) 6= 0}.

Obviously, supp(1L) = L for each L ⊆ TΣ .

36

1.4 Tree Languages and Weighted Tree Languages

Combining weighted tree languages Now let r, s ∈ K〈〈TΣ〉〉. During this work we will use
the following functions on weighted tree languages.

The sum r + s and the Hadamard product r ⊙ s are defined pointwise for each ξ ∈ TΣ as

(r + s)(ξ) = r(ξ) + s(ξ) and (r ⊙ s)(ξ) = r(ξ) · s(ξ)

and, thus, constitute the weighted versions of union and intersection of tree languages.
Moreover, let K be complete and let (si | i ∈ I) be a family of weighted tree languages from
K〈〈TΣ〉〉 for some countable index set I . The sum of (si | i ∈ I), denoted by

∑
i∈I si, is the

weighted tree language in K〈〈Σ∗〉〉 defined for each ξ ∈ TΣ by

(
∑

i∈I
si)(ξ) =
∑

i∈I
si(ξ) .

Obviously, if I is finite, say I = {1, . . . , n}, then
∑

i∈I si = s1 + . . .+ sn.
For an arbitrary semiring K and each a ∈ K, we denote by (a · r)(ξ) = a · r(ξ) and

(r · a)(ξ) = r(ξ) · a the scalar left multiplication and the scalar right multiplication of a and r,
respectively.

Let K be complete, let h: TΣ → P(T∆) be a tree transformation, and let r ∈ K〈〈T∆〉〉. We let
h ; r denote the composition of h and r, defined as the weighted tree language in K〈〈T∆〉〉 such
that

(h ; r)(ξ) =
∑

ζ∈h(ξ)

r(ζ)

for each ξ ∈ TΣ .

Monomials A weighted tree language s ∈ K〈〈TΣ〉〉 is called a monomial if supp(s) is the
empty set or a singleton. If supp(s) ⊆ {ξ} for some ξ ∈ TΣ , then we also write s(ξ).ξ instead
of s. We denote the set of all monomials in K〈〈TΣ〉〉 by K[TΣ].

Remark 1.4.11. We note that the above functions supp, +,
∑

i∈I si, ;, and the concept of
monomials only depend on the commutative monoid (K ,+, 0) of (K ,+, ·, 0, 1). Thus, we can
easily transfer these notions to the case of M-monoids respectively complete M-monoids. Ã

Recognizable Weighted Tree Languages

Just like weighted automata extend finite-state automata to the quantitative setting, we can
obtain from tree automata a quantitative tree automaton model by assigning weights to
their transitions. Consequently, we obtain weighted tree automata which, similar to weighted
tree languages, were studied for several weight algebras and are used to describe recogniz-
able weighted tree languages – e.g., for fields [BR82], semirings [AB87, ÉK03], strong bi-
monoids [Rad10], multioperator monoids [Kui97, SVF09, FMV09], or tree valuation monoids
[DGMM11].

Here we recall semiring-weighted tree automata [AB87, FV09]. However, note that in
Section 2.2.1 we obtain M-monoid-weighted tree automata as in [FSV12] as a particular
instance of weighted tree automata with storage.

37

Chapter 1 Fundamental Notions and Structures

Weighted tree automata Let Σ be a ranked alphabet and let K be a semiring. A weighted

tree automaton over Σ and K (or a (Σ, K)-wta) is a tuple A= (Q, F,δ) where

• Q is a finite set (its elements called states),

• F : Q→ K is a function (assigning so-called root weights), and

• δ = (δσ | σ ∈Σ) is a family of functions δσ : Qn ×Q→ K for each n ∈ N and σ ∈Σ(n)

(called the transition mappings).

The definition of a run carries over from (unweighted) Σ-ta. Additionally, a (Σ, K)-wta
assigns to each run a weight which is the product of all weights of transitions used in this
run. As the semiring K is not necessarily commutative, we have to fix an order in which these
weights are multiplied. Let ξ ∈ TΣ and κ ∈ RunA(ξ). We define the value wtA(ξ,κ) ∈ K by
letting

wtA(ξ,κ) =
∏

v∈pos(ξ)

δξ(v)
!
κ(v1) . . .κ(vrk(ξ(v))),κ(v)

�
,

where in the product we follow the depth-first post-order ⊑dp. We note that if A is clear from
the context, we sometimes simply write wt(ξ,κ) instead.

The weighted tree language recognized by A is the mapping JAK: TΣ → K given for each
ξ ∈ TΣ by

JAK(ξ) =
∑

κ∈RunA(ξ)

wtA(ξ,κ) · F(κ(ǫ)) .4

We say that a weighted tree language s ∈ K〈〈TΣ〉〉 is (Σ, K)-recognizable if there is a (Σ, K)-wta
A such that JAK= s. The class of all (Σ, K)-recognizable weighted tree languages is denoted
by RT(Σ, K).

We call a (Σ, K)-wta A deterministic if for each σ ∈ Σ, q1, . . . , qrk(σ) ∈ Q there is at most
one q ∈Q such that δσ(q1 . . . qrk(σ), q) 6= 0. If there is exactly one such q ∈Q, then we call A
total deterministic (or a (Σ, K)-dwta). It is well known that, in contrast to the unweighted
setting, (Σ, K)-dwta and (Σ, K)-wta are, in general, not equally expressive (which also holds
for weighted string automata, cf., e.g., [Moh97]).

Moreover, we say that A has Boolean transition weights if δσ(q1 . . . qn, q) ∈ {0, 1} for each
n ∈ N, σ ∈Σ(n), q, q1, . . . , qn ∈Q, and Boolean root weights if F(Q) ⊆ {0, 1}.

Example 1.4.12. Recall from Example 1.4.8 the ranked alphabet Σ = {σ(2),α(0)}, the semiring
(P({σ,α}∗),∪, ·,;, {ǫ}), as well as the weighted tree language rpaths : TΣ → P({σ,α}∗).

This weighted tree language can be recognized by the following (Σ,P({σ,α}∗))-wta Apaths.
We let Apaths = (Q, F,δ) with Q = {q, qx}, F(qx) = {ǫ}, and F(q) = ;. Moreover, we set

δα(ǫ, qx) = {α}, δα(ǫ, q) = {ǫ},

and

δσ(q̄) =

{σ} if q̄ ∈ {(qxq, qx), (qqx , qx)}

{ǫ} if q̄ = (qq, q)

; otherwise

4Note that, in contrast to unweighted tree automata, we do not need the concept of a valid run here. This is due
to the fact that each transition of A is now a function assigning to a “forbidden” state combination the value 0.

38

1.4 Tree Languages and Weighted Tree Languages

for each q̄ ∈Q2 ×Q. Clearly, Apaths is not deterministic.
The recognition of a tree ξ ∈ TΣ by Apaths works as follows. For each path w= v1 . . . vn of

ξ there is a run κw ∈ RunApaths
(ξ) with wt(ξ,κw) = {ξ(vn) . . .ξ(v1)} and such that κw is of

the following form: for each v ∈ pos(ξ) we have κw(v) = qx if v = vi for some i ∈ [n] and
κw(v) = q otherwise. We denote the set of all such runs by Runp(ξ).

On the other hand, by construction of δ, for each run κ ∈ RunApaths
(ξ) with κ /∈ Runp(ξ),

either wt(ξ,κ) = {ǫ} and κ(ǫ) = q or wt(ξ,κ) = ;.
Finally, as F(q) = ; and F(qx) = {ǫ}, we obtain

JApathsK(ξ) =
∑

κ∈RunApaths
(ξ)

wtA(ξ,κ) · F(κ(ǫ)) =
⋃

κ∈Runp(ξ)

wt(ξ,κ) = rpaths(ξ).

�

Example 1.4.13. Let us consider the ranked alphabet Σ = {σ(2),α(0),β (0)}, the arctic semiring
(N∞+

−
, max,+,−∞, 0) with N∞+

−
= N ∪ {−∞,∞} as well as the weighted tree language

rE,Y D : TΣ → N∞+
−

from Example 1.4.9. We construct the Σ-wta A= (Q, F,δ) where

Q = {qα, qβ , qe, qo}, F(q) =

¨
0 if q = qe

−∞ otherwise
,

and

δα(q̄) =

¨
1 if q̄ = (ǫ, qα)

−∞ otherwise
, δβ(q̄) =

¨
0 if q̄ = (ǫ, qβ)

−∞ otherwise
,

δσ(q̄, qe) =

¨
0 if q̄ ∈ {qαqα, qβqβ , qαqo, qβqe}

−∞ otherwise
, and

δσ(q̄, qo) =

¨
0 if q̄ ∈ {qαqβ , qβqα, qαqe, qβqo, qo}

−∞ otherwise
.

Note that A is deterministic and, thus, for each ξ ∈ TΣ there is at most one κ ∈ RunA(ξ)

with wt(ξ,κ) 6= −∞. Moreover, A allows as non-zero weighted transitions exactly the
transitions of the Σ-ta AE V E N from Example 1.4.5. Thus, and as N∞+

−
is zero-divisor free,

supp(JAK) = TE V E N .
Now let ξ ∈ TE V E N and let κξ be the unique run in RunA(ξ) with non-zero weight. Then,

by construction of δ, we have for each v ∈ pos(ξ) with ξ(v) = α that κξ(v) = qα and,
thus, δ yields 1 for this position. Moreover, for the remaining positions, δ yields 0. Hence,
wt(ξ,κξ) = |ξ|α. Finally, κ(ǫ) = qe. Thus,

JAK(ξ) =
∑

κ∈RunA(ξ)

wt(ξ,κ) · F(κ(ǫ)) = wt(ξ,κξ) + 0= |ξ|α = rE,Y D(ξ) .

�

39

Chapter 1 Fundamental Notions and Structures

We now recall some elementary properties of recognizable weighted tree languages we
will use in this thesis.

Theorem 1.4.14 ([DV06, Lemma 3.3]). Let K be a semiring and let L ⊆ TΣ be Σ-recognizable.

Then ✶L is (Σ, K)-recognizable.

The next theorem is a generalization of [DPV04, Lemma 6.4 and Lemma 6.3], where
commutative semirings were considered. In [Rad10] these results were shown even for
strong bimonoids.

Theorem 1.4.15 (cf. [Rad10, Lemma 5.1 and Theorem 5.4]). Let K be a semiring, r, r ′ ∈
K〈〈TΣ〉〉, and a ∈ K. Then the following statements hold:

1. If r and r ′ are (Σ, K)-recognizable, then r + r ′ is (Σ, K)-recognizable, too.

2. If r is (Σ, K)-recognizable, then a · r and r · a are (Σ, K)-recognizable, too.

Theorem 1.4.16 ([Bor04, Corollary 3.9]). Let K be a commutative semiring and r, r ′ ∈
K〈〈TΣ〉〉. If r and r ′ are (Σ, K)-recognizable, then r ⊙ r ′ is (Σ, K)-recognizable, too.

Theorem 1.4.17 (cf. [DGMM11, Theorem 5.12.]). Let K be a semiring, L ⊆ TΣ , and r ∈
K〈〈TΣ〉〉. If L is Σ-recognizable and r is (Σ, K)-recognizable, then ✶L ⊙ r and r ⊙ ✶L are (Σ, K)-

recognizable.

Recognizable Step Functions

Recognizable step functions describe almost Boolean weighted tree languages. Let K be a
semiring. We say that a weighted tree language r ∈ K〈〈TΣ〉〉 is a recognizable step function if

r =
∑

i∈[n]

ki ·✶Li

for some n≥ 1, ki ∈ K , and Σ-recognizable tree languages Li for each i ∈ [n]. We note that
without loss of generality we can assume that the tree languages L1, . . . , Ln form a partition
of TΣ (see [DV06, Lemma 3.1]).

Example 1.4.18. Consider the ranked alphabet Σ = {σ(2),γ(1),α(0),β (0)}. Moreover, for each
u ∈Σ let Lu = {ξ ∈ TΣ | root(ξ) = u}. Clearly, Lu is Σ-recognizable.

Now consider the semiring (P(Σ∗),∪, ·,;, {ǫ}). Then the weighted tree language rR T ∈
P(Σ∗)〈〈TΣ〉〉 given by

rR T =
∑

u∈{σ,α,β}

{u} ·✶Lu

is a recognizable step function. It maps each tree in Lu with u ∈ {σ,α,β} to the singleton
set containing its root symbol and each tree in Lγ to ;. This weighted tree language can
be recognized by the following (Σ,P(Σ∗))-wta AR T . We let AR T = (Q, F,δ) where Q =

{qσ, qγ, qα, qβ},
F(qγ) = ;, and F(qu) = {u}

40

1.4 Tree Languages and Weighted Tree Languages

for each u ∈ {σ,α,β}. Moreover, for each v ∈Σ and q, q1, . . . , qrk(v) ∈Q we let

δv(q1 . . . qrk(v), q) =

¨
{ǫ} if q = qv

; otherwise
.

It is easy to see that JAR TK = rR T and that AR T is total deterministic and has Boolean transition
weights. �

In the above example we have seen that the recognizable step function rR T can be recognized
by a very restricted weighted tree automaton. Indeed, it is rather folklore that this holds for
each recognizable step function as stated in the next lemma.

Lemma 1.4.19 (cf. [Rad10, Theorem 7.3.]). Let K be a semiring and r ∈ K〈〈TΣ〉〉 a recogniz-

able step function. Then there exists a (Σ, K)-dwta A with Boolean transition weights such that

JAK= r.

Proof (sketch). We can assume that each step language Li can be recognized by a Σ-dta
Ai. We construct a (Σ, K)-dwta A that uses as states the Cartesian product of the states of
A1, . . . , An. In its unique non-zero weighted run on ξ, A simulates in the ith component of its
states the valid run of Ai on ξ. The weight of a final state is the sum of all weights k j where
A j results in a final state. �

In the further we will recall some common properties of recognizable step functions we
will use in this work.

Lemma 1.4.20 ([DV06, Lemma 6.1.]). Let K be a locally finite and commutative semiring

and let r ∈ K〈〈TΣ〉〉 be (Σ, K)-recognizable. Then r is a recognizable step function.

Lemma 1.4.21 (cf. [DGMM11, Lemma 5.9.]). Let K be a semiring and r, r ′ ∈ K〈〈TΣ〉〉 recog-

nizable step functions. Then r + r ′ and r ⊙ r ′ are recognizable step functions, too.

Lemma 1.4.22 (cf. [DGMM11, Theorem 5.12.]). Let K be a semiring and let r, r ′ ∈ K〈〈TΣ〉〉 be

(Σ, K)-recognizable. If r or r ′ is a recognizable step function, then r ⊙ r ′ is (Σ, K)-recognizable.

Proof. For the case that r is a recognizable step function, this property was proved in
[DGMM11] for left-distributive product tree valuation monoids. As semirings are also right-
distributive (and, hence, scalar right multiplication preserves recognizability), we can prove
the second case as well: Assume that r ′ is a recognizable step function, i.e., r ′ =

∑
i∈[n] ki ·✶Li

for some n≥ 1, ki ∈ K , and Σ-recognizable tree languages Li , i ∈ [n]. Then

r ⊙
∑

i∈[n]

ki ·✶Li
=
∑

i∈[n]

r ⊙ (ki ·✶Li
) =
∑

i∈[n]

(r · ki)⊙ ✶Li

where the last equation obviously holds as

r(ξ) · (ki ·✶Li
)(ξ) =

(
r(ξ) · ki if ξ ∈ Li

0 otherwise

)
= (r · ki)(ξ)⊙ ✶Li

(ξ)

for each ξ ∈ TΣ and i ∈ [n]. Now it follows by Theorem 1.4.14, 1.4.15, and 1.4.17 that∑
i∈[n](r · ki)⊙ ✶Li

is (Σ, K)-recognizable. �

41

Chapter 1 Fundamental Notions and Structures

More Classes of Weighted Tree Languages

In contrast to the string case, there is less literature on classes of weighted tree languages
beyond RT(Σ, K).

In [Kui01], a weighted version of pushdown tree automata is introduced – this formalism
recognizes so-called algebraic tree series. Moreover, in [Ost14], weighted context-free tree

languages are a special case of the described weighted tree translations. Subclasses of them
are generated by weighted linear monadic context-free tree grammars [Tei16] and weighted
tree-adjoining grammars [Ned09, BNV11].

We will show in Chapter 2 how one can extend weighted tree automata over M-monoids
with some arbitrary storage and thus, define a variety of weighted tree language classes.
Moreover, in the introduction of Chapter 2 we give an overview on the literature for this
unifying approach.

1.4.4 Weighted Tree Homomorphisms

Here we consider tree homomorphisms in a weighted setting and show that in this case the
decomposition of linear tree homomorphisms from Section 1.4.2 works as well.

In this section, we let Σ and ∆ be ranked alphabets and we assume a complete semiring
(K ,+, ·, 0, 1).

Weighted tree homomorphisms As usual, we extend a tree homomorphism h: TΣ(X)→
T∆(X) to a mapping h̃: K〈〈TΣ(X)〉〉 → K〈〈T∆(X)〉〉 by letting

h̃(s)(ζ) =
∑

ξ∈h−1(ζ)

s(ξ)

for each s ∈ K〈〈TΣ(X)〉〉, ζ ∈ T∆(X). Again, we often identify h and h̃ and we write h: K〈〈TΣ〉〉 →
K〈〈T∆〉〉 when considering trees without variables.

Moreover, following [DV12], we define the inverse application of a tree homomorphism in
the weighted setting as follows: Given a tree homomorphisms h̃: K〈〈TΣ(X)〉〉 → K〈〈T∆(X)〉〉,
we set for each s ∈ K〈〈T∆(X)〉〉 and ξ ∈ TΣ(X)

h̃
−1
(s)(ξ) = s(h(ξ)) .

Remark 1.4.23. We note that, if h: TΣ(X)→ T∆(X) is a relabeling, then the set h−1(ζ) is finite
for each ζ ∈ T∆. Thus, we can extend h to a mapping of the type K〈〈TΣ(X)〉〉 → K〈〈T∆(X)〉〉 as
above even if the semiring K is not complete. Ã

Lemma 1.4.24 ([DV06, Lemma 3.4]). Let K be a semiring, r ∈ K〈〈TΣ〉〉, and h: K〈〈TΣ〉〉 →
K〈〈T∆〉〉 a relabeling. If r is (Σ, K)-recognizable, then h(r) is (∆, K)-recognizable.

Note that in [DV06, Lemma 3.4] this closure was shown for nondeterministic relabelings,
i.e., mappings of the type h: Σ→ P(∆) with h(σ) ⊆∆(n) for each n ∈ N and σ ∈Σ(n). As the
relabelings considered here are a special case, obviously this result also holds in our setting.

42

1.4 Tree Languages and Weighted Tree Languages

Decomposition of weighted linear tree homomorphisms

In Section 1.4.2 we recalled that each linear tree homomorphism can be decomposed into
a number of linear alphabetic tree homomorphisms and elementary tree homomorphisms.
Here we will show that this decomposition also works in the weighted setting. To ensure
the readability of the following proofs, we will now explicitly distinguish between a tree
homomorphism h and its extension h̃. In the following, let Σ, ∆, and Γ be ranked alphabets.

First of all, let us show that the extension of tree homomorphisms to the weighted setting
and the composition of tree homomorphisms commute.

Lemma 1.4.25. Let K be a complete semiring. Moreover, let f̃ : K〈〈TΣ(X)〉〉 → K〈〈TΓ (X)〉〉 and

g̃ : K〈〈TΓ (X)〉〉 → K〈〈T∆(X)〉〉 be two tree homomorphisms and let s ∈ K〈〈TΣ(X)〉〉. Then

(g ◦ f)ã(s) = (g̃ ◦ f̃)(s) .

Proof. Let ξ ∈ T∆(X). Then

(g ◦ f)ã(s)(ξ) =
∑

ζ∈(g◦ f)−1(ξ)

s(ζ) (∗)

=
∑

ζ∈(f −1◦g−1)(ξ)

s(ζ)

=
∑

ζ∈ f −1(g−1(ξ))

s(ζ)

=
∑

ζ′∈g−1(ξ), ζ∈ f −1(ζ′)

s(ζ)

=
∑

ζ′∈g−1(ξ)

! ∑

ζ∈ f −1(ζ′)

s(ζ)
�

(by associativity)

= (g̃(f̃ (s)))(ξ) (∗)

= (g̃ ◦ f̃)(s)(ξ).

where (∗) holds by the definition of the extension of tree homomorphisms to the weighted
setting. �

Lemma 1.4.26. Let K be a complete semiring, let h̃: K〈〈TΣ(X)〉〉 → K〈〈T∆(X)〉〉 be a linear

tree homomorphism, and let s ∈ K〈〈TΣ(X)〉〉. There are some k ∈ N and tree homomorphisms

f1̃, . . . , fk̃ for such that

h̃(s) = (fk̃ ◦ . . . ◦ f1̃)(s)

and, for each i ∈ [k], fi is either linear and alphabetic or elementary.

Proof. Let h: TΣ(X)→ T∆(X) be a tree homomorphisms. Then, by Lemma 1.4.7, there are
some k ∈ N and tree homomorphisms f1, . . . , fk such that h = fk ◦ . . .◦ f1 and, for each i ∈ [k],

43

Chapter 1 Fundamental Notions and Structures

fi is either linear and alphabetic or elementary. Now let s ∈ K〈〈TΣ(X)〉〉 and ξ ∈ T∆(X). Then

h̃(s)(ξ) =
∑

ζ∈h−1(ξ)

s(ζ) (∗)

=
∑

ζ∈(fk◦...◦ f1)−1(ξ)

s(ζ) (by Lemma 1.4.7)

= (fk ◦ . . . ◦ f1å)(s)(ξ) (∗)

= (fk̃ ◦ . . . ◦ f1̃)(s)(ξ). (by Lemma 1.4.25)

where (∗) holds by the definition of the extension of tree homomorphisms to the weighted
setting. Thus, h̃(s) = (fk̃ ◦ . . . ◦ f1̃)(s). �

Finally, as we will later consider the inverse of a thus decomposed linear tree homomorphism,
we show that also our definition of the inverse application commutes with the composition
operator.

Lemma 1.4.27. Let K be a complete semiring, let f̃ : K〈〈TΣ(X)〉〉 → K〈〈TΓ (X)〉〉 as well as

g̃ : K〈〈TΓ (X)〉〉 → K〈〈T∆(X)〉〉 be two tree homomorphisms, and let s ∈ K〈〈T∆(X)〉〉. Then

(g̃ ◦ f̃)−1(s) = (f̃
−1
◦ g̃−1)(s).

Proof. Let ζ ∈ T∆(X). Then

(g̃ ◦ f̃)−1(s)(ζ) = (g ◦ fà)−1(s)(ζ) (by Lemma 1.4.25)

= s((g ◦ f)(ζ)) (∗)

= s(g(f (ζ)))

= g̃−1(s)(f (ζ)) (∗)

= f̃
−1
(g̃−1(s))(ζ) (∗)

= (f̃
−1
◦ g̃−1)(s)(ζ).

where (∗) holds by the definition of the inverse of weighted tree homomorphisms. Thus,

(g̃ ◦ f̃)−1(s) = (f̃
−1
◦ g̃−1)(s) . �

44

1.5 Monadic Second-Order Logic

1.5 Monadic Second-Order Logic

In this section we recall the fundamental concept of monadic second-order logic (or, shortly,
MSO logic). It was introduced by several authors as monadic second-order logic with one

successor (or S1S) over strings (cf. Remark 1.5.2 for a bibliographic explanation). Later, this
logic was extended by Thatcher and Wright [TW68] as well as Doner [Don70] to second-order

logic with multiple successors for trees. Here, these formalisms are simply called MSO logic
(on trees respectively on words).

Second-order logic allows, in contrast to first-order logic, to quantify over relations (repre-
sented by second-order variables). MSO logic is a fragment of second-order logic where those
relations are assumed to be unary (i.e., they are sets). It plays a fundamental role in automata
theory, motivated by the fact that finite-state automata were used to prove decidability of the
satisfiability problem of MSO-formulas.

We will first recall classical MSO logic on trees. Afterwards, we will show two extensions
of this logic to the weighted setting: weighted MSO logic for the semiring case and weighted
multioperator expressions for the M-monoid setting. For a good introduction to the topic we
refer to the seminal works [DG05, DV06] as well as [FSV12], respectively.

1.5.1 Classical MSO Logic

MSO-formulas We let Vfo be a set of first-order variables (often denoted by x , y , or z) and
let Vso be a set of (monadic) second-order variables (as X , Y , or Z) such that Vfo ∩ Vso = ;.
Moreover, let Σ be a ranked alphabet. The set MSO(Σ) of MSO-formulas over Σ is given by
the EBNF

ψ ::= labelσ(x) | edgei(x , y) | x ∈ X

ϕ ::= ψ | ¬ϕ | ϕ ∨ϕ | ∃x .ϕ | ∃X .ϕ

where σ ∈Σ, i ∈ [max rk(Σ)], x , y ∈ Vfo, and X ∈ Vso. We call ψ an atom and we sometimes
refer to ∃x and ∃X as first-order respectively second-order existential quantification.

Free variables Free variables denote those variables in a formula which are not bound
by a quantifier. Formally, we let Free: MSO(Σ)→ P(Vfo ∪ Vso) be the mapping defined by
induction as follows. For each atom we let

Free(labelσ(x)) = {x}, Free(edgei(x , y)) = {x , y}, and Free(x ∈ X) = {x , X }.

Moreover, we define

Free(ϕ1 ∨ϕ2) = Free(ϕ1)∪ Free(ϕ2),

Free(¬ϕ) = Free(ϕ),

Free(∃x .ϕ) = Free(ϕ) \ {x}, and

Free(∃X .ϕ) = Free(ϕ) \ {X }.

A formula ϕ ∈MSO(Σ) is called closed if Free(ϕ) = ;.

45

Chapter 1 Fundamental Notions and Structures

Variable assignment and updates Let ξ ∈ TΣ and V ⊆ (Vfo∪Vso) be a finite set. A function
mapping each first-order variable in V to a position of ξ and each second-order variable in V

to a subset of positions of ξ is called a V-assignment for ξ. We let ΦV,ξ denote the set of all
V-assignments for ξ.

For each ρ ∈ ΦV,ξ, i ∈ pos(ξ), I ⊆ pos(ξ), x ∈ Vfo, and X ∈ Vso, the assignment updates

ρ[x 7→ i] ∈ ΦV∪{x},ξ and ρ[X 7→ I] ∈ ΦV∪{X },ξ are defined as

(ρ[x 7→ i])(u) =

¨
i if u= x

ρ(u) otherwise

and

(ρ[X 7→ I])(v) =

¨
I if v = X

ρ(v) otherwise

for each u ∈ (V ∪ {x}) and v ∈ (V ∪ {X }). In addition, we define the update (i ·ρ) ∈ ΦV,ξ by
letting

(i ·ρ)(x) = iρ(x)

and
(i ·ρ)(X) = {iw | w ∈ ρ(X)}

for each x , X ∈ V.

Extended ranked alphabet and valid trees Instead of considering a tree ξ ∈ TΣ together
with a variable assignment ρ ∈ ΦV,ξ as interpretation of a formula, sometimes we use an
alternative representation by encoding the assignment into the ranked alphabet. For this, we
let ΣV =Σ ×P(V) be a ranked alphabet5 and we identify Σ; with Σ. Then a tree ζ ∈ TΣV

is
called valid if for each first-order variable x ∈ V there exists exactly one position i ∈ pos(ζ)
such that x ∈ (ζ(i))2. We denote the set of all valid trees in TΣV

by Tv
ΣV

. It is easy to see that
there is a bijection between the two sets {(ξ,ρ) | ξ ∈ TΣ ,ρ ∈ ΦV,ξ} and Tv

ΣV
. Thus, as usual,

we will not distinguish between them.

Semantics of a formula Let ϕ ∈ MSO(Σ), let V ⊆ (Vfo ∪ Vso) be a finite set of variables
such that Free(ϕ) ⊆ V, and let (ξ,ρ) ∈ Tv

ΣV
. The satisfaction relation (ξ,ρ) |= ϕ is defined

inductively on the structure of ϕ as follows. If ϕ is an atom, we let

(ξ,ρ) |= labelσ(x) ⇔ ξ(ρ(x)) = σ

(ξ,ρ) |= edgei(x , y) ⇔ ρ(y) = ρ(x)i

(ξ,ρ) |= x ∈ X ⇔ ρ(x) ∈ ρ(X)

and we set

(ξ,ρ) |= (ϕ1 ∨ϕ2) ⇔ (ξ,ρ) |= ϕ1 ∨ (ξ,ρ) |= ϕ2

(ξ,ρ) |= ¬ϕ′ ⇔ (ξ,ρ) 6|= ϕ′

(ξ,ρ) |= ∃x .ϕ′ ⇔ there is a v ∈ pos(ξ) such that (ξ,ρ[x → v]) |= ϕ′

(ξ,ρ) |= ∃X .ϕ′ ⇔ there is a set J ⊆ pos(ξ) such that (ξ,ρ[X → J]) |= ϕ′ .

5Recall from Section 1.2.1 that we adopt the ranks from Σ.

46

1.5 Monadic Second-Order Logic

The set of models of ϕ, denoted by LV(ϕ), is defined to be

LV(ϕ) = {(ξ,ρ) ∈ Tv
ΣV
| (ξ,ρ) |= ϕ}

and we simply write L(ϕ) instead of LFree(ϕ)(ϕ).
We say that a tree language L ⊆ TΣ is Σ-definable if there is a closed formula ϕ ∈MSO(Σ)

such that L = L(ϕ).

Convention. In the common way, we use the abbreviations

• ϕ1 ∧ϕ1 = ¬(¬ϕ1 ∨¬ϕ2),

• ∀x .ϕ = ¬∃x .¬ϕ,

• ∀X .ϕ = ¬∃X .¬ϕ,

• edge(x , y) = edge1(x , y)∨ . . .∨ edgemax rk(Σ)(x , y),

• ϕ1→ ϕ2 = ¬ϕ1 ∨ϕ2, and

• ϕ1↔ ϕ2 = (ϕ1→ ϕ2)∧ (ϕ2→ ϕ1),

where ϕ,ϕ1,ϕ2 ∈ MSO(Σ), x , y ∈ Vfo, and X ∈ Vso. We sometimes refer to ∀x and ∀X as

first-order respectively second-order universal quantification.

Convention. We agree that ∧ and ∨ bind stronger than quantifications. Thus, we sometimes

omit brackets and write, e.g., ∃x .ϕ1 ∧ϕ2 instead of ∃x .(ϕ1 ∧ϕ2).

It is a fundamental result of formal language theory that the tree languages definable by
MSO logic are exactly the recognizable tree languages:

Theorem 1.5.1 ([TW68, Don70]). Let L ⊆ TΣ . Then L is Σ-recognizable if and only if L is

Σ-definable.

This theorem generalizes the well-known result of Büchi [Büc62], stating that the definable
languages are exactly the recognizable languages, from strings to trees. However, as strings
can be seen as monadic trees, we can reobtain the string case from the tree case.

Remark 1.5.2. Several authors contributed to the establishment of monadic second-order
logic in automata theory. A good historical overview can be found in [Tra08]. Languages that
are based on restrictions of S1S were developed by Trakhtenbrot [Tra58], Church [Chu59],
and Büchi [Büc60], often in the context of regular expressions. Moreover, Elgot proved a
connection between S1S and regular expressions [Elg61]. As stated by [Tra08], Büchi was
the first one who proved the expressive equivalence of finite-state automata and monadic
second-order logic [Büc62]. Ã

47

Chapter 1 Fundamental Notions and Structures

MSO logic over words We obtain from MSO(Σ) the usual MSO logic over strings by
replacing the atoms edgei(x , y) by the atom next(x , y). Thus, for each alphabet Σ (without
ranks) the set MSOs(Σ) of string MSO-formulas over Σ is given by the EBNF

ψ ::= labelσ(x) | next(x , y) | x ∈ X

ϕ ::= ψ | ¬ϕ | ϕ ∨ϕ | ∃x .ϕ | ∃X .ϕ

where σ ∈Σ, x , y ∈ Vfo, and X ∈ Vso. If it is clear from the context that we consider string
MSO-formulas, then we sometimes simply write MSO(Σ) instead of MSOs(Σ). Obviously, we
can easily transfer all concepts introduced above to the string case by using string positions
instead of tree positions. Moreover, we set Free(next(x , y)) = {x , y} and let (w,ρ) |=
next(x , y) iff ρ(y) = ρ(x) + 1 for each w ∈Σ∗ and variable assignment ρ ∈ ΦV,w.

1.5.2 Weighted MSO Logic

The weighted version of monadic second-order logic goes back to [DG05] for strings and
was generalized by Droste and Vogler [DV06] to the tree case. In both works commutative
semirings were used as weight structure. Later, Droste and Vogler [DV11] proved a logical
characterization of RT(Σ, K) also for arbitrary semirings K .

In the following, let (K ,+, ·, 0, 1) be an arbitrary semiring and Σ a ranked alphabet. More-
over, as in the last section, we let Vfo and Vso be disjoint sets of first-order and second-order
variables, respectively.

Weighted MSO-formulas The set MSO(Σ, K) of weighted MSO-formulas over Σ and K is
given by the EBNF

ψ ::= labelσ(x) | edgei(x , y) | x ∈ X | x ⊑ y

ϕ ::= k | ψ | ¬ψ | ϕ ∨ϕ | ϕ ∧ϕ | ∃x .ϕ | ∃X .ϕ | ∀x .ϕ | ∀X .ϕ

where k ∈ K , σ ∈Σ, and i ∈ [maxrk(Σ)].
We note that in the case of weighted MSO-formulas, the negation ¬ is restricted to atoms.

That is because semirings have no natural complement operation one could use to define
the semantics of ¬ elementwise. As we, therefore, include conjunction as well as universal
quantification explicitly to the syntax, weighted MSO-formulas over the Boolean semiring
are equally expressive as classical MSO-formulas.

We further note that often MSO(Σ, K) is defined without the atom x ⊑ y. However, we
include it here as it will be later useful for disambiguation of formulas.

Free variables As before, we define a function Free: MSO(Σ, K)→ P(Vfo ∪ Vso) by letting

Free(x ⊑ y) = {x , y}, Free(k) = ;,

and

Free(ϕ1 ∧ϕ2) = Free(ϕ1)∪ Free(ϕ2),

Free(∀x .ϕ) = Free(ϕ) \ {x},

Free(∀X .ϕ) = Free(ϕ) \ {X },

48

1.5 Monadic Second-Order Logic

and Free(ϕ) is defined as for its unweighted counterpart in all other cases of ϕ. As before, a
formula ϕ ∈MSO(Σ, K) is called closed if Free(ϕ) = ;.

Interpretations The definitions of variable assignment, variable update, as well as that of
valid trees over the extended alphabet ΣV carry over from the unweighted case.

Semantics of weighted formulas Now let ϕ ∈ MSO(Σ, K) and let V ⊆ (Vfo ∪ Vso) be a
finite set of variables containing Free(ϕ). The semantics of ϕ with respect to V is the weighted
tree language JϕKV : TΣV

→ K such that supp(JϕKV) ⊆ Tv
ΣV

and which is inductively defined
for each (ξ,ρ) ∈ Tv

ΣV
as follows:

• JkKV(ξ,ρ) = k,

• Jlabelσ(x)KV(ξ,ρ) =

¨
1 if ξ(ρ(x)) = σ

0 otherwise,

• Jedgei(x , y)KV(ξ,ρ) =

¨
1 if ρ(y) = ρ(x)i

0 otherwise,

• Jx ∈ X KV(ξ,ρ) =

¨
1 if ρ(x) ∈ ρ(X)

0 otherwise,

• Jx ⊑ yKV(ξ,ρ) =

¨
1 if ρ(x)⊑dp ρ(y)

0 otherwise,

• J¬ψKV(ξ,ρ) =

¨
1 if JψKV(ξ,ρ) = 0

0 otherwise,

• Jϕ1 ∨ϕ2KV(ξ,ρ) = Jϕ1KV(ξ,ρ) + Jϕ2KV(ξ,ρ),

• Jϕ1 ∧ϕ2KV(ξ,ρ) = Jϕ1KV(ξ,ρ) · Jϕ2KV(ξ,ρ),

• J∃x .ϕKV(ξ,ρ) =
∑

i∈pos(ξ)JϕKV∪{x}(ξ,ρ[x 7→ i]),

• J∃X .ϕKV(ξ,ρ) =
∑

I⊆pos(ξ)JϕKV∪{X }(ξ,ρ[X 7→ I]),

• J∀x .ϕKV(ξ,ρ) =
∏

i∈pos(ξ)JϕKV∪{x}(ξ,ρ[x 7→ i]) where we use for the product the
order ⊑dp, and

• J∀X .ϕKV(ξ,ρ) =
∏

I⊆pos(ξ)JϕKV∪{X }(ξ,ρ[X 7→ I]) where we use for the product the
order ⊑pos on subsets of positions defined as follows: We define for each ξ ∈ TΣ a
mapping encξ : P(pos(ξ)) → {0,1}∗ encoding sets of positions by strings. For this,
let ξ ∈ TΣ with |ξ| = n and let v1, . . . , vn ∈ pos(ξ) be pairwise distinct and such that
v1 ⊑dp v2 ⊑dp . . .⊑dp vn. Then, for each I ⊆ pos(ξ), encξ(I) = w1 . . . wn with wi = 1 if
vi ∈ I and 0 otherwise. Finally, we let I1 ⊑pos I2 if and only if encξ(I1)≤lex encξ(I2) for
each I1, I2 ⊆ pos(ξ).

49

Chapter 1 Fundamental Notions and Structures

As usual, we abbreviate JϕKFree(ϕ) by JϕK. A weighted tree language s : TΣ → K is called
(Σ, K)-definable if there is a closed formula ϕ ∈MSO(Σ, K) with JϕK= s.

Let K = B be the Boolean semiring. Then MSO(Σ,B) reduces to the classical unweighted
MSO-formulas and we let LV(ϕ) = supp(JϕKV) for each ϕ ∈ MSO(Σ,B). We identify
MSO(Σ,B) with MSO(Σ).

Unambiguous formulas Now let ψ ∈ MSO(Σ). We call a formula ϕ ∈ MSO(Σ, K) an
unambiguous formula representing ψ if JϕK= ✶L(ψ).

Proposition 1.5.3 ([DV11, Prop. 5.3]). For each ψ ∈ MSO(Σ) we can effectively construct

an unambiguous formula ϕ ∈MSO(Σ, K) representing ψ, i.e., such that JϕK= ✶L(ψ).

In [DV11] the construction for a syntactically unambiguous formula was given. We will
not recall it here, but assume that the unambiguous formula ϕ ∈MSO(Σ, K) representing ψ

results from this construction and denote it by ψ+.
It is well known that there are (Σ, K)-definable weighted tree languages that are not

(Σ, K)-recognizable (cf. [DG05, Example 3.4]). Thus, in [DV11], a syntactic restriction of
weighted MSO logic was given that is based on the restriction of conjunction and universal
quantification. For the concrete definition of this restriction we refer to [DV11, Definition
6.1] (and, for a semantic restriction in case of a commutative semiring, to [DV06, Definition
4.8]). The set of all syntactically restricted MSO-formulas will be denoted by rMSO(Σ, K).
Therewith, the logical characterization of RT(Σ) could be extended to RT(Σ, K).

Theorem 1.5.4 ([DV11, Theorem 7.2]). Let Σ be a ranked alphabet and let K be a semiring.

A weighted tree language r ∈ K〈〈TΣ〉〉 is (Σ, K)-recognizable if and only if there is a closed formula

ϕ ∈ rMSO(Σ, K) with JϕK= r.

1.5.3 Multioperator Expressions

Here we recall the definitions of M-expressions from [FSV12]. They were introduced as an
alternative to weighted MSO logic which even works for M-monoids as weight structure. This
logic has the advantage, that no restriction is needed in order to characterize the recognizable
weighted tree languages.

In the following, we assume that (K ,+, 0,Ω) is an M-monoid. As before, we let Vfo and Vso

be disjoint sets of first-order and second-order variables, respectively.

Σ-families of operations and induced homomorphisms Let Σ be a ranked alphabet.
We call each Σ-indexed family ω = (ωσ | σ ∈ Σ) such that ωσ ∈ Ω(rk(σ)) for each σ ∈
Σ a Σ-family of operations in Ω. Obviously, (K ,ω) is a Σ-algebra and there is a unique
homomorphism from the Σ-term algebra TΣ to (K ,ω). In the further, this homomorphism is
called the homomorphism induced by ω and denoted by hω.

M-expressions The set of M-expressions over Σ and K , denoted by MExp(Σ, K), is the set
of all formulas generated by the following EBNF:

E ::= H(ω) | (E + E) | (ϕ Â E) |
∑

x
E |
∑

X
E ,

50

1.5 Monadic Second-Order Logic

where ω is a ΣU -family of operations in Ω for some finite set U ⊆ (Vfo∪Vso), and ϕ ∈MSO(Σ).
The concept of free variables of an M -expression is similar to the case of MSO-formulas

(and, indeed, we use the already defined concept for ϕ). Furthermore, we set

• Free(H(ω)) = U if ω is a ΣU -family of operations,

• Free(e1 + e2) = Free(e1)∪ Free(e2),

• Free(ϕ Â e) = Free(ϕ)∪ Free(e),

• Free(
∑

x e) = Free(e) \ {x}, and

• Free(
∑

X e) = Free(e) \ {X }.

A sentence is an M-expression without free variables.

Interpretations The definitions of variable assignment, variable update, as well as that of
valid trees over the extended alphabet ΣV carry over from classical MSO logic.

Semantics of M-expressions Let e ∈MExp(Σ, K) and let V be a finite set of variables such
that Free(e) ⊆ V. Then we let the semantics of e with respect to V be the weighted tree
language JeKV : TΣV

→ K such that supp(JeKV) ⊆ Tv
ΣV

and that is inductively defined for each
ζ= (ξ,ρ) ∈ Tv

ΣV
as follows:

• for every U ⊆ V and every ΣU -family ω of operations we let

JH(ω)KV(ζ) = hω̂(ζ)

where the ΣV -family ω̂ is obtained from ω by letting ω̂(σ,V) = ω(σ,V∩U) for each
(σ, V) ∈ΣV ,

• for every e1, e2 ∈MExp(Σ, K) we let

Je1 + e2KV
!
ζ
�
= Je1KV
!
ζ
�
+ Je2KV
!
ζ
�
,

• for every ϕ ∈MSO(Σ) and e ∈MExp(Σ, K) we let

Jϕ Â eKV
!
ζ
�
=

¨
JeKV
!
ζ
�

if ζ ∈ LV(ϕ)

0 otherwise,

• for every first-order variable x and e ∈MExp(Σ, K) we let

J
∑

x
eKV
!
ζ
�
=
∑

i∈pos(ζ)

JeKV∪{x}
!
ξ,ρ[x 7→ i]
�
,

• for every second-order variable X and e ∈MExp(Σ, K) we let

J
∑

X
eKV
!
ζ
�
=
∑

I⊆pos(ζ)

JeKV∪{X }
!
ξ,ρ[X 7→ I]
�

.

51

Chapter 1 Fundamental Notions and Structures

As usual, we write JeK instead of JeKFree(e). We say that a weighted tree language s : TΣ → K

is M-definable if there is a sentence e ∈MExp(Σ, K) such that JeK = s. We denote by M(Σ, K)

the class of all weighted tree languages which are M-definable.
Finally, we recall the main theorem of [FSV12].

Theorem 1.5.5 ([FSV12, Thm. 4.1]). The class M(Σ, K) is the class of weighted tree languages

recognizable by the weighted tree automata over Σ and the M-monoid K from [FSV12].

52

Chapter 2

Weighted Tree Automata with Storage

In this chapter we define and investigate the main automaton model of this thesis – weighted

tree automata with storage. It generalizes finite-state automata into three directions: from
words to trees, from (only) a finite-state control to an additional storage, and from (tree)
languages to K-weighted tree languages were K is a complete multioperator monoid.

Tree Automata

The generalization of finite-state automata to tree automata goes back to the late 60s and 70s
of the last century: Whereas string automata can bee seen as a finite Σ-algebra with unary
operations representing the transitions, Thatcher and Wright [TW68] and Doner [Don70]
extended this notion by allowing operations of arbitrary arity. This simple change was the
origin of a tree automaton and, as a consequence, many results from the word case could
easily be transferred to the tree case:

«...conventional finite automata theory goes through for the generalization – and

it goes through quite neatly!» [TW68]

Nowadays, a tree automaton is a well-investigated and understood concept. We refer the
reader to [GS84, Eng15] for surveys.

Beyond a Finite-State Control

Both in the word and in the tree case, finite-state automata have a very limited expressiveness
due to the fact that only finite information can be stored. To overcome this restriction, since
the 1960s new automaton models have been investigated which hold an additional memory
besides their finite-state control. Starting with pushdown automata (which use an auxiliary
pushdown storage) [Sch63], models such as counter automata [Gre69, VP75], nested stack
automata [Aho69], or iterated pushdown automata [AU, Mas74] occurred – all according to
the principle: automaton + auxiliary storage.

Starting with [Sco67] and [UH67], many unifying frameworks for automata with storage
were introduced (cf. the later paragraph Related Work for an overview). Scott described his
abstraction as an interaction of a program (defining the finite-state control) and a machine

(representing the storage). The machine is, roughly speaking, a memory set whose elements
can be tested by predicates and changed by instructions. By instantiating the machine
appropriately, one gets back particular automaton models such as the pushdown automaton.

53

Chapter 2 Weighted Tree Automata with Storage

This idea was later taken up by Engelfriet and Vogler [Eng86, EV86] who introduced the
formalism (context-free) grammar with storage this thesis is based on.

Weighted Automata

Also in the 60s of the last century, quantitative aspects of formal languages were investigated.
This involved extending automata to the concept of weighted automata as well as weighted tree

automata, both described in Chapter 1. Also in this field many distinct automaton models were
introduced, mainly differing in their weight structure. And again, in the search of unifying
approaches, very general models were introduced: e.g., string automata over unital valuation

monoids [DM10, DM11] and tree automata over multioperator monoids [Kui97, SVF09].
Moreover, weighted automata and weighted tree automata were established for many

applications for example in the context of natural language processing [KG05].

Weighted Tree Automata with Storage

By bringing together all three dimensions (i.e., trees as input structure, an arbitrary storage
as addition to the finite-state control, and a weight algebra as output structure), we obtain
K-weighted tree automata with storage S (also called (S,Σ, K)-wta), where K is a complete
multioperator monoid.

As with Scott and Engelfriet, a storage type S roughly speaking consists of a set of con-
figurations that can be tested by predicates and modified by instructions (which are partial
functions). Then, intuitively, an (S,Σ, K)-wta A recognizes a tree ξ as follows: if it reaches a
node labeled by σ in state q and with the storage configuration c, it can apply a transition of
the form

q(p)→ σ(q1(f1), . . . , qn(fn))

if p(c) = 1 (i.e., the storage predicate p is true on c) and f1(c), . . . , fn(c) are defined (i.e.,
the storage instructions f1, . . . , fn can be applied to c). After applying that transition, each
subtree ξi of the current node is processed in state qi and with the configuration fi(c) as
exemplified by the following picture:

σ

ξ1
ξ2

σ

ξ1
ξ2

cq

f1(c)q1 f2(c)q2

p(c) = 1

q(p)→ σ(q1(f1), q2(f2))

Moreover, we also allow ǫ-transitions where no symbol is read but the state as well as the
storage may be modified.

By combining the transitions used as described above during the recognition of a tree, we
obtain a computation of our automaton. Moreover, each transition is assigned an operation

54

from the multioperator monoid: if the transition carries a symbol of rank k, then the operation
is k-ary, if it is an ǫ-transition, then the operation is unary. The weight of a computation is
obtained by evaluating the respective term of operations.

In this chapter, we start to develop a theory of (S,Σ, K)-wta and the class of weighted tree
languages recognized by them.

This chapter In Section 2.1 we fix the definition of storage type we use in this work. We
consider particular storage types and present the concept of storage behavior. Afterwards, in
Section 2.2 we define (S,Σ, K)-wta and consider several instantiations of them. We show
in Section 2.3 that each finite storage type does not increase the power of a weighted tree
automaton as it can be simulated by the finite-state control. In Section 2.4 we investigate the
removal of ǫ-transitions and in Section 2.5 we prove that for certain M-monoids K the support
of an (S,Σ, K)-wta is recognizable as well. Finally, in Section 2.6 we consider some closure
properties of the class of weighted tree languages recognizable by weighted tree automata
with storage.

Related Work

Here we want to list other works that are related to our model of (S,Σ, K)-wta. If existing,
more related articles are mentioned in the respective sections of this chapter.

Weighted automata Our tree automaton model is based on the weighted tree automata
over M-monoids used in [SVF09] and [FSV12]. An alternative approach for a weighted tree
automaton over a very general weight structure is obtained by considering tree valuation
monoids [DGMM11]. A link between those two models was established in [TO15]. Valuation
monoids have also been considered in the case of weighted string automata [DM10, DM11].
Moreover, there is an even more general weighted automaton model by [GM15] in which
different operations for the summation over computations may be used.

Automata with auxiliary storage Additionally to the early automaton models using an
auxiliary storage we already mentioned in Section 1.3 and 1.4, also nowadays such formalisms
are objects of investigation. In [Den16], an automata characterization for multiple context-free
languages using a tree stack as storage was introduced. Recently, iterated pushdown automata
received much attention, especially in the context of model checking [Ong13, HKO16]. As a
last example we mention the model of multi-pushdown automata which is nowadays revisited
due to its decidable emptiness problem [ABH08].

Automata with storage Starting in the late 1960s, many unifying frameworks for automata
with storage were introduced. Examples are the concept of program + machine of [Sco67],
the balloon automata of [UH67], abstract families of acceptors of [GG69], and automata with

data storage of [Gol77, Gol79].
Later, Engelfriet took up this concept and extended it by recursion: he introduced context-free

grammars with storage that can be seen as recursive program + machine [Eng86]. Moreover,
in this work the addition of storage to several models such as regular grammars, context-free
grammars, regular tree grammars, and transducers was presented. The approach of Engelfriet
has been intensively investigated and developed in the following years (cf., e.g.,[EV86, EH89,

55

Chapter 2 Weighted Tree Automata with Storage

DL91, EH93]).
Also in [Eng86, Section 1.2], the relationship of context-free grammars with storage and

attribute grammars [Knu68], another very general approach to extend context-free grammars,
was discussed. Context-free grammars with storage can be seen as attribute grammars with
one inherited attribute.

Another approach to describe language classes in an abstract way is that of full abstract

families of languages [GG69] where languages are characterized by certain closure properties.
It was shown that full abstract families of languages, abstract families of acceptors, and
automata with data storage describe the same language classes [GG69, Gol79].

Valence automata (also called G-automata or M-automata) are a recent, intensively investi-
gated, automaton model [MS01, FS02, Kam09, Zet15] using an arbitrary group or monoid
as auxiliary storage. Thus, they are subsumed by automata with storage.

In [MP11] it was shown that several automaton models with an auxiliary storage can be
simulated by graph automata with bounded tree width and, thus, their emptiness problem
is decidable (due to the well-known decidability of satisfiability of MSO-logic on bounded
tree-width graphs, cf. [Cou97]).

Recently, Engelfriet and Vogler considered automata with MSO graph storage types [EV19].

Weighted automata with storage Automata with storage have also been, occasionally,
considered in the weighted setting. To the best of our knowledge, Kuich and Salomaa started
the investigation of weighted string automata with storage over commutative semirings
[KS86]. In this work, matrices of rewrite operations were used to represent storage types.

In [HV15], we extended the regular grammars with storage of Engelfriet to weighted
automata with storage over unital valuation monoids. This automaton model was further
investigated in [VDH16] and [HDV19]. Weighted automata with storage were also used in
[Den17, Den20] in the context of language approximation and parsing.

We introduced the weighted tree automata with storage that we consider here in [FHV17,
FHV18] (there called weighted regular tree grammars with storage). In [FV19a], a Kleene
result for this model was presented. Moreover, in [FV19b] principal abstract families of tree

languages were introduced and it was shown that they are the weighted tree languages
generated by particular weighted regular tree grammars with storage.

Note: This chapter is a revised and extended version of [FHV18, Section 3, 4, and 6]. Note
that our automaton model was called in [FHV18] a weighted regular tree grammar with

storage. However, besides this renaming the same formalism is described. We note that
Section 2.6, showing certain closure properties, is new and contains easy generalizations of
closure properties we proved in [HDV19] for weighted string automata with storage.

56

2.1 Storage Types and Storage Behavior

2.1 Storage Types and Storage Behavior

Here we recall the concept of a storage type [Eng86] – a (possibly infinite) set of configurations
that can be tested by predicates and modified by instructions. Used as an auxiliary compo-
nent of a finite-state (tree) automaton, it allows to store (possibly unbounded) additional
information and, thus, extends the expressiveness of the automaton.

Instead of considering concrete instances of configurations, predicates, and instructions (as,
e.g., for a pushdown automaton), our framework allows arbitrary sets and, thus, provides an
abstraction. However, after giving the main definition, we will show how one can instantiate
a storage type for concrete memories such as a pushdown or a counter.

Finally, we will present the concept of storage behavior – a tree that encodes the successive
application of predicates and instructions to an initial storage configuration. It can be seen
as an execution protocol of the storage type and is crucial for our later definition of a tree
automaton with storage.

We note that we use in this work a slight modification of the concept of storage type from
[Eng86] as we already did in [HV15].

Storage types

A storage type is a tuple S = (C , P, F, c0), where

• C is a set (its elements called configurations),

• c0 ∈ C (called the initial configuration),

• P is a non-empty set of functions each having the type p : C → {0, 1} with T R U EC ∈ P

(its elements called predicates), and

• F is a non-empty set of partial functions of type f : C → C (its elements called instruc-

tions) with I DC ∈ F ,

where T R U EC denotes the always-true predicate defined by T R U EC(c) = 1 for each c ∈ C . If
C is clear from the context, we abbreviate T R U EC by T R U E.

Remark 2.1.1. Note that in contrast to [FHV18] (but in accordance with [HDV19]) we require
that each storage type S contains the predicate T R U E and the instruction I D. This is due to
the fact that for most of our results we have to require this property anyway. Moreover, many
storage types either (i) possess these functions or (ii) allow to simulate them. E.g., when
considering a pushdown automaton, the predicate T R U E can be simulated by a number of
transitions testing for each possible topmost pushdown symbol. Moreover, the instruction I D

can be simulated by pushing and afterwards popping some symbol to the pushdown. Ã

Remark 2.1.2. Our definition of a storage type is a slight modification of that in [Eng86]
(and also in [EV86, EV88]): There, instead of the initial configuration c0, a set I of inputs,
a set E of encoding symbols, and a meaning function m is used. Each encoding symbol e is
interpreted as a partial function m(e) : I → C and allows to define machines with input and
output. Moreover, also the sets of predicates and instructions just provide function names

57

Chapter 2 Weighted Tree Automata with Storage

and are related to predicates respectively instructions by the meaning function. Thus, our
storage type (C , P, F, c0) is the storage type (C , P ′, F ′, I , E, m) in the sense of [Eng86] with
I = {i}, E = {e}, m(e)(i) = c0, P ′ = {p′ | p ∈ P}, and F ′ = { f ′ ∈ F | f ∈ F} are sets of names
for elements in P and F , respectively, and m(p′) = p and m(f ′) = f . Ã

Finite storage types A storage type S = (C , P, F, c0) is finite if C is a finite set. Clearly, each
finite storage type has only finitely many predicates and instructions.

Convention. For the remainder of this work, if S is unspecified, then it stands for an arbitrary

storage type S = (C , P, F, c0).

Particular storage types

Here we recall three particular storage types from [Eng86, EV86]: the trivial storage type,
the pushdown storage type, and the counter storage type.

Trivial storage The simplest storage type one can imagine is the trivial storage type, denoted
by T R I V, consisting of only one configuration c together with the identity function as instruc-
tion and the always-true predicate. Formally, we define TR I V = ({c}, {T R U E{c}}, {I D{c}}, c)

for some arbitrary but fixed symbol c.

Pushdown storage Given a storage type S, now we define the storage type pushdown of S

and denote it by P(S). Intuitively, each pushdown cell of P(S) carries a pushdown symbol
and a configuration of S. Additionally to usual pushdown operations, the configuration in
the topmost pushdown cell can be tested by a predicate of S and modified by an instruction
of S during a push.

Let S = (C , P, F, c0) be a storage type, let Γ be a fixed infinite set (its elements called
pushdown symbols) and let γ0 ∈ Γ be a fixed symbol (called the initial pushdown symbol).
Then P(S) is defined to be the storage type (C ′, P ′, F ′, c′0) where

• C ′ = (Γ × C)+,

• c′0 = (γ0, c0),

• P ′ = {B O T T O M} ∪ {T O Pγ | γ ∈ Γ } ∪ {T E S T p | p ∈ P} ∪ {T R U EC ′}, and

• F ′ = {P O P} ∪ {P U S Hγ, f , S TA Yγ, f | γ ∈ Γ , f ∈ F} ∪ {I DC ′},

such that for every γ ∈ Γ , p ∈ P, f ∈ F , (δ, c) ∈ Γ × C , and α ∈ (Γ × C)∗ we have

B O T T O M
!
(δ, c)α
�
= 1 ⇔ α= ǫ

T O Pγ
!
(δ, c)α
�
= 1 ⇔ γ= δ

T E S T p

!
(δ, c)α
�
= p(c) ,

and
P O P
!
(δ, c)α
�
= α if α 6= ǫ

P U S Hγ, f

!
(δ, c)α
�
= (γ, f (c))(δ, c)α if f (c) is defined

S TA Yγ, f

!
(δ, c)α
�
= (γ, f (c))α if f (c) is defined

58

2.1 Storage Types and Storage Behavior

and undefined in all other situations.
For each n≥ 0 we define the storage type Pn(S) inductively as follows:

P0(S) = S and Pn+1(S) = P(Pn(S)) .

The n-iterated pushdown storage, denoted by Pn, is the storage type Pn(TR I V).

When considering the 1-iterated pushdown storage P1, in the further denoted as P, we
will ignore the part of the trivial storage type. This applies to the configurations (i.e., we use
elements from Γ+ instead of (Γ×{c})+), instructions (we write P U S Hγ instead of P U S Hγ,I D{c}

)
and predicates (T E S T T R U E{c}

is equivalent to T R U EC ′). Moreover, we will remove the S TA Y-
instructions. Obviously, this modification does not change the power of the pushdown storage
type. Indeed, it was already mentioned in [Eng86, page 17] that a S TA Y-instruction is
superfluous for P.

In summary, we let P denote the storage type (Γ+, P, F,γ0) where

• P = {B O T T O M} ∪ {T O Pγ | γ ∈ Γ } ∪ {T R U EΓ+}, and

• F = {P O P} ∪ {P U S Hγ | γ ∈ Γ } ∪ {I DΓ+},

such that for every γ,δ ∈ Γ , p ∈ P, f ∈ F , α ∈ Γ ∗

B O T T O M(δα) = 1 ⇔ α= ǫ ,
T O Pγ(δα) = 1 ⇔ γ= δ ,

P U S Hγ(δα
�
= γδα ,

P O P(δα) = α if α 6= ǫ

and undefined in all other situations.

Remark 2.1.3. We note that the storage type P is very similar to the usual pushdown store
except that (i) no empty pushdown is allowed and (ii) instead of sequences of pushdown
symbols only one symbol at a time is pushed. However, this different behavior can easily be
simulated on both sides. It will later be shown in Theorem 2.2.6 that our definition of a tree
automaton with storage type P and that of a usual pushdown tree automaton are equally
expressive. Ã

Counter storage The next storage type was defined in [Eng86] as a restriction of the
pushdown storage P by allowing only one pushdown symbol. This corresponds to a non-
negative integer value with which the current number of pushdown cells is counted. Here we
use a slight modification by allowing also negative integers.

The storage type counter, denoted by CO U N T, is the storage type

(Z, {T R U EZ, Z E R O}, {I DZ, I N C, D E C}, 0)

where for each c ∈ Z
Z E R O(c) = 1 ⇔ c = 0

and
I N C(c) = c + 1
D E C(c) = c − 1

.

59

Chapter 2 Weighted Tree Automata with Storage

Storage behavior

Let P ′ ⊆ P be finite and non-empty, let F ′ ⊆ F be finite, and let n ∈ N. Then we define the
ranked alphabet Λ n-corresponding to P ′ and F ′ as follows. We let for each k ≤ n

Λ
(k) = P ′ × (F ′)k

and
Λ=
⋃

0≤k≤n

Λ
(k).

We recall that for each set A we have A0 = () which we identify with ǫ. Hence, and as P ′

contains at least one element, say p, we have that (p,ǫ) ∈ Λ(0). Often in this work n stands for
the maximal rank of some ranked alphabet Σ (or 1, if Σ contains only nullary symbols – we
will see in the next section that this exception is useful due to ǫ-transitions of our automaton
model). Thus, if we call Λ the ranked alphabet corresponding to Σ, P ′, and F ′, than we mean
that Λ is the ranked alphabet n-corresponding to P ′ and F ′ where n=max{max rk(Σ), 1}.

The concept of behavior goes back to that of an approximation [EV86, Def. 3.23] repre-
senting a storage protocol as a tree. Here we use a slight modification fitting to our storage
setting. Let c ∈ C , n ∈ N, and Λ be the ranked alphabet n-corresponding to some finite and
non-empty set P ′ ⊆ P and some finite set F ′ ⊆ F . A tree b ∈ TΛ is a (Λ, c)-behavior if there is
a family

(cv ∈ C | v ∈ pos(b))

of configurations such that

• cǫ = c and

• for each v ∈ pos(b): if b(v) = (p, f1 . . . fk), then

– p(cv) = 1 and

– fi(cv) = cvi for each i ∈ [k] .6

In this case we call (cv ∈ C | v ∈ pos(b)) the family of configurations determined by b and c.
We denote the set of all (Λ, c)-behaviors by B(Λ, c). Moreover, if c = c0, we speak of a

Λ-behavior and denote the set of all Λ-behaviors by B(Λ).

Example 2.1.4. Consider the pushdown storage type P and let P ′ = {T O Pγ0
, T O Pγ} and

F ′ = {P U S Hγ, P O P}. Then the ranked alphabet 2-corresponding to P ′ and F ′ is of the form
Λ= Λ(0) ∪Λ(1) ∪Λ(2) where

Λ
(0) = {(T O Pγ0

,ǫ), (T O Pγ,ǫ)},

Λ
(1) = {(T O Pγ0

, x) | x ∈ F ′} ∪ {(T O Pγ, x) | x ∈ F ′},

and
Λ
(2) = {(T O Pγ0

, x1 x2) | x1, x2 ∈ F ′} ∪ {(T O Pγ, x1 x2) | x1, x2 ∈ F ′}.

In Figure 2.1, a (Λ,γ0)-behavior b together with the family (cv | v ∈ pos(b)) of configurations
determined by b and γ0 is depicted. �

6Note that this implies that fi(cv) is defined.

60

2.1 Storage Types and Storage Behavior

(T O Pγ0
, P U S Hγ)

(T O Pγ, P U S HγP U S Hγ)

(T O Pγ, P O P)

(T O Pγ, P O P)

(T O Pγ0
,ǫ)

(T O Pγ, P U S Hγ)

(T O Pγ, P O P)

(T O Pγ, P O P)

(T O Pγ,ǫ)

γ0

γ0γ

γ0γγ

γ0γ

γ0

γ0γγ

γ0γγγ

γ0γγ

γ0γ

Figure 2.1: On the left-hand side, a (Λ,γ0)-behavior b and on the right-
hand side, the family (cv | v ∈ pos(b)) of configurations determined by
b and γ0 for the ranked alphabet Λ from Example 2.1.4.

61

Chapter 2 Weighted Tree Automata with Storage

2.2 The Automaton Model

Let Σ be a ranked alphabet, S = (C , P, F, c0) a storage type, and (K ,+, 0,Ω) a complete
M-monoid. A weighted tree automaton over Σ with storage S and weights in K (abbreviated
an (S,Σ, K)-wta) is a tuple A= (Q,Q0, T, wt), where

• Q is a finite set (its elements called states) such that Q ∩Σ = ;,

• Q0 ⊆Q (its elements called initial states),

• T is a finite and non-empty set (its elements called transitions) such that each transition
has one of the following forms:

q(p)→ σ(q1(f1), . . . , qk(fk)) (1)

q(p)→ q′(f) (2)

where k ≥ 0, q, q1, . . . , qk, q′ ∈Q, p ∈ P, σ ∈Σ(k), and f1, . . . , fk, f ∈ F , and

• wt : T → Ω is a function (called the weight function) such that each transition of form
(1) is mapped to an element in Ω(k) and each transition of form (2) is mapped to an
element in Ω(1).

Note that, in contrast to the usual tree automaton case, we here write transitions in a
grammar style. This is due to readability reasons. If τ is a transition of form (1), we denote its
components q by S O U R C E(τ), p by P R E D(τ), σ by S Y M B(τ), and, for 1≤ l ≤ k, ql and fl by
TA R G E T l(τ) and I N S T R l(τ), respectively. In a similar manner, we denote the components of a
transition τ of form (2) by S O U R C E(τ), P R E D(τ), TA R G E T(τ), and I N S T R(τ), respectively.

For each σ ∈Σ we let Tσ be the subset of T consisting of all transitions τ of form (1) with
S Y M B(τ) = σ. A transition of form (2) is called an ǫ-transition and we denote the set of all
ǫ-transitions of T by Tǫ. If Tǫ = ;, then we say that A is ǫ-free.

Convention. When considering a transition of the form q(p) → σ(q1(f1), . . . , qk(fk)) of an

(S,Σ, K)-wta, then we will often omit the quantifications for k, q, q1, . . . , qk, σ, p, and f1, . . . , fk

as they should be clear from the transition’s form. The same applies to transitions of the form

q(p)→ q′(f).

Sometimes we write q(p)→ σ(w1, . . . , wn) instead of q(p)→ σ(q1(f1), . . . , qk(fk)). When

doing so, we mean that wi is of the form qi(fi) for each i ∈ [n].

Computation Trees

Assume in the following an (S,Σ, K)-wta A = (Q,Q0, T, wt). We define its semantics with help
of computation trees. For this, let us consider T as a ranked alphabet where each transition of
form (1) has rank k and each transition of form (2) has rank 1. Moreover, we extend S Y M B

to a mapping S Y M B : TT → TΣ inductively such that for each τ(t1, . . . , tk) ∈ TT we have

S Y M B(τ(t1, . . . , tk)) =

¨
S Y M B(τ)(S Y M B(t1), . . . , S Y M B(tk)) if τ is of form (1)

S Y M B(t1) if τ is of form (2).

Let ξ ∈ TΣ and t ∈ TT . We say that t is ξ-compatible if

62

2.2 The Automaton Model

• S Y M B(t) = ξ and

• TA R G E T l(t(v)) = S O U R C E(t(vl)) for each v ∈ pos(t) and l ∈ [rk(t(v))].

Thus, ξ-compatible trees implement the usual concept of valid runs of a tree automaton
ignoring the storage part.

We now incorporate the storage behavior of A by defining a second mapping B E H AV. For
this, let PA ⊆ P and FA ⊆ F be the finite sets of predicates and instructions occurring in
transitions of A. Note that, since T is non-empty, PA is non-empty as well. In contrast, FA
might be empty as, e.g., T might consist of only one transition q(p)→ α. Moreover, let ΛA

be the ranked alphabet corresponding to Σ, PA, and FA. Then B E H AV is the tree relabeling
induced by the mapping B E H AV : T → ΛA defined for each τ ∈ T by

B E H AV(τ) =

¨
(P R E D(τ), I N S T R1(τ) . . . I N S T Rrk(τ)(τ)) if τ is of form (1)

(P R E D(τ), I N S T R(τ)) if τ is of form (2)
.

Let ξ ∈ TΣ , Q′ ⊆Q, c ∈ C , and t ∈ TT . We say that t is a (Q′, c)-computation (tree) of A for

ξ if

• S O U R C E(t(ǫ)) ∈Q′,

• t is ξ-compatible, and

• B E H AV(t) ∈ B(ΛA, c).

We denote the set of all such trees by ΘA(Q
′,ξ, c) and abbreviate ΘA(Q0,ξ, c0) by ΘA(ξ), the

set of computation trees of A for ξ.

Assigning Weights

In the next step, we define the weight of a computation tree as follows. Let t ∈ ΘA(Q
′,ξ, c)

for some Q′ ⊆ Q, ξ ∈ TΣ , and c ∈ C . For each v ∈ pos(t), we define the value wt′(t, v) ∈ K

inductively by letting

wt′(t, v) = wt(t(v))
!
wt′(t, v1), . . . , wt′(t, vrk(t(v)))

�
.

For notational convenience we will drop the prime from wt′. Moreover, we abbreviate wt(t,ǫ)
by wt(t).

Then the weighted tree language recognized by A is the mapping JAK: TΣ → K defined for
each ξ ∈ TΣ by

JAK(ξ) =
∑

t∈ΘA(ξ)

wt(t).

AlthoughΘA(ξ)might be infinite due to ǫ-transitions, the sum is well-defined as K is complete.
A weighted tree language s : TΣ → K is called (S,Σ, K)-recognizable if there is an (S,Σ, K)-

wta A with JAK = s. Moreover, the class of all (S,Σ, K)-recognizable weighted tree languages
is denoted by RT(S,Σ, K). Similarly, a weighted tree languages s : TΣ → K is called ǫ-

free (S,Σ, K)-recognizable if there is an ǫ-free (S,Σ, K)-wta A with JAK = s and the class

63

Chapter 2 Weighted Tree Automata with Storage

of all ǫ-free (S,Σ, K)-recognizable weighted tree languages is denoted by RTǫ-free(S,Σ, K).
Sometimes we want to consider the class of weighted tree languages which is the union of
RT(S,Σ, K) for each ranked alphabet Σ. This class is denoted by

⋃
Σ RT(S,Σ, K).

Example 2.2.1. Recall the weighted tree language rD I S C ∈ Kλ
D I S C
〈〈TΣ〉〉 from Example 1.4.10,

where Σ = {σ(2),α(0),β (0)} and λ= (λi | i ∈ N+) with λi = 0.5i−1 for each i ∈ N+. We will
show here that rD I S C is (CO U N T,Σ, Kλ

D I S C
)-recognizable.

We construct the (CO U N T,Σ, Kλ
D I S C
)-wtaA = (Q,Q0, T, wt)where Q = {q, qα, qβ , qα,0, qβ ,0},

Q0 = {q} and T consists of the transitions

τ1 = q(T R U E) → σ(qα(I D), q(I N C)), wt(τ1) =ω
(2)
0,λ,

τ2 = q(T R U E) → σ(qβ(I D), q(D E C)), wt(τ2) =ω
(2)
0,λ,

τ3 = q(T R U E) → qα,0(I N C), wt(τ3) =ω
(1)
0,λ,

τ4 = q(T R U E) → qβ ,0(D E C), wt(τ4) =ω
(1)
0,λ,

τ5 = qα(T R U E) → α, wt(τ5) =ω
(0)
2,λ,

τ6 = qβ(T R U E) → β , wt(τ6) =ω
(0)
1,λ,

τ7 = qα,0(Z E R O) → α, wt(τ7) =ω
(0)
2,λ,

τ8 = qβ ,0(Z E R O) → β , wt(τ8) =ω
(0)
1,λ.

Intuitively, in state q, A computes the difference of the numbers of α’s and β ’s encountered
so far. This is done by using the storage type CO U N T: at a node labeled σ, if the node’s
left subtree ξ1 is accepted in state qα (and is, thus, of form α), then the counter for the
right subtree ξ2 is increased by 1. Similarly, if ξ1 is processed in state qβ , the counter for
ξ2 is decreased by 1. Then the rightmost leaf symbol can only be computed, if it causes the
difference to be zero. For this, state q switches to state qα,0 (or qβ ,0) by increasing (respectively
decreasing) the counter a last time and, afterwards, qα,0 computes α (and qβ ,0 computes β)
if the test Z E R O is successive. Note that, e.g., τ3(τ7) is not a computation as the Z E R O test
fails. Thus, for each ξ ∈ TΣ we have

ΘA(ξ) 6= ; ⇔ ξ ∈ Tαβ .

Moreover, it is not hard to see that |ΘA(ξ)|= 1 for each ξ ∈ Tαβ . This unique computation,
denoted by tξ, is of the form

64

2.2 The Automaton Model

q(T R U E)→ σ(qz1
(I D), q(f1))

qz1
(T R U E)→ z1 q(T R U E)→ σ(qz2

(I D), q(f2))

qz2
(T R U E)→ z2 q(T R U E)→ σ(qzn−1

(I D), q(fn−1))

qzn−1
(T R U E)→ zn−1 q(T R U E)→ qzn,0(fn)

qzn,0(Z E R O)→ zn

where n≥ 2, z1, . . . , zn ∈Σ
(0), z1 . . . zn = yd(ξ), and, for each i ∈ [n], fi = I N C if zi = α and

D E C if zi = β . As ξ ∈ Tαβ , by the above explanation we obtain that B E H AV(tξ) is a storage
behavior in B(ΛA, 0) as depicted in Figure 2.2 for a concrete example. The weight of this
computation is given by

wt(tξ) =

ω
(2)
0,λ

ze1 ω
(2)
0,λ

ze2 ω
(2)
0,λ

zen−1 ω
(1)
0,λ

zen
where, for each i ∈ [n], zei =ω

(0)
2,λ = 2 if zi = α and zei =ω

(0)
1,λ = 1 if zi = β . This term can be

evaluated as

wt(tξ) = λ1 · ze1 +λ2 ·
�
λ1 · ze2 +λ2 ·
!

. . .+λ2 · (λ1 · zen−1 +λ2 · (λ1 · zen)) . . .
��

= 1 · ze1 + 0.5 ·
�
1 · ze2 + 0.5 ·
!

. . .+ 0.5 · (1 · zen−1 + 0.5 · (1 · zen)) . . .
��

= 0.50 · ze1 + 0.51 · ze2 + . . .+ 0.5n−1 · zen (∗)

where (∗) holds as · distributes over +.
Thus, we obtain for each ξ ∈ Tαβ with yd(ξ) = z1 . . . zn for some n≥ 2 and z1, . . . , zn ∈Σ

(0)

that
JAK(ξ) =
∑

t∈ΘA(ξ)

wt(t) = wt(tξ) = λ1 · ze1 + . . .+λn · zen = rD I S C(ξ) .

As ΘA(ξ) = ; for each ξ /∈ Tαβ and, thus, JAK(ξ) = −∞, we obtain JAK= rD I S C .
In Figure 2.2 the computation tξ of the tree ξ= σ(α,σ(β ,σ(β ,α))) is depicted in detail.

�

65

Chapter 2 Weighted Tree Automata with Storage

tξ = q(T R U E)→ σ(qα(I D), q(I N C))

qα(T R U E)→ α q(T R U E)→ σ(qβ (I D), q(D E C))

qβ (T R U E)→ β q(T R U E)→ σ(qβ (I D), q(D E C))

qβ (T R U E)→ β q(T R U E)→ qα,0(I N C)

qα,0(Z E R O)→ α

(i) S Y M B(tξ) (ii) B E H AV(tξ)

(iii) wt(tξ)

(T R U E, I D I N C)

(T R U E,ǫ) (T R U E, I D D E C)

(T R U E,ǫ) (T R U E, I D D E C)

(T R U E,ǫ) (T R U E, I N C)

(Z E R O,ǫ)

0

0 1

1 0

0 −1

0

σ

α σ

β σ

β α

ω
(2)
0,λ

ω
(0)
2,λ ω

(2)
0,λ

ω
(0)
1,λ ω

(2)
0,λ

ω
(0)
1,λ ω

(1)
0,λ

ω
(0)
2,λ

= λ1 · 2+λ2 · (λ1 · 1+λ2 · (λ1 · 1+λ2 · (λ1 · 2)))

= 1 · 2+ 0.5 · (1 · 2+ 0.5 · (1 · 2+ 0.5 · (1 · 2)))

= 0.50 · 2+ 0.51 · 1+ 0.52 · 1+ 0.53 · 2

= 3

Figure 2.2: The unique computation tξ ∈ ΘA(ξ) for ξ = S Y M B(tξ) =

σ(α,σ(β ,σ(β ,α))) (depicted in (i)) with its underlying storage behavior
(depicted in (ii) together with the corresponding family of configurations)
and its weight evaluation (depicted in (iii)).

66

2.2 The Automaton Model

Inductive semantics

Now we want to introduce an alternative definition of the computation trees of an (S,Σ, K)-
wta A by means of induction. This will be helpful for inductive proofs.

Let A= (Q,Q0, T, wt) be an (S,Σ, K)-wta. We let the family

ΞA = (Ξq,ξ,c | q ∈Q,ξ ∈ TΣ , c ∈ C)

of sets over TT be the smallest 7 family Ξ of sets over TT such that

(1) for each q, q′ ∈Q, ξ ∈ TΣ , c, c′ ∈ C , t ∈ Ξq′,ξ,c′ , p ∈ P, f ∈ F , andτ = q(p)→ q′(f) ∈ T :
if p(c) = 1 and f (c) = c′, then τ(t) ∈ Ξq,ξ,c , and

(2) for each k ∈ N, σ ∈ Σ(k), q, q1, . . . , qk ∈ Q, ξ1, . . . ,ξk ∈ TΣ , c, c1, . . . ck ∈ C , t1 ∈
Ξq1,ξ1,c1

, . . . , tk ∈ Ξqk ,ξk ,ck
, p ∈ P, f1, . . . , fk ∈ F , andτ = q(p)→ σ(q1(f1), . . . , qk(fk)) ∈

T : if p(c) = 1 and fi(c) = ci for each i ∈ [k], then τ(t1, . . . , tk) ∈ Ξq,σ(ξ1,...,ξk),c .

Now we want to show that for each q ∈Q, ξ ∈ TΣ , and c ∈ C we have Ξq,ξ,c = ΘA(q,ξ, c).

Lemma 2.2.2. Let q ∈Q, ξ ∈ TΣ , and c ∈ C. Then ΘA(q,ξ, c) ⊆ Ξq,ξ,c .

Proof. To prove the statement we show the following property by strong induction on n.

Property (A). For each n ∈ N+, q ∈ Q, ξ ∈ TΣ , c ∈ C, and t ∈ ΘA(q,ξ, c): if |t| = n, then

t ∈ Ξq,ξ,c .

First, let n= 1. Then t = τ for some τ ∈ T of the form q(p)→ α and ξ= α. By item (2)
of the definition of ΞA, t ∈ Ξq,ξ,c .

Now let n > 1 and assume that Property (A) holds for all n′ ∈ N+ with n′ < n. We consider
the following case distinction on t:

Case 1: Let t be of the form τ(t ′) for some τ = (q(p)→ q′(f)) ∈ Tǫ and t ′ ∈ ΘA(q
′,ξ, f (c)).

Then n= |t ′|+ 1 and p(c) = 1. By induction hypothesis, t1 ∈ Ξq′,ξ, f (c). By using item (1) of
the definition of ΞA, we obtain that τ(t ′) ∈ Ξq,ξ,c .

Case 2: Let t be of the form τ(t1, . . . , tk) for some k ≥ 1, τ = (q(p)→ σ(q1(f1), . . . , qk(fk)))

in T , and, for each i ∈ [k], t i ∈ ΘA(qi ,ξi , fi(c)) for some ξi ∈ TΣ . Then p(c) = 1, ξ =
σ(ξ1, . . . ,ξk), and n = |t1|+ . . .+ |tk|+ 1. By induction hypothesis, t i ∈ Ξqi ,ξi , fi(c)

for each
i ∈ [k]. By using item (2) of the definition of ΞA, we obtain that τ(t1, . . . , tk) ∈ Ξq,ξ,c . �

Lemma 2.2.3. Let q ∈Q, ξ ∈ TΣ , and c ∈ C. Then Ξq,ξ,c ⊆ ΘA(q,ξ, c).

Proof. To prove this statement we show the following property by structural induction on t:

Property (B). For each t ∈ TT , q ∈Q, ξ ∈ TΣ , and c ∈ C: if t ∈ Ξq,ξ,c , then t ∈ ΘA(q,ξ, c).

7Given two sets C and I and two families (ai | i ∈ I), (bi | i ∈ I) of sets over C , we say that (ai | i ∈ I) is smaller

than (bi | i ∈ I) if ai ⊆ bi for each i ∈ I .

67

Chapter 2 Weighted Tree Automata with Storage

First, let t = τ for some τ ∈ T of the form q(p)→ α. Then ξ = α, p(c) = 1, and S Y M B(t) =

α. Moreover, B E H AV(t) = (p,ǫ), which is an element of B(ΛA, c). Thus, t ∈ ΘA(q,ξ, c).

Now let t = τ(t1, . . . , tk) for some k ≥ 1. We consider the following case distinction on τ:

Case 1: Let τ = q(p) → q′(f). Then k = 1, t1 ∈ Ξq′,ξ, f (c), and p(c) = 1. By induction
hypothesis, t1 ∈ ΘA(q

′,ξ, f (c)). As S Y M B(t) = S Y M B(t1) and TA R G E T1(t(ǫ)) = q′ =

S O U R C E(t(1)), t is ξ-compatible. Moreover, we have B E H AV(t) = (p, f)(B E H AV(t ′)) and
B E H AV(t ′) ∈ B(ΛA, f (c)). Let (c′v ∈ C | v ∈ pos(B E H AV(t ′))) be the family of configurations
determined by B E H AV(t ′) and f (c). Now consider the family (cv ∈ C | v ∈ pos(B E H AV(t)))

defined by

cv =

¨
c if v = ǫ

c′w if v = 1w for some w ∈ pos(t ′)

for each v ∈ pos(B E H AV(t)). As p(cǫ) = 1 and f (cǫ) = c1, we obtain that B E H AV(t) ∈
B(ΛA, c). Thus, t ∈ ΘA(q,ξ, c).

Case 2: Let τ = q(p)→ σ(q1(f1), . . . , qk(fk)). We can prove this case by using a similar
argumentation as in Case 1. �

By the above lemmas we obtain that Ξq,ξ,c = ΘA(q,ξ, c) for each q ∈Q, ξ ∈ TΣ , and c ∈ C .
Thus, in the following we identify these two sets.

Initial state normal form

Although we have defined (S,Σ, K)-wta allowing several initial states, this is not necessary:
we will show next that (S,Σ, K)-wta with one initial state have the same expressive power.

Lemma 2.2.4 ([FHV18, Errata, Lemma 3.2]). For each (S,Σ, K)-wta A there is an (S,Σ, K)-

wta A
′ such that JAK= JA′K and A

′ has exactly one initial state.

Proof. Let A = (Q,Q0, T, wt) be an (S,Σ, K)-wta and let z be a symbol not in Q. We construct
the (S,Σ, K)-wta A

′ = (Q ∪ {z}, {z}, T ′, wt′) where T ′ contains the following transitions:

• For each q0 ∈Q0 the transition τ= (z(T R U E)→ q0(I D)) is in T ′ and wt′(τ) = I DK .

• If τ= (q(p)→ q′(f)) is in T , then τ is in T ′ as well and wt′(τ) = wt(τ).

Due to the second bullet we obtain that for each q ∈Q, ξ ∈ TΣ , and c ∈ C

ΘA(q,ξ, c) = ΘA′(q,ξ, c) and wt(t) = wt′(t) for each t ∈ ΘA(q,ξ, c) . (∗)

68

2.2 The Automaton Model

Now let ξ ∈ TΣ . Then

JAK(ξ) =
∑

t∈ΘA(ξ)

wt(t)

=
∑

q0∈Q0

∑

t∈ΘA(q0,ξ,c0)

wt(t)

=
∑

q0∈Q0

∑

t∈ΘA′ (q0,ξ,c0)

wt′(t) (by ∗)

=
∑

q0∈Q0

∑

t∈ΘA′ (q0,ξ,c0)

wt′(z(T R U E)→ q0(I D))
!
wt′(t)
�

=
∑

t ′∈ΘA′ (z,ξ,c0)

wt′(t ′) = JA′K(ξ) .

Thus, JAK= JA′K. �

Convention. During this work we sometimes assume for an (S,Σ, K)-wta A = (Q,Q0, T, wt)

that Q0 = {q0}. In this case, we will write A= (Q, q0, T, wt).

2.2.1 Particular Restrictions

Now we want to consider several instances of our automaton model obtained by restricting
some of its components.

The unweighted case

Let A = (Q,Q0, T, wt) be an (S,Σ,B)-wta. Obviously, we can drop all transitions τ with
wt(τ) = 0rk(τ) from T without changing A’s semantics (while restricting ΘA(ξ) to compu-
tations of weight 1 for each ξ ∈ TΣ). Thus, we can assume without loss of generality that
each k-ary transition remaining in T has weight ∧k. It follows that wt(t) = 1 for each ξ ∈ TΣ
and t ∈ ΘA(ξ), and we have that supp(JAK) = {ξ ∈ TΣ | ΘA(ξ) 6= ;}. For this reason, this
automaton is also called a tree automaton over Σ with storage S (or abbreviated an (S,Σ)-ta)
and we drop the weight function wt from its specification. Moreover, we let the tree language

generated by A, denoted by L(A), be the set

L(A) = {ξ ∈ TΣ | ΘA(ξ) 6= ;}

mentioned above. We say that A is unambiguous if for each ξ ∈ TΣ we have |ΘA(ξ)| ≤ 1.
A tree language L ⊆ TΣ is called (S,Σ)-recognizable if there is an (S,Σ)-ta A such that

L(A) = L. We denote the class of all (S,Σ)-recognizable tree languages by RT(S,Σ).

Remark 2.2.5. We note that each (S,Σ)-wta A can be seen as an RT(S)-transducer MA

as defined in [EV86, Def. 3.3] and in [EV88, Def. 3.3] (where RT stands for regular tree
grammar): MA translates storage inputs (which can be seen as initial storage configurations)
into terminal trees in a very similar way as A recognizes trees. Thus, the image of this
translation is L(A). On the other hand, each RT(S)-transducer M (using the slightly different

69

Chapter 2 Weighted Tree Automata with Storage

definition of a storage type in this work and predicates instead of Boolean expressions over
P) can be seen as an (S,Σ)-ta.

By this correspondence and by [EV88, Thm. 6.15], we obtain for each n≥ 0 that RT(Pn,Σ)
is the class of level-n OI-tree languages (denoted by n-T in [EV88], cf. also [DG81]) – a
hierarchy of tree languages that has been intensively investigated in [Dam82, DG81]. By
choosing n= 0, we obtain the class of recognizable tree languages and, for n= 1, the class
of context-free tree languages (cf. [EV88, Prop. 4.4]).

It was shown in [Dam82, Thm. 7.8] that, for each n≥ 0, the emptiness problem for level-n
OI-tree languages is decidable. Ã

As mentioned in the remark above, it is well known that CFT(Σ) = RT(P,Σ). However, as
we use a very specific pushdown-automaton model in this work and we will later use details
of the constructions for this correspondence, we will now show a proof of equivalence (for
our setting).

Theorem 2.2.6. CFT(Σ) = RT(P,Σ).

Proof. CFT(Σ) ⊆ RT(P,Σ): Let A = (Q,ΓA, q0,γA,0, T) be a Σ-pta with ΓA = Γ0 ∪ Γ1.
Without loss of generality we may assume that ΓA ⊂ Γ \{γ0} (where Γ is the set of pushdown
symbols of P and γ0 is the initial pushdown symbol of P). Moreover, let Π be the set consisting
of all π ∈ Γ ∗1Γ0 ∪ Γ

∗
1 occurring in the right-hand side of transitions of A. As (P�,Σ)-ta only

allow to push single symbols to the pushdown instead of sequences, we have to store the
remaining part of a pushdown operation π in the states. As the pushdown grows to the left,
we store all prefixes of π. Thus, we set

ΓT = {w ∈ Γ
∗
1 | ww′ ∈Π for some w′ ∈ Γ ∗1Γ0 ∪ Γ

∗
1 },

i.e., ΓT is the set of all prefixes of pushdown operations in Π. Obviously, ΓT is finite.
Now we construct the (P,Σ)-ta A

′ = (Q′, q̄0, T ′) where

Q′ =Q ∪ {q̄0} ∪ {q
π | q ∈Q,π ∈ ΓT } ∪ {[q

π] | q ∈Q,π ∈Π} ,

q̄0 /∈Q, and T ′ is defined as follows:

• The transition q̄0(B O T T O M)→ q0(P U S HγA,0
) is in T ′.

• If q(α,γ)→ α is a transition in T , then the transition q(T O Pγ)→ α in in T ′.

• If q(σ(x1, . . . , xn),δ) → σ(q1(x1,π1), . . . , qn(xn,πn)) is a transition in T , then the
transition q(T O Pδ)→ σ(u1, . . . , un) is in T ′ where

ui =

¨
(qi)

πi (P O P) if πi ∈ Γ
∗
1

[(qi)
πi](I D) if πi ∈ Γ

∗
1Γ0

for each i ∈ [n].

• If q(x ,γ) → q′(x ,π) is a transition in T of type (3), then the transition q(T O Pγ) →
[(q′)π](P O P) is in T ′.

70

2.2 The Automaton Model

• If q(x ,δ)→ q′(x ,π) is a transition in T of type (4), then the transition q(T O Pδ)→ u

is in T ′ where

u=

¨
(q′)π(P O P) if π ∈ Γ ∗1
[(q′)π](I D) if π ∈ Γ ∗1Γ0

.

• For each q ∈Q and π ∈ ΓT the transition [qπ](T R U E)→ [qπ](P O P) is in T ′.

• For each q ∈Q,π ∈ Γ ∗1 , and γ ∈ Γ0 withπγ ∈Π we let the transition [qπγ](B O T T O M)→
qπ(P U S Hγ) be in T ′.

• For each q ∈ Q, π ∈ ΓT , and γ ∈ Γ1 the transitions qπγ(T R U E) → qπ(P U S Hγ) and
qǫ(T R U E)→ q(I D) are in T ′.

Note that all pushdown configurations that can be reached in computations of A′ are from
the set Γ ∗1Γ0{γ0} ∪ {γ0}, i.e., a symbol from Γ0 may only occur in the bottom-most but one
pushdown cell. This due to the fact that only the transition constructed in the second to last
bullet allows to push a symbol from Γ0.

L(A) ⊆ L(A′): First, we want to show that, for each ξ ∈ TΣ , if (q0,ξ,γA,0) ⊢
∗
A
ξ, then there

is a computation t ∈ ΘA′(ξ). For this, one can prove the following property: Let n ∈ N, ξ ∈ TΣ ,
q ∈Q, and π ∈ Γ ∗1Γ0. If (q,ξ,π)⊢n

A
ξ, then there exists a computation t ∈ ΘA′(q,ξ,πγ0). The

proof of this property is by complete induction on n and omitted here.
Now let (q0,ξ,γA,0) ⊢

∗
A
ξ. By the above property, there is a t ∈ ΘA′(q0,ξ,γA,0γ0). By

construction, the transition τ = (q̄0(B O T T O M) → q0(P U S HγA,0
)) is in T ′. Clearly, τ(t) ∈

ΘA′(ξ).

L(A′) ⊆ L(A): Now we want to show that, for each ξ ∈ TΣ , if there is a computation
t ∈ ΘA′(ξ), then (q0,ξ,γA,0) ⊢

∗
A
ξ. For this, we can prove a more general property: Let

t ∈ TT ′ , ξ ∈ TΣ , q ∈Q, γ ∈ Γ0, π,π′′ ∈ Γ ∗1Γ0, and π′ ∈ Γ ∗1 . Then,

• if t ∈ ΘA′(q,ξ,πγ0), then (q,ξ,π) ⊢∗
A
ξ,

• if t ∈ ΘA′(q
π′ ,ξ,πγ0), then (q,ξ,π′π) ⊢∗

A
ξ, and

• if t ∈ ΘA′([q
π′′],ξ,πγ0), then (q,ξ,π′′) ⊢∗

A
ξ.

This statement can be shown by structural induction on t, the proof is omitted here.
Now let t ∈ ΘA′(ξ). By construction, t has to be of the form τ(t)withτ = (q̄0(B O T T O M)→

q0(P U S HγA,0
)) and t ∈ ΘA′(q0,ξ,γA,0γ0). Then by the above property, (q0,ξ,γA,0) ⊢

∗
A
ξ.

* * *

RT(P,Σ) ⊆ CFT(Σ): Let A= (Q, q0, T) be a (P,Σ)-ta and let ΓT be the set of pushdown
symbols used in transitions of A. Without loss of generality we can assume that A does not
use the predicate T R U E (note that we can replace a transition q(T R U E)→ u by transitions
q(T O Pγ)→ u for each γ ∈ ΓT ∪{γ0}). Moreover, we can assume that T contains no transition
using at the same time the predicate B O T T O M as well as a P O P instruction. We note that,

71

Chapter 2 Weighted Tree Automata with Storage

since the pop instruction of P must not empty the pushdown, the bottom-most pushdown
symbol in a computation of A is always the initial symbol γ0.

Now let Γ0 = {#} for some new symbol # /∈ Γ ∪Σ and let Γ1 = ΓT ∪ {γ0}. A Σ-pta does
not allow that a pushdown symbol from Γ0 occurs at a position of the pushdown that is not
bottom-most. In contrast, γ0 may occur everywhere in configurations of P. Hence, we use a
new symbol # as bottom-most pushdown symbol for the Σ-pta constructed next.

We construct the Σ-pta A
′ = (Q′,Γ0 ∪ Γ1, q#,#, T ′) where

Q′ =Q ∪ {qα | q ∈Q,α ∈Σ(0)} ∪ {qB , [qB], q¬B , q#} .

As A′ can only read a nullary symbol α ∈Σ(0) if the current pushdown consists of one element
from Γ0, we store α in the states and afterwards empty the pushdown. States of the form qB

ensure that the current pushdown configuration is γ0# and are used to simulate B O T T O M.
Moreover, states of the form q¬B ensure that the current pushdown configuration is not #
and are used after simulating a P O P instruction. The set T ′ is defined as follows:

• The transition q#(x , #)→ q0(x ,γ0#) is in T ′.

• Let q(p)→ α be in T . Then the transition qα(α,#)→ α is in T ′. Moreover,

– if p = B O T T O M, then the transition qB(x ,γ0)→ qα(x ,ǫ) is in T ′, and

– if p = T O Pγ, then the transition q(x ,γ)→ qα(x ,ǫ) is in T ′ and, for each δ ∈ Γ1,
the transition qα(x ,δ)→ qα(x ,ǫ) is in T ′.

• Let q(p)→ q′(f) be in T . We distinguish two cases:

– If p = B O T T O M, then the transition qB(x ,γ0)→ u is in T ′, where

u=

¨
q′(x ,γ′γ0) if f = P U S Hγ′

q′(x ,γ0) if f = I D
.

– If p = T O Pγ, then the transition q(x ,γ)→ u is in T ′, where

u=

q′(x ,γ′γ) if f = P U S Hγ′

q′(x ,γ) if f = I D

q′¬B
(x ,ǫ) if f = P O P

.

• Let q(p)→ σ(q1(f1), . . . , qn(fn)) be in T for some n≥ 1. We distinguish two cases:

– If p = B O T T O M, then the transition qB(σ(x1, . . . , xn),γ0)→ σ(u1, . . . , un) is in
T ′, where for each i ∈ [n]

ui =

¨
qi(x i ,γ

′γ0) if fi = P U S Hγ′

qi(x i ,γ0) if fi = I D
.

72

2.2 The Automaton Model

– if p = T O Pγ, then the transition q(σ(x1, . . . , xn),γ) → σ(u1, . . . , un) is in T ′,
where for each i ∈ [n]

ui =

qi(x i ,γ
′γ) if fi = P U S Hγ′

qi(x i ,γ) if fi = I D

(qi)¬B(x i ,ǫ) if fi = P O P

• For each q ∈ Q the transitions q(x ,γ0)→ [qB](x ,ǫ) and [qB](x ,#)→ qB(x ,γ0#) are
in T ′.

• For each γ ∈ Γ1 the transition q¬B(x ,γ)→ q(x ,γ) is in T ′.

L(A) ⊆ L(A′): Here we want to show that, for each ξ ∈ TΣ , if there is a computation
t ∈ ΘA(ξ), then (q#,ξ,#) ⊢∗

A′
ξ. For this, we can first prove the following property: Let

t ∈ TT , ξ ∈ TΣ , q ∈ Q, and π ∈ Γ+1 . If t ∈ ΘA(q,ξ,π), then (q,ξ,π#) ⊢∗
A′

ξ. This statement
can be shown by structural induction on t, the proof is omitted here.

Now let t ∈ ΘA(ξ). By the above property, (q0,ξ,γ0#) ⊢∗
A′

ξ. Moreover, by construction,
the transition τ= (q#(x , #)→ q0(x ,γ0#)) is in T ′. Thus, (q#,ξ,#) ⊢τ (q0,ξ,γ0#) ⊢∗

A′
ξ.

L(A′) ⊆ L(A): Now we want to show that, for each ξ ∈ TΣ , if (q#,ξ, #) ⊢∗
A′

ξ, then there is
a computation t ∈ ΘA(ξ). For this, one can prove the following property: Let n ∈ N, ξ ∈ TΣ ,
q ∈ Q, and π ∈ Γ+1 . If (q,ξ,π#) ⊢n

A′
ξ, then there is a computation t ∈ ΘA(q,ξ,π). This

statement can be shown by complete induction on n, the proof is omitted here.
Now let (q#,ξ,#) ⊢∗

A′
ξ. By construction, the only transition in T ′ that has q# as source

state, is the transition τ = (q#(x ,#)→ q0(x ,γ0#)). Thus, (q#,ξ,#) ⊢τ (q0,ξ,γ0#) ⊢∗
A′

ξ.
Now we can apply the above property and obtain that there is a computation t ∈ ΘA(ξ). �

The storage-free case

Let A= (Q,Q0, T, wt) be a (TR I V,Σ, K)-wta. In this case we drop the predicate T R U E and
the instruction I D from all transitions in T . Note, however, that in contrast to [FHV17] we do
not call A a (Σ, K)-wta to avoid confusion with the weighted tree automaton model defined
in Section 1.4.3.

Remark 2.2.7. Indeed, (TR I V,Σ, K)-wta entail more functionality than classical weighted tree
automata over strong bimonoids as the former allow ǫ-transitions. However, this difference
can be neglected if K is a commutative and complete semiring: It was shown in [FMV11]
that in this case ǫ-transitions can be removed. As, moreover, it is well known that (Σ, K)-wta
with Boolean root weights are equally expressive as arbitrary (Σ, K)-wta [FV09, Theorem
3.6], we obtain RT(TR I V,Σ, K) = RT(Σ, K) if K is a commutative and complete semiring.
We will see in Section 2.4 that this even holds for non-commutative (but complete) semirings
K . Ã

In [FSV12, Sec. 2.6], weighted tree automata were defined over M-monoids which need not
be absorptive and complete (and which do not necessarily contain a unary identity operation).
However, choosing a complete M-monoid K as defined in this thesis, clearly each ǫ-free

73

Chapter 2 Weighted Tree Automata with Storage

(TR I V,Σ, K)-wta corresponds to a weighted tree automaton over Σ and K (as defined in
[FSV12, Sec. 2.6]), and vice versa. Thus, we can make the following observation that we
will need in a later part of this work.

Observation 2.2.8 ([FHV18, Observation 3.3]). RTǫ-free(TR I V,Σ, K) is the class of recog-

nizable tree series over Σ and K defined in [FSV12].

Furthermore, as we require that each storage type contains the predicate T R U E and the
instruction I D, it is clear that each (ǫ-free) (TR I V,Σ, K)-wta can be simulated by an (ǫ-free)
(S,Σ, K)-wta for some arbitrary storage type S.

Observation 2.2.9 (cf. [FHV17, Corollary 5.5 (2.)]). RT(TR I V,Σ, K) ⊆ RT(S,Σ, K) and

RTǫ-free(TR I V,Σ, K) ⊆ RTǫ-free(S,Σ, K) for each storage type S.

The unweighted and storage-free case

Let A = (Q,Q0, T) be a (TR I V,Σ,B)-wta. Clearly, ǫ-transitions can be removed and, thus,
we reobtain the concept of a Σ-ta as defined in Section 1.4.1. Hence, A is also called a Σ-ta.

74

2.3 Finite Storage Types

2.3 Finite Storage Types

The main idea behind equipping an automaton with a storage (like a pushdown or a stack)
always was to give it a possibility to store an infinite amount of additional information which
clearly is not possible by a finite-state control. Whereas the functionality of this additional
storage can differ (and, thus, the expressiveness differs as well), the requirement of an infinite

amount is crucial to extend finite-state automata. This also applies to our (S,Σ, K)-weighted
tree automata: Here we show that, if S is finite, it can be simulated by the finite-state control
of a (TR I V,Σ, K)-wta.

Note: The following Lemma 2.3.1 was proven in [FHV17, Lemma 3.4] for the unweighted
case and afterwards lifted to the weighted setting using a decomposition result ([FHV17,
Corollary 5.5 (1.)]). Here we provide a direct construction. The technique of the proof is
inspired by the construction of [HDV19, Theorem 10, (2)⇒ (1)] but had to be adapted to
the tree case.

Lemma 2.3.1 ([FHV17, Corollary 5.5 (1.)]). Let S be a finite storage type. Then for each

(S,Σ, K)-wta A there is a (TR I V,Σ, K)-wta A
′ such that JAK= JA′K. If A is ǫ-free, then so is

A
′.

Proof. Let S = (C , P, F, c0) be a finite storage type and recall that, since C is a finite set, also
P and F have to be finite. Moreover, let A= (Q, q0, T, wt) be an (S,Σ, K)-wta.

Now we want to construct an equivalent (TR I V,Σ, K)-wta A
′. To avoid the finite storage,

we have to encode the configurations of S into the states of A′ such that the behavior of the
storage can be simulated during a computation. However, since there might be a configuration
c on which distinct predicates are true or which is mapped by distinct instructions to the
same configuration c′, we also have to consider P and F in the state encoding. Otherwise
two transitions of A could result in only one transition of A′ leading to an unclear weight
assignment.

Let m =max{maxrk(Σ), 1} and let FΣ be the set
⋃

n∈{0,...,m} F
n of words over F shorter or

equal to m. We construct the (TR I V,Σ, K)-wta A
′ = (Q′,Q′0, T ′, wt′) where

Q′0 = {〈q0, c0, p, f̄ 〉 | p ∈ P, f̄ ∈ FΣ},

Q′ = {〈q, c, p, f̄ 〉 | q ∈Q, c ∈ C , p ∈ P, f̄ ∈ FΣ},

and T ′ consists of the following transitions:

• If the transition τ of the from q(p) → σ(q1(f1), . . . , qn(fn)) is in T , then for each
c ∈ C such that p(c) = 1 and f1(c), . . . , fn(c) are defined, and for each p1, . . . , pn ∈ P,
f1̄, . . . fn̄ ∈ FΣ the transition

τ′ = 〈q, c, p, f1 . . . fn〉 → σ(〈q1, f1(c), p1, f1̄〉, . . . , 〈qn, fn(c), pn, fn̄〉)

is in T ′ and wt′(τ′) = wt(τ).

75

Chapter 2 Weighted Tree Automata with Storage

• If the transition τ of the from q(p) → q′(f) is in T , then for each c ∈ C such that
p(c) = 1 and f (c) is defined and for each p′ ∈ P, f̄ ∈ FΣ the transition

τ′ = 〈q, c, p, f 〉 → 〈q′, f (c), p′, f̄ 〉

is in T ′ and wt′(τ′) = wt(τ).

Now let ξ ∈ TΣ . It is not hard to see that there exists a bijection ϕ : ΘA(ξ)→ ΘA′(ξ) (as
also presented in Example 2.3.3 below):

Given a computation t ∈ ΘA(ξ), it is obvious how to shift the predicates and instructions
occurring in t ’s transitions into the respective states. Moreover, as there is exactly one initial
storage configuration c0, all configurations c in the states of ϕ(t) are uniquely determined by
the instructions occurring above.

On the other hand, given a computation t ′ ∈ ΘA′ , we obtain a computation ϕ−1(t ′)

by removing all storage configurations from the states and by shifting the predicates and
instructions to their respective positions. Note that we require in the construction that for the
source state 〈q, c, p, f1 . . . fn〉 of each transition it holds that p(c) = 1 and fi(c) is defined for
each i ∈ [n]. Hence, ϕ−1(t ′) induces a storage behavior and, thus, is a computation.

Moreover, as each transition occuring in t occurs with the same weight and at the same
position in ϕ(t), we obtain that wt(t) = wt′(ϕ(t)) for each ξ ∈ TΣ and t ∈ ΘA(ξ). Thus,
JAK= JA′K. Obviously, the construction does not introduce new ǫ-transitions and, thus, if A
is ǫ-free than so is A′. �

Together with our earlier observation that each (TR I V,Σ, K)-recognizable weighted tree
language is also (S,Σ, K)-recognizable for an arbitrary storage type S, we obtain the next
theorem.

Theorem 2.3.2 ([FHV18, Corollary 5.6]). For each finite storage type S we obtain that

RT(S,Σ, K) = RT(TR I V,Σ, K) and RTǫ-free(S,Σ, K) = RTǫ-free(TR I V,Σ, K).

Proof. This theorem directly follows from Lemma 2.3.1, Observation 2.2.9 and the fact that
the respective constructions preserve ǫ-freeness. �

Now let us examine the construction behind Lemma 2.3.1 by an example.

Example 2.3.3. Consider the finite storage type

Smod3 = ({0, 1, 2}, {T R U E, 1?}{I D, I N C}, 0)

where, for each c ∈ {0, 1, 2}, we let 1?(c) = 1 if and only if c = 1 and

I N C(c) =

¨
0 if c = 2

c + 1 otherwise
.

Moreover, let Σ = {σ(2),α(0)} and let A = ({qσ, qα}, {qσ}, T) be the ǫ-free (Smod3,Σ)-ta with
T consisting of the three transitions

τ1 = qσ(T R U E)→ σ(qα(I D), qσ(I N C)),

τ2 = qσ(1?)→ σ(qα(I D), qα(I D)), and

τ3 = qα(T R U E)→ α.

76

2.3 Finite Storage Types

It is not hard to see that for each ξ ∈ TΣ we have ξ ∈ L(A) if and only if it is of the form

σ

z1 σ

z2 ...
σ

zn−1 zn

where n= 3 · j for some j ≥ 1 and zi = α for each i ∈ [n].
Now we want to apply the construction behind Lemma 2.3.1 to encode the finite storage

type Smod3 into the states of a (TR I V,Σ)-ta. By doing so, we obtain the set

FΣ = {ǫ, I D, I N C, I D I D, I D I N C, I N C I D, I N C I N C}

as well as the ǫ-free (TR I V,Σ)-ta A
′ = (Q′,Q′0, T ′) where

Q′0 = {〈qσ, 0, p, f̄ 〉 | p ∈ {T R U E, 1?}, f̄ ∈ FΣ},

Q′ = {〈q, c, p, f̄ 〉 | q ∈ {qσ, qα}, c ∈ {0, 1, 2}, p ∈ {T R U E, 1?}, f̄ ∈ FΣ},

and T ′ consists of the transitions obtained from τ1,τ2, and τ3 by applying the above con-
struction behind Lemma 2.3.1. For example, from the transition τ1 we obtain (among others)
the transition

τ′1 = 〈qσ, 0, T R U E, I D I N C〉 → σ
!
〈qα, 0, T R U E,ǫ〉, 〈qσ, 1, 1?, I D I D〉

�
.

Now consider the tree ξ = σ(α,σ(α,α)) as well as the computation t ∈ ΘA(ξ) of the form

t =

qσ(T R U E)→ σ(qα(I D), qσ(I N C))

qα(T R U E)→ α qσ(1?)→ σ(qα(I D), qα(I D))

qα(T R U E)→ α qα(T R U E)→ α

.

From t, we easily obtain the corresponding computation t ′ ∈ ΘA′(ξ) which is of the form

t ′ =

〈qσ, 0, T R U E, I D I N C〉 → σ(〈qα, 0〉, 〈qσ, 1, 1?, I D I D〉)

〈qα, 0〉 → α 〈qσ, 1, 1?, I D I D〉 → σ(〈qα, 1〉, 〈qα, 1〉)

〈qα, 1〉 → α 〈qα, 1〉 → α

where we abbreviate by 〈qα, c〉 the state 〈qα, c, T R U E,ǫ〉 for each c ∈ {0,1}. It is easy to
see that t ′ encodes in its states the storage behavior b = B E H AV(t) as well as the family
(cv | v ∈ pos(b)) of configurations determined by b and 0. �

77

Chapter 2 Weighted Tree Automata with Storage

2.4 Elimination of ǫ-Transitions

When introducing an automaton model with ǫ-transitions, it is an interesting question whether
it can be reduced to some equivalent model without ǫ-transitions. This does, for example,
work for finite-state automata as well as for pushdown automata8. However, when considering
more complex models allowing weights and some arbitrary storage type, the situation changes.
This already happens in case of a pushdown storage, when stepping into the world of tree
automata: As it was shown in [Gue83, Corollary 1.(ii)], in contrast to pushdown string
automata, (P,Σ)-ta are more expressive than ǫ-free (P,Σ)-ta.

At the same time, it is well known that, for each (Σ, K)-wta where K is a complete and
commutative semiring, an equivalent ǫ-free (Σ, K)-wta can be constructed [ÉK03, FMV11]
by solving the corresponding classical algebraic path problem.

In this section, we examine under which conditions we can remove ǫ-transitions from
(S,Σ, K)-wta. However, for the above reason, it seems not very promising to find good
storage types that allow an ǫ-removal. Thus, here we concentrate our analysis on finding
an appropriate weight algebra. Indeed, we will show that for each simple (S,Σ, K)-wta over
a compressible M-monoid K an equivalent simple and ǫ-free (S,Σ, K)-wta exists. In this
context, simple means that ǫ-transitions only contain the predicate T R U E and the instruction
I D. This generalization includes complete but not necessarily commutative semirings K .

Related work Similar results for the elimination of ǫ-transitions in the weighted case have
been proved in [ÉK03, Thm. 3.2] and [FMV11, Lm. 3.2]. In fact, in [ÉK03, Thm. 3.2] it was
shown that ǫ-transitions can be eliminated from weighted tree automata over commutative
and continuous semirings. The same was shown for weighted tree automata over commutative
and complete semirings in [FMV11, Lm. 3.2]. The second result generalizes the first because
every continuous semiring is complete [ÉK03, Prop. 2.2]. Moreover, in [DDK19] it was
proven that weighted pushdown string automata over complete semirings can be made ǫ-free.

Another approach in removing ǫ-transitions of storage-extended automata was developed
by Zetzsche [Zet13]. In this work it was examined for valence automata (i.e., automata using
monoids as storage types), which storages allow to remove ǫ-transitions. However, valence
automata are unweighted string automata.

Before stepping into the details of our ǫ-removal, we want to emphasize that the result of
Guessarian [Gue83, Corollary 1.(ii)] can be strengthened further. In fact, as the following
theorem shows, there are (P,Σ)-recognizable tree languages that can not be recognized by
any ǫ-free (S,Σ)-ta for some arbitrary storage type S.

Theorem 2.4.1 ([FHV17, Theorem 6.1.]). RT(P,Σ)\
⋃

S RTǫ-free(S,Σ) 6= ; where S ranges

over the set of all storage types.

Proof. Let Σ = {α(0),δ(1),σ(2)}. In [Gue83], the tree language

L = {σ(δn(α),δn(α)) | n≥ 0}

8Note that usual constructions for avoiding ǫ-transitions in pushdown automata require the automaton to push
several pushdown symbols at once (cf. [?, Theorem 5.5.1]). It was shown in [DDK19, Corollary 12] that this
requirement is not necessary.

78

2.4 Elimination of ǫ-Transitions

was given as an example tree language that is in RT(P,Σ), but not in RTǫ-free(P,Σ). We will
show by contradiction that L 6∈ RTǫ-free(S,Σ) for any storage type S.

Let us assume that there is a storage type S = (C , P, F, c0) and an ǫ-free (S,Σ)-ta A =

(Q,Q0, T) such that L(A) = L. Since A is ǫ-free, each computation of A starts with a
transition from Tσ. As L is infinite and, in contrast, Tσ is finite, there have to be two integers
m, m′ ∈ N with m 6= m′ and there has to be a transition τ ∈ Tσ such that τ is the root of some
t ∈ ΘA(σ(δ

m(α),δm(α))) and also of some t ′ ∈ ΘA(σ(δ
m′(α),δm′(α))). Let

τ= q(p)→ σ(q1(f1), q2(f2))

be such a transition. Then p(c0) = 1, f1(c0) and f2(c0) are defined, and there are computations

• t1 ∈ ΘA(q1,δm(α), f1(c0)) and t ′1 ∈ ΘA(q1,δm′(α), f1(c0)), and

• t2 ∈ ΘA(q2,δm(α), f2(c0)) and t ′2 ∈ ΘA(q2,δm′(α), f2(c0))

such that τ(t1, t2) ∈ ΘA(σ(δ
m(α),δm(α))) and τ(t ′1, t ′2) ∈ ΘA(σ(δ

m′(α),δm′(α))). But then

τ(t1, t ′2) ∈ ΘA(σ(δ
m(α),δm′(α))) and, hence, also σ(δm(α),δm′(α)) ∈ L(A). This is a

contradiction to the assumption L(A) = L. �

Thus, in general, ǫ-transitions cannot be eliminated from (S,Σ, K)-wta, even if K = B. But
we will show in the following that we can eliminate ǫ-transitions for particular (S,Σ, K)-wta,
which we will call ’simple’.

Simple (S,Σ, K)-wta An (S,Σ, K)-wta is called simple if for each ǫ-transition of the form
q(p)→ q′(f) we have p = T R U E and f = I D. Let RTsimple(S,Σ, K) denote the class of all
weighted tree languages generated by simple (S,Σ, K)-wta.

Moreover, we also have to restrict the weight algebra. For (Σ, K)-wta, where K is a complete
and commutative semiring, the elimination procedure typically uses elements a∗ ∈ K (for
some a ∈ K) to capture the weight of cycles of ǫ-transitions. Here a∗ is the sum of all powers
an of a and the powers are defined by the multiplication of the semiring. In our setting we
deal with M-monoids and, instead of the binary multiplication, we have operations with
different arities. Thus, we will have to guarantee that the M-monoid is closed under iterated
composition of operations. This is the case with compressible M-monoids which we have
defined in Section 1.2.5.

Now we can state our next result. It generalizes [FMV11, Lm. 3.2] because simple (S,Σ, K)-
wta, where K is a compressible M-monoid, generalize weighted tree automata over commu-
tative and complete semirings.

Theorem 2.4.2 ([FHV17, Theorem 6.3.]). If K is compressible, then RTsimple(S,Σ, K) =

RTǫ-free(S,Σ, K).

Proof. As each ǫ-free (S,Σ, K)-wta is simple, we only have to prove that RTsimple(S,Σ, K) ⊆
RTǫ-free(S,Σ, K). Let A= (Q, q0, T, wt) be a simple (S,Σ, K)-wta9. Moreover, let PA and FA

9We note that also for simple (S,Σ, K)-wta we can assume a single initial state since in the construction of
Lemma 2.2.4 the property of being simple is preserved.

79

Chapter 2 Weighted Tree Automata with Storage

be the finite sets of predicates and instructions, respectively, which occur in the transitions of
A. Without loss of generality we can assume that for each k ∈ N, σ ∈Σ(k), q, q1, . . . , qk ∈Q,
p ∈ PA, and f1, . . . , fk ∈ FA, there is a transition τ = q(p)→ σ(q1(f1), . . . , qk(fk)) in T . If
there is no such transition, then we can add it to T and let wt(τ) = 0k. In a similar way, we
can assume that for each q, q′ ∈Q there is a transition q(T R U E)→ q′(I D) in T .

Now let W be the (Q×Q)-matrix over Ω(1) such that

Wq,q′ = wt(q(T R U E)→ q′(I D))

for each q, q′ ∈Q.
We construct the ǫ-free (S,Σ, K)-wta A

′ = (Q, q0, T ′, wt′) as follows. For each k ∈ N,
σ ∈Σ(k), q, q1, . . . , qk ∈Q, p ∈ PA, and f1, . . . , fk ∈ FA we let the transition

τ′ = (q(p)→ σ(q1(f1), . . . , qk(fk)))

be in T ′ and

wt′(τ′) =
∑
q′∈Q

�
(W ∗)q,q′ ◦wt
!
q′(p)→ σ(q1(f1), . . . , qk(fk))

��
.

Since I DK ∈ Ω
(1), K is (1,1)-composition closed, and K is completely 1-sum closed, each

entry of the matrix W ∗ is in Ω(1). Moreover, by Lemma 1.2.10 and since K is completely
1-sum closed and (1, k)-composition closed, the right-hand side of the above equality is an
operation in Ω(k). Hence, wt′(τ′) is well-defined.

Now we want to prove that JA′K = JAK. We define the family ϕ = (ϕq,ξ,c | ξ ∈ TΣ , q ∈
Q, c ∈ C) of mappings

ϕq,ξ,c : ΘA(q,ξ, c)→ ΘA′(q,ξ, c)

as follows. Let ξ= σ(ξ1, . . . ,ξk), q ∈Q, c ∈ C , and t ∈ ΘA(q,ξ, c). Then there are

• some n ≥ 0 and transitions τ1 = (q1(T R U E) → q2(I D)), . . . , τn = (qn(T R U E) →
qn+1(I D)) in T ,

• a transition qn+1(p)→ σ(q̂1(f1), . . . , q̂k(fk)) in T such that p(c) = 1 and fi(c) is defined
for each i ∈ [k], and

• computations t i ∈ ΘA(q̂i ,ξi , fi(c)) for each i ∈ [k]

such that
t = τ1 · . . . ·τn · (qn+1(p)→ σ(q̂1(f1), . . . , q̂k(fk)))

�
t1, . . . , tk

�
.

Thus, q = q1 and t ∈ ΘA(q1,ξ, c). We define

ϕq1,ξ,c(t) = (q1(p)→ σ(q̂1(f1), . . . , q̂k(fk)))(t
′
1, . . . , t ′

k
),

where t ′
i
= ϕq̂i ,ξi , fi(c)

(t i) for each i ∈ [k]. Note that S O U R C E(t ′
i
(ǫ)) = q̂i .

As ϕ only deletes ǫ-transitions in computations of A and replaces the states accordingly, it
is obvious that each computation of A′ has a preimage under ϕ and, thus, ϕ is surjective.
Moreover, the next property shows that the computations of A′ generate the weights of the
computations of A properly.

80

2.4 Elimination of ǫ-Transitions

Property (A). Let ξ ∈ TΣ , q ∈Q, c ∈ C, and t ′ ∈ ΘA′(q,ξ, c). Then

∑

t∈ΘA(q,ξ,c):
ϕq,ξ,c(t)=t ′

wt(t) = wt′(t ′) .

We prove Property (A) by structural induction on ξ. As the induction base is already
contained, only the induction step is shown here.

Let ξ= σ(ξ1, . . . ,ξk) for some k ∈ N, σ ∈Σ(k), and ξ1, . . . ,ξk ∈ TΣ . Moreover, let q ∈Q,
c ∈ C , and t ′ ∈ ΘA′(q,ξ, c). Then there are

• a transition τ′ = (q(p)→ σ(q̂1(f1), . . . , q̂k(fk))) in T ′ such that p(c) = T R U E and fi(c)

is defined for each i ∈ [k], and

• computations t ′
i
∈ ΘA′(q̂i ,ξi , fi(c)) for each i ∈ [k]

such that t ′ = τ′(t ′1, . . . , t ′
k
). In the following we abbreviate, for each q′ ∈ Q, by τ′

[q\q′] the

transition q′(p) → σ(q̂1(f1), . . . , q̂k(fk)) resulting from τ′ by replacing S O U R C E(τ′) with
q′. Moreover, we abbreviate by τq1,q2

the transition q1(T R U E)→ q2(I D) for each q1, q2 ∈Q.
Note that all these transitions are in T . Finally, we use©n

j=1ω j to denote the composition
ω1 ◦ . . . ◦ωn of n unary operations ω1, . . . ,ωn ∈ Ω. We obtain

∑

t∈ΘA(q,ξ,c):
ϕq,ξ,c(t)=τ

′(t ′1,...,t ′
k
)

wt(t)

=
∑
n∈N

∑
q1,...,qn+1∈Q:

q1=q

∑

t i∈ΘA(q̂i ,ξi , fi(c)) s.t.
ϕq̂i ,ξi , fi (c)

(t i)=t ′
i
, i∈[k]

(©n
j=1wt(τq j ,q j+1

)) ◦wt(τ′
[q\qn+1]

)
�
wt(t1), . . . , wt(tk)

�

=
∑
n∈N

∑
q1,...,qn+1∈Q:

q1=q

(©n
j=1wt(τq j ,q j+1

)) ◦wt(τ′
[q\qn+1]

)

� ∑

t1∈ΘA(q̂1,ξ1, f1(c)):
ϕq̂1,ξ1, f1(c)

(t1)=t ′1

wt(t1), . . . ,
∑

tk∈ΘA(q̂k ,ξk , fk(c)):
ϕq̂k ,ξk , fk(c)

(tk)=t ′
k

wt(tk)
�

(as K is completely distributive)

=
∑
n∈N

∑
q1,...,qn+1∈Q:

q1=q

(©n
j=1wt(τq j ,q j+1

)) ◦wt(τ′
[q\qn+1]

)(wt′(t ′1), . . . , wt′(t ′
k
))

(by induction hypothesis)

=
∑
q′∈Q

∑
n∈N

∑
q1,...,qn+1∈Q:
q1=q,qn+1=q′

(©n
j=1wt(τq j ,q j+1

)) ◦wt(τ′
[q\q′])(wt′(t ′1), . . . , wt′(t ′

k
))

(by associativity and commutativity)

81

Chapter 2 Weighted Tree Automata with Storage

=
�∑

q′∈Q

∑
n∈N

∑
q1,...,qn+1∈Q:
q1=q,qn+1=q′

(©n
j=1wt(τq j ,q j+1

)) ◦wt(τ′
[q\q′])
�
(wt′(t ′1), . . . , wt′(t ′

k
))

(by definition of summations of operations)

=
�∑

q′∈Q

�∑
n∈N

∑
q1,...,qn+1∈Q:
q1=q,qn+1=q′

(©n
j=1wt(τq j ,q j+1

))
�
◦wt(τ′

[q\q′])
�
(wt′(t ′1), . . . , wt′(t ′

k
))

(by Lemma 1.2.10)

=
�∑

q′∈Q

�∑
n∈N

(W n)q,q′

�
◦wt(τ′

[q\q′])
�
(wt′(t ′1), . . . , wt′(t ′

k
)) (by definition of W n)

=
�∑

q′∈Q

(W ∗)q,q′ ◦wt(τ′
[q\q′])
�
(wt′(t ′1), . . . , wt′(t ′

k
)) (by definition of W ∗)

= wt′(τ′)(wt′(t ′1), . . . , wt′(t ′
k
)) (by construction of A′)

= wt′(τ′(t ′1, . . . , t ′
k
)),

which proves Property (A).
Finally, we obtain for each ξ ∈ TΣ

JAK(ξ) =
∑

t∈ΘA(ξ)

wt(t)

=
∑

t ′∈ΘA′ (q0,ξ,c0)

∑

t∈ΘA(q0,ξ,c0):
ϕq0,ξ,c0

(t)=t ′

wt(t) (∗)

=
∑

t ′∈ΘA′ (q0,ξ,c0)

wt′(t ′) (by Property (A))

= JA′K(ξ)

where ∗ holds since
⋃

t ′∈ΘA′ (q0,ξ,c0)
ϕ−1

q0,ξ,c0
(t ′) is a partition of ΘA(q0,ξ, c0). Hence, JAK =

JA′K. �

Example 2.4.3. Let N∞ = (N∪ {∞},+, ·, 0, 1) be the complete semiring of natural numbers
and consider the M-monoid M(N∞) built from N∞ as in Example 1.2.8. Clearly, M(N∞) is
compressible. Note that I DN∪{∞} =mul1,1 and, for each a, b ∈ N∪ {∞} and n ∈ N, we have
mul1,a +mul1,b =mul1,a+b and mul1,a ◦muln,b =muln,a·b.

Now consider for the ranked alphabet Σ = {σ(2),α(0)} and some arbitrary storage type S

the following (S,Σ, M(N∞))-wta A = (Q,Q0, T, wt). We let Q = {q, q′, q1, q2}, Q0 = {q}, and
assume that

• T contains exactly four ǫ-transitions with non-zero weight:

– τ1 = q(T R U E)→ q1(I D) and wt(τ1) =mul1,2,

82

2.4 Elimination of ǫ-Transitions

– τ2 = q(T R U E)→ q2(I D) and wt(τ2) =mul1,4,

– τ3 = q1(T R U E)→ q′(I D) and wt(τ3) =mul1,3,

– τ4 = q2(T R U E)→ q′(I D) and wt(τ4) =mul1,5, and

• T contains exactly one transition τ = q′(p)→ σ(q1(f1), q2(f2)) in Tσ with non-zero
weight.

All other transitions of T and values of wt are arbitrary.
Now we can calculate the (Q×Q)-matrix W ∗ ∈ Ω(1) as in the above construction. We index

the entries row-first and in the order q, q′, q1, q2 and obtain

W 1 =

0 0 mul1,2 mul1,4

0 0 0 0
0 mul1,3 0 0
0 mul1,5 0 0

 and W 2 =

0 mul1,26 0 0
0 0 0 0
0 0 0 0
0 0 0 0

where we abbreviate mul1,0 by 0. As W n only contains 0 for each n≥ 3, we further obtain

W ∗ = E +W 1 +W 2 =

mul1,1 mul1,26 mul1,2 mul1,4

0 mul1,1 0 0
0 mul1,3 mul1,1 0
0 mul1,5 0 mul1,1

 .

Let A′ = (Q,Q0, T ′, wt′) be the ǫ-free (S,Σ, M(N∞))-wta which results from the application
of the previous construction. We obtain that T ′σ contains four transitions of non-zero weight,
namely

τ′1 = q(p)→ σ(q1(f2), q2(f2)), wt′(τ′1) = (W
∗)q,q′ ◦wt(τ) =mul1,26 ◦wt(τ),

τ′2 = q′(p)→ σ(q1(f2), q2(f2)), wt′(τ′2) = (W
∗)q′,q′ ◦wt(τ) =mul1,1 ◦wt(τ),

τ′3 = q1(p)→ σ(q1(f2), q2(f2)), wt′(τ′3) = (W
∗)q1,q′ ◦wt(τ) =mul1,3 ◦wt(τ),

τ′4 = q2(p)→ σ(q1(f2), q2(f2)), wt′(τ′4) = (W
∗)q2,q′ ◦wt(τ) =mul1,5 ◦wt(τ).

Note that we do not need a sum for wt′(τ′
i
) as τ is the only transition in Tσ with non-zero

weight and, thus, all other summands result in zero. �

Now we can instantiate the previous theorem to (1) the trivial storage type and (2) the
Boolean M-monoid and obtain the following corollary. Note that in contrast to [FHV18], we
always require that a storage type S contains T R U E and I D.

Corollary 2.4.4 ([FHV18, Corollary 6.3]).

1. If K is compressible, then RT(TR I V,Σ, K) = RTǫ-free(TR I V,Σ, K).

2. RTsimple(S,Σ) = RTǫ-free(S,Σ).

Proof. Since each (TR I V,Σ, K)-wta is simple, Statement 1 follows from Theorem 2.4.2.
Moreover, since the Boolean M-monoid B is compressible, Statement 2 follows from Theorem
2.4.2 as well. �

83

Chapter 2 Weighted Tree Automata with Storage

For an arbitrary compressible M-monoid, we can even go beyond the trivial storage type
and prove the following ǫ-transition elimination result for finite storage types.

Corollary 2.4.5 ([FHV18, Corollary 6.4]). Let K be compressible and let S be is finite. Then

RT(S,Σ, K) = RTsimple(S,Σ, K) = RTǫ-free(TR I V,Σ, K).

Proof. We have RT(S,Σ, K) = RT(TR I V,Σ, K) = RTǫ-free(TR I V,Σ, K) by Theorem 2.3.2
and Corollary 2.4.4(1), respectively. The inclusion RTǫ-free(TR I V,Σ, K) ⊆ RTǫ-free(S,Σ, K)

follows from Theorem 2.3.2 and the inclusions RTǫ-free(S,Σ, K) ⊆ RTsimple(S,Σ, K) and
RTsimple(S,Σ, K) ⊆ RT(S,Σ, K) are obvious. �

Open questions Certainly, the answers this chapter provides are only a first (and small)
piece in the puzzle on which (S,Σ, K)-wta can be made ǫ-free. Moreover, from our study
further questions arise. One obvious question concerns the definition of a compressible
M-monoid. Does it provide a non-trivial extension of complete semirings, i.e., are there
compressible M-monoids that, used as weight structure of an automaton, can not be simulated
by a complete semiring? Or can the restrictions of M-monoids be relaxed and still allow
ǫ-removal?

Other open questions concern the storage type of (S,Σ, K)-wta. In [Gue83, Proposition
6] it was also shown that for each deterministic (P,Σ)-ta there exists an equivalent ǫ-free
deterministic (P,Σ)-ta. Is it possible to extend this result to a weighted setting? And can it be
transfered to other storage types? And, finally, are the methods of [Zet13] conceivable in a
weighted setting?

84

2.5 The Support of (S,Σ, K)-wta

2.5 The Support of (S,Σ, K)-wta

In this section we investigate the supports of weighted tree automata with storage. It is
well known that for certain weight-structures K , the support of a (Σ, K)-recognizable string
language is not Σ-recognizable. However, Kirsten [Kir11] showed that K being a zero-sum
free commutative semiring induces recognizability of the support languages. Following his
approach, we prove a similar result for weighted tree automata with storage over complete
and commutative strong bimonoids10. However, we modify Kirsten’s idea slightly which leads
to fewer states for the support automaton.

Thus, in this section we show the following results: We prove that the support of an
(S,Σ, M(K))-recognizable weighted tree language is (S,Σ)-recognizable, given that K is a
complete and commutative strong bimonoid. Our constructed support automaton needs
fewer states than in the (generalized) construction of Kirsten, which leads especially in the
tree automaton case also to a smaller blow up of the resulting transitions. Moreover, the
construction of the support automaton is effective if Kirsten’s zero generation problem is
decidable for the respective weight structure.

Related work It is well known that the support of a recognizable K-weighted string language
is recognizable if K is a positive semiring, a finite semiring, or a locally finite semiring (cf.
[Sak09] for an overview). Moreover, Wang could prove that if K is a so-called quasi-positive
and commutative semiring, then the above statement holds as well [Wan98].

While positive and quasi-positive semirings are zero-divisor free, Kirsten provided a support
theorem for not necessarily zero-divisor free semirings: He proved that the support of a recog-
nizable K-weighted string language, where K is a commutative and zero-sum free semiring, is
recognizable [Kir09, Kir11]. This result has been extended to several automaton models and
weight structures, e.g., particular timed series over commutative and zero-sum free semirings
[Qua09], weighted unranked tree automata as well as weighted pushdown automata over
zero-sum free, commutative strong bimonoids [DH15], weighted ranked and unranked tree
automata over zero-sum free, commutative, zero-preserving tree valuation monoids [Gö17]
and weighted string automata with storage over zero-sum free, zero-preserving, commutative
unital valuation monoids [HDV19].

Note: This section is a revised and extended version of [FHV17, Section 4] and [FHV18,
Section 4]. Whereas the main result stays the same, we have slightly modified its underlying
construction by introducing a new cut operation and showing Lemma 2.5.7 which leads to a
smaller support automaton.

2.5.1 Zero Generation Problem and Computability

Here we recall some definitions from [Kir11] and introduce a new cut operation.

Zero generation problem Let (K , ·, 1) be a monoid. For every n ∈ N and a1, . . . , an ∈ K,
we let 〈a1, . . . , an〉 denote the smallest submonoid of K containing a1, . . . , an. For every a ∈ K

10Recall from Section 1.2.4 that each complete strong bimonoid is also zero-sum free. Thus, from now on we do
not explicitly mention this property.

85

Chapter 2 Weighted Tree Automata with Storage

and A⊆ K , we let a · A= {a · a′ | a′ ∈ A}.
The zero generation problem (ZGP) for a monoid (K , ·, 1) with zero 0, defined by Kirsten

[Kir11], consists of two integers m, n ∈ N, elements a1, . . . , am, a′1, . . . , a′n ∈ K, and the
question whether 0 ∈ a1 · . . . · am · 〈a

′
1, . . . , a′n〉.

We note that by using a1 · . . . ·am (instead of a single element a ∈ K) as part of the definition,
in the following we do not need to require that the operation · is computable.

Example 2.5.1. Let K be an idempotent and commutative monoid. Clearly, K has a decidable
ZGP, because in this case the set a1 · . . . · am · 〈a

′
1, . . . , a′n〉 is finite. �

Example 2.5.2. Let (N[0,8], max, ·mod9, 0, 1) be a strong bimonoid whereN[0,8] = {i ∈ N | i ≤ 8},
max is extended to maximum over countable index sets in the obvious way, and ·mod9 is the
multiplication of natural numbers modulo 9; thus, e.g., 3 ·mod9 4 = 12 (mod 9) = 3. Obviously,
N[0,8] is complete, zero-sum free, and commutative, but not zero-divisor free. We note that
(N[0,8], ·mod9, 1) has a decidable ZGP. �

Minimal elements To define minimal elements of a set of tuples over N, we extend the par-
tial order ≤ from N to Nn. For this, let n ∈ N and let z̄ = (z1, . . . , zn) ∈ N

n, ȳ = (y1, . . . , yn) ∈
Nn. Then

z̄ ≤ ȳ if zi ≤ yi for all i ∈ [n] .

Now let M ⊆ Nn and z̄ ∈ M . We say that z̄ is minimal in M if ȳ ≤ z̄ implies ȳ = z̄ for each
ȳ ∈ M . We let Min(M) denote the set of all minimal elements in M . It is well known by
Dickson’s lemma [Dic13] that Min(M) is finite.

Lemma 2.5.3 ([Dic13],[Kir11, Lm. 2.1]). For every n ∈ N and M ⊆ Nn, the set Min(M) is

finite.

Cut operations Let n ∈ N. Given a tuple z̄ from Nn, we want to restrict its components by
appropriate numbers. Whereas Kirsten used the same number as a bound for all components
of z̄, we additionally introduce a component-depending restriction by using a tuple of bounds.

Let z̄ = (z1, . . . , zn) ∈ N
n and k ∈ N. We define the cut of z̄ by k, denoted by ⌊z̄⌋k ∈ N

n, to
be the tuple

⌊z̄⌋k = (min(z1, k), . . . ,min(zn, k)),

i.e., each component of z̄ is “cut down” to k.
Moreover, let k̄ ∈ Nn. We let the cut of z̄ by k̄, denoted by ⌊z̄⌋k̄ ∈ N

n, be the tuple defined by

(⌊z̄⌋k̄)i =min(zi , ki)

for each i ∈ [n].

Homomorphism J . K Let (K , ·, 1) be a commutative monoid with a zero 0, let n ∈ N, and
let ā = (a1, . . . , an) ∈ Kn. The mapping J . Kā : Nn→ K is defined by

Jz̄Kā = a
z1
1 · . . . · azn

n

for each z̄ = (z1, . . . , zn) ∈ N
n. Since K is commutative, J . Kā is a homomorphism from

(Nn,+, (0, . . . , 0)) to (K , ·, 1).
In the following we are interested in the set J0K−1

ā of elements z̄ ∈ Nn satisfying Jz̄Kā = 0.
We note that (0, . . . , 0) 6∈ J0K−1

ā as a0
1 · . . . ·a0

n = 1. Moreover, if z̄ ∈ J0K−1
ā , then for each ȳ ∈ Nn

with z̄ ≤ ȳ we also have ȳ ∈ J0K−1
ā .

86

2.5 The Support of (S,Σ, K)-wta

Degree Now we want to provide two bounds allowing to define finite supersets of Min(J0K−1
ā).

Since, by Lemma 2.5.3, Min(J0K−1
ā) is finite, there is a smallest number m ∈ N such that

Min(J0K−1
ā) ⊆ {0, . . . , m}n. Kirsten calls this m the degree of ā, denoted by dg(ā). Clearly, the

degree only regards the highest component in Min(J0K−1
ā). We can define a more precise

bound as follows. We let dg(ā) ∈ Nn denote the least tuple such that

Min(J0K−1
ā) ⊆ {0, . . . , (dg(ā))1} × . . .× {0, . . . , (dg(ā))n}.

Obviously, {0, . . . , (dg(ā))1} × . . .× {0, . . . , (dg(ā))n} ⊆ {0, . . . , dg(ā)}n.
We state the following obvious connection between the concepts defined above, changing

the second point in [FHV18, Observation 4.1.] from dg(ā) = 0 to dg(ā) = 0.

Observation 2.5.4 (cf. [FHV18, Observation 4.1.]). Let ā = (a1, . . . , an) be an element of

Kn with a 6= (0, . . . , 0). Then the following three statements are equivalent:

1. J0K−1
ā = ;.

2. dg(ā) = 0.

3. The submonoid (〈a1, . . . , an〉, ·, 1) is zero-divisor free.

Moreover, we recall from [Kir11] the following statements that are crucial in the proof of
our main theorem. The first lemma is extended by the third statement.

Lemma 2.5.5 (cf. [Kir11, Lemma 4.1]). For each n ∈ N, ā ∈ Kn, and z̄ ∈ Nn, the following

statements are equivalent:

1. Jz̄Kā = 0.

2. J⌊z̄⌋dg(ā)Kā = 0.

3. J⌊z̄⌋dg(ā)Kā = 0.

Proof. 1.⇔ 2. was proved in [Kir11, Lemma 4.1]. Moreover, 3. ⇒ 1. is clear since z̄ ≥
⌊z̄⌋dg(ā). It remains to show that 1.⇒ 3.

Let z̄ = (z1, . . . , zn) ∈ J0K−1
ā . Then there is a z̄′ = (z′1, . . . , z′n) ∈Min(J0K−1

ā) such that z̄′ ≤ z̄.
We show that z̄′ ≤ ⌊z̄⌋dg(ā) and, hence, ⌊z̄⌋dg(ā) ∈ J0K−1

ā .

Let i ∈ [n]. If zi ≤ (dg(ā))i , then (⌊z̄⌋dg(ā))i = zi and, thus, z′
i
≤ (⌊z̄⌋dg(ā))i . If zi > (dg(ā))i ,

then (⌊z̄⌋dg(ā))i = (dg(ā))i and, by definition of dg, z′
i
≤ (⌊z̄⌋dg(ā))i . Hence, z̄′ ≤ ⌊z̄⌋dg(ā) and,

therefore, ⌊z̄⌋dg(ā) ∈ J0K−1
ā . �

Lemma 2.5.6 ([Kir11, Lemma 4.2]). Let (K , ·, 1) be a commutative monoid with a zero 0,

n ∈ N, and ā ∈ Kn. If the ZGP for K is decidable, then dg(ā) is effectively computable.

Now we will show that Lemma 2.5.6 can be strengthened, i.e., we can effectively compute
dg(ā) if the ZGP for K is decidable.

87

Chapter 2 Weighted Tree Automata with Storage

Lemma 2.5.7. Let (K , ·, 1) be a commutative monoid with a zero 0, n ∈ N, and ā ∈ Kn. If the

ZGP for K is decidable, then dg(ā) is effectively computable.

Proof. To compute dg(ā), we first explicitly generate Min(J0K−1
ā). As Min(J0K−1

ā) is finite, we
can afterwards return for each component i ∈ [n] its maximal number.

Let Z = {0, . . . , dg(ā)}. By Lemma 2.5.6, dg(ā) is effectively computable. Now let M be
the set consisting of those elements z̄ ∈ Zn such that

1. Jz̄Kā = 0 and

2. there is no ȳ ∈ Zn with J ȳKā = 0 and ȳ < z̄.

As Zn is finite and as, by the decidability of the ZGP, Jz̄Kā = 0 is decidable for each z̄ ∈ Zn,
the set M is effectively computable. Moreover, it should be clear by definition that M =

Min(J0K−1
ā).

Now an algorithm can iterate through all tuples z1, . . . , z|M | in M and compute for each

i ∈ [n] the maximal number ci =max{(z1)i , . . . , (z|M |)i}. Clearly, (c1, . . . , cn) = dg(ā). �

2.5.2 Recognizability of Support Tree Languages

Now we can prove the main theorem of this section. We follow the proof and the construction
of the corresponding results [Kir11, Theorem 3.1] for weighted automata over semirings and
[Gö17, Theorem 4.6] for weighted tree automata over tv-monoids. However, we will here use
dg instead of dg as threshold for the weight counting. Also we will provide the correctness
proof of the construction.

Theorem 2.5.8 ([FHV18, Theorem 4.4.]). Let K be a complete and commutative strong

bimonoid.

1. For every (S,Σ, M(K))-wta A, there is an (S,Σ)-ta A
′ such that L(A′) = supp(JAK).

2. If (K , ·, 1) has a decidable ZGP, then there is an effective construction of an (S,Σ)-ta which

recognizes supp(JAK) from any given (S,Σ, M(K))-wta A.

3. Assume that |Σ(1)| ≥ 2. If there is an effective construction of an (TR I V,Σ)-ta which rec-

ognizes supp(JAK) from any given (TR I V,Σ, M(K))-wta A, then (K , ·, 1) has a decidable

ZGP.

Proof. First we prove 1. and 2. Let A = (Q, q0, T, wt) be an (S,Σ, M(K))-wta. Each transition
of A is mapped by wt to an operation mulk,a for some k ∈ N and a ∈ K , multiplying a to the
product of its argument values. Thus, the weight of each computation tree is the product of
the values a ∈ K occurring in its transition weights. As K is commutative, the positions of
those values do not matter – it suffices to count how often each value occurs, i.e., the weight
of a computation results from the product

a
y1
1 · . . . · a yn

n

88

2.5 The Support of (S,Σ, K)-wta

for some n ∈ N, values a1, . . . , an ∈ K, and counts y1, . . . , yn ∈ N. Moreover, since K is
zero-sum free, a tree is in the support of JAK if and only if it has one computation with
non-zero weight. Thus, to recognize the support of A, one has to count the values occurring
in a computation and check whether the resulting product equals 0. As Lemma 2.5.5 allows
to stop counting at a certain threshold, this yields finite information that can be encoded in
the states of the support automaton. This is the quintessence of the following construction.

Formally, we let

W = {a ∈ K | wt(τ) =mulk,a for some k ∈ N,τ ∈ T}

be the set comprising all elements of K occurring in transition weights of A. Let n = |W |
and ā = (a1, . . . , an) ∈ Kn be an enumeration of W such that ai 6= a j for each i, j ∈ [n] with
i 6= j. Then for each computation tree t there is some ȳ ∈ Nn such that the weight of t can
be written in the form J ȳKā.

Moreover, we need an operation to add transition weights occurring in a computation to
the previous count (up to the threshold dg(ā)). For this, let

W = {0, . . . , (dg(ā))1} × . . .× {0, . . . , (dg(ā))n}.

We define the mapping ⊕ : W ×W →W by letting for each z̄ = (z1, . . . , zn) ∈W and i ∈ [n]

z̄ ⊕ ai = ⌊(z1, . . . , zi−1, zi + 1, zi+1, . . . , zn)⌋dg(ā)

and the mapping ⊕̄ : W ×W →W by letting

z̄ ⊕̄ z̄′ = ⌊(z1 + z′1, . . . , zn + z′n)⌋dg(ā)

for each z̄ = (z1, . . . , zn), z̄′ = (z′1, . . . , z′n) ∈W .
Now we define an (S,Σ)-ta A

′ simulating the computations of A while counting the
occurring weights in its states. For this, A′ guesses in its initial states a count that does
not yield zero on ā and checks during a computation t whether this count is valid (i.e., it
results from the transitions occurring in t). We let A′ = (Q′,Q′0, T ′) where Q′ = Q ×W ,
Q′0 = {(q0, z̄) | z̄ ∈W , Jz̄Kā 6= 0}, and T ′ is defined as follows:

• Let τ= q(p)→ α be a transition in T and wt(τ) =mul0,ai
for some i ∈ [n]. Then the

transition (q, z̄)(p)→ α where z̄ = (0, . . . , 0)⊕ ai is in T ′.

• Let τ = q(p) → σ(q1(f1), . . . , qk(fk)) be a transition in T and wt(τ) = mulk,ai
for

some i ∈ [n]. Moreover, let z̄1, . . . , z̄k ∈ W . Then the transition τ = (q, z̄)(p) →
σ((q1, z̄1)(f1), . . . , (qk, z̄k)(fk)) where z̄ = (z̄1 ⊕̄ . . . ⊕̄ z̄k)⊕ ai is in T ′.

• Let τ = q(p) → q′(f) be a transition in T and wt(τ) = mul1,ai
for some i ∈ [n].

Moreover, let z̄′ ∈W . Then the transition (q, z̄)(p)→ (q′, z̄′)(f) where z̄ = z̄′ ⊕ ai is in
T ′.

89

Chapter 2 Weighted Tree Automata with Storage

We note that, if the ZGP is decidable for K , then by Lemma 2.5.7 we can compute dg(ā)
effectively and, moreover, we can decide whether (q0, z̄) is an initial state. Hence, if the ZGP
is decidable for K , then our construction of A′ is effective.

Now we want to show that L(A′) = supp(JAK).

* * *

For the inclusion supp(JAK) ⊆ L(A′) we show the following property by strong induction
on l.

Property (A). For each l ∈ N+, ξ ∈ TΣ , q ∈Q, c ∈ C, and t ∈ ΘA(q,ξ, c): if |t| = l, then there

are ȳ ∈ Nn and t ′ ∈ ΘA′((q, ⌊ ȳ⌋dg(ā)),ξ, c) such that |t ′|= l and J ȳKā = wt(t).

First, let l = 1. Then ξ = α for some α ∈ Σ(0) and t ∈ Θ(q,ξ, c) has to be of the form
τ = (q(p)→ α) for some τ ∈ T with p(c) = 1. Moreover, wt(τ) = mul0,ai

for some i ∈ [n]
and, thus, wt(t) = ai. Now let ȳ = (y1, . . . , yn) ∈ N

n such that yi = 1 and y j = 0 for each
j ∈ [n] \ {i}. Obviously, J ȳKā = wt(τ) = wt(t). Moreover, by construction, the transition
τ′ = ((q, ⌊ ȳ⌋dg(ā))(p)→ α) is in T . Since p(c) = 1, τ′ ∈ ΘA′((q, ⌊ ȳ⌋dg(ā)),ξ, c).

Now let l > 1 and assume that Property (A) holds for all l ′ ∈ N+ with l ′ < l. We consider
the following case distinction on t:

Case 1: Let t be of the form τ(t1) for someτ = (q(p)→ q1(f)) ∈ Tǫ and t1 ∈ ΘA(q1,ξ, f (c)).
Then p(c) = 1 and f (c) is defined. Moreover, l = |t1|+ 1, wt(τ) =mul1,a j

for some j ∈ [n],
and wt(t) = wt(t1) · a j. By induction hypothesis there exist ȳ1 = (y1,1, . . . , y1,n) in Nn

and t ′1 ∈ ΘA′((q1, ⌊ ȳ1⌋dg(ā)),ξ, f (c)) such that |t ′1| = |t1| and J ȳ1Kā = wt(t1). Then let
ȳ = (y1,1, . . . , y1, j−1, y1, j + 1, y1, j+1, . . . , y1,n). Obviously, J ȳKā = wt(t). Moreover, by con-
struction, there is a transition τ′ = ((q, ⌊ ȳ⌋dg(ā))(p)→ (q1, ⌊ ȳ1⌋dg(ā))(f)) in T ′. Since p(c) = 1

and f (c) is defined, t ′ = τ′(t ′1) is an element in ΘA′((q, ⌊ ȳ⌋dg(ā)),ξ, c) with |t ′|= l.
Case 2: Let t be of the form τ(t1, . . . , tk) for some k ≥ 1, τ = (q(p)→ σ(q1(f1), . . . , qk(fk)) ∈

T , and t i ∈ ΘA(qi ,ξi , fi(c)) for each i ∈ [k]. Then p(c) = 1 and fi(c) is defined for each
i ∈ [k], ξ = σ(ξ1, . . . ,ξk) for some ξ1, . . . ,ξk ∈ TΣ , and l = |t1|+ . . .+ |tk|+ 1. Moreover,
wt(τ) =mulk,a j

for some j ∈ [n] and wt(t) = wt(t1) · . . . ·wt(tk) ·a j . For each i ∈ [k], by the in-
duction hypothesis, there exist ȳ i = (yi,1, . . . , yi,n) in Nn and t ′

i
∈ ΘA′((qi , ⌊ ȳ i⌋dg(ā)),ξi , fi(c))

such that |t ′
i
|= |t i| and J ȳ iKā = wt(t i). Then let

ȳ = (
∑

i∈[k]

yi,1, . . . ,
∑

i∈[k]

yi, j−1, (
∑

i∈[k]

yi, j) + 1,
∑

i∈[k]

yi, j+1, . . . ,
∑

i∈[k]

yi,n).

It is not hard to see that J ȳKā = wt(t). Furthermore, by construction there exists a transition
τ′ = ((q, ⌊ ȳ⌋dg(ā))(p)→ σ((q1, ⌊ ȳ1⌋dg(ā))(f1), . . . , (qk, ⌊ ȳk⌋dg(ā))(fk))) in T ′. Since p(c) = 1

and fi(c) is defined for each i ∈ [k], t ′ = τ′(t ′1, . . . , t ′
k
) ∈ ΘA′((q, ⌊ ȳ⌋dg(ā)),ξ, c) with |t ′|= l.

Now let ξ ∈ supp(JAK). Then there is a computation tree t ∈ ΘA(q0,ξ, c0) with wt(t) 6= 0.
By Property (A) there are ȳ ∈ Nn and t ′ ∈ ΘA′((q0, ⌊ ȳ⌋dg(ā)),ξ, c0) such that J ȳKā = wt(t).
By Lemma 2.5.5, since J ȳKā 6= 0, also J⌊ ȳ⌋dg(ā)Kā 6= 0 . Thus, (q0, ⌊ ȳ⌋dg(ā)) ∈ Q′0 and ξ is in
L(A′).

90

2.5 The Support of (S,Σ, K)-wta

* * *

Secondly, we prove that L(A′) ⊆ supp(JAK). For this, we can show the following property
by strong induction on l.

Property (B). For each l ∈ N+, ξ ∈ TΣ , q ∈ Q, z̄ ∈ W, c ∈ C, and t ′ ∈ ΘA′((q, z̄),ξ, c):

if |t ′| = l, then there are ȳ ∈ Nn and t ∈ ΘA(q,ξ, c) such that |t| = l, J ȳKā = wt(t) and

z̄ = ⌊ ȳ⌋dg(ā).

Since the proof is very similar to that of Property (A), we omit it here.
Now let ξ ∈ L(A′). Then there is a computation tree t ′ ∈ ΘA′((q0, z̄),ξ, c0) for some z̄ ∈W

with Jz̄Kā 6= 0. By Property (B) there are ȳ ∈ Nn and t ∈ ΘA(q0,ξ, c0) such that J ȳKā = wt(t)

and z̄ = ⌊ ȳ⌋dg(ā). By Lemma 2.5.5, since Jz̄Kā 6= 0 also J ȳKā 6= 0. Thus, since K is zero-sum
free, ξ is in supp(JAK).

* * *

For the proof of 3., we note the following. As we require that |Σ(1)| ≥ 2, the weighted
finite automaton constructed in the corresponding part of the proof of [Kir11, Thm. 3.1.] can
be simulated by an (TR I V,Σ, M(K))-ta, hence that proof can be adapted to our setting. �

Remark 2.5.9. We note that the construction in the proof of Theorem 2.5.8(1) becomes very
simple if K is zero-divisor free. Then, by Observation 2.5.4, dg(ā) = 0 for every ā, and hence
Q′ is essentially Q (and the same holds for Q′0 and q0). Thus, the transitions of A′ are obtained
from those of A simply by dropping the weights. Ã

In the following we illustrate the construction of Theorem 2.5.8. Our example is inspired
by [FHV18, Example 4.5.] but slightly modified such that the construction is demonstrated
for the (non-monadic) tree case.

Example 2.5.10. Let (N[0,8], max, ·mod9, 0, 1) be the strong bimonoid from Example 2.5.2. More-
over, letΣ be the ranked alphabetΣ = {σ(2),α(0),β (0)} and consider the (TR I V,Σ, M(N[0,8]))-
wta A= ({q}, q, T, wt) with T consisting of the three transitions

τ1 = q→ σ(q, q), wt(τ1) =mul2,2

τ2 = q→ α, wt(τ2) =mul0,2

τ3 = q→ β , wt(τ3) =mul0,3 .

Clearly, the product of all values occurring in a computation of A only results in a multiple
of 9 (and, thus, yields 0 in N[0,8]) if the value 3 occurs at least two times. Hence, A assigns a
tree ξ ∈ TΣ a non-zero weight if and only if ξ contains at most one occurrence of β . Thus,

supp(JAK) = {ξ ∈ TΣ | |ξ|β ≤ 1}.

Using the notations in the proof of Theorem 2.5.8, we have W = {2, 3} and we let ā = (2, 3).
Then the set J0K−1

ā contains, e.g., the elements (0, 2), (1, 2), and (1, 3). Moreover,

min(J0K−1
ā) = {(0, 2)}

91

Chapter 2 Weighted Tree Automata with Storage

and, thus, dg(ā) = (0, 2). Hence W = {(0, 0), (0, 1), (0, 2)}.
Now we apply the construction of Theorem 2.5.8. We obtain the (TR I V,Σ)-ta A

′ =

(Q′,Q′0, T ′0 ∪ T ′1 ∪ T ′2) where Q′ = {q} ×W , Q′0 = {(q, (0,0)), (q, (0,1))}, and T ′0, T ′1, and T ′2
contain the following transitions:

T ′0 = {(q, (0, 0))→ α,

(q, (0, 0))→ σ((q, (0, 0)), (q, (0, 0)))}

T ′1 = {(q, (0, 1))→ β ,

(q, (0, 1))→ σ((q, (0, 1)), (q, (0, 0))),

(q, (0, 1))→ σ((q, (0, 0)), (q, (0, 1)))}

T ′2 = {(q, (0, 2))→ σ((q, (0, a)), (q, (0, b))) | a, b ∈ {0, 1, 2}, a+ b ≥ 2}.

Clearly, the constructed automaton counts in its computations occurrences of β up to the
threshold 2, but allows in its initial states only counts up to 1. Hence, L(A′) = supp(JAK). �

We note that in Example 2.5.10, using the initial construction of Kirsten, also the occurrences
of the value 2 in a computation had have been counted up to the threshold 2 since dg((2, 3)) =
2. This would have led to a bigger set of states and transitions. The quantitative difference is
exemplified in the following.

Example 2.5.11. To show a monoid leading to potentially high degrees, Kirsten considered in
[Kir11, Example 4.1.] the following structure. We let (M ,⋆, 0) be a commutative monoid with
zero 1 where M = {q ∈Q | 0≤ q ≤ 1} and for each q1, q2 ∈ M we let q1 ⋆q2 =min(q1+q2, 1).

Now let K be some complete and commutative strong bimonoid (M ,◦,⋆, 1, 0). Consider
some (S,Σ, M(K))-wta A= (Q,Q0, T, wt) with |Q|= 1 and wt(T) ⊆ {mula, 1

2
, mulb, 1

10
| a, b ∈

rk(Σ)}. Now, remaining with the notation in the proof of Theorem 2.5.8, we have W = {12 , 1
10}

and we let ā = (1
2 , 1

10). Clearly,

Min(J1K−1) = {(2, 0), (0, 10)}.

Thus, we obtain dg(ā) = 10 and dg(ā) = (2, 10).
Now let A′ = (Q′,Q′0, T ′) be an (S,Σ)-ta with L(A′) = supp(JAK). We obtain the following

situation:

• If A′ results from the construction given in the proof of Theorem 2.5.8, then we choose
Q′ =Q× ({0, . . . , 2} × {0, . . . , 10}), which leads to |Q′|= 33 states.

• In contrast, the construction of Kirsten (generalized to (S,Σ, K)-wta, cf. [FHV17, proof
of Theorem 4.4.]) uses as states the set Q′ = Q × {0, . . . , 10}2 and therefore yields
|Q′|= 121 states.

Obviously, this difference is handed on to the set of transitions and, as transitions for symbols
of a big rank allow many combinations of counts, this even increases the number of transitions
faster. �

92

2.5 The Support of (S,Σ, K)-wta

2.5.3 Emptiness of Support Tree Languages

The recognizability of the support tree language of an (S,Σ, K)-wta (for certain K) presents a
nice application: If the emptiness problem for (S,Σ)-ta is decidable, we can decide whether
the support of an (S,Σ, K)-wta is empty.

Obviously, decidability of the emptiness problem is not given for arbitrary storage types. To
see this, consider (P × P,Σ)-ta using the cross product of the pushdown storage type (which
results in two independent pushdown stores). It is well known that those automata can
simulate each Turing machine (cf., e.g., [HMU01, Theorem 8.13]) and, thus, their emptiness
problem is undecidable.

However, there are certain storage types (beyond the trivial storage type) which imply a
decidable emptiness problem. As it was shown in [Dam82, Thm. 7.8], the emptiness problem
of iterated pushdown tree automata is decidable. Combining this fact with Theorem 2.5.8(1),
we obtain the following result:

Corollary 2.5.12 ([FHV18, Corollary 4.6]). Let K be a complete and commutative strong

bimonoid with a decidable ZGP. Moreover, let s : TΣ → M(K) be (Pn,Σ, M(K))-recognizable for

some n ∈ N. Then it is decidable whether supp(s) = ;.

Moreover, combining Theorem 2.5.8(1) and Theorem 2.3.2 we obtain the following result
for finite storage types.

Corollary 2.5.13 ([FHV18, Corollary 4.7]). Let S be finite and K be a complete and commu-

tative strong bimonoid such that the ZGP of (K , ·, 1) is decidable. For every (S,Σ, M(K))-wta A,

a Σ-wta can effectively be constructed which generates supp(JAK).

93

Chapter 2 Weighted Tree Automata with Storage

2.6 Closure Properties

Here we consider some closure properties of the weighted tree languages recognized by
weighted tree automata with storage. Some of them we will need in the further of this work,
others are discussed as they are interesting in their own right.

Obviously, the weights coming from operations of an M-monoid depend on the structure
of an input tree (as each operation ω has the same rank as the symbol at the position ω is
used at). Hence, using an M-monoid K as weight structure, it is out of question to consider
the closure under operations that change the shape of an input tree without restricting K

drastically. Hence, we limit ourselves to the closure under sum, intersection with unweighted
tree languages, relabelings, and inverse relabelings. In the end of this section we will mention
some more closure properties that can be obtained in the semiring case.

In this section we let (K ,+, 0,Ω) again be a complete M-monoid. The following lemmas
are easy generalizations of our results in [HDV19].

Lemma 2.6.1 (cf. [HDV19, Lemma 13] and [FV19b, Lemma 6.5]). Let r1, r2 ∈ RT(S,Σ, K).

Then r1 + r2 is in RT(S,Σ, K) as well.

In the next lemma the usual product construction is adapted to our automaton model. As
we will need insights of this construction in a later part of this work, we show the proof here.

Lemma 2.6.2 (cf. [HDV19, Lemma 14]). Let r ∈ RT(S,Σ, K) and let L be a Σ-recognizable

tree language. Then r ∩ L is (S,Σ, K)-recognizable.

Proof. Let A= (Q, q0, T, wt) be an (S,Σ, K)-wta and let B = (QB, F,δ) be a Σ-ta. By Lemma
1.4.4 we can assume that B is total deterministic. Now we let A′ = (Q′,Q′0, T ′, wt′) be the
product of A and B, i.e., we set Q′ =Q×QB and Q′0 = {q0} × F . Moreover,

• if τ = q(p) → σ(q1(f1), . . . , qn(fn)) is in T and δσ(z1, . . . , zn) = z for some states
z1, . . . , zn, z ∈QB, then τ′ = (q, z)(p)→ σ((q1, z1)(f1), . . . , (qn, zn)(fn)) is in T ′, and

• if τ = q1(p)→ q2(f) is in T , then for each z ∈ QB we let τ′ = (q1, z)(p)→ (q2, z)(f)

be in T ′,

where in both cases wt′(τ′) = wt(τ). Note that, since B is total deterministic, for each ξ ∈ TΣ
there exists exactly one κ ∈ Runv

B
(ξ) and, thus, no computation of A gets multiplied. It is

easy to see that JA′K= JAK∩L(B). �

The last two lemmas of this section are easy generalizations of [HDV19, Lemma 16] to the
tree case and show the closure under relabeling and inverse relabeling. We note that also
for a complete M-monoid K we can extend a relabeling h: TΣ(X)→ T∆(X) to the weighted
setting as explained in Section 1.4.4.

Lemma 2.6.3 (cf. [HDV19, Lemma 16 (1.)]). Let s ∈ RT(S,Σ, K) and let h: K〈〈TΣ(X)〉〉 →
K〈〈T∆(X)〉〉 be a relabeling. Then h(s) is (S,∆, K)-recognizable.

94

2.6 Closure Properties

Proof. Let A = (Q, q0, T, wt) be an (S,Σ, K)-wta with JAK = s. We construct the (S,∆, K)-wta
A
′ = (Q′,Q′0, T ′, wt′) as follows. As h might be non-injective, we encode its preimage into

the states of A′ in order to guarantee a unique weight assignment. We let Q′ =Q×Σ and
Q′0 = {(q0,σ) | σ ∈Σ}. Moreover,

• for each transition τ = q(p) → σ(q1(f1), . . . , qn(fn)) in T , if h(σ) = δ(x1, . . . , xn)

for some δ ∈ ∆(n), then for each i ∈ [n], σi ∈ Σ, the transition τ′ = (q,σ)(p) →
δ((q1,σ1)(f1), . . . , (qn,σn)(fn)) is in T ′ and wt′(τ′) = wt(τ),

• for each transition τ = q(p) → q′(f) in T and each σ ∈ Σ the transition τ′ =

(q,σ)(p)→ (q′,σ)(f) is in T ′ and wt′(τ′) = wt(τ).

Now let ζ ∈ T∆. By the construction, for each ξ ∈ h−1(ζ) and each θ ∈ ΘA(ξ) there exists a
unique computation θ ′ ∈ ΘA′(ζ) which encodes θ . Vice versa, for each θ ′ ∈ ΘA′(ζ) there are
unique ξ ∈ h−1(ζ) and θ ∈ ΘA(ξ) such that θ ′ encodes θ . Hence, for each ζ ∈ T∆, there is a
one-to-one correspondence between ΘA′(ζ) and

⋃
ξ∈h−1(ζ)ΘA(ξ). Finally, wt′(θ ′) = wt(θ)

for all θ ′ and θ in this correspondence. Thus, we obtain

JA′K(ζ) =
∑

θ ′∈ΘA′ (ζ)

wt′(θ ′) =
∑

ξ∈h−1(ζ)

∑

θ∈ΘA(ξ)

wt(θ) = h(JAK)(ζ) .

Thus, JA′K= h(JAK). �

Lemma 2.6.4 (cf. [HDV19, Lemma 16 (2.)]). Let s ∈ RT(S,Σ, K), and let h: K〈〈T∆(X)〉〉 →
K〈〈TΣ(X)〉〉 be a relabeling. Then h−1(s) is (S,∆, K)-recognizable.

Proof. Let A = (Q, q0, T, wt) be an (S,Σ, K)-wta with JAK = s. We construct the (S,∆, K)-wta
A
′ = (Q, q0, T ′, wt′) as follows. We let

• for each transition τ = q(p) → σ(q1(f1), . . . , qn(fn)) in T and for each δ ∈ ∆ with
h(δ) = σ(x1, . . . , xn) the transition τ′ = q(p) → δ(q1(f1), . . . , qn(fn)) is in T ′ and
wt′(τ′) = wt(τ), and

• each transition τ= q(p)→ q′(f) in T is also in T ′ and wt′(τ) = wt(τ).

It is easy to see that, for each ζ ∈ T∆, there exists a bijection ϕ : ΘA′(ζ)→ ΘA(h(ζ)) and
that wt′(θ ′) = wt(ϕ(θ ′)) for each θ ′ ∈ ΘA′(ζ). Thus, we easily obtain

JA′K(ζ) =
∑

θ ′∈ΘA′ (ζ)

wt′(θ ′) =
∑

θ∈ΘA(h(ζ))

wt(θ) = JAK(h(ζ)) .

Thus, JA′K= h−1(JAK). �

Further closure properties As already mentioned in the beginning of this section, more
closure properties for the class RT(S,Σ, K) can be obtained by assuming that K is a (complete
and commutative) semiring. Hereby, it was shown in [FV19b], that the closure under scalar
multiplication and, by slightly restricting S, the closure under tree concatenation and Kleene
star holds.

Furthermore, we will see in Chapter 4, that the class of weighted tree languages that can
be recognized by linear weighted tree automata with storage over complete and commutative
semirings are closed under inverse application of linear tree homomorphisms.

95

Chapter 2 Weighted Tree Automata with Storage

2.7 Chapter Conclusion

In this chapter, we considered weighted tree automata with storage over complete M-monoids.
For this, in Section 2.1 we first explained the concept of a storage type and storage behavior.
In Section 2.2, we defined the syntax as well as the semantics of (S,Σ, K)-wta. Afterwards, we
compared our automaton model with existing formalisms by showing different instantiations
of an (S,Σ, K)-wta. Among others, we proved in Theorem 2.2.6 that (P,Σ,B)-wta are equally
expressive as usual pushdown tree automata.

Moreover, this chapter summarizes a first theoretically investigation of (S,Σ, K)-wta and
presents the following results:

• In Section 2.3 we proved that (S,Σ, K)-wta and (TR I V,Σ, K)-wta are equally expressive
in the case of a finite storage type S. This is due to the fact that each finite storage type
can be encoded in the states of a weighted tree automaton.

• In Section 2.4 we investigated the removal of ǫ-transitions from (S,Σ, K)-wta. We
proved in Theorem 2.4.2 that each (S,Σ, K)-wta A can be made ǫ-free if (i) A is simple
which means that each ǫ-transition is of the form q(T R U E) → q′(I D) and (ii) K is
compressible, i.e., we can assume that certain compositions of operations in K are again
operations in K .

• Moreover, in Section 2.5 we examined the support tree languages of (S,Σ, K)-wta
regarding their recognizability: If K is a complete and commutative strong bimonoid,
then the supports of (S,Σ, K)-wta are (Σ, K)-recognizable.

• Finally, in Section 2.6 we showed some closure properties of (S,Σ, K)-recognizable
weighted tree languages.

96

Chapter 3

Characterizations of (S,Σ, K)-Recognizable

Weighted Tree Languages

When a new class of formal languages is introduced, it is usual to seek and investigate
different formalisms to describe this class. For example, it has been ascertained over the
last decades that the recognizable tree languages, RT(Σ), can be described by grammars
[Bra69], automata [TW68, Don70], regular expressions [TW68], MSO logic [TW68, Don70]
and many more. Each of those formalisms characterizes the class RT(Σ). This investigation
offers several advantages: For one thing, the fact that a language class can be described by
several different formalisms indicates its robustness. Moreover, the investigation of distinct
points of view offers the possibility to learn something about the structure and peculiarities
of a language class. Finally, for different application areas different formalisms are useful
(i.e., while automata are beneficial for implementation, logic is used for specification).

In this chapter, we want to present two characterizations for the class RT(S,Σ, K) of
weighted tree languages recognizable by (S,Σ, K)-wta:

The first characterization decomposes (S,Σ, K)-recognizable weighted tree languages into
simpler formalisms. For this, we proceed in two steps: we separate the storage and we separate
the weights from our automaton model, respectively. By combining these decompositions,
we obtain that each (S,Σ, K)-recognizable weighted tree language can be represented by
three elementary concepts: a tree transformation, an alphabetic monomial mapping, and a
recognizable tree language.

Our second characterization is by means of logic and, in particular, an application of the
first characterization. We define a weighted MSO logic with storage behavior that is based
on (i) a tree transformation encoding storage behaviors and (ii) M-expressions [FSV12]. We
obtain that this logic possesses the same expressiveness as (S,Σ, K)-wta.

This chapter In Section 3.1 we will present the concept of storage behavior on a tree which
we will need in the course of the chapter. Section 3.2 shows how to decompose (S,Σ, K)-
recognizable weighted tree languages into simpler formalisms. For this, we first separate the
storage in Section 3.2.1 and, afterwards, separate the weights in Section 3.2.2. Moreover,
in Section 3.3 we combine both separation results. Finally, Section 3.3 presents a logical
characterization of RT(S,Σ, K). Moreover, we compare our logic with the MSO-expressions
from [HDV19].

Note: This chapter is a revised version of [FHV18, Section 5 and 7].

97

Chapter 3 Characterizations of (S,Σ, K)-Recognizable Weighted Tree Languages

3.1 Storage Behavior on a Tree

For the characterizations of (S,Σ, K)-recognizable weighted tree languages we develop in
the course of this chapter, we want to consider storage behaviors that “fit” to a given tree.
For this, we define the concept of a behavior on a tree ξ ∈ TΣ .

Intuitively, a behavior on ξ is a tree that is obtained from ξ by adding to the label of each
position w a pair (p, f1 . . . fk) of predicate p and instructions f1, . . . , fk (where k is the number
of w’s successors), and inserting an arbitrarily long, but finite sequence of unary symbols of
the form 〈(p, f),∗〉 above each position of ξ. Figure 3.1 gives a first rough impression of this
concept. Thus, a behavior on ξ can be seen as a trace of a computation tree of an (S,Σ, K)-wta
for ξ in which the occurrences of states are dropped and where the unary symbols 〈(p, f),∗〉
represent applications of ǫ-transitions.

Convention. Note that for technical reasons we require that each ranked alphabet we consider

in this chapter is non-trivial, i.e., it contains at least one nullary symbol.

Σ-extension of Λ Formally, let Σ be a ranked alphabet, let P ′ ⊆ P be finite and non-empty,
and let F ′ ⊆ F be finite. Moreover, let Λ be the ranked alphabet corresponding to Σ, P ′, and
F ′ as defined in Section 2.1. Furthermore, let ∗ be a symbol of rank 1 such that ∗ 6∈Σ. We
define the Σ-extension of Λ, denoted by 〈Λ,Σ〉, to be the ranked alphabet where

〈Λ,Σ〉(1) = Λ(1) × (Σ(1) ∪ {∗}) and 〈Λ,Σ〉(k) = Λ(k) ×Σ(k)

for each k ∈ N with k 6= 1. Obviously, max rk(〈Λ,Σ〉) = max rk(Λ) = max{max rk(Σ), 1}.
For the sake of readability we use angle brackets for the elements in 〈Λ,Σ〉, e.g., we write
〈(p, f),α〉.

Λ-behaviors on a tree Now we want to enrich trees by fitting storage behaviors. For this,
let h: T〈Λ,Σ〉→ TΣ be a tree homomorphism such that

h(〈(p, f),∗〉) = x1

for each (p, f) ∈ Λ(1) and

h(〈(p, f1 . . . fk),σ〉) = σ(x1, . . . , xk)

for each k ∈ N, σ ∈Σ(k), and (p, f1 . . . fk) ∈ Λ
(k).

Then we define the tree transformation BΛ : TΣ → P(T〈Λ,Σ〉) for each ξ ∈ TΣ by

BΛ(ξ) = {ζ ∈ T〈Λ,Σ〉 | ζ ∈ h−1(ξ) and (ζ)1 ∈ B(Λ)}

where (.)1 denotes the unique tree homomorphism T〈Λ,Σ〉→ TΛ that extends the first projection
Λ×Σ→ Λ. We call the set BΛ(ξ) the set of Λ-behaviors on ξ.

LetΘ = 〈Λ,Σ〉\(Λ(1)×{∗}). It is clear that, for each ξ ∈ TΣ and ζ ∈ BΛ(ξ), there is a unique
bijection θ : pos(ξ)→ posΘ(ζ) which preserves the lexicographic order, i.e., if v1 ≤lex v2, then
θ (v1)≤lex θ (v2) for every v1, v2 ∈ pos(ξ). We denote this bijection by θξ,ζ.

Example 3.1.1. Recall the ranked alphabet Λ as well as the (Λ,γ0)-behavior b from Example
2.1.4 for P ′ = {T O Pγ0

, T O Pγ} and F ′ = {P U S Hγ, P O P}. Moreover, consider the alphabet

Σ = {σ(2),δ(1),α(0)} and the tree ξ = σ(δ(α),α) in TΣ . By combining ξ and b, we obtain
the tree ζ ∈ BΛ(ξ), as depicted in Figure 3.1. �

98

3.1 Storage Behavior on a Tree

σ

δ

α

α

〈(T O Pγ0
, P U S Hγ),∗〉

〈(T O Pγ, P U S HγP U S Hγ), σ 〉

〈(T O Pγ, P O P),∗〉

〈(T O Pγ, P O P), δ 〉

〈(T O Pγ0
,ǫ), α 〉

〈(T O Pγ, P U S Hγ),∗〉

〈(T O Pγ, P O P),∗〉

〈(T O Pγ, P O P),∗〉

〈(T O Pγ,ǫ), α 〉

Figure 3.1: A tree ξ ∈ TΣ on the left side and an element ζ of BΛ(ξ) on
the right side for the ranked alphabet Λ from Example 3.1.1. The gray
dashed lines depict the bijection θξ,ζ.

99

Chapter 3 Characterizations of (S,Σ, K)-Recognizable Weighted Tree Languages

3.2 Characterization by Decomposition

In this section we will decompose the weighted tree language generated by an (S,Σ, K)-wta
in two different ways:

In a first step, we will separate the storage part from an (S,Σ, K)-wta. This decomposition
is inspired by a theorem of Engelfriet and Vogler [EV86, Theorem 3.26.] stating that each
CFT(S)-transducer can be split up into a formalism that generates approximations of the
storage protocol and a macro tree transducer, i.e.,

CFT(S) = AP(S) ; CFT(TR) .

Intuitively, a so-called approximator in the class AP(S) produces storage behaviors of S that
are given as input to a macro tree transducer in CFT(TR) and translated into trees over
the target alphabet. We take up this idea and transfer it to (S,Σ, K)-wta. However, as we
consider in this work automata (i.e., acceptors) instead of transducers, we will encode storage
behaviors into the terminal trees by using the tree transformation BΛ from the last section.
Then we can show that for each (S,Σ, K)-wta A there is an ǫ-free (TR I V, 〈Λ,Σ〉, K)-wta A

′

such that
JAK= BΛ ;JA′K

where Λ is constructed from the predicates and instructions used by A, and vice versa.
This result shows a nice connection between weighted tree automata with storage and
weighted tree automata without storage: We will see in the next section how we can use this
decomposition to apply results from the non-storage case in our setting.

In a second step, we separate the weights from an (S,Σ, K)-wta. The idea of this decompo-
sition goes back to Droste and Vogler and was used as part of their adoption of the Chomsky-
Schützenberger theorem of context-free languages to the weighted setting [DV13, DV14].
There they use instead of the usual homomorphism a so-called alphabetic morphism that maps
each word w to a monomial. Thus, w is not only mapped to a word w′ from another alphabet
but, at the same time, additionally a weight is assigned to it. As we here use M-monoids
as weight structure (instead of unital valuation monoids), we have to adjust the alphabetic
morphism and present the concept of an alphabetic monomial mapping of type T∆→ K[TΣ].
Then, intuitively, we can break down each (S,Σ, K)-wta A into an unweighted (S,∆)-ta A

′

accepting the computation trees of A and an alphabetic monomial mapping h assigning the
weights to those trees, i.e.,

JAK= h(L(A′)) .

By combining those two steps, we can characterize the elements of RT(S,Σ, K) by three
elementary concepts: a tree transformation, an alphabetic monomial mapping, and a recog-
nizable tree language.

Related work The decomposition by storage separation is based on [EV86, Theorem 3.26.]
and forms an alternative to the storage separation of weighted string automata with stor-
age in [HV15, HDV19]. We note that this decomposition provides the basis for another
characterization of a particular subclass of RT(S,Σ, K): a Kleene-Goldstine characterization
[FV19a].

100

3.2 Characterization by Decomposition

The separation of weights goes back to [DV13, DV14] and was extended in [HV15] to
weighted string languages recognizable by weighted automata with storage. It was also used
in [Den15] for a characterization of weighted multiple context-free languages.

We note that this characterization by decomposition is an alternative to the well-known
Chomsky-Schützenberger characterization for context-free languages that has been extended
to many language classes: among others, to string languages recognizable by automata
with storage [DL91], to weighted context-free languages [DV13, DV14], to weighted multi-
ple context-free languages [Den15], and to weighted languages recognizable by weighted
automata with storage [HV15].

Convention. During this section we let Σ be a non-trivial ranked alphabet, (S, P, F, c0) be an

arbitrary storage type and (K ,+, 0,Ω) be a complete M-monoid.

3.2.1 Separating the Storage

Here we want to show how one can decompose an (S,Σ, K)-wta A into the tree transformation
BΛ and a (TR I V, 〈Λ,Σ〉, K)-wta A

′ for some appropriate ranked alphabet Λ. To simplify the
proof of our decomposition result, we first define a notion of relatedness between A and A

′.

Relating automata with and without storage Let A = (Q,Q0, T, wt) be an (S,Σ, K)-wta.
Moreover, let P ′ ⊆ P and F ′ ⊆ F be the sets of predicates and instructions occurring in T and
let Λ the ranked alphabet corresponding to Σ, P ′ and F ′. Finally, let A′ = (Q′,Q′0, T ′, wt′) be
an ǫ-free (TR I V, 〈Λ,Σ〉, K)-wta. We say that A and A

′ are related if

• Q =Q′ and Q0 =Q′0,

• Each transition τ of the form q(p) → σ(q1(f1), . . . , qk(fk)) is in T if and only if a
transition τ′ of the form q→ 〈(p, f1 . . . fk),σ〉(q1, . . . , qk) is in T ′ and wt′(τ′) = wt(τ).

• Each transition τ of the form q(p)→ q′(f) is in T if and only if a transition τ′ of the
form q→ 〈(p, f),∗〉(q′) is in T ′ and wt′(τ′) = wt(τ).

Lemma 3.2.1 ([FHV18, Lemma 5.2.]). Let A be an (S,Σ, K)-wta. Moreover, let P ′ ⊆ P and

F ′ ⊆ F be the sets of predicates and instructions occurring in T and Λ the ranked alphabet

corresponding to Σ, P ′ and F ′. Also let A′ be an ǫ-free (TR I V, 〈Λ,Σ〉, K)-wta. If A and A
′ are

related, then JAK= BΛ ;JA′K.

Proof. Let ξ ∈ TΣ . It is obvious by the relation of A and A
′ that there is a bijection

ϕ : ΘA(ξ)→
⋃

ζ∈BΛ(ξ)

ΘA′(ζ)

101

Chapter 3 Characterizations of (S,Σ, K)-Recognizable Weighted Tree Languages

and that wt(t) = wt′(ϕ(t)) for each t ∈ ΘA(ξ). Thus, we obtain

JAK(ξ) =
∑

t∈ΘA(ξ)

wt(t)

=
∑

ζ∈BΛ(ξ)

∑

t ′∈ΘA′ (ζ)

wt′(t ′)

=
∑

ζ∈BΛ(ξ)

JA′K(ζ)

= (BΛ ;JA′K)(ξ) .

Hence, JAK= BΛ ;JA′K. �

Now we can use Lemma 3.2.1 to prove our first decomposition result of (S,Σ, K)-recognizable
weighted tree languages.

Theorem 3.2.2 ([FHV18, Theorem 5.3.]). Let s : TΣ → K. Then the following two statements

are equivalent:

(1) s is (S,Σ, K)-recognizable.

(2) There are a finite and non-empty set P ′ ⊆ P, a finite set F ′ ⊆ F, and there is an ǫ-free

(TR I V, 〈Λ,Σ〉, K)-wta A such that Λ is the ranked alphabet corresponding to Σ, P ′, and

F ′ and s = BΛ ;JAK.

Proof. (1)⇒ (2): Let A be an (S,Σ, K)-wta. Moreover, let P ′ ⊆ P and F ′ ⊆ F be the sets of
predicates and instructions occurring in the transitions of A. As the set of transitions of A is
non-empty, P ′ is non-empty as well. Let Λ the ranked alphabet corresponding to Σ, P ′ and
F ′. Then we can easily construct an ǫ-free (TR I V, 〈Λ,Σ〉, K)-wta A

′ such that A and A
′ are

related. Lemma 3.2.1 implies JAK= BΛ ;JA′K.
(2) ⇒ (1): Let P ′ ⊆ P be a finite and non-empty set, let F ′ ⊆ F be a finite set, and

Λ be the ranked alphabet corresponding to Σ, P ′, and F ′. Moreover, let A′ be an ǫ-free
(TR I V, 〈Λ,Σ〉, K)-wta. Then we can easily construct an (S,Σ, K)-wta A such that A and A

′

are related. Lemma 3.2.1 implies that BΛ ;JA′K= JAK. �

3.2.2 Separating the Weights

Here we want to separate the weights of an (S,Σ, K)-wta by using a so-called alphabetic
monomial mapping and applying it to the language of an unweighted tree automaton with
storage.

Alphabetic monomial mapping Let ∆ be a ranked alphabet. Recall that Ω is the set of
operations of K. Moreover, let h = (hk | 0 ≤ k ≤ max rk(∆)) be a family of mappings such
that

h1 : ∆(1)→ Ω(1) ∪ (Ω(1) ×Σ(1))

and
hk : ∆(k)→ Ω(k) ×Σ(k)

102

3.2 Characterization by Decomposition

for each k ∈ {0, . . . , max rk(∆)} \ {1}. Then the alphabetic monomial mapping (induced by

h) is the mapping h′ : T∆ → K[TΣ] defined as follows: for every k ∈ N, δ ∈ ∆(k), and
ζ1, . . . ,ζk ∈ T∆ we let

h′(δ(ζ1, . . . ,ζk)) =

¨
ω(a1).ξ1 if k = 1 and h1(δ) =ω

ω(a1, . . . , ak).σ(ξ1, . . . ,ξk) if hk(δ) = (ω,σ),

where h′(ζi) = ai .ξi for each i ∈ [k]. In the sequel we identify h and h′. We say that h

is strict if h1(Ω
(1)) ⊆ Ω(1) ×Σ(1). Now let L ⊆ T∆. We define the weighted tree language

h(L): TΣ → K by
h(L) =
∑
ζ∈L

h(ζ) .

We note that in the above definition h1 allows the special case h1(δ) ∈ Ω
(1) to capture ǫ-

transitions of an (S,Σ, K)-wta, which contribute to the weight of a tree but do not read any
symbol.

The following theorem shows how to decompose an (S,Σ, K)-wta into an alphabetic
monomial mapping and an unambiguous and ǫ-free (S,∆)-ta. It is inspired by [DV13, Lm. 3
and Lm. 4] and [HV15, Th. 6] and uses a similar proof technique.

Theorem 3.2.3 ([FHV18, Theorem 5.4.]). Let s : TΣ → K. Then the following two statements

are equivalent:

(1) s is (S,Σ, K)-recognizable.

(2) There are a ranked alphabet ∆, an unambiguous and ǫ-free (S,∆)-ta H, and an alphabetic

monomial mapping h: T∆→ K[TΣ] such that s = h(L(H)).

Moreover, if in (1) A is ǫ-free, then in (2) h is strict, and vice versa.

Proof. (1)⇒(2): Let A= (Q,Q0, T, wt) be an (S,Σ, K)-wta. As with computation trees, we
view T as ranked alphabet and we choose ∆= T . Moreover, we let H = (Q,Q0, T ′) be the
(S, T)-ta and h: TT → K[TΣ] be the alphabetic monomial mapping such that

• if the transition τ = (q(p)→ σ(q1(f1), . . . , qk(fk))) is in T , then the transition τ′ =

(q(p)→ τ(q1(f1), . . . , qk(fk))) is in T ′ and hk(τ) = (wt(τ),σ), and

• if the transition τ= (q(p)→ q′(f)) is in T , then the transition τ′ = (q(p)→ τ(q′(f))

is in T ′ and h1(τ) = wt(τ).

Clearly, if A is ǫ-free, than h is strict. Moreover, H is ǫ-free and each t ∈ L(H) is a
computation tree ofA for S Y M B(t). As the state transitions and storage operations H performs
while recognizing t are uniquely determined by t, it is easy to see that H is unambiguous.

Now we want to show that JAK = h(L(H)). Clearly, the correspondence τ 7→ τ′ of the
construction justifies a bijection ϕ : TT → TT ′ . Moreover, it is easy to see from the shape of
the transitions that t ∈ ΘA(ξ) if and only if ϕ(t) ∈ ΘH(t) for each t ∈ TT and ξ ∈ TΣ .

First, we want to show that L(H) is the set of all computation trees of A. Let ξ ∈ TΣ and
t ∈ ΘA(ξ). By using the bijection ϕ, we obtain from t a computation t ′ ∈ ΘH(t). Thus,
t ∈ L(H).

103

Chapter 3 Characterizations of (S,Σ, K)-Recognizable Weighted Tree Languages

Now let t ∈ L(H). Then there exists a unique t ′ ∈ ΘH(t). But then there is a ξ ∈ TΣ and
t ′′ ∈ ΘA(ξ) such thatϕ(t ′′) = t ′ and we see from the form of the transitions that ξ = S Y M B(t)

and t ′′ = t.
Thus, we obtain

L(H) =
⋃
ξ∈TΣ

ΘA(ξ) . (†)

By construction, for every t ∈ L(H) we have h(t) = wt(t).S Y M B(t) and, thus,

(h(t))(ξ) =

¨
wt(t) if t ∈ ΘA(ξ)

0 otherwise
(∗)

for each ξ ∈ TΣ . Then we obtain

(h(L(H)))(ξ) =
∑

t∈L(H)

(h(t))(ξ) =
∑

t∈ΘA(ξ)

(h(t))(ξ) =
∑

t∈ΘA(ξ)

wt(t) = JAK(ξ)

where the second equality is justified by (†) and (∗). Hence, h(L(H)) = JAK.
(2)⇒(1): Let H = (Q′,Q′0, T ′) be an unambiguous and ǫ-free (S,∆)-ta and let h: T∆ →

K[TΣ] be an alphabetic monomial mapping. We construct an (S,Σ, K)-wta A such that
JAK = h(L(H)). As for each ξ ∈ TΣ there might be several ζ ∈ T∆ such that supp(h(ζ)) ⊆ {ξ},
we have to keep apart the computations for those ζ’s to allow different weight assignments.
The idea for the construction is to encode the preimage of h in the states of A as in [DV13,
Lm. 4]. We let A= (Q,Q0, T, wt) where Q =Q′ ×∆, Q0 =Q′0 ×∆ and T and wt are defined
as follows.

• If q(p)→ δ(q1(f1), . . . , qk(fk)) is in T ′ and hk(δ) = (ω,σ), then for everyδ1, . . . ,δk ∈∆
the transition τ = ((q,δ)(p)→ σ((q1,δ1)(f1), . . . , (qk,δk)(fk))) is in T and wt(τ) =ω.

• If q(p) → δ(q1(f1)) is in T ′ and h1(δ) = ω, then for every δ1 ∈ ∆ the transition
τ= ((q,δ)(p)→ (q1,δ1)(f1)) is in T and wt(τ) =ω.

If h is strict, then A is ǫ-free.
As H is unambiguous, for each ζ ∈ L(H) there exists a unique computation tree in ΘH(ζ).

This tree is in the following denoted by tζ,H.
Let ζ ∈ L(H), t = tζ,H, ξ ∈ TΣ and t ′ ∈ ΘA(ξ). We say that t corresponds to t ′ if

pos(t) = pos(t ′) and for each w ∈ pos(t):

• if t(w) = (q(p)→ δ(q1(f1), . . . , qk(fk))) and h(δ) = (ω,σ), then t ′(w) = ((q,δ)(p)→
σ((q1,ζ(w1))(f1), . . . , (qk,ζ(wk))(fk))), and

• if t(w) = (q(p)→ δ(q1(f))) and h(δ) =ω, then t ′(w) = ((q,δ)(p)→ (q1,ζ(w1))).

Now let ξ ∈ TΣ . It is not hard to see that the above correspondence justifies a bijection

ϕξ : {tζ,H | ζ ∈ L(H), h(ζ)(ξ) 6= 0} → {t ∈ ΘA(ξ) | wt(t) 6= 0} . (∗)

Moreover, for each ζ ∈ L(H) and t ′ ∈ ΘA(ξ) such that ϕξ(tζ,H) = t ′ we obtain

wt(t ′) = (h(ζ))(ξ) . (†)

104

3.2 Characterization by Decomposition

Then, for every ξ ∈ TΣ , we have

(h(L(H)))(ξ) =
∑

ζ∈L(H)

(h(ζ))(ξ)

=
∑

ζ∈L(H):
h(ζ)(ξ)6=0

(h(ζ))(ξ)

=
∑

ζ∈L(H):
h(ζ)(ξ)6=0

wt(ϕξ(tζ,H)) (by †)

=
∑

t ′∈ΘA(ξ):
wt(t ′)6=0

wt(t ′) (by ∗)

=
∑

t ′∈ΘA(ξ)

wt(t ′) = JAK(ξ) .

Hence, JAK= h(L(H)). �

3.2.3 Combination of Separation Results

In this section we combine the separation of storage with the separation of weights. In
this way, we can characterize each element in RT(S,Σ, K) by elementary concepts: a tree
transformation BΛ, a strict alphabetic monomial mapping h, and a recognizable tree language.

Recall that we remove TR I V from the specifying tuple (TR I V,Σ, K) of a wta only if K = B

as explained in Section 2.2.1.

Theorem 3.2.4 ([FHV18, Theorem 5.7]). For every s : TΣ → K the following two statements

are equivalent:

(i) s is (S,Σ, K)-regular.

(ii) s = BΛ; h(L(H)) for some

– finite and non-empty set P ′ ⊆ P, finite set F ′ ⊆ F, and ranked alphabet Λ corre-

sponding to Σ, P ′, and F ′,

– ranked alphabet ∆ and unambiguous and ǫ-free ∆-ta H, and

– strict alphabetic monomial mapping h: T∆→ K[T〈Λ,Σ〉].

Proof. (i)⇒ (ii): By Theorem 3.2.2 there are a finite and non-empty set P ′ ⊆ P, a finite set
F ′ ⊆ F , and there is an ǫ-free (TR I V, 〈Λ,Σ〉, K)-wta A such that Λ is the ranked alphabet
corresponding to Σ, P ′, and F ′ and s = BΛ; JAK.

According to Theorem 3.2.3 there are a ranked alphabet∆, an unambiguous and ǫ-free∆-ta
H, and a strict alphabetic monomial mapping h: T∆→ K[T〈Λ,Σ〉] such that JAK= h(L(H)).

(ii)⇒ (i): By Theorem 3.2.3 we have that h(L(H)) is ǫ-free (TR I V, 〈Λ,Σ〉, K)-recognizable.
Then, by Theorem 3.2.2, BΛ; h(L(H)) is (S,Σ, K)-recognizable. �

Example 3.2.5. Now we want to demonstrate our constructions for the decomposition of an
(S,Σ, K)-wta by an example. For this, let Σ = {σ(2),α(0),β (0)} and λ = (λi | i ∈ N+) with

105

Chapter 3 Characterizations of (S,Σ, K)-Recognizable Weighted Tree Languages

λi = 0.5i−1 for each i ∈ N+. Moreover, recall the (CO U N T,Σ, Kλ
D I S C
)-wta A= (Q,Q0, T, wt)

from Example 2.2.1. We now proceed in two steps: First, we construct from A an ǫ-free
(TR I V, 〈Λ,Σ〉, Kλ

D I S C
)-wta A

′ without storage and for some appropriate Λ such that BΛ ;JA′K =
JAK. Then, in a second step, we decompose A

′ into an unweighted unambiguous and ǫ-free
tree automaton H and a strict alphabetic monomial mapping h such that JA′K = h(L(H))

and, thus, JAK= BΛ ; h(L(H)).

To illustrate the functionality of the thus obtained formalisms, we consider in this example
the tree ξ= σ(α,β) that is recognized by A with the unique computation t ∈ ΘA(ξ) of the
form

q(T R U E)→ σ(qα(I D), q(I N C))

qα(T R U E)→ α q(T R U E)→ qβ ,0(D E C)

qβ ,0(T R U E)→ β

with wt(t) =

ω
(2)
0,λ

ω
(0)
2,λ ω

(1)
0,λ

ω
(0)
1,λ

= 2.5 .

Step 1 (storage separation): We proceed as in the proof of Theorem 3.2.2 (1)⇒(2). Based
on the transitions of A, we let P ′ = {T R U E, Z E R O} and F ′ = {I D, I N C, D E C} (indeed, in this
case P ′ = P and F ′ = F). Then we obtain the ranked alphabet

Λ= {(T R U E,ǫ), (Z E R O,ǫ)}(0) ∪ {(T R U E, f), (Z E R O, f) | f ∈ F ′}(1)

∪ {(T R U E, f1 f2), (Z E R O, f1 f2) | f1, f2 ∈ F ′}(2)

corresponding to Σ, P ′, and F ′.

Now we construct the (TR I V, 〈Λ,Σ〉, Kλ
D I S C
)-wta A= (Q,Q0, T ′, wt′) where T ′ and wt′ are

given by

τ′1 = q → 〈(T R U E, I D I N C),σ〉(qα, q), wt′(τ′1) =ω
(2)
0,λ,

τ′2 = q → 〈(T R U E, I D D E C),σ〉(qβ , q), wt′(τ′2) =ω
(2)
0,λ,

τ′3 = q → 〈(T R U E, I N C),∗〉(qα,0), wt′(τ′3) =ω
(1)
0,λ,

τ′4 = q → 〈(T R U E, D E C),∗〉(qβ ,0), wt′(τ′4) =ω
(1)
0,λ,

τ′5 = qα → 〈(T R U E,ǫ),α〉, wt′(τ′5) =ω
(0)
2,λ,

τ′6 = qβ → 〈(T R U E,ǫ),β〉, wt′(τ′6) =ω
(0)
1,λ,

τ′7 = qα,0 → 〈(Z E R O,ǫ),α〉, wt′(τ′7) =ω
(0)
2,λ,

τ′8 = qβ ,0 → 〈(Z E R O,ǫ),β〉, wt′(τ′8) =ω
(0)
1,λ.

106

3.2 Characterization by Decomposition

Now consider the following depiction of the procedural processing of ξ by BΛ ;JA′K:

σ

α β

〈(T R U E, I D I N C),σ〉

〈(T R U E,ǫ),α〉 〈(T R U E, D E C),∗〉

〈(Z E R O,ǫ),β〉

ζ1
...

ζi

...

...

BΛ JA′K

0

...

2.5

0

...

...

...+ 2.5

First, the tree transformation BΛ enriches ξ by fitting storage behaviors. Afterwards, A′

simulates the state behavior of A and maps each ζ ∈ BΛ(ξ) to a value k ∈ K . Thus, A′ filters
out all trees with behavior enrichments that can not occur in computations of A. In fact, in
our concrete example only one such ζ, in the following denoted by ζξ, is mapped by A

′ to
a non-zero weight. Afterwards, all thus obtained weights are summed up (initiated by the
definition of ;) which results in the final weight that is assigned by BΛ ;JA′K to ξ.

We note that supp(JA′K) consists of more trees than those incorporated in the decomposition:
as A′ is not able to check the executability of the predicates and instructions it reads, it also
recognizes trees over 〈Λ,Σ〉 whose storage part is not a behavior. For example, the tree
ζ = 〈(T R U E, I N C),∗〉(〈(Z E R O,ǫ),α〉) is an element of supp(JA′K) while α /∈ supp(JAK).
However, as (T R U E, I N C)

!
(Z E R O,ǫ)
�

is not a storage behavior, ζ /∈ BΛ(α) and, thus, JA′K is
not applied to it.

We also note that (in our example) ΘA′(ζξ) consists of exactly one computation t ′ which
is of the form τ′1(τ

′
5,τ′4(τ

′
8)) with wt′(t ′) = wt(t). We will see in the next step how the

computations of A
′ are used to compute weights with help of an alphabetic monomial

mapping.

Step 2 (weight separation): Now we want to decompose A
′ as in the proof of Theorem

3.2.3 (1)⇒(2). We construct a tree automaton H operating on the transitions of A′ as input
symbols. Thus, we obtain the T ′-ta H = (Q,Q0, T ′′) where T ′′ consists of the transitions

τ′′1 = q → τ′1(qα, q), τ′′5 = qα → τ′5,

τ′′2 = q → τ′2(qβ , q), τ′′6 = qβ → τ′6,

τ′′3 = q → τ′3(qα,0), τ′′7 = qα,0 → τ′7,

τ′′4 = q → τ′4(qβ ,0), τ′′8 = qβ ,0 → τ′8.

Obviously, the language recognized by H consists exactly of the computation trees of A′.
Thus, t ′ ∈ L(H).

107

Chapter 3 Characterizations of (S,Σ, K)-Recognizable Weighted Tree Languages

Moreover, we let h: TT ′ → K[TΛ] be the strict alphabetic monomial mapping given by

h(τ′′1) = (ω
(2)
0,λ , 〈(T R U E, I D I N C),σ〉), h(τ′′5) = (ω

(0)
2,λ , 〈(T R U E,ǫ),α〉),

h(τ′′2) = (ω
(2)
0,λ , 〈(T R U E, I D D E C),σ〉), h(τ′′6) = (ω

(0)
1,λ , 〈(T R U E,ǫ),β〉),

h(τ′′3) = (ω
(1)
0,λ , 〈(T R U E, I N C),∗〉), h(τ′′7) = (ω

(0)
2,λ , 〈(Z E R O,ǫ),α〉),

h(τ′′4) = (ω
(1)
0,λ , 〈(T R U E, D E C),∗〉), h(τ′′8) = (ω

(0)
1,λ , 〈(Z E R O,ǫ),β〉).

Clearly, h maps each computation t̂ of A′ to a monomial assigning to S Y M B(t̂) the value
wt′(t̂), i.e, for the computation t ′ ∈ ΘA′(ζξ) we obtain

h(t ′) = (2.5) .ζξ ,

and combines these monomials by a summation. As in our example ζξ is recognized by the
unique computation t ′, (h(t̂))(ζξ) = 0 for each t̂ ∈ L(H) with t̂ 6= t ′. Thus, we obtain

(h(L(H)))(ζξ) = (h(t
′))(ζξ) = 2.5 .

Moreover, as for each ζ̂ ∈ BΛ(ξ) with ζ̂ 6= ζξ we have ΘA′(ζ̂) = ;, by construction there is no

t̂ ∈ L(H) such that (h(t̂))(ζ̂) 6= 0. Consequently,

(BΛ ; h(L(H)))(ξ) =
∑

ζ∈BΛ(ξ)

∑

t∈L(H)

(h(t))(ζ) = (h(t ′))(ζξ) = 2.5 .

For a visualization of the functionality of our decomposition consider Figure 3.2. It illustrates
the processing of a tree ξ ∈ TΣ by the tree transformation BΛ and the recognizable tree
language L(H) (independent of ξ) that are connected by the alphabetic monomial mapping h.

�

108

3.2 Characterization by Decomposition

L(H): t ′1 . . . t ′
j

. . .

ζ1 (h(t ′1))(ζ1) . . .

...
. . .

ζi

... (h(t ′
j
))(ζi)

...
. . .

ξ
BΛ sum

k ∈ K

Figure 3.2: The processing of a tree ξ ∈ TΣ by the tree transformation
BΛ, the recognizable tree language L(H), and the alphabetic monomial
mapping h.

109

Chapter 3 Characterizations of (S,Σ, K)-Recognizable Weighted Tree Languages

3.3 Logical Characterization

It has been a milestone of theoretical computer science when Büchi proved the strong con-
nection between automata and MSO logic: both formalisms are equally expressive [Büc62]
(see Remark 1.5.2 for more, prior, contributions). This result opened the possibility to decide
the satisfiability problem of MSO logic via automata. At the same time, it provides a logical
characterization of the recognizable languages. In the last decades, this characterization has
been extended into many directions. Three of them are especially interesting for our work:

With the appearance of tree languages and tree automata, also MSO logic was considered
over tree structures. Similar to the word case, it was shown that definability and recognizability
coincide [TW68, Don70]. The same applies to weighted (tree) languages: for both weighted
automata and, shortly after, weighted tree automata a logical characterization based on
restricted weighted MSO logic has been introduced. These two extensions of the logic (i.e.,
to the tree case and to the weighted setting) are essentially due to a change of the structure
on which formulas are interpreted but preserve the principle of recognizability.

On the other hand, there are attempts to found logical characterization of language classes
beyond the recognizable languages. A prominent approach is due to Lautemann, Schwentick
and Thérien [LST95]: They extended MSO logic by an additional binary predicate, called
matching, which is a particular relation over the positions of a word. This matching can,
intuitively, be seen as an encoding of the behavior of a pushdown automaton: two positions i

and j of a word w match if the pushdown symbol pushed at position i is popped at position j,
or graphically:

P U S Hγ1
P U S Hγ2

P O P P U S Hγ3
P O P P O P

w(1) w(2) w(3) w(4) w(5) w(6)

They proved that the set of formulas of the shape ∃Match.ϕ, where ϕ is an MSO-formula,
defines the context-free languages. This result was further extended by Fratani and Voundy
[FV14a, Vou17] to a subset of the class of indexed languages (i.e., languages recognized by
(Σ, P2)-automata). Again, MSO logic was extended by a particular relation, now called a
Dyck matching. Thus, the authors considered formulas of the shape ∃DyckMatch.ϕ, where
again ϕ is an MSO-formula. However, also a well-known problem was mentioned in this
work: as predicates in (extended) MSO logic relate positions of a word, ǫ-transitions of an
appropriate automaton model can not be considered. In contrast to pushdown automata, it
is assumed that for (Σ, P2)-automata no normal-form without ǫ-transitions exists. Thus, in
[FV14a, Vou17] only a subclass of the indexed languages was logically characterized.

In [VDH16, HDV19] we introduced a very general approach for a logical characterization.
Inspired by the additional relations mentioned above which, intuitively, encode the storage
behavior of the respective automaton model, a weighted MSO logic with storage behavior was
defined. In that work, we used a (non-monadic) second-order variable B which ranges over
storage behaviors. Thus, our formulas have the form

∑
B e where (i)
∑

B is the weighted
version of an existential quantification over B and (ii) e is an M-expression [FSV12] enriched

110

3.3 Logical Characterization

with a particular behavior atom and adopted to unital valuation monoids as weight structure
as in [FV15]. As here the same problem concerning ǫ-transitions as in [FV14a] occurs, this
logic characterizes the weighted languages of ǫ-free weighted automata with storage over
unital valuation monoids.

In this section, we want to present a logical characterization for the class RT(S,Σ, K) by a
weighted MSO logic with storage behavior on trees. Although this logic is inspired by [VDH16],
we use a slightly different (and simpler) approach: as it was shown in Theorem 3.2.2, for
each (S,Σ, K)-wta A there is an ǫ-free (TR I V, 〈Λ,Σ〉, K)-wta A

′ such that JAK = BΛ ;JA′K.
Following this decomposition, we use formulas of the form

∑beh
e

where
∑beh implements the functionality of BΛ and e is an M-expression over 〈Λ,Σ〉 and K .

Thus, this section can be seen as an application of Section 3.2.1. Moreover, as it suffices for e

to define the language of an ǫ-free weighted tree automaton, we overcome the problem of
representing ǫ-transitions logically.

Related work Our logic is based on M-expressions [FSV12] that we already recalled in
Section 1.5.3 and the MSO-expressions from [VDH16, HDV19].

We note that in [DV11, Chapter 7] and [DGMM11] alternative weighted MSO logics were
used for the characterization of K-recognizable weighted tree languages where K is an
arbitrary semiring respectively a valuation monoid. In its turn, these logics are based on the
weighted MSO logic in [DG05, DG07] for weighted string automata and [DV06] for weighted
tree automata over commutative semirings. For a recent survey we refer to [GM15].

In [LSS99], a further extension of [LST95] was given by introducing a logical character-
ization of NTIME(n), the class of all languages recognizable by a nondeterministic Turing
machine in linear time.

Moreover, Engelfriet and Vogler recently provided a logical characterization for automata
with particular graph storage types [EV19].

Convention. During this section we let Σ be a non-trivial ranked alphabet, (S, P, F, c0) an

arbitrary storage type and (K ,+, 0,Ω) a complete M-monoid.

3.3.1 Expressions with Storage Behavior and a Logical Characterization

Before we step into the details of our logical characterization, let us restate Theorem 1.5.5 in
our setting (using Observation 2.2.8).

Theorem 3.3.1 ([FSV12, Thm. 4.1]). RTǫ-free(TR I V,Σ, K) =M(Σ, K) for each ranked al-

phabet Σ and complete M-monoid K.

Now we define (weighted) expressions with storage behavior. In a similar spirit as in
[VDH16], an expression is an existentially quantified M-expression where the quantification
runs over the set BΛ(ξ) of Λ-behaviors on the tree ξ ∈ TΣ over which the expression is
interpreted. The involved M-expression is over (〈Λ,Σ〉, K). The concepts for M-expressions
are recalled in Section 1.5.3.

111

Chapter 3 Characterizations of (S,Σ, K)-Recognizable Weighted Tree Languages

Expressions with Λ-behaviors Let P ′ ⊆ P be finite and non-empty, let F ′ ⊆ F be finite and
let Λ be the ranked alphabet corresponding to Σ, P ′, and F ′. We define the set of expressions

over Σ and K with Λ-behaviors (for short: (Λ,Σ, K)-expressions) to be the set of all formulas
of the form

∑beh
e

where e is a sentence in MExp(〈Λ,Σ〉, K). The semantics of
∑beh

e is the weighted tree

language J
∑beh

eK : TΣ → K defined by

J
∑beh

eK= BΛ; JeK .

Let s : TΣ → K be a weighted tree language. We say that s is (Λ,Σ, K)-definable if there is a
(Λ,Σ, K)-expression

∑beh
e with J
∑beh

eK = s. Moreover, s is (S,Σ, K)-definable if there are a
non-empty and finite subset P ′ ⊆ P and a finite subset F ′ ⊆ F such that s is (Λ,Σ, K)-definable
where Λ is the ranked alphabet corresponding to Σ, P ′, and F ′. We denote the class of all

(S,Σ, K)-definable weighted tree languages by Def(S,Σ, K).

Example 3.3.2. Here we want to show the definition of an (S,Σ, K)-recognizable weighted
tree language by an expression. For this, let Σ = {σ(2),α(0),β (0)} and λ = (λi | i ∈ N+) with
λi = 0.5i−1 for each i ∈ N+. Moreover, recall the (CO U N T,Σ, Kλ

D I S C
)-recognizable weighted

tree language rD I S C from Example 2.2.1.
As in the previous Example 3.2.5, we will here use the ranked alphabet Λ corresponding

to Σ, P ′ = {T R U E, Z E R O}, and F ′ = {I D, I N C, D E C}. Then we can define rD I S C by the
(Λ,Σ, Kλ

D I S C
)-expression

e =
∑beh

e′

using the sentence e′ ∈MExp(〈Λ,Σ〉, Kλ
D I S C
) that we will specify in the following. Recall that

〈Λ,Σ〉 enriches elements of Λ by symbols from Σ (and unary elements in Λ(1) also by ∗), e.g.,
(〈T R U E, I D I N C〉,σ) ∈ 〈Λ,Σ〉(2) and (〈T R U E, D E C〉,∗) ∈ 〈Λ,Σ〉(1).

For each a ∈ 〈Λ,Σ〉 and i ∈ [2] we introduce the abbreviation

edgei,a(x) = ∃y. edgei(x , y)∧ labela(y)

ensuring that the ith child of the position assigned to x carries the label a. Moreover, we
define the 〈Λ,Σ〉-family ω of operations by setting

ω〈(T R U E,ǫ),α〉 =ω〈(Z E R O,ǫ),α〉 =ω
(0)
2,λ, ω〈(T R U E,ǫ),β〉 =ω〈(Z E R O,ǫ),β〉 =ω

(0)
1,λ,

and ωa =ω
(i)

0,λ for i ∈ N and all remaining symbols a ∈ 〈Λ,Σ〉(i).
Now we let

e′ = ϕ Â H(ω) with ϕ = ∀x .ϕσ(x)∨ϕ∗(x)∨ϕα,β(x)

where

112

3.3 Logical Characterization

• ϕσ(x) =
∨

f ∈{I N C,D E C}

�
label〈(T R U E,I D f),σ〉(x)∧ edge1,〈(T R U E,ǫ),symb f 〉

(x)∧
∨

g∈{I N C,D E C}

!
edge2,〈(T R U E,I D g),σ〉(x)∨ edge2,〈(T R U E,g),∗〉(x)

��
,

• ϕ∗(x) =
∨

f ∈{I N C,D E C} label〈(T R U E, f),∗〉(x)∧ edge1,〈(Z E R O,ǫ),symb f 〉
(x), and

• ϕα,β(x) = (
∨

u∈{α,β} label〈(Z E R O,ǫ),u〉(x)∨ label〈(T R U E,ǫ),u〉(x))∧ ∃y. edge1(y, x)

with symbI N C = α and symbD E C = β . Intuitively, ϕ determines the structure of the tree in
its language by specifying (i) which symbols from Λ are allowed to occur and (ii) which
symbols are allowed to occur as direct successor of a given symbol. Furthermore, we require
in ϕα,β(x) that x is the successor of another node.

By analyzing the requirements of ϕ, one will notice that L(ϕ) consists of trees ζ over 〈Λ,Σ〉
of the form

〈(T R U E, I D f1),σ〉

〈(T R U E,ǫ), symb f1
〉 〈(T R U E, I D f2),σ〉

〈(T R U E,ǫ), symb f2
〉 〈(T R U E, I D fn−1),σ〉

〈(T R U E,ǫ), symb fn−1
〉 〈(T R U E, fn),∗〉

〈(Z E R O,ǫ), symb fn
〉

for some n≥ 1 and f1, . . . , fn ∈ {I N C, D E C}.

Moreover, using the same argumentation as in the weight calculation of Example 2.2.1, it
is easy to see that each such ζ is evaluated by H(ω) to

JH(ω)K(ζ) = 0.50 · ze1 + . . .+ 0.5n−1 · zen

where, for each i ∈ [n], zei =ω
(0)
2,λ = 2 if symb fi

= α and zei =ω
(0)
1,λ = 1 if symb fi

= β .

Obviously, there are trees in L(ϕ) with an unequal number of α’s and β ’s in their leaf
symbols as this constraint can not be checked by an M-expression. However, this missing part
is resolved by the combination of

∑beh and ϕ Â H(ω): On the one hand, the semantics of
the behavior summation produces for each given tree ξ ∈ TΣ those ζ ∈ T〈Λ,Σ〉 where (ζ)1 is
a Λ-behavior. On the other hand, ϕ ensures (by specifying which symbols may occur in a
tree) that for each symbol α the storage counter is increased, for each symbol β the storage
counter is decreased, and that at the right-most leaf it is checked whether the counter equals
zero. Thus, for each ξ ∈ TΣ there exists at most one Λ-behavior on ξ that satisfies ϕ, i.e.,
BΛ(ξ)∩L(ϕ)≤ 1.

In summary, using the above explanation, we obtain for each ξ ∈ TΣ with yd(ξ) = z1 . . . zn

113

Chapter 3 Characterizations of (S,Σ, K)-Recognizable Weighted Tree Languages

for some n≥ 2 and z1, . . . , zn ∈ {α,β}

J
∑beh

ϕ Â H(ω)K(ξ) = (BΛ; Jϕ Â H(ω)K)(ξ)

=
∑

ζ∈BΛ(ξ)

Jϕ Â H(ω)K(ζ)

=
∑

ζ∈BΛ(ξ)∩L(ϕ)

JH(ω)K(ζ)

=

¨
0.50 · ze1 + . . .+ 0.5n−1 · zen if ξ ∈ Tαβ
0 otherwise

.

Thus, e = rD I S C . �

As a first result we prove a logical characterization of the (S,Σ, K)-recognizable weighted
tree languages.

Theorem 3.3.3 ([FHV18, Theorem 7.4.]). RT(S,Σ, K) = Def(S,Σ, K).

Proof. First we prove that RT(S,Σ, K) ⊆ Def(S,Σ, K). Let s be an (S,Σ, K)-recognizable
weighted tree language. By Theorem 3.2.2 there are a finite and non-empty set P ′ ⊆ P, a
finite set F ′ ⊆ F , and there is an ǫ-free (TR I V, 〈Λ,Σ〉, K)-wta A such that Λ is the ranked
alphabet corresponding to Σ, P ′, and F ′, and s = BΛ ;JAK. By Theorem 3.3.1, there is a

sentence e ∈ MExp(〈Λ,Σ〉, K) such that JAK = JeK. Then, s = J
∑beh

eK and
∑beh

e is a
(Λ,Σ, K)-expression. Thus, we have that s is (S,Σ, K)-definable.

Now we prove that Def(S,Σ, K) ⊆ RT(S,Σ, K). Let e be a (Λ,Σ, K)-expression for some
finite and non-empty set P ′ ⊆ P, finite set F ′ ⊆ F , and ranked alphabet Λ corresponding
to Σ, P ′, and F ′. Then e is of the form

∑beh
e′ for some sentence e′ in MExp(〈Λ,Σ〉, K)

and JeK = BΛ ;Je′K. By Theorem 3.3.1, there is an ǫ-free (TR I V, 〈Λ,Σ〉, K)-wta A such
that Je′K = JAK. Finally, by applying Theorem 3.2.2, we obtain that BΛ ;JAK is (S,Σ, K)-
recognizable. �

As second result we prove that expressions with behaviors generalize M-expressions as
defined in [FSV12].

Theorem 3.3.4 ([FHV18, Theorem 7.5.]). Let s : TΣ → K be a weighted tree language. Then

the following two statements hold.

(1) If s = JeK for some sentence e ∈MExp(Σ, K), then s is (TRIV,Σ, K)-definable.

(2) If K is compressible and s is (TRIV,Σ, K)-definable, then s = JeK for some sentence

e ∈MExp(Σ, K).

Proof. Let Λ be the ranked alphabet corresponding to Σ, {T R U E}, and {I D}. For each ξ ∈ TΣ ,
the set BΛ(ξ) contains exactly one element ζ such that pos(ζ) = pos(ξ). We denote this
element by ζξ. Then for each w ∈ pos(ξ) we have ζξ(w) = 〈(T R U E, I D . . . I D),ξ(w)〉 where
the number of occurrences of I D equals the rank of ξ(w).

114

3.3 Logical Characterization

Proof of (1): Let e be a sentence in MExp(Σ, K). Then we construct the formula ē ∈
MExp(〈Λ,Σ〉, K) that can be obtained from e by replacing each subformula of the form
labelσ(x) for some σ ∈Σ by label〈(T R U E,I D...I D),σ〉(x) where the number of occurrences of I D

equals the rank of σ. Clearly, JēK
!
ζξ) = JeK(ξ) for every ξ ∈ TΣ . Moreover, let

e′ = ϕ Â ē with ϕ = ¬∃x .label〈(T R U E,I D),∗〉(x) .

It is easy to see that
BΛ(ξ)∩L(ϕ) = {ζξ} . (∗)

Thus, for each ξ ∈ TΣ we have

J
∑beh

e′K(ξ) =
∑

ζ∈BΛ(ξ)

Je′K
!
ζ
�
=
∑

ζ∈BΛ(ξ)

Jϕ Â ēK
!
ζ
�
= JēK
!
ζξ) = JeK(ξ) ,

where the last but one equality holds due to (∗).
Proof of (2): Let s be (TRIV,Σ, K)-definable. By Theorem 3.3.3 we have that s is (TRIV,Σ, K)-

recognizable. Since K is compressible, Lemma 2.4.2 implies that s is ǫ-free (TRIV,Σ, K)-
recognizable. Then by Theorem 3.3.1 we obtain that there is a sentence e ∈MExp(Σ, K) such
that JeK= s. �

3.3.2 Comparison with [VDH16]

As our logic is strongly influenced by the logic in [VDH16], we want to compare both ap-
proaches here on an informal level.

First of all, let us recall the structures for which the expressions in [VDH16] are defined:
in contrast to this thesis, we considered K-weighted string languages where (K ,+, val, 0, 1)
is a unital valuation monoid. The behaviors we used in [VDH16] are strings over a finite
subset Λunary of P × F , where, as here, P and F are the sets of predicates and instructions of
a storage type S, respectively.

Moreover, in [VDH16] we considered so-called (Λ,Σ, K)-expressions (cf. [VDH16, Def. 5
and 6]) which are, roughly speaking, formulas of the form

e =
∑

B e′

where B is an additional second-order behavior variable and e′ is an enriched M-expression
(adapted to unital valuation monoids as in [FV15]) that has B as free variable. Intuitively,
when evaluating e on a word w, B is assigned a behavior of the same length as w, i.e.,

J
∑

B eK(w) =
∑

b∈B(Λunary,|u|)
JeK{B}
!
u, [B 7→ b]
�

Then, with e′, in addition to the usual semantics of expressions, this behavior can be tested:
e′ is enriched by predicates of the form B(x) = (p, f) checking that the behavior string at the
position assigned to the first-order variable x is of the form (p, f).

This description already mentions the two significant differences between the logic in this
thesis and in [VDH16]:

115

Chapter 3 Characterizations of (S,Σ, K)-Recognizable Weighted Tree Languages

Difference 1 In the current work, the operator
∑beh is implemented by a tree transformation

and enriches an input tree by storage behaviors on which then an M-expression e is evaluated.
Thus, before evaluating e, the structure of the input is changed. As a result, the symbols of a
storage behavior are part of the input alphabet of e and, thus, can be treated by the MSO
predicate labelσ(x).

In contrast, in [VDH16] we do not change the structure of an input word but use an
additional behavior variable B and predicates B(x) = (p, f) as described above.

The “structure change” due to the operator
∑beh also leads to the second difference:

Difference 2 Trees enriched by a storage behavior may be “stretched” as we allow positions
that are labeled by a behavior symbol but not by a symbol from the input alphabet Σ (cf.
Figure 3.1). Thus, we can simulate with our logic ǫ-transitions of an (S,Σ, K)-wta.

In contrast, to the behavior variable B only storage behaviors of the same length as the
input word are assigned. Thus, in the setting of [VDH16] ǫ-transitions can not be simulated.

We note that this comparison can also serve as a comparison with the logic presented in
Chapter 6 which extends [VDH16] by allowing an infinite input set. However, as we define in
Chapter 6 symbolic automata without ǫ-transitions, Difference 2 does not lead to a restriction.

116

3.4 Chapter Conclusion

3.4 Chapter Conclusion

In this chapter we provided two characterizations of the weighted tree languages recognizable
by (S,Σ, K)-wta.

The first one represents (S,Σ, K)-recognizable weighted tree languages by three simpler
formalisms: a tree transformation, an alphabetic monomial mapping, and a recognizable
tree language. To obtain this characterization we first separated the storage (by using a tree
transformation) and afterwards we separated the weights (into the alphabetic monomial
mapping). Thus, we showed that both extensions of recognizable tree languages operate
independently.

Our second characterization grew from the storage separation: this decomposition was
our basis for a logical characterization of (S,Σ, K)-recognizable weighted tree languages.
Another application of the storage decomposition is given in [FV19a] by introducing rational
weighted tree languages with storage.

117

Chapter 4

Linear (S,Σ, K)-wta and Inverse Linear Tree

Homomorphisms

The closure of a tree language class L under tree homomorphisms and inverse tree homo-
morphisms is an interesting and often investigated property. Among others, particular tree
homomorphisms are used for characterizations of tree languages: e.g., recognizable tree
languages are the homomorphic image of local tree languages [Don70] and context-free tree
languages can be characterized by a Chomsky-Schützenberger result [AD77] where tree ho-
momorphisms and inverse tree homomorphisms play a central role. Moreover, also particular
(weighted) tree transductions can be represented by the help of tree homomorphisms and
inverse tree homomorphisms as parts of a bimorphism characterization [FMV11].

As unrestricted tree homomorphisms often do not provide such a closure, a useful restriction
is given by assuming linear tree homomorphisms. In fact, the recognizable tree languages
are closed under linear tree homomorphisms and even under (nonlinear) inverse tree ho-
momorphisms. However, choosing a larger class for L, as for example the context-free tree
languages, changes the situation. Whereas

⋃
Σ CFT(Σ) is still closed under the application

of linear tree homomorphisms, the inverse application of a linear tree homomorphism to a
context-free tree language L might yield a tree language that is not context-free anymore as
shown in [AD78]. Even if L is assumed to be generated by a linear context-free tree grammar,
the closure does not hold as we proved in [ODH19]. However, in the same work we could
provide a positive result for the linear monadic context-free tree languages (lm-CFT):

Theorem 4.0.1 ([ODH19, Theorem 8.1]). The class of linear monadic context-free tree lan-

guages is closed under inverse linear tree homomorphisms.

That is, we obtained a closure property for the class of tree languages generated by linear
context-free tree grammars using only nonterminals of rank 0 or 1. It is well known that those
grammars are expressively equivalent to the tree-adjoining grammars [KR10] – a formalism
used in computer linguistics. Moreover, in [FK00] an automaton characterization of lm-CFT
was given. For this, the authors introduced linear pushdown tree automata, which, intuitively,
forbid to copy the pushdown storage to two or more children of a current node. Besides the
linearity constraint, this automaton model corresponds to (P,Σ)-ta. Thus, the question arises
whether we can fit the idea of copying the storage to at most one child into our framework of
(S,Σ, K)-wta and, therewith, are able to generalize Theorem 4.0.1 to a larger language class.

We will show in this chapter that this question can be answered positively. For this, we
introduce linear (S,Σ, K)-wta where K is a complete semiring. Those automata (i) use storage

119

Chapter 4 Linear (S,Σ, K)-wta and Inverse Linear Tree Homomorphisms

types with a particular storage instruction � allowing to reset each storage configuration
back to the initial configuration and (ii) ensure that in each transition at most one storage
instruction occurs that is not �. And indeed, linear (S,Σ, K)-wta extend linear pushdown
tree automata.

Afterwards, we will prove that, for each complete and commutative semiring K, the K-
weighted tree languages recognized by our linear automaton model are closed under the
inverse application of linear tree homomorphisms. For this, we use an idea going back
to [AL80]: each linear tree homomorphism can be decomposed into a number of linear
alphabetic tree homomorphisms and elementary tree homomorphisms. This also holds in
the weighted setting and can be used for the inverse application as well, as shown in Section
1.4.4. Thus, it suffices to prove the closure under the inverse application of linear alphabetic
tree homomorphisms and elementary tree homomorphisms.

In sum, in this chapter we extend Theorem 4.0.1 into two directions: (i) instead of tree
languages we consider weighted tree languages over commutative and complete semirings
and (ii) instead of a pushdown storage type we allow arbitrary storage types under the
assumption that a storage configuration is passed to at most one child node when recognizing
a tree.

This chapter In Section 4.1 we introduce resettable storage types and linear (S,Σ, K)-wta.
We show that this restricted automaton model generalizes linear pushdown tree automata
and we state our main closure theorem. In Section 4.2 we prove the closure under inverse
linear alphabetic tree homomorphisms and, afterwards, the closure under elementary tree
homomorphisms is proven in Section 4.3.

Related work The closure of particular classes of tree languages under particular tree
homomorphisms and inverse tree homomorphisms has been investigated intensively and we
only recall here the most important results for our work. It is well known that the recognizable
tree languages are closed under linear tree homomorphisms and inverse tree homomorphisms
(cf., e.g., [GS84, Chapter II, Theorem 4.16 and 4.18]). Moreover, also the context-free tree
languages are closed under linear tree homomorphisms [Rou70]. However, the context-
free tree languages and the linear context-free tree languages are not closed under inverse
linear tree homomorphisms as proved in [AD78, Theorem 3.1] and [ODH19, Theorem 3.7],
respectively. In [AL80, Theorem 24], it was shown that the class of context-free tree languages
in Greibach normal form is closed under inverse application of a linear tree homomorphism.
Moreover, we proved that the class of linear monadic context-free tree languages (which is
a subclass of the Greibach context-free tree languages) is closed under inverse linear tree
homomorphisms [ODH19, Theorem 8.1]. We note that this result does not follow from
[AL80] since in their proof a non-linear context-free tree grammar was constructed.

There are also some results regarding the closure of particular classes of weighted tree lan-
guages under tree homomorphisms. It was shown by Kuich that, for the case of commutative
continuous semirings, the class of weighted recognizable tree languages is closed under linear
and non-deleting recognizable tree transductions [Kui99, Theorem 3.1] and that the class of
weighted context-free tree languages is closed under linear and non-deleting algebraic tree
transductions [Kui00a, Corollary 3.6]. From this, the closure of both classes under linear and
non-deleting tree homomorphisms follows. Furthermore, in [FMV11, Theorem 5.1] it was

120

proven that the recognizable weighted tree languages (over complete semirings) are closed
under inverse application of linear weighted extended top-down tree transducer mappings
and, thus, under inverse linear tree homomorphisms. They also showed by a counterexample
that, in contrast to the unweighted setting, the recognizable weighted tree languages are not
closed under inverse (non-linear) tree homomorphisms.

Note: The content of this chapter is entirely new and unpublished work.

121

Chapter 4 Linear (S,Σ, K)-wta and Inverse Linear Tree Homomorphisms

4.1 Linear (S,Σ, K)-Recognizable Tree Languages

In this section, we restrict (S,Σ, K)-wta by requiring that their transitions are linear. This
means that, when recognizing an input tree, the storage configuration computed so far may
be passed to at most one subtree and, thus, is not copied. The idea of this limitation originates
from the linear pushdown tree automata of [FK00] and is here generalized to almost arbitrary
storage types.

We say “almost” as we need one more ingredient to define our linear automaton model:
If, when recognizing a subtree σ(ξ1, . . . ,ξn), the current storage configuration is passed to
at most one child of σ, all remaining children have to be recognized starting with a “fresh”
storage configuration. For this, we enrich a storage type S by an additional instruction �
which maps each configuration back to the initial storage configuration.

Resettable storage types Let S = (C , P, F, c0) be a storage type. The reset instruction (on C),
denoted by �C , is defined for each c ∈ C by setting �C(c) = c0. If C is clear from the context,
we often write � instead of �C . Moreover, we let S� be the storage type (C , P, F ∪ {�}, c0).
We call a storage type S resettable if S = S�.

Remark 4.1.1. We note that this enrichment is a technique already used in [Gol79] to obtain
certain closure properties.

Although, in general, the reset instruction may add power to a storage type S, there are
several prominent storage types that are able to simulate � by a sequence of instructions.
As an example consider the pushdown storage type P. Obviously, a (P,Σ, K)-wta A, where
K is a complete semiring, can simulate the instruction � by popping with ǫ-transitions the
topmost pushdown symbol until the predicate B O T T O M is true (using auxiliary states and the
weight mul1,1). In fact, it was shown in [FV19b, Theorem 8.10], that even RE C(Pn

�,Σ, K) =

RE C(Pn,Σ, K) for each n ∈ N and each commutative and complete semiring K . Ã

Before stepping into the definition of linear (S,Σ, K)-wta, let us introduce a convention.

Convention. As we here consider (S,Σ, M(K))-wta A = (Q,Q0, T, wt) only in the context of

a semiring K, we agree on the following convention: Instead of using M(K), we speak about

an (S,Σ, K)-wta and we let the weight assignment of A be a mapping of the form wt : T → K.

Moreover, for each ξ ∈ TΣ , t ∈ ΘA(ξ), and v ∈ pos(t) we let

wt(t, v) = wt(t, v1) · . . . ·wt(t, vrk(t(v))) ·wt(t(v))

and, thus, directly implement the functionality of operations of the form muln,a from M(K).

Linear (S,Σ, K)-wta Now we introduce linear weighted tree automata with storage. Let
K be a complete semiring and let A= (Q,Q0, T, wt) be an (S,Σ, K)-wta for some resettable
storage type S. We say that a transition τ ∈ T is linear if either τ ∈ Tǫ or τ is of the form
q(p)→ σ(q1(f1), . . . , qn(fn)) and there is at most one i ∈ [n] with fi 6=�.

Furthermore, we call an (S,Σ, K)-wta A linear if

• S is resettable and

• each transition of A is linear.

122

4.1 Linear (S,Σ, K)-Recognizable Tree Languages

Finally, an (S,Σ, K)-recognizable weighted tree language s is called linear if there is a linear
(S,Σ, K)-wta A such that s = JAK. We denote the class of all linear (S,Σ, K)-recognizable
weighted tree languages by RT l(S,Σ, K). Note that also for linear (S,Σ, K)-wta we can
assume a single initial state since the construction of Lemma 2.2.4 preserves linearity.

Convention. During this chapter we let K be a commutative and complete semiring if not

specified otherwise.

Example 4.1.2. Let K = (N∪{∞},+, ·, 0, 1) be the complete semiring of natural numbers and
consider the ranked alphabet ∆ = {α(0),η(1),δ(2)}. Moreover, consider the linear (P�,∆, K)-
wta A= (Q, q0, T, wt) with Q = {q0, q1, q2} and T containing the transitions

τ1 = q0(T R U E) → δ(q1(�), q2(I D)),

τ2 = q1(T R U E) → η(q1(P U S Ha)),

τ3 = q1(T R U E) → q0(I D),

τ4 = q1(T R U E) → α,

τ5 = q2(T O Pa) → η(q2(P O P)), and

τ6 = q2(B O T T O M) → α.

Furthermore, wt maps τ2 to the value 2 and the remaining transitions to 1.
Intuitively, for each η occurring above a δ, A pushes an a to the pushdown. When reading

this δ, the pushdown is passed to the right subtree. A now has to read in the right subtree
the same number of η’s as above, pops an a for each until the predicate B O T T O M is true,
and ends up with recognizing an α. In the left subtree A again counts η’s, starting with a
reset pushdown. Thus, each tree ζ ∈ supp(A) is of the form

ζ =

δ

ηn1

δ

ηn2

δ

... ηn2

α

ηn1

α

α

ηnk−1

δ

ηnk

α

ηnk−1

α

for some k ≥ 1 and n1, . . . , nk ∈ N. As for each such tree ζ there is precisely one computation
in ΘA(ζ) we obtain JAK(ζ) = 2m with m= n1 + . . .+ nk. �

Clearly, linear (S,Σ, K)-wta are less expressive than arbitrary (S,Σ, K)-wta as shown in
the following example (using the Boolean semiring).

123

Chapter 4 Linear (S,Σ, K)-wta and Inverse Linear Tree Homomorphisms

Example 4.1.3. Consider the ranked alphabet Σ = {σ(2),γ(1),α(0)} and the tree language
L = {σ(γn(α),γn(α)) | n ∈ N}. It is not hard to see that there is no storage type S such that
L ∈ RT l(S�,Σ): As both subtrees below σ must be of the same height and L is not finite, the
only possibility to recognize L is the following. The automaton first has to prepare a storage
configuration cn and, when recognizing σ, pass cn to both subtrees ξ1 and ξ2. Then cn can
control the recognition of ξ1 and ξ2 and, thus, ensures that ht(ξ1) = ht(ξ2). However, as
with a linear (S,Σ, K)-wta each transition of the form q(p)→ σ(q1(f1), q2(f2)) contains at
most one i ∈ [2] with fi =�, this synchronization can not take place. �

Linear (S,Σ, K)-wta extend linear Σ-pta

Now we want to show that, indeed, linear (S,Σ, K)-wta generalize linear pushdown tree au-
tomata. For this, we show that linear (P�,Σ)-ta and linear Σ-pta are equally expressive. First,
let us recall the definition of a linear pushdown tree automaton from [FK00, Definition 6.2].
Recall the definition of an arbitrary Σ-pta from Section 1.4.1.

Linear pushdown tree automata Let A = (Q,ΓA, q0,γA,0, T) be a Σ-pta with ΓA = Γ1∪Γ0.
We say that A is linear if it holds for each transition of the form q(σ(x1, . . . , xn),δ) →
σ(q1(x1,π1), . . . , qn(xn,πn)) that there is at most one i ∈ [n] such that πi ∈ Γ

∗
1 . 11

Theorem 4.1.4. Let L ⊆ TΣ . Then L is recognizable by a linear Σ-pta if and only if L is

recognizable by a linear (P�,Σ)-ta.

Proof. This statement can be shown by analyzing (and slightly modifying) the constructions
in the proof of Theorem 2.2.6.

First, let A= (Q,ΓA, q0,γA,0, T) with ΓA = Γ1 ∪ Γ0 be a linear Σ-pta recognizing L. Then
we construct the (P�,Σ)-ta A

′ = (Q′, q̄0, T ′) as in the proof of Theorem 2.2.6 but with the
following modification: If

q(σ(x1, . . . , xn),δ)→ σ(q1(x1,π1), . . . , qn(xn,πn))

is a transition in T , then the transition

q(T O Pδ)→ σ(u1, . . . , un)

is in T ′ where

ui =

¨
(qi)

πi (P O P) if πi ∈ Γ
∗
1

[(qi)
πi](�) if πi ∈ Γ

∗
1Γ0

for each i ∈ [n]. It is not hard to see that this modification does not change the language of
A
′: in the original construction, a state [(qi)

πi] leads to a clearance of the pushdown up to
the bottom-most symbol γ0 and afterwards the automaton pushes the right-most symbol of
πi and switches to state (qi)

π′
i (if πi = π′

i
γ). The same condition is obtained by applying the

11We note that in [FK00, Definition 6.2] it was additionally required for each transition q(x ,δ)→ q′(x ,π) in T

of type (4) that π ∈ Γ ∗1 . However, this restriction is superfluous: transitions replacing the whole pushdown
can easily be simulated by a sequence of transitions that empty the pushdown and afterwards push the new
pushdown.

124

4.1 Linear (S,Σ, K)-Recognizable Tree Languages

reset instruction. Moreover, as A is linear, each such constructed transition incorporates at
least n− 1 reset instructions. Thus, L is recognizable by a linear (P�,Σ)-ta.

For the other direction, let A = (Q, q0, T) be a linear (P�,Σ)-ta recognizing L. We construct
the Σ-pta A

′ = (Q′,Γ0 ∪ Γ1, q#,#, T ′) as in the proof of Theorem 2.2.6 where we add the
following cases to the construction: For each ǫ-transition q(p) → q′(f) we add the case
u= q′(x ,γ0#) if f =� and for each transition of the form q(p)→ σ(q1(f1), . . . , qn(fn)) and
each i ∈ [n] we add the case ui = qi(x i ,γ0#) if fi =�. It is not hard to see that A′ is linear
and that L(A′) = L(A). �

As linear Σ-pta possess the same expressiveness as linear and monadic context-free tree
grammars [FK00, Theorem 4]12, our linear automaton model is able to capture the class of
tree languages generated by the latter. This is stated by the following corollary.

Corollary 4.1.5. The class of linear (P�,Σ)-recognizable tree languages is exactly the class of

linear and monadic context-free tree languages over Σ.

Aim of this Chapter

The aim of this chapter is to show that the class
⋃

Σ RT l(S,Σ, K) is closed under the inverse
application of linear tree homomorphisms. We do not prove this statement by a direct
construction, but we use an idea of Arnold and Leguy [AL80]: each linear tree homomorphism
can be decomposed into a number of linear alphabetic tree homomorphisms and elementary
tree homomorphisms. As this decomposition can be lifted to the weighted setting, it suffices
to show the closure of

⋃
Σ RT l(S,Σ, K) under the inverse application of these particular tree

homomorphisms.

Theorem 4.1.6. Let K be a commutative and complete semiring, let s be a linear (S,∆, K)-

recognizable weighted tree language, and let h: K〈〈TΣ(X)〉〉 → K〈〈T∆(X)〉〉 be a linear tree homo-

morphism. Then h−1(s) is a linear (S,Σ, K)-recognizable weighted tree language.

Proof. Let s be a linear (S,∆, K)-recognizable weighted tree language and let h: K〈〈TΣ(X)〉〉 →
K〈〈T∆(X)〉〉 be a linear tree homomorphism. By Lemma 1.4.26 there are some k ∈ N and tree
homomorphisms f1, . . . , fk such that h= fk ◦ . . . ◦ f1 and, for each i ∈ [k], fi is either linear
and alphabetic or elementary. Thus,

h−1(s) = (fk ◦ . . . ◦ f1)
−1(s) .

Moreover, by Lemma 1.4.27 and Lemma 1.4.25 we have

(fk ◦ . . . ◦ f1)
−1(s) = (f −1

1 ◦ . . . ◦ f −1
k
)(s) = f −1

1 (. . . f −1
k
(s) . . .) .

Now, using Lemma 4.2.1 and Lemma 4.3.1 proven below, we obtain that

f −1
1 (. . . f −1

k
(s) . . .) ∈ RT l(S,Σ, K)

and, thus, also h−1(s) ∈ RT l(S,Σ, K). �

In the remaining parts of this chapter we wish to prove Lemma 4.2.1 and Lemma 4.3.1.

12Strictly speaking, it was shown that linear Σ-pta are equally expressive as spine grammars. However, as also
stated in [FK00], it follows from their normal form that spine grammars generate the class lm-CFT.

125

Chapter 4 Linear (S,Σ, K)-wta and Inverse Linear Tree Homomorphisms

σ

ξ1

ξ2

γ

ξ3

δ

h(ξ3)
h(ξ1)

h

Figure 4.1: The application of a linear alphabetic tree homomorphism h

with h(σ) = δ(x3, x1) and h(γ) = x1 leads to the phenomena #1, #2,
and #3 described in the text.

4.2 Inverse Linear Alphabetic Tree Homomorphisms

In this section we want to show that the class
⋃

Σ RT l(S,Σ, K) is closed under the application
of inverse linear alphabetic tree homomorphisms. Before diving into the proof details, let us
recall the characteristics of this sort of tree homomorphism.

When considering an inverse linear alphabetic tree homomorphism h, we have to deal with
three specific phenomena occurring in its forward application, as depicted in Figure 4.1. If a
symbol σ in a tree is mapped to another symbol, say, δ,

(#1) the order of the subtrees of σ can be changed and

(#2) subtrees of σ can be deleted.

Moreover, as the tree homomorphism can delete an input symbol and proceed with a subtree,

(#3) a single symbol γ can be deleted.

Thus, when recognizing trees in the preimage of h, not only the order of subtrees has to be
respected but also deleted subtrees and deleted symbols have to be taken into account. This
is done by the following construction. A similar technique was used in [ODH19, Lemma 8.4.]
and goes back to ideas from [AD78, Theorem 4.1.]. However, in [AD78] a non-linear and
non-monadic context-free tree grammar was constructed. Moreover, in contrast to [ODH19]
we now use linear tree automata with weights and with a storage.

Lemma 4.2.1. Let K be a commutative and complete semiring, r a linear (S,∆, K)-recognizable

weighted tree language, and h: K〈〈TΣ(X)〉〉 → K〈〈T∆(X)〉〉 a linear alphabetic tree homomorphism.

Then h−1(r) is a linear (S,Σ, K)-recognizable tree language.

Proof. Let A= (Q, q0, T, wt) be a linear (S,∆, K)-wta and let h: K〈〈TΣ(X)〉〉 → K〈〈T∆(X)〉〉 be
a linear alphabetic tree homomorphism. We let Q′ =Q ∪ {[q] | q ∈Q} ∪ {E} for some fresh
symbol E and we construct the linear (S,Σ, K)-wta A

′ = (Q′, [q0], T ′, wt′) as follows:

126

4.2 Inverse Linear Alphabetic Tree Homomorphisms

• If τ = q(p)→ δ(q1(f1), . . . , qk(fk)) is in T and h(σ) = δ(x i1
, . . . , x ik

) for some n ∈ N,

σ ∈ Σ(n), and i1, . . . , ik ∈ [n], then τ′ = q(p)→ σ(w1, . . . , wn) is in T ′ and for every
j ∈ [n] we have

w j =

¨
[ql](fl) if il = j for some l ∈ [k],

E(�) otherwise.

Moreover, wt′(τ′) = wt(τ). As τ is linear and h is linear, τ′ is linear as well.

• If τ= q1(p)→ q2(f) is in T , then it is also in T ′ and wt′(τ) = wt(τ).

• For each q ∈ Q, k ∈ N, and γ ∈ Σ(k) such that h(γ) = x j for some j ∈ [k] we let
τ′ = [q](T R U E)→ γ(u1, . . . , uk) be in T ′, where for every l ∈ [k] we have

ul =

¨
[q](I D) if l = j,

E(�) otherwise

and wt′(τ′) = 1. Clearly, τ′ is linear.

• For each q ∈Q we let τ′ = [q](T R U E)→ q(I D) be in T ′ and wt′(τ′) = 1.

• For each n ∈ N and σ ∈Σ(n) we let τ′ = E(T R U E)→ σ(E(�), . . . , E(�)) be in T ′ and
wt′(τ′) = 1.

In the following, we denote by T ′� the set of all transitions τ ∈ T ′ with S O U R C E(τ) = [q] for
some q ∈Q and by T ′E the set of all transitions τ ∈ T ′ with S O U R C E(τ) = E. Moreover, the
set T ′� ∪ T ′E will be denoted by T ′�,E .

The intuition behind this construction is the following. A computation t ′ of A′ for a tree
ξ ∈ TΣ simulates a computation t of A for h(ξ) while considering the three phenomena of h

mentioned beforehand: If A recognizes a symbol δ in state q, A′ does so for each σ ∈ h−1(δ)

but we adapt the target states A′ reaches next. Each subtree ξi under σ that is deleted by h

will be processed in state E (#2). Moreover, for each target state q of A under δ, A′ proceeds
with [q] at the respective position given by the reordering of h (#1). Finally, A′ recognizes in
state [q] symbols deleted by h (#3), switches back to q nondeterministically, and proceeds
with the simulation of A. We note that while staying in state [q] and, thus, while reading
deleted symbols, the storage configuration is not modified. We illustrate this construction in
Example 4.2.2.

Considering this construction, the following observation can be made.

Observation (1). For every ξ ∈ TΣ and c ∈ C we have |ΘA′(E,ξ, c)| = 1 and wt′(tξ) = 1 for

tξ ∈ ΘA′(E,ξ, c).

* * *

Now we want to prove that JA′K = h−1(JAK). We do this by giving a bijection between the
computations of A and A

′. For this, we define two families ϕ = (ϕq,ξ,c | q ∈Q,ξ ∈ TΣ , c ∈ C)

and [ϕ] = ([ϕ]q,ξ,c | q ∈Q,ξ ∈ TΣ , c ∈ C) of mappings

ϕq,ξ,c : ΘA′(q,ξ, c)→ ΘA(q, h(ξ), c) and [ϕ]q,ξ,c : ΘA′([q],ξ, c)→ ΘA(q, h(ξ), c)

127

Chapter 4 Linear (S,Σ, K)-wta and Inverse Linear Tree Homomorphisms

inductively as follows. Let ξ= σ(ξ1, . . . ,ξn) for some n ∈ N, σ ∈Σ(n), and ξ1, . . . ,ξn ∈ TΣ .
Then for each t in ΘA′(q,ξ, c)

• if t = τ(t1, . . . , tn), τ= q(p)→ σ(w1, . . . , wn), and h(σ) = δ(x i1
, . . . , x ik

), then

ϕq,ξ,c(t) =
!
q(p)→ δ(w′i1

, . . . , w′ik
)
�
(t ′i1

, . . . , t ′ik
),

where, for every l ∈ [k], if wil
= [qil

](fil
), then w′

il
= qil

(fil
) and t ′

il
= [ϕ]qil

,ξil
, fil
(c)(t il

),
and

• if t = τ(t1) and τ= q(p)→ q′(f), then ϕq,ξ,c(t) =
!
q(p)→ q′(f)
�
(ϕq′,ξ, f (c)(t1)).

Moreover, for each t in ΘA′([q],ξ, c)

• if t = τ(t1, . . . , tn), τ = [q](T R U E)→ γ(u1, . . . , un), and h(γ) = x j for some j ∈ [n],
then [ϕ]q,ξ,c(t) = [ϕ]q,ξ j ,c(t j), and

• if t = τ(t1) and τ= [q](T R U E)→ q(I D), then [ϕ]q,ξ,c(t) = ϕq,ξ,c(t1).

Obviously, for each ξ ∈ TΣ , [ϕ]q0,ξ,c0
: ΘA′(ξ) → ΘA(h(ξ)). Now we want to show that

[ϕ]q0,ξ,c0
is indeed a bijection by proving that is is injective and surjective. For this, we will

show more general statements incorporating all mappings in ϕ and [ϕ].

* * *

First we analyze those parts of the computations of A′ that generate symbols deleted by h.
We can show the following property by induction on u.

Property (A). Let u ∈ CΣ(X1) with h(u) = x1, let ξ ∈ TΣ , q ∈Q, c ∈ C, and let t ∈ ΘA′(q,ξ, c).

Then there is exactly one t ′ ∈ CT ′
�,E
(X1) such that t ′ · t ∈ ΘA′([q], u · ξ, c). Moreover, it holds

that [ϕ]q,u·ξ,c(t
′ · t) = ϕq,ξ,c(t).

First, let u = x1. Then u ·ξ = ξ. Let t ′ = τ(x1) with τ = [q](T R U E)→ q(I D). Clearly, t ′ · t
is in ΘA′([q], u · ξ, c) and, by construction, there is no other possibility for t ′. Moreover, by
definition of ϕ and [ϕ] we have [ϕ]q,u·ξ,c(τ · t) = ϕq,ξ,c(t).

Now let n≥ 1, j ∈ [n], γ ∈Σ(n) with h(γ) = x j , ui ∈ TΣ for i ∈ [n] \ { j}, u j ∈ CΣ(X1), and
u = γ(u1, . . . , un). Assume that the property holds for u j , i.e., there is exactly one t ′

j
∈ CT ′

�,E
(X1)

such that t ′
j
· t ∈ ΘA′([q], u j ·ξ, c) and, moreover, [ϕ]q,u j ·ξ,c(t

′
j
· t) = ϕq,ξ,c(t). By Observation

(1), for each i ∈ [n]\{ j} there is exactly one t ′
i
∈ ΘA′(E, ui , c0). By construction, γ can only be

read in [q] by using the transition τ= [q](T R U E)→ γ(E(�), . . . , [q](I D), . . . , E(�)), where
[q](I D) occurs at position j. Thus, t ′ has to be of the form τ(t ′1, . . . , t ′

j−1, t ′
j
, t ′

j+1, . . . , t ′n)

and, clearly, t ′ · t ∈ ΘA′([q], u · ξ, c). Moreover, by definition of ϕ and [ϕ] and by using the
induction hypothesis, we obtain [ϕ]q,u·ξ,c(τ(t

′
1, . . . , t ′

j−1, t ′
j
, t ′

j+1, . . . , t ′n) · t) = [ϕ]q,u j ·ξ,c(t
′
j
·

t) = ϕq,ξ,c(t).

Having shown that there is a unique way for A′ to recognize symbols deleted by h, we can
easily observe that A′ memorizes the current state of A during this process. This observation
is based on the fact that, being in a state [q], A′ can only change its state by switching back
to q.

128

4.2 Inverse Linear Alphabetic Tree Homomorphisms

Observation (2). Let u ∈ CΣ(X1) with h(u) = x1, t1 ∈ CT ′
�,E
(X1), t2 ∈ TT ′ with t2(ǫ) /∈ T ′�,E ,

ξ ∈ TΣ , q ∈Q, and c ∈ C. If t1 · t2 ∈ ΘA′([q], u · ξ, c), then t2 ∈ ΘA′(q,ξ, c).

* * *

Now we want to show that each mapping in ϕ and [ϕ] is injective by proving the following
property:

Property (B). Let t ∈ TT , ζ ∈ T∆, q ∈Q, and c ∈ C. If t ∈ ΘA(q,ζ, c), then

• for all ξ ∈ h−1(ζ), t ′1, t ′2 ∈ ΘA′(q,ξ, c): if ϕq,ξ,c(t
′
1) = ϕq,ξ,c(t

′
2) = t, then t ′1 = t ′2, and

• for all ξ ∈ h−1(ζ), t ′3, t ′4 ∈ ΘA′([q],ξ, c): if [ϕ]q,ξ,c(t
′
3) = [ϕ]q,ξ,c(t

′
4) = t, then t ′3 = t ′4.

We prove Property (B) by induction on t. First, let t = q(p) → α for some p ∈ P and
α ∈ ∆(0). Then each ξ ∈ h−1(ζ) has to be of the form ξ = u · β for some u ∈ CΣ(X1) and
β ∈ Σ(0) with h(u) = x1 and h(β) = α. Consider t ′1, t ′2 ∈ ΘA′(q,ξ, c). We have u = x1 as
otherwise ΘA′(q,ξ, c) = ;. Then ξ = β and t ′1, t ′2 ∈ ΘA′(q,β , c). But t ′ = q(p)→ β is the only
computation in ΘA′(q,β , c) with ϕq,ξ,c(t

′) = t as ǫ-transitions starting in q are not deleted by
ϕ. Thus, t ′1 = t ′2 = t ′. Now consider t ′3, t ′4 ∈ ΘA′([q],ξ, c). If [ϕ]q,ξ,c(t

′
3) = [ϕ]q,ξ,c(t

′
4) = t,

we can decompose t ′3 into t ′′3 ·τ3 and t ′4 into t ′′4 ·τ4 where t ′′3 , t ′′4 ∈ CT ′
�,E
(X1) and τ3,τ4 ∈ T ′

β
.

By Observation (2), τ3,τ4 ∈ ΘA′(q,β , c) and, by construction and definition of ϕ, τ3 = τ4 =

q(p)→ β . Moreover, by Property (A), t ′′3 = t ′′4 . Thus, t ′3 = t ′4.
Now let t = τ(t1, . . . , tk) for some k ≥ 1, τ ∈ T and computations t1, . . . , tk of A, and

assume that the property holds for t1, . . . , tk. We proceed with a case distinction on τ.
Case 1: Let τ = q(p)→ δ(q1(f1), . . . , qk(fk)). Then ζ = δ(ζ1, . . . ,ζk) for some ζ1, . . . ,ζk ∈

T∆ and t i ∈ ΘA(qi ,ζi , fi(c)) for each i ∈ [k]. Moreover, each ξ ∈ h−1(ζ) is of the form

ξ= u ·σ(ξ1, . . . ,ξn)

for some n ∈ N, u ∈ CΣ(X1), σ ∈ Σ(n), and ξ1, . . . ,ξn ∈ TΣ with h(u) = x1, h(σ) =

δ(x i1
, . . . , x ik

) for i1, . . . , ik ∈ [n], and, for each j ∈ [n], h(ξ j) = ζl if il = j for some l ∈ [k].
Consider t ′1, t ′2 ∈ ΘA′(q,ξ, c) with ϕq,ξ,c(t1) = ϕq,ξ,c(t2) = t. Thus, u = x1 as otherwise

ΘA′(q,ξ, c) = ;. As ǫ-transitions starting in q are not deleted by ϕ, t ′1 and t ′2 have to be of
the form

t ′1 = τ′1(t
′
1,1, . . . , t ′1,n) and t2 =

′ τ′2(t
′
2,1, . . . , t ′2,n),

respectively, where t ′1,i , t ′2,i ∈ ΘA′(ξi) for each i ∈ [n] and τ′1,τ′2 ∈ T ′σ. By construction of
A
′ and by definition of ϕ, τ′1 = τ′2 = q(p)→ σ(w1, . . . , wn) with w j = [ql](fl) if il = j for

some l ∈ [k] and w j = E(�) else, j ∈ [n]. Thus, for j ∈ [n] with w j = E(�), we have
t ′1, j , t ′2, j ∈ ΘA′(E,ξ j , c0) and, by Observation (1), t ′1, j = t ′2, j . Moreover, for each j ∈ [n] with
w j = [ql](fl) for some l ∈ [k], we have t ′1, j , t ′2, j ∈ ΘA′([ql],ξ j , fl(c)) and [ϕ]ql ,ξ j , fl (c)

(t ′1, j) =

[ϕ]ql ,ξ j , fl (c)
(t ′2, j) = t l . By the induction hypothesis, t ′1, j = t ′2, j . Thus, t ′1 = t ′2.

Now consider t ′3, t ′4 ∈ ΘA′([q],ξ, c) with [ϕ]q,ξ,c(t
′
3) = [ϕ]q,ξ,c(t

′
4) = t. By definition of

[ϕ], we can decompose t ′3 and t ′4 into

t ′′3 ·τ
′
3(t
′
3,1, . . . , t ′3,n) and t ′′4 ·τ

′
4(t
′
4,1, . . . , t ′4,n),

129

Chapter 4 Linear (S,Σ, K)-wta and Inverse Linear Tree Homomorphisms

respectively, where t ′′3 , t ′′4 ∈ CT ′
�,E
(X1), τ

′
3,τ′4 ∈ T ′σ, and t ′3,i , t ′4,i ∈ ΘA′(ξi) for each i ∈

[n]. By Observation (2), τ′3(t
′
3,1, . . . , t ′3,n),τ

′
4(t
′
4,1, . . . , d ′4,n) ∈ ΘA′(q,σ(ξ1, . . . ,ξn), c) and, by

Property (A), ϕq,σ(ξ1,...,ξn),c(τ
′
3(t
′
3,1, . . . , t ′3,n)) = ϕq,σ(ξ1,...,ξn),c(τ

′
4(t
′
4,1, . . . , t ′4,n)) = t. Then,

by construction and definition of ϕ, τ′3 = τ′4 = q(p) → σ(w1, . . . , wn) with w j = [ql](fl)

if il = j for some l ∈ [k] and w j = E(�) otherwise, j ∈ [n]. As above, by the induction
hypothesis and Observation (1), t ′3,i = t ′4,i for each i ∈ [n]. Moreover, by Property (A),
t ′′3 = t ′′4 . Thus, t ′3 = t ′4.

Case 2: Let τ = q1(p) → q2(f) and ξ ∈ h−1(ζ). Then k = 1 and t1 ∈ ΘA(q2,ζ, f (c)).
First, consider t ′1, t ′2 ∈ ΘA′(q1,ξ, c) with ϕq1,ξ,c(t

′
1) = ϕq1,ξ,c(t

′
2) = t. The only transition

from T ′ that is mapped by ϕ to τ is τ itself. Thus, t ′1 = τ(t ′′1) and t ′2 = τ(t ′′2) for some
t ′′1 , t ′′2 ∈ ΘA′(q2,ξ, f (c)) and ϕq2,ξ,c(t

′′
1) = ϕq2,ξ,c(t

′′
2) = t1. By the induction hypothesis,

t ′′1 = t ′′2 and, therefore, t ′1 = t ′2.
Now, consider t ′3, t ′4 ∈ ΘA′([q1],ξ, c) with [ϕ]q1,ξ,c(t

′
1) = [ϕ]q1,ξ,c(t

′
2) = t. By definition

of [ϕ], for each m ∈ {3,4}, we can decompose t ′m into u′m · t
′′
m for some u′m ∈ CT ′

�,E
(X1) and

t ′′m ∈ TT ′ with t ′′m(ǫ) /∈ T ′�,E . Moreover, we obtain [ϕ]q1,ξ,c(t
′
m) = ϕq1,ξ,c(t

′′
m). Now we can

proceed with the above argumentation: The only transition from T ′ that is mapped by ϕ to
τ is τ itself. Thus, t ′′3 = τ(t ′′′3) and t ′′4 = τ(t ′′′4) for some t ′′′3 , t ′′′4 ∈ ΘA′(q2,ξ, f (c)). By the
induction hypothesis, t ′′′3 = t ′′′4 . Moreover, by Property (A), u′3 = u′4. Thus, t ′3 = t ′4.

* * *

Next we want to prove that [ϕ]q0,ξ,c0
is surjective. For this, we show the following property:

Property (C). Let t ∈ TT , ζ ∈ T∆, q ∈Q, and c ∈ C. If t ∈ ΘA(q,ζ, c), then

• for all ξ ∈ h−1(ζ) with h(root(ξ)) 6= x1 there is a t ′1 ∈ ΘA′(q,ξ, c) with ϕq,ξ,c(t
′
1) = t,

and

• for all ξ ∈ h−1(ζ) there is a t ′2 ∈ ΘA′([q],ξ, c) with [ϕ]q,ξ,c(t
′
2) = t.

We prove Property (C) by induction on t. First, let t = q(p) → α for some p ∈ P and
α ∈ ∆(0). Then each ξ ∈ h−1(ζ) has to be of the form ξ = u · β for some u ∈ CΣ(X1)

and β ∈ Σ(0) with h(u) = x1 and h(β) = α. If u = x1, then we let t ′1 = q(p) → β and
t ′2 = [q](T R U E) → q(I D)(t ′1). Clearly, t ′1 ∈ ΘA′(q,β , c), ϕq,β ,c(t

′
1) = t, t ′2 ∈ ΘA′([q],β , c),

and [ϕ]q,β ,c(t
′
2) = t. Now let u 6= x1. As h(u) = x1, item 1 of the statement is vacuously true.

By Property (A), there is a t ′ ∈ CT ′
�,E
(X1) such that t ′ · t ′1 ∈ ΘA′([q], u · β , c) with t ′1 as above

and [ϕ]q,u·β ,c(t
′ · t ′1) = ϕq,β ,c(t

′
1) = t.

Now let t = τ(t1, . . . , tk) for some k ≥ 1, τ ∈ T and computations t1, . . . , tk of A, and
assume that the property holds for t1, . . . , tk. We proceed with a case distinction on τ.

Case 1: Let τ = q(p)→ δ(q1(f1), . . . , qk(fk)). Then ζ = δ(ζ1, . . . ,ζk) for some ζ1, . . . ,ζk ∈
T∆ and t i ∈ ΘA(qi ,ζi , fi(c)) for each i ∈ [k]. Moreover, each ξ ∈ h−1(ζ) is of the form
ξ = u · σ(ξ1, . . . ,ξn) for some n ∈ N, u ∈ CΣ(X1), σ ∈ Σ(n), and ξ1, . . . ,ξn ∈ TΣ with
h(u) = x1, h(σ) = δ(x i1

, . . . , x ik
) for i1, . . . , ik ∈ [n], and, for each j ∈ [n], h(ξ j) = ζl if il = j

for some l ∈ [k] (as h is linear, there is at most one such l).
By construction, T ′ contains a transition τ′ = q(p)→ σ(w1, . . . , wn)where, for each j ∈ [n],

w j = [ql](fl) if il = j for some l ∈ [k] and w j = E(�) otherwise. By induction hypothesis,

130

4.2 Inverse Linear Alphabetic Tree Homomorphisms

for each j ∈ [n] with w j = [ql](fl) for some l ∈ [k], there is a t ′′
j
∈ ΘA′([ql],ξ j , fl(c)) with

[ϕ]ql ,ξ j , fl (c)
(t ′′

j
) = t l . Moreover, for each j ∈ [n] with w j = E(�), by Observation (1) there is

a t ′′
j
∈ ΘA′(E,ξ j , c0). Then, by definition of ϕ, ϕq,σ(ξ1,...,ξn),c(τ

′(t ′′1 , . . . , t ′′n)) = t.

If u= x1, we let t ′1 = τ′(t ′′1 , . . . , t ′′n) and t ′2 =
!
[q](T R U E)→ q(I D)

�
(τ′(t ′′1 , . . . , t ′′n)). Obvi-

ously, t ′1 ∈ ΘA′(q,σ(ξ1, . . . ,ξn), c), t ′2 ∈ ΘA′([q],σ(ξ1, . . . ,ξn), c), and, by definition of [ϕ],
[ϕ]q,σ(ξ1,...,ξn),c(t

′
2) = ϕq,σ(ξ1,...,ξn),c(t

′
1) = t.

Now let u 6= x1. As h(u) = x1, item 1 of the statement is vacuously true. By Property
(A), there is a t ′ ∈ CT ′

�,E
(X1) such that t ′ · τ′(t ′′1 , . . . , t ′′n) ∈ ΘA′([q], u ·σ(ξ1, . . . ,ξn), c) and

[ϕ]q,u·σ(ξ1,...,ξn),c(t
′ ·τ′(t ′′1 , . . . , t ′′n)) = ϕq,σ(ξ1,...,ξn),c(t

′
1) = t.

Case 2: Let τ = q1(p) → q2(f) and ξ ∈ h−1(ζ). Then k = 1 and t1 ∈ ΘA(q2,ζ, f (c)).
Moreover, ξ has to be of the form ξ= u ·σ(ξ1, . . . ,ξn) for some u ∈ CΣ(X1) with h(u) = x1,
n ∈ N, σ ∈ Σ(n) with h(σ) 6= x1, and ξ1, . . . ,ξn ∈ TΣ . By induction hypothesis, there is
a t ′′1 ∈ ΘA′(q2,σ(ξ1, . . . ,ξn), f (c)) with ϕq2,σ(ξ1,...,ξn), f (c)(t

′′
1) = t1. By construction, τ is

also in T ′. Thus, if u = x1, we let t ′1 = τ(t ′′1) and t ′2 =
!
[q1](T R U E) → q1(I D)

�
(τ(t ′′1)).

Clearly, t ′1 ∈ ΘA′(q1,ξ, c), ϕq1,ξ,c(t
′
1) = t, t ′2 ∈ ΘA′([q1],ξ, c), and [ϕ]q1,ξ,c(t

′
2) = t. Now let

u 6= x1. As h(u) = x1, item 1 of the statement is vacuously true. By Property (A), there is
a t ′ ∈ CT ′

�,E
(X1) such that t ′ ·τ(t ′′1) ∈ ΘA′([q1], u ·σ(ξ1, . . . ,ξn), c) and [ϕ]q1,u·σ(ξ1,...,ξn),c(t

′ ·

τ(t ′′1)) = ϕq1,σ(ξ1,...,ξn),c(τ(t
′′
1)) = t.

* * *

By Property (B) and (C), for each ξ ∈ TΣ we have that [ϕ]q0,ξ,c0
is a bijection between

ΘA′(ξ) and ΘA(h(ξ)). It is not hard to see that this bijection is weight preserving: each
transition τ′ ∈ T ′ that is constructed from some transition τ ∈ T gets the weight wt(τ) and
occurs in a computation t ′ ∈ ΘA′(ξ) in the same quantity as the original τ in [ϕ]q0,ξ,c0

(t ′).
Moreover, each additional transition in T ′ gets weight 1. As K is commutative, the order of
the weights occurring in a computation is immaterial. Therefore, we have for each t ′ ∈ ΘA′(ξ)

that wt′(t ′) = wt([ϕ]q0,ξ,c0
(t ′)). Thus, we can conclude that

JA′K(ξ) =
∑

t ′∈ΘA′ (ξ)

wt′(t ′)

=
∑

t ′∈ΘA′ (ξ)

wt([ϕ]q0,ξ,c0
(t ′))

=
∑

t∈ΘA(h(ξ))

wt(t)

= JAK(h(ξ)) = (h−1(JAK))(ξ).

Hence, JA′K = h−1(JAK) and, therefore, the class
⋃

Σ RT l(S,Σ, K) is closed under the
inverse application of linear alphabetic tree homomorphisms. �

Example 4.2.2. Let K = (N∪ {∞},+, ·, 0, 1) be the complete semiring of natural numbers,
Σ = {α(0),γ(1),η(1),σ(3)}, ∆ = {α(0),η(1),δ(2)}, and h: K〈〈TΣ(X)〉〉 → K〈〈T∆(X)〉〉 a linear

131

Chapter 4 Linear (S,Σ, K)-wta and Inverse Linear Tree Homomorphisms

alphabetic tree homomorphism given by

h(γ) = x1, h(σ) = δ(x3, x1),

and h being the identity on α and η. Moreover, recall the linear (P�,∆, K)-wta A =

(Q, q0, T, wt) from Example 4.1.2.
Now we construct a linear (P�,Σ, K)-wta A

′ with JA′K = h−1(JAK) as in the proof of
Lemma 4.2.1. We let Q′ = Q ∪ {[q0], [q1], [q2], E} and define A

′ = (Q′, [q0], T ′, wt′) with
T ′ = T ∪ T� ∪ TE where T consists of the transitions

τ′1 = q0(T R U E)→ σ([q2](I D), E(�), [q1](�)),

τ′2 = q1(T R U E)→ η([q1](P U S Ha)),

τ′5 = q2(T O Pa)→ η([q2](P O P)),

τ3,τ4,τ6,

T� consists of the transitions

τ[q0]
= [q0](T R U E)→ γ([q0](I D)), τq0

= [q0](T R U E)→ q0(I D),

τ[q1]
= [q1](T R U E)→ γ([q1](I D)), τq1

= [q1](T R U E)→ q1(I D),

τ[q2]
= [q2](T R U E)→ γ([q2](I D)), τq2

= [q2](T R U E)→ q2(I D),

and TE consists of the transitions

τE1 = E(T R U E)→ σ(E(�), E(�), E(�)),

τE2 = E(T R U E)→ η(E(�)),

τE3 = E(T R U E)→ γ(E(�)),

τE4 = E(T R U E)→ α.

Moreover, wt maps τ′2 to the value 2 and all other transitions to 1.
Now consider the two trees ζ ∈ T∆ and ξ ∈ TΣ where

ζ =

δ

η

δ

α η

α

α

and ξ =

γ

σ

α α η

γ

σ

η

α

η

α

α

.

Clearly, ξ is an element of h−1(ζ).
In Figure 4.2 a computation t ∈ ΘA(ζ) on the left-hand side and a computation t ′ ∈ ΘA′(ξ)

on the right-hand side are depicted. One can easily verify that [ϕ]q0,ξ,c0
(t ′) = t. Moreover,

132

4.2 Inverse Linear Alphabetic Tree Homomorphisms

[q0](T R U E)→ γ([q0](I D))

[q0](T R U E)→ q0(I D)

q0(T R U E)→ σ([q2](I D), E(�), [q1](�))

τq2

τ6

τE4 [q1](T R U E)→ q1(I D)

q1(T R U E)→ η([q1](P U S Ha))

[q1](T R U E)→ γ([q1](I D))

[q1](T R U E)→ q1(I D)

q1(T R U E)→ q0(I D)

q0(T R U E)→ σ([q2](I D), E(�), [q1](�))

τq2

τ′5

τq2

τ6

E(T R U E)→ η(E(�))

E(T R U E)→ α

τq1

τ4

q0(T R U E)→ δ(q1(�), q2(I D))

q1(T R U E)→ η(q1(P U S Ha))

q1(T R U E)→ q0(I D)

q0(T R U E)→ δ(q1(�), q2(I D))

q1(T R U E)→ α q2(T O Pa)→ η(q2(P O P))

q2(B O T T O M)→ α

q2(B O T T O M)→ α

Figure 4.2: A computation t ∈ ΘA(ζ) on the left-hand side and a compu-
tation t ′ ∈ ΘA′(ξ) on the right-hand side with [ϕ]q0,ξ,c0

(t ′) = t.

two positions v ∈ pos(t) and v′ ∈ pos(t ′) are linked by a dashed line if the transition τ′ at v′

is constructed from the transition τ at v; all such linked transitions get the same weight. All
other transitions that are newly introduced by the construction to recognize symbols deleted
by h have weight 1. Thus, wt′(t ′) = wt(t) = 2. �

133

Chapter 4 Linear (S,Σ, K)-wta and Inverse Linear Tree Homomorphisms

4.3 Inverse Elementary Tree Homomorphisms

In this section we want to consider the closure of the weighted tree languages recognized
by linear weighted tree automata with storage under inverse application of elementary tree
homomorphisms as stated by the following lemma.

Lemma 4.3.1. Let K be a commutative and complete semiring, s a linear (S,∆, K)-recognizable

weighted tree language, and h: K〈〈TΣ(X)〉〉 → K〈〈T∆(X)〉〉 an elementary tree homomorphism.

Then h−1(s) is a linear (S,Σ, K)-recognizable weighted tree language.

This statement follows directly from the subsequent Lemmas 4.3.4 and 4.3.6. Before
showing these lemmas, we consider some properties that concern the recognition of weighted
tree languages lying in the image of an elementary tree homomorphism.

Let h: K〈〈TΣ(X)〉〉 → K〈〈T∆(X)〉〉 be an elementary tree homomorphism with

h(σ) = δ1(x1, . . . , x l−1,δ2(x l , . . . , x l+k−1), x l+k, . . . , xn)

for some n, k ∈ N, σ ∈ Σ(n), δ1 ∈ ∆
(n−k+1), δ2 ∈ ∆

(k), and l ∈ [n− k + 1]. Moreover, let
A = (Q, q0, T, wt) be a linear (S,∆, K)-wta. When generating the preimage h−1(JAK), all trees
that cannot be reached by h can be ignored. Thus, we can assume without loss of generality
that ΘA(ζ) = ; for each ζ /∈ h(TΣ).

13 Moreover, as we required in the definition of h that
δ1,δ2 /∈ Σ, each occurrence of δ1 and δ2 in a tree ζ recognized by A originates from an
occurrence of the symbol σ in the preimage of ζ. Hence, the following observation can be
made.

Observation 4.3.2. For each ζ ∈ T∆ with ΘA(ζ) 6= ; and for each v ∈ pos(ζ) it holds that

• if ζ(v) = δ1, then ζ(vl) = δ2 and

• if ζ(v) = δ2, then v = ul and ζ(u) = δ1 for some u ∈ pos(ζ).

Therefore, we can also observe that the computations of A are of a particular form.

Observation 4.3.3. Let ζ ∈ T∆, t ∈ ΘA(ζ), and v ∈ pos(t). If t(v) ∈ Tδ1
, then t|vl is of the

form u ·τ(t1, . . . , tk) where u ∈ CTǫ
(X1) and τ ∈ Tδ2

.

When constructing a linear (S,Σ, K)-wta A
′ that recognizes h−1(JAK), the major task is to

merge the computation steps A takes to process δ1 and δ2. Especially ǫ-transitions occurring
between the recognition of δ1 and δ2 have to be regarded. This raises, depending on the
form of h, different problems.

Assume that δ2 is at least 1-ary and, in a computation for some tree ζ ∈ T∆, A takes a
sequence u ∈ CTǫ

(X1) of ǫ-transitions between the recognition of δ1 and δ2. With these
transitions, a storage configuration may be generated that is used afterwards to process a
subtree ζ′ under δ2. In a preimage ξ ∈ h−1(ζ), A′ can simulate u between σ and that subtree

13If this is not the case, we can apply Lemma 2.6.2 and construct an (S,∆, K)-wta Ā with JĀK = JAK∩ h(TΣ)
(as TΣ is Σ-recognizable, h(TΣ) is ∆-recognizable [GS84, Chapter II, Theorem 4.16]). We note that the
construction in the proof of Lemma 2.6.2 preserves linearity.

134

4.3 Inverse Elementary Tree Homomorphisms

ξ′ that is mapped by h to ζ′. Note that u can not be simulated above σ, as a transition of A′

recognizing σ could pass the storage to another subtree than ξ′ and, hence, the storage must
not be changed.

On the other hand, if δ2 is 0-ary, then there exists no such subtree we can use to simulate u.
However, even if the storage configuration generated by u is not used, u is still important for
the weight calculation and has to be regarded. We will discuss in the proof of the following
lemma how this problem can be solved.

As the approach to construct A′ differs in those two cases, we split our proof depending on
h. We say that h is of type 1 if δ2 ∈∆

(0) and of type 2 otherwise.

4.3.1 Elementary Tree Homomorphisms of Type 1

The aim of this subsection is to prove the closure of the class
⋃

Σ RT l(S,Σ, K) under inverse
application of elementary tree homomorphisms of type 1 as stated by the following lemma.

Lemma 4.3.4. Let K be a commutative and complete semiring, s a linear (S,∆, K)-recognizable

weighted tree language, and h: K〈〈TΣ(X)〉〉 → K〈〈T∆(X)〉〉 an elementary tree homomorphism of

type 1. Then h−1(s) is a linear (S,Σ, K)-recognizable weighted tree language.

Proof. Let A = (Q, q0, T, wt) be a linear (S,∆, K)-wta such that JAK = s. Furthermore, let
h: K〈〈TΣ(X)〉〉 → K〈〈T∆(X)〉〉 be an elementary tree homomorphism of type 1 with

h(σ) = δ1(x1, . . . , x l−1,δ2, x l , . . . , xn)

for some n ∈ N, σ ∈Σ(n), δ1 ∈∆
(n+1), δ2 ∈∆

(0), and l ∈ [n+ 1]. We assume without loss of
generality that ΘA(ζ) = ; for each ζ /∈ h(TΣ).

Now we construct the linear (S,Σ, K)-wta A
′ = (Q′, q0, T ′, wt′) where

Q′ =Q ∪ {[τ] | τ ∈ T} ∪ {[τ1, q,τ2] | τ1,τ2 ∈ T, q ∈Q}

as follows:

• If τ= q1(p)→ q2(f) is in T , then it is also in T ′ and wt′(τ) = wt(τ).

• If τ = q(p)→ γ(q1(f1), . . . , qm(fm)) is in T and γ /∈ {δ1,δ2}, then τ is also in T ′ and
wt′(τ) = wt(τ).

• If τ= q(p)→ δ1(q1(f1), . . . , qn+1(fn+1)) is in T , fl =�, and ΘA(ql ,δ2, c0) 6= ;, then

– τ′ = q(p)→ [τ](I D) is in T ′ and wt′(τ′) = 1, and

– τ′′ = [τ](T R U E) → σ(q1(f1), . . . , ql−1(fl−1), ql+1(fl+1), . . . , qn+1(fn+1)) is in T ′

and
wt′(τ′′) = wt(τ) ·

∑

t∈ΘA(ql ,δ2,c0)

wt(t) .

As τ is linear, τ′′ is linear as well.

135

Chapter 4 Linear (S,Σ, K)-wta and Inverse Linear Tree Homomorphisms

τ: q(p)→ δ1(q1(f), q2(�))

t11

q2(p1)→ q3(f1)

q3(p2)→ δ2

τ1 : q(p)→ δ1(q1(�), q2(f))

t21

q2(p1)→ q3(f1)

τ2 : q3(p2)→ δ2

q(p)→ [τ](id)

τ′′ : [τ](true)→ σ(q1(f))

t ′11

wt(τ′′) = wt(τ) ·wt(δ2, q2)

q(p)→ [τ1, q2,τ2](f)

[τ1, q2,τ2](p1)→ [τ1, q3,τ2](f1)

[τ1, q3,τ2](p2)→ σ(q1(�))

t ′21

Figure 4.3: Two subcomputations t1 and t2 of A on the top left and right,
respectively, and their corresponding subcomputations t ′1 and t ′2 of A′

below. The thick gray arrows represent the flow of the storage in t1 and
t2 and the dashed arrows show how transitions used to recognize δ2 are
handled by the construction of A′.

• If τ1 = q(p)→ δ1(q1(f1), . . . , qn+1(fn+1)) and τ2 = q′(p′)→ δ2 are in T , and fl 6= �,
then

– τ′1 = q(p)→ [τ1, ql ,τ2](fl) is in T ′ and wt′(τ′1) = wt(τ1),

– for each τ = q̂1(p̂) → q̂2(f̂) in T we let the transition τ′ = [τ1, q̂1,τ2](p̂) →
[τ1, q̂2,τ2](f̂) be in T ′ and wt′(τ′) = wt(τ), and

– τ′2 = [τ1, q′,τ2](p
′) → σ(q1(f1), . . . , ql−1(fl−1), ql+1(fl+1), . . . , qn+1(fn+1)) is in

T ′ and wt′(τ′2) = wt(τ2).

As τ1 is linear, τ′2 is linear as well.

In this construction, we distinguish two possibilities of A to recognize δ1 and δ2. For an
intuition of the third bullet in the construction, consider the following situation. Given the
subcomputation t1 top left in Figure 4.3, the transition τ passes the storage configuration
computed so far to the subtree t11

. Thus, A′ cannot simulate ǫ-transitions occurring between
the recognition of δ1 and δ2 above τ. However, we know that the right subtree of τ starts
with the initial storage configuration in state q2 and has to recognize the single symbol δ2.
Thus, the value wt(δ2, q2) =

∑
t∈ΘA(q2,δ2,c0)

wt(t) which stands for the sum over the weights

136

4.3 Inverse Elementary Tree Homomorphisms

of all subcomputations recognizing δ2 starting in q2 and c0, can serve as factor in the weight
of t ′1. Note that nevertheless τ has to be split into two transitions. This is important to ensure
that no information gets lost by removing q2 in the constructed transition τ′′ reading σ. As
there might be a transition τ̂ which only differs from τ in the removed state, otherwise a
distinct weight assignment would not be possible.

On the other hand, A could also pass its current storage configuration to the subtree
recognizing δ2 when reading δ1, as it is done by the subcomputation t2 top right in Figure
4.3. In this case, we cannot use the technique described above as it cannot be determined at
the time of construction which storage configuration t2 starts with. However, now A

′ can
simulate the recognition of δ2 before reading σ as the storage gets reset afterwards anyway.
This case is regarded by the fourth bullet of the construction.

In the following, for each τ1,τ2 ∈ T we denote by T ′τ1,τ2
the subset of T ′ consisting of

all transitions of the form [τ1, q1,τ2](p)→ [τ1, q2,τ2](f) for some q1, q2 ∈ Q, p ∈ P, and
f ∈ F . Moreover, we denote by Tδ1,� the subset of Tδ1

containing all transitions q(p) →
δ1(q1(f1), . . . , qn+1(fn+1)) with fl 6=�.

* * *

Now we want to prove that JA′K = h−1(JAK). We do this by giving a bijection between the
computations of A and A

′. For this, we define a family ϕ = (ϕq,ξ,c | q ∈Q,ξ ∈ TΣ , c ∈ C) of
mappings

ϕq,ξ,c : ΘA(q, h(ξ), c)→ ΘA′(q,ξ, c).

First, let (ϕτ1,τ2
| τ1 ∈ Tδ1,�,τ2 ∈ Tδ2

) be a family of tree homomorphismsϕτ1,τ2
: CTǫ

(X1)→
CT ′τ1,τ2

(X1) given by

ϕτ1,τ2
(q1(p)→ q2(f)) =

!
[τ1, q1,τ2](p)→ [τ1, q2,τ2](f)

�
(x1)

for each transition q1(p)→ q2(f) in Tǫ. Note that, by construction, the transitions in the
image of ϕτ1,τ2

exist in T ′ for each τ1 ∈ Tδ1,�, τ2 ∈ Tδ2
.

Now let ξ= γ(ξ1, . . . ,ξm) for some m ∈ N, γ ∈Σ(m), and ξ1, . . . ,ξm ∈ TΣ . Then for each
t ∈ ΘA(q, h(ξ), c)

• if t = τ(t1) and τ= (q(p)→ q′(f)), then ϕq,ξ,c(t) = τ(ϕq′,ξ, f (c)(t1)),

• if t = τ(t1, . . . , tm), τ= q(p)→ γ(q1(f1), . . . , qm(fm)), and γ /∈ {δ1,δ2}, then

ϕq,ξ,c(t) = τ(ϕq1,ξ1, f1(c)(t1), . . . ,ϕqm,ξm, fm(c)
(tm)),

• if m = n+ 1, t = τ(t1, . . . , tn+1), τ = q(p)→ δ1(q1(f1), . . . , qn+1(fn+1)), and fl = �,
then

ϕq,ξ,c(t) = τ′(τ′′(t ′1, . . . , t ′
l−1, t ′

l+1, . . . , t ′n+1))

where

– τ′ = q(p)→ [τ](I D),

– τ′′ = [τ](T R U E)→ σ(q1(f1), . . . , ql−1(fl−1), ql+1(fl+1), . . . , qn+1(fn+1)),

137

Chapter 4 Linear (S,Σ, K)-wta and Inverse Linear Tree Homomorphisms

– t ′
j
= ϕq j ,ξ j , f j(c)

(t j) for every j ∈ [l − 1] and t ′
j
= ϕq j ,ξ j−1, f j(c)

(t j) for every j ∈
{l + 1, . . . , n+ 1}, and

• if m= n+ 1, t = τ1(t1, . . . , t l−1, u ·τ2, t l+1, . . . , tn+1), u ∈ CTǫ
(X1),

τ1 = q(p)→ δ1(q1(f1), . . . , qn+1(fn+1)), fl 6=�, and τ2 = q′(p′)→ δ2, then

ϕq,ξ,c(t) = τ′1(ϕτ1,τ2
(u) ·τ′2(t

′
1, . . . , t ′

l−1, t ′
l+1, . . . , t ′n+1))

where

– τ′1 = q(p)→ [τ1, ql ,τ2](fl),

– τ′2 = [τ1, q′,τ2](p
′)→ σ(q1(f1), . . . , ql−1(fl−1), ql+1(fl+1), . . . , qn+1(fn+1)), and

– t ′
j
= ϕq j ,ξ j ,c0

(t j) for each j ∈ [l−1], t ′
j
= ϕq j ,ξ j−1,c0

(t j) for each j ∈ {l+1, . . . , n+1}.

Note that by Observation 4.3.3, t can only be of one of the shapes treated above. Indeed, each
element in the image of ϕ is a computation of A′: All transitions we use exist, by construction,
in T ′. Moreover, as we apply ϕ to a computation of A, each predicate and instruction can
be assumed to be true respectively defined on the current storage configuration. It can be
checked that the states and storage components fit together. The same applies to the segment
ϕτ1,τ2

(u) in the fourth bullet.

It is not hard to see that the elements of ϕ may be not a bijection: particular computations
containing ǫ-transitions between the recognition of δ1 and δ2 are treated by ϕ in the same
way as depicted in Figure 4.4. Hence we will group such computations in an equivalence
class. For this, we define an equivalence relation =δ2

on ΘA(q, h(ξ), c) inductively as follows.
Let m ∈ N, τ ∈ T , and, for each i ∈ [2], let t i = τ(t i,1, . . . , t i,m) ∈ ΘA(q, h(ξ), c) for some
computations t i,1, . . . , t i,m of A. Then t1=δ2

t2 if

• t1, j=δ2
t2, j for each j ∈ [m], or if

• m = n+ 1, τ is of the form q(p)→ δ1(q1(f1), . . . , qn+1(fn+1)), fl = �, t1, j=δ2
t2, j for

each j ∈ [n+ 1] \ {l}, and t1,l , t2,l ∈ ΘA(ql ,δ2, c0).

This equivalence relation is well-chosen as the following observation shows:

Observation 4.3.5. Let ξ ∈ TΣ , q ∈ Q, c ∈ C, and t ∈ ΘA(q, h(ξ), c). For each t ′ ∈ [t]=δ2
:

ϕq,ξ,c(t
′) = ϕq,ξ,c(t).

Is is not hard to see that this statement holds: Computations that are in the same equivalence
class only differ in certain transitions recognizing δ2 and those do not occur anymore in the
image of ϕ.

We will see in the further that is is possible to define a bijection between ΘA(h(ξ))/=δ2

and ΘA′(ξ) resting on the definition of ϕ.

* * *

First, we want to show that each function in ϕ is injective “modulo =δ2
”, i.e., two compu-

tations can only be mapped by an element of ϕ to the same computation if they are in the
same equivalence class. We show this by proving the following property:

138

4.3 Inverse Elementary Tree Homomorphisms

τ: q(p)→ δ1(q1(f), q2(�))

t11

q2(p1)→ q3(f1)

q3(p2)→ δ2

τ: q(p)→ δ1(q1(f), q2(�))

t11

q2(p1)→ δ2

[t1]=δ2

=δ2

q(p)→ [τ](I D)

[τ](T R U E)→ σ(q1(f))

t ′11

ϕq,ξ,c ϕq,ξ,c

Figure 4.4: The two computations t1 and t2 in ΘA(q, h(ξ), c) on the top
left and right, respectively, which differ only in their right subtree under
τ are mapped by ϕq,ξ,c to the same computation t ′ ∈ ΘA′(q,ξ, c).

Property (A). Let t ′ ∈ TT ′ , ξ ∈ TΣ , q ∈ Q, and c ∈ C. If t ′ ∈ ΘA′(q,ξ, c), then for all

t1, t2 ∈ ΘA(q, h(ξ), c): if ϕq,ξ,c(t1) = ϕq,ξ,c(t2) = t ′, then t1=δ2
t2.

We prove Property (A) by induction on t ′. First, let t ′ = q(p)→ α for some p ∈ P and
α ∈ ∆(0). As q ∈ Q, α 6= σ. By definition of ϕ, ϕ−1

q,ξ,c(t
′) = {t ′} and, thus, t1 = t2 = t ′ and

t1=δ2
t2.

Now let t ′ ∈ ΘA′(q,ξ, c) be of the form

t ′ = τ′(t ′1, . . . , t ′m)

for some m≥ 1, τ′ ∈ T ′, and computations t ′1, . . . , t ′m of A′. We proceed with a case distinction
on τ′.

Case 1: Let τ′ be of the form q(p)→ q′(f) with q′ ∈ Q. Hence, τ′ is both in T and T ′.
Consider t1, t2 ∈ ΘA(q, h(ξ), c) with ϕq,ξ,c(t1) = ϕq,ξ,c(t2) = t ′. For i ∈ {1,2}, t i is of the
form

t i = τi(t i,1, . . . , t i,mi
)

for some mi ∈ N, τi ∈ T , and computations t i,1, . . . , t i,mi
of A. By definition of ϕ and due

to the form of τ′, m1 = m2 = 1 and τ1 = τ2 = τ′. Then t i,1 ∈ ΘA(q
′, h(ξ), f (c)) and

ϕq,ξ, f1(c)(t i,1) = t ′1 for each i ∈ [2]. Moreover, by induction hypothesis, t1,1=δ2
t2,1. Thus,

t1=δ2
t2.

Case 2: Let τ′ be of the form q(p)→ γ(q1(f1), . . . , qm(fm)) for some γ /∈ {δ1,δ2}. Then τ′ is
both in T and T ′, ξ = γ(ξ1, . . . ,ξm) for some ξ1, . . . ,ξm ∈ TΣ , and h(ξ) = γ(h(ξ1), . . . , h(ξm)).
Consider t1, t2 ∈ ΘA(q, h(ξ), c) with ϕq,ξ,c(t1) = ϕq,ξ,c(t2) = t ′. For i ∈ {1,2}, t i is of the

139

Chapter 4 Linear (S,Σ, K)-wta and Inverse Linear Tree Homomorphisms

form
t i = τi(t i,1, . . . , t i,mi

)

for some mi ∈ N, τi ∈ T , and computations t i,1, . . . , t i,mi
of A. By definition of ϕ and

due to the form of τ′, m1 = m2 = m and τ1 = τ2 = τ′. Then t i, j ∈ ΘA(q j , h(ξ j), f j(c))

and ϕq j ,ξ j , f j(c)
(t i, j) = t ′

j
for each i ∈ [2] and j ∈ [m]. Moreover, by induction hypothesis,

t1, j=δ2
t2, j for each j ∈ [m]. Thus, t1=δ2

t2.
Case 3: Let τ′ be of the form q(p)→ [τ](I D) for some τ ∈ T . By construction, τ = q(p)→

δ1(q1(f1), . . . , qn+1(fn+1)) for some q1, . . . , qn+1 ∈ Q and f1, . . . , fn+1 ∈ F with fl = �. Then
ξ = σ(ξ1, . . . ,ξl−1,ξl+1, . . . ,ξn+1) for some ξ j ∈ TΣ , j ∈ [n+ 1] \ {l}. Moreover, t ′ has to be
of the form

t ′ = τ′(τ′′(t ′′1 , . . . , t ′′
l−1, t ′′

l+1, . . . , t ′′n+1))

where τ′′ = [τ](T R U E) → σ(q1(f1), . . . , ql−1(fl−1), ql+1(fl+1), . . . , qn+1(fn+1)) and t ′′
j
∈

ΘA′(q j ,ξ j , f j(c)) for each j ∈ [n+ 1] \ {l}.
Consider t1, t2 ∈ ΘA(q, h(ξ), c) with ϕq,ξ,c(t1) = ϕq,ξ,c(t2) = t ′. By definition of ϕq,ξ,c,

for each i ∈ {1, 2}, t i has to be of the form τ(t i,1, . . . , t i,n+1) where t i, j ∈ ΘA(q j , h(ξ j), f j(c))

and ϕq j ,ξ j , f j(c)
(t i, j) = t ′′

j
for j ∈ [n + 1] \ {l} and t i,l ∈ ΘA(ql ,δ2, c0). Then, by induction

hypothesis, t1, j=δ2
t2, j for each j ∈ [n+ 1] \ {l}. Thus, t1=δ2

t2.
Case 4: Let τ′ be of the form q(p)→ [τ1, ql ,τ2](fl) for some τ1,τ2 ∈ T , ql ∈Q, and fl ∈ F

with fl 6=�. By construction, τ1 = q(p)→ δ1(q1(f1), . . . , qn+1(fn+1)) and τ2 = q′(p′)→ δ2

for some q1, . . . , ql−1, ql+1, . . . , qn+1, q′ ∈ Q, f1, . . . , fl−1, fl+1, . . . , fn+1 ∈ F , p′ ∈ P. Then
ξ = σ(ξ1, . . . ,ξl−1,ξl+1, . . . ,ξn+1) for some ξ j ∈ TΣ , j ∈ [n+ 1] \ {l}. Moreover, t ′ has to be
of the form

t ′ = τ′(u′ ·τ′′(t ′′1 , . . . , t ′′
l−1, t ′′

l+1, . . . , t ′′n+1))

where u′ ∈ CT ′τ1,τ2
, τ′′ = [τ1, q′,τ2](p

′)→ σ(q1(f1), . . . , ql−1(fl−1), ql+1(fl+1), . . . , qn+1(fn+1)),

and t ′′
j
∈ ΘA′(q j ,ξ j , c0) for each j ∈ [n+ 1] \ {l}.

Now consider t1, t2 ∈ ΘA(q, h(ξ), c) with ϕq,ξ,c(t1) = ϕq,ξ,c(t2) = t ′. By definition of ϕ,
for each i ∈ {1, 2}, t i has to be of the form

t i = τ1(t i,1, . . . , t i,l−1, ui ·τ2, t i,l+1, . . . , t i,n+1)

where t i, j ∈ ΘA(q j , h(ξ j), c0) with ϕq j ,ξ j ,c0
(t i, j) = t ′′

j
for each j ∈ [n + 1] \ {l} and ui ∈

ϕ−1
τ1,τ2

(u′). By induction hypothesis, t1, j=δ2
t2, j for each j ∈ [n+1]\{l}. Moreover, ϕ−1

τ1,τ2
(u′)

contains a unique element u and, therefore, (u1 ·τ2)=δ2
(u2 ·τ2). Thus, t1=δ2

t2.

* * *

The next property shows that all elements of ϕ are surjective.

Property (B). Let t ′ ∈ TT ′ , ξ ∈ TΣ , q ∈ Q, and c ∈ C. If t ′ ∈ ΘA′(q,ξ, c), then there is a

t ∈ ΘA(q, h(ξ), c) with ϕq,ξ,c(t) = t ′.

We prove Property (B) by induction on t ′. First, let t ′ = q(p) → α for some p ∈ P

and α ∈ ∆(0). Then α 6= σ, ξ = α, h(α) = α, and q(p) → α is an element of T . Thus,
(q(p)→ α) ∈ ΘA(q, h(α), c) and, by definition of ϕ, we have ϕq,ξ,c(q(p)→ α) = q(p)→ α.

140

4.3 Inverse Elementary Tree Homomorphisms

Now let t ′ = τ′(t ′1, . . . , t ′m) for some m≥ 1, τ′ ∈ T ′, and computations t ′1, . . . , t ′m of A′. We
proceed with a case distinction on τ′.

Case 1: Let m= 1, τ′ = (q(p)→ q′(f)) with q′ ∈ Q, and t ′1 ∈ ΘA′(q
′,ξ, f (c)). Then τ′ is

also an element of T . Moreover, by induction hypothesis, there is a t1 ∈ ΘA(q
′, h(ξ), f (c))

with ϕq′,ξ, f (c)(t1) = t ′1. Let t = τ′(t1). Clearly, t ∈ ΘA(q, h(ξ), c) and ϕq,ξ,c(t) = t ′.
Case 2: Let τ′ = q(p)→ γ(q1(f1), . . . , qm(fm)) for some γ 6= σ and t ′

i
∈ ΘA′(qi ,ξi , fi(c))

for each i ∈ [m]. This case is analogous to case 1.
Case 3: Let τ′ = q(p) → [τ](I D) for some τ ∈ T , and let t ′1 ∈ ΘA′([τ],ξ, c). By con-

struction, τ is of the form q(p) → δ1(q1(f1), . . . , qn+1(fn+1)) with fl = � and there is at
least one t̂ ∈ ΘA(ql ,δ2, c0). Moreover, ξ= σ(ξ1, . . . ,ξl−1,ξl+1, . . . ,ξn+1) for some ξ j ∈ TΣ ,
j ∈ [n+ 1] \ {l}, and t ′1 has to be of the form

t ′1 = τ′′(t ′′1 , . . . , t ′′
l−1, t ′′

l+1, . . . , t ′′n+1)

where τ′′ = [τ](T R U E)→ σ(q1(f1), . . . , ql−1(fl−1), ql+1(fl+1), . . . , qn+1(fn+1)) and, for each
j ∈ [n+1]\{l}, t ′′

j
∈ ΘA′(q j ,ξ j , f j(c)). By induction hypothesis, for each j ∈ [n+1]\{l}, there

is a t j ∈ ΘA(q j , h(ξ j), f j(c)) with ϕq j ,ξ j , f j(c)
(t j) = t ′′

j
. Let t = τ(t1, . . . , t l−1, t̂, t l+1, . . . , tn+1).

Clearly, t ∈ ΘA(q, h(ξ), c) and, by definition of ϕ, ϕq,ξ,c(t) = t ′.
Case 4: Let τ′ = q(p) → [τ1, ql ,τ2](fl) for some τ1,τ2 ∈ T and fl 6= �. By construc-

tion, τ1 = q(p) → δ1(q1(f1), . . . , qn+1(fn+1)) and τ2 = q′(p′) → δ2 for some q1, . . . , ql−1,
ql+1, . . . , qn+1, q′ ∈ Q, f1, . . . , fl−1, fl+1, . . . , fn+1 ∈ F , and p′ ∈ P. Furthermore, it holds that
ξ = σ(ξ1, . . . ,ξl−1,ξl+1, . . . ,ξn+1) for some ξ j ∈ TΣ , j ∈ [n+ 1] \ {l}. Then t ′1 has to be of
the form

t ′1 = u′ ·τ′2(t
′′
1 , . . . , t ′′

l−1, t ′′
l+1, . . . , t ′′n+1)

where u′ ∈ CT ′τ1,τ2
, τ′2 = [τ1, q′,τ2](p

′)→ σ(q1(f1), . . . , ql−1(fl−1), ql+1(fl+1), . . . , qn+1(fn+1)),

and t ′′
j
∈ ΘA′(q j ,ξ j , c0) for each j ∈ [n + 1] \ {l}. By induction hypothesis, for each j ∈

[n+ 1] \ {l}, there is a t j ∈ ΘA(q j , h(ξ j), c0) with ϕq j ,ξ j ,c0
(t j) = t ′′

j
. Let t = τ1(t1, . . . , t l−1, u ·

τ2, t l+1, . . . , tn+1) where u ∈ ϕ−1
τ1,τ2
(u′) (recall that ϕ−1

τ1,τ2
(u′) is a singleton). Clearly, t ∈

ΘA(q, h(ξ), c) and ϕq,ξ,c(t) = t ′.

* * *

Using Property (A) and (B), we obtain that for each q ∈Q, ξ ∈ TΣ , and c ∈ C the mapping

ϕ̂q,ξ,c : ΘA(q, h(ξ), c)/=δ2
→ ΘA′(q,ξ, c)

where
ϕ̂q,ξ,c([t]=δ2

) = ϕq,ξ,c(t) for every [t]=δ2
∈ ΘA(h(ξ))/=δ2

is a bijection. By Observation 4.3.5 this mapping is well-defined. The next property shows that
this bijection preserves the weights of the computations, summing over all weights occurring
in the same equivalence class.

Property (C). Let t ∈ TT , ξ ∈ TΣ , q ∈Q, and c ∈ C. If t ∈ ΘA(q, h(ξ), c), then
∑

t ′∈[t]=δ2

wt(t ′) = wt′(ϕ̂q,ξ,c([t]=δ2
)).

141

Chapter 4 Linear (S,Σ, K)-wta and Inverse Linear Tree Homomorphisms

We prove this property by induction on t. First, let t = q(p) → α for some p ∈ P and
α ∈ ∆(0). Then h(ξ) = α and α 6= δ2. Moreover, [t]=δ2

= {t} and ϕq,ξ,c(t) = t. By

construction, wt′(q(p)→ α) = wt(q(p)→ α).
Now let t = τ(t1, . . . , tm) for some m ≥ 1, τ ∈ T and computations t1, . . . , tm of A. We

proceed with a case distinction on τ. Note that for the sake of readability in the following we
sometimes multiply the weight of a transition from the left to the weights of subcomputations.
As K is commutative this does not change the weight of a computation.

Case 1: Let m = 1, τ = (q(p)→ q′(f)), and t1 ∈ ΘA(q
′, h(ξ), f (c)). Since [t]=δ2

= {τ(t ′1) |

t ′1 ∈ [t1]=δ2
}, we have

∑

t ′∈[t]=δ2

wt(t ′) =
∑

t ′1∈[t1]=δ2

wt(τ) ·wt(t ′1)

= wt(τ) ·
∑

t ′1∈[t1]=δ2

wt(t ′1) (by distributivity)

= wt(τ) ·wt′(ϕ̂q′,ξ, f (c)([t1]=δ2
)) (by IH)

= wt′(τ) ·wt′(ϕ̂q′,ξ, f (c)([t1]=δ2
)) (by construction)

= wt′(ϕ̂q,ξ,c([t]=δ2
)) (∗)

where (∗) holds as ϕq,ξ,c(t) = τ(ϕq′,ξ, f (c)(t1)).
Case 2: Let τ = q(p)→ γ(q1(f1), . . . , qm(fm)) with γ /∈ {δ1,δ2}. Then ξ = γ(ξ1, . . . ,ξm),

t i ∈ ΘA(qi , h(ξi), fi(c)) for each i ∈ [m], and [t]=δ2
= {τ(t ′1, . . . , t ′m) | t

′
i
∈ [t i]=δ2

, i ∈ [m]}.
Thus,

∑

t ′∈[t]=δ2

wt(t ′) =
∑

t ′
i
∈[t i]=δ2

for i∈[m]

wt(τ) ·wt(t ′1) · . . . ·wt(t ′m)

= wt(τ) ·
∑

t ′
i
∈[t i]=δ2

for i∈[m]

wt(t ′1) · . . . ·wt(t ′m) (by distributivity)

= wt(τ) ·
! ∑

t ′1∈[t1]=δ2

wt(t ′1)
�
· . . . ·
! ∑

t ′m∈[tm]=δ2

wt(t ′m)
�

(by Observation 1.2.5)

= wt(τ) ·wt′(ϕ̂q1,ξ1, f1(c)([t1]=δ2
)) · . . . ·wt′(ϕ̂qm,ξ1, fm(c)

([tm]=δ2
)) (by IH)

= wt′(τ) ·wt′(ϕ̂q1,ξ1, f1(c)([t1]=δ2
)) · . . . ·wt′(ϕ̂qm,ξ1, fm(c)

([tm]=δ2
))

(by construction)

= wt′(ϕ̂q,ξ,c([t]=δ2
)) (∗)

where (∗) holds as ϕq,ξ,c(t) = τ(ϕq1,ξ1, f1(c)(t1), . . . ,ϕqm,ξ1, fm(c)
(tm)).

Case 3: Let m = n + 1, τ = q(p) → δ1(q1(f1), . . . , qn+1(fn+1)), and fl = �. Then ξ =

σ(ξ1, . . . ,ξl−1,ξl+1, . . . ,ξn+1) such that t j ∈ ΘA(q j , h(ξ j), f j(c)) for each j ∈ [n+ 1] \ {l},

142

4.3 Inverse Elementary Tree Homomorphisms

t l ∈ ΘA(ql ,δ2, c0),

[t]=δ2
= {τ(t ′1, . . . , t ′n+1) | t

′
j ∈ [t j]=δ2

for j ∈ [n+ 1] \ {l}, t ′
l
∈ ΘA(ql ,δ2, c0)},

and we have

∑

t ′∈[t]=δ2

wt(t ′) =
∑

t ′
j
∈[t j]=δ2

for j∈[n+1]\{l},

t ′
l
∈ΘA(ql ,δ2,c0)

wt(τ) ·wt(t ′1) · . . . ·wt(t ′n+1)

= wt(τ) ·
∑

t ′
j
∈[t j]=δ2

for j∈[n+1]\{l},

t ′
l
∈ΘA(ql ,δ2,c0)

wt(t ′1) · . . . ·wt(t ′n+1) (by distributivity)

= wt(τ) ·
! ∑

t ′
l
∈ΘA(ql ,δ2,c0)

wt(t ′
l
)
�
·
∏

j∈[n+1]\{l}

! ∑

t ′
j
∈[t j]=δ2

wt(t ′j)
�

(by Observation 1.2.5 and commutativity)

= wt(τ) ·
! ∑

t ′
l
∈ΘA(ql ,δ2,c0)

wt(t ′
l
)
�
·
∏

j∈[n+1]\{l}

wt′(ϕ̂q j ,ξ j , f j(c)
([t j]=δ2

)) (by IH)

= wt′(τ′) ·wt′(τ′′) ·
∏

j∈[n+1]\{l}

wt′(ϕ̂q j ,ξ j , f j(c)
([t j]=δ2

))

= wt′(ϕ̂q,ξ,c([t]=δ2
))

where the last two equalities hold as

ϕq,ξ,c(t) = τ′(τ′′(t̂1, . . . , t̂ l−1, t̂ l+1, . . . , t̂n+1))

with

- t̂ j = ϕq j ,ξ j , f j(c)
(t j) for each j ∈ [n+ 1] \ l,

- τ′ = q(p)→ [τ](I D), and

- τ′′ = [τ](T R U E)→ σ(q1(f1), . . . , ql−1(fl−1), ql+1(fl+1), . . . , qn+1(fn+1)),

and as, by construction,

wt′(τ′) = 1 and wt′(τ′′) = wt(τ) ·
∑

t∈ΘA(ql ,δ2,c0)

wt(t).

Case 4: Let m = n + 1, τ = q(p) → δ1(q1(f1), . . . , qn+1(fn+1)), and fl 6= �. Then ξ =

σ(ξ1, . . . ,ξl−1,ξl+1, . . . ,ξn+1) such that t j ∈ ΘA(q j , h(ξ j), c0) for each j ∈ [n + 1] \ {l}.
Moreover, t l is of the form τ̂1(. . . (τ̂g(τ2)) . . .) for some g ∈ N, τ̂1, . . . , τ̂g ∈ Tǫ and τ2 =

q′(p′)→ δ2 with q′ ∈Q, p′ ∈ P. By construction,

ϕq,ξ,c(t) = τ′(τ̂′1 · . . . · τ̂′g ·τ
′
2(t̂1, . . . , t̂ l−1, t̂ l+1, . . . , t̂n+1)),

143

Chapter 4 Linear (S,Σ, K)-wta and Inverse Linear Tree Homomorphisms

where τ̂′i = ϕτ,τ2
(τ̂i) for each i ∈ [g], τ′ = q(p) → [τ, ql ,τ2](fl), τ

′
2 = [τ, q′,τ2](p

′) →
σ(q1(f1), . . . , ql−1(fl−1), ql+1(fl+1), . . . , qn+1(fn+1)), and t̂ j = ϕq j ,ξ j , f j(c)

(t j) for each j ∈ [n+
1] \ {l}. Moreover, [t]=δ2

= {τ(t ′1, . . . , t ′n+1) | t
′
j
∈ [t j]=δ2

for j ∈ [n+ 1]}. Thus,

∑

t ′∈[t]=δ2

wt(t ′) =
∑

t ′
j
∈[t j]=δ2

for j∈[n+1]

wt(τ) ·wt(t ′1) · . . . ·wt(t ′n+1)

= wt(τ) ·wt(τ̂1) · . . . ·wt(τ̂g) ·wt(τ2)·∑

t ′
j
∈[t j]=δ2

for j∈[n+1]\{l}

wt(t ′1) · . . . ·wt(t ′
l−1) ·wt(t ′

l+1) · . . . ·wt(t ′n+1)

(by distributivity and as [t l]=δ2
= {t l})

= wt(τ) ·wt(τ̂1) · . . . ·wt(τ̂g) ·wt(τ2) ·
∏

j∈[n+1]\{l}

! ∑

t ′
j
∈[t j]=δ2

wt(t ′j)
�

(by Observation 1.2.5)

= wt(τ) ·wt(τ̂1) · . . . ·wt(τ̂g) ·wt(τ2) ·
∏

j∈[n+1]\{l}

wt′(ϕ̂q j ,ξ j , f j(c)
([t j]=δ2

))

(by IH)

= wt′(τ′) ·wt′(τ̂′1) · . . . ·wt′(τ̂′g) ·wt′(τ′2) ·
∏

j∈[n+1]\{l}

wt′(ϕ̂q j ,ξ j , f j(c)
([t j]=δ2

))

= wt′(ϕ̂q,ξ,c(t))

where the last but one equality holds as, by construction, wt′(τ′) = wt(τ), wt′(τ̂′i) = wt(τ̂i)

for each i ∈ [g], and wt′(τ′2) = wt(τ2).

* * *

Thus, we can conclude that for each ξ ∈ TΣ

(h−1(JAK))(ξ) = JAK(h(ξ))

=
∑

t∈ΘA(h(ξ))

wt(t)

=
∑

[t]=δ2
∈ΘA(h(ξ))/=δ2

∑

t ′∈[t]=δ2

wt(t ′)

=
∑

[t]=δ2
∈ΘA(h(ξ))/=δ2

wt′(ϕ̂q0,ξ,c0
([t]=δ2

)) (by Property (C))

=
∑

t ′∈ΘA′ (ξ)

wt′(t ′) (as ϕ̂ is a bijection)

= JA′K(ξ).

Hence, JA′K = h−1(JAK) and, therefore, the class
⋃

Σ RT l(S,Σ, K) is closed under the inverse
application of elementary tree homomorphisms of type 1. �

144

4.3 Inverse Elementary Tree Homomorphisms

4.3.2 Elementary Tree Homomorphisms of Type 2

After having shown that the class
⋃

Σ RT l(S,Σ, K) is closed under inverse application of
elementary tree homomorphisms of type 1, in this subsection we consider elementary tree
homomorphisms of type 2. Again, we obtain a positive result:

Lemma 4.3.6. Let K be a commutative and complete semiring, s a linear (S,∆, K)-recognizable

tree language, and h: K〈〈TΣ(X)〉〉 → K〈〈T∆(X)〉〉 an elementary tree homomorphism of type 2.

Then h−1(s) is a linear (S,Σ, K)-recognizable tree language.

Proof. Let A = (Q, q0, T, wt) be a linear (S,∆, K)-wta with JAK = s and let h: K〈〈TΣ(X)〉〉 →
K〈〈T∆(X)〉〉 be an elementary tree homomorphism of type 2 with

h(σ) = δ1(x1, . . . , x l−1,δ2(x l , . . . , x l+k−1), x l+k, . . . , xn)

for some n, k ≥ 1, σ ∈ Σ(n), δ1 ∈ ∆
(n−k+1), δ2 ∈ ∆

(k), and l ∈ [n− k + 1]. As before, we
assume without loss of generality that ΘA(ζ) = ; for each ζ /∈ h(TΣ).

We construct the linear (S,Σ, K)-wta A
′ = (Q′, q0, T ′, wt′) where

Q′ =Q ∪ {[τ1, q,τ2] | τ1,τ2 ∈ T, q ∈Q}

as follows:

• If τ= q(p)→ q′(f) is in T , then it is also in T ′ and wt′(τ) = wt(τ).

• If τ = q(p)→ γ(q1(f1), . . . , qm(fm)) is in T and γ /∈ {δ1,δ2}, then τ is also in T ′ and
wt′(τ) = wt(τ).

• For all transitions τ1 = q(p) → δ1(q1(f1), . . . , qn−k+1(fn−k+1)) and τ2 = q′(p′) →
δ2(q

′
1(f
′

1), . . . , q′
k
(f ′

k
)) in T we proceed as follows. If there is a j ∈ [k] such that f ′

j
6=�,

then let i = j, otherwise let i = 1. Then

– τ′1 = q(p)→ σ(w1, u1, [τ1, ql ,τ2](fl), u2, w2) with

3 w1 = q1(f1), . . . , ql−1(fl−1), w2 = ql+1(fl+1), . . . , qn−k+1(fn−k+1),

3 u1 = q′1(f
′

1), . . . , q′
i−1(f

′
i−1), and u2 = q′

i+1(f
′
i+1), . . . , q′

k
(f ′

k
)

is in T ′ and wt′(τ′1) = wt(τ1),

– if τ̂= z(p̂)→ z′(f̂) is in T , then τ̂′ = [τ1, z,τ2](p̂)→ [τ1, z′,τ2](f̂) is in T ′ and
wt′(τ̂′) = wt(τ̂), and

– τ′2 = [τ1, q′,τ2](p
′)→ q′

i
(f ′

i
) is in T ′ and wt′(τ′2) = wt(τ2).

As τ1 and τ2 are linear (and u1 and u2 only contain reset instructions), τ′1 is linear as
well. Note that the choice of i is valid as δ2 /∈∆(0).

The intuition of the construction is the following. In a computation t of A there might be a
sequence of ǫ-transitions τ1 . . .τµ between the recognition of δ1 and δ2. These transitions
can prepare a storage configuration c that is passed to (at most) one subtree t i of δ2. In
the corresponding computation t ′ of A′, the sequence τ1 . . .τµ is simulated right after the

145

Chapter 4 Linear (S,Σ, K)-wta and Inverse Linear Tree Homomorphisms

τ1 : q(p)→ δ1(q1(f), q2(�), q3(�))

t1

q2(p2)→ q3(f3)

τ2 : q3(p3)→ δ2(q
′
1(�), q′2(f

′), q′3(�))

t21
t22

t23

t3

q(p)→ σ(q1(f), q′1(�), [τ1, q2,τ2](�), q′3(�), q3(�)

t ′1 t ′21

[τ1, q2,τ2](p2)→ [τ1, q3,τ2](f3)

[τ1, q3,τ2](p3)→ q′2(f
′)

t ′22

t ′23
t ′3

Figure 4.5: A computation t in ΘA(q, h(ξ), c) at top (where, in τ2, f ′ 6=�)
and the corresponding computation t ′ in ΘA′(q,ξ, c) at the bottom for
some ξ ∈ TΣ .

recognition of the original σ, above the subtree h(t i). This method is exemplified in Figure
4.5. Note that, if all subtrees below δ2 are recognized by A with a reset storage, then we
choose the first subtree to simulate τ1 . . .τµ above as we also need to regard the weights
computed by these transitions.

In the following, for every τ1,τ2 ∈ T we denote by T ′τ1,τ2
the subset of T ′ consisting of all

transitions of the form [τ1, z,τ2](p)→ [τ1, z′,τ2](f) for some z, z′ ∈Q, p ∈ P, and f ∈ F .

* * *

Now we want to prove that JA′K= h−1(JAK).
For this, in the following we define a family ϕ = (ϕq,ξ,c | q ∈Q,ξ ∈ TΣ , c ∈ C) of mappings

ϕq,ξ,c : ΘA(q, h(ξ), c)→ ΘA′(q,ξ, c) .

First, let (ϕτ1,τ2
| τ1 ∈ Tδ1

,τ2 ∈ Tδ2
) be a family of tree homomorphisms ϕτ1,τ2

: CTǫ
(X1)→

CT ′τ1,τ2
(X1) given by

ϕτ1,τ2
(q(p)→ q′(f)) =

!
[τ1, q,τ2](p)→ [τ1, q′,τ2](f)

�
(x1)

for each (q(p) → q′(f)) ∈ Tǫ. Note that, by construction, the transitions in the image of
ϕτ1,τ2

exist in T ′ for each τ1 ∈ Tδ1
, τ2 ∈ Tδ2

.
Now let ξ= γ(ξ1, . . . ,ξm) for some m ∈ N. Then for each t ∈ ΘA(q, h(ξ), c)

146

4.3 Inverse Elementary Tree Homomorphisms

• if t = τ(t1) and τ= q(p)→ q′(f), then ϕq,ξ,c(t) = τ(ϕq′,ξ, f (c)(t1)),

• if t = τ(t1, . . . , tm), τ = q(p)→ γ(q1(f1), . . . , qm(fm)), and γ /∈ {δ1,δ2}, thenϕq,ξ,c(t) =

τ(ϕq1,ξ1, f1(c)(t1), . . . ,ϕqm,ξm, fm(c)
(tm)), and

• if m= n,

t = τ1(t1, . . . , t l−1, u ·τ2(t l , . . . , t l+k−1), t l+k, . . . , tn)

with u ∈ CTǫ
(X1), τ1 = q(p) → δ1(q1(f1), . . . , qn−k+1(fn−k+1)), and τ2 = q′(p′) →

δ2(q
′
1(f
′

1), . . . , q′
k
(f ′

k
)), then

ϕq,ξ,c(t) = τ′1(t
′
1, . . . , t ′

l+i−2,ϕτ1,τ2
(u) ·τ′2(t

′
l+i−1), t ′

l+i
, . . . , t ′n)

where

– i = j if there is a j ∈ [k] with f ′
j
6=� and i = 1 otherwise,

– τ′1 = q(p)→ σ(w1, u1, [τ1, ql ,τ2](fl), u2, w2) with

3 w1 = q1(f1), . . . , ql−1(fl−1), w2 = ql+1(fl+1), . . . , qn−k+1(fn−k+1),

3 u1 = q′1(f
′

1), . . . , q′
i−1(f

′
i−1), and u2 = q′

i+1(f
′
i+1), . . . , q′

k
(f ′

k
),

– τ′2 = [τ1, q′,τ2](p
′)→ q′

i
(f ′

i
), and

– for each j ∈ [n]

t ′j =

ϕq j ,ξ j , f j(c)
(t j) if j ∈ {1, . . . , l − 1, l + k, . . . , n}

ϕq′
j−l+1,ξ j ,c0

(t j) if j ∈ {l, . . . , l + i − 2, l + i, . . . , l + k− 1}

ϕq′
i
,ξ j ,c̄(t j) if j = l + i − 1

where c̄ = f ′
i
(f̄ µ(. . . f̄ 1(fl(c)) . . .)) and f̄ 1 . . . f̄ µ is the sequence of storage instruc-

tions occurring in u read from top to bottom.

Note that by Observation 4.3.3, t can only be of one of the shapes treated above. With the
same argumentation as in the proof of Lemma 4.3.4 it can be checked that each element in
the image of ϕ is indeed a computation of A′.

* * *

Now we want to show that each mapping in ϕ is a bijection, i.e., it is injective and surjective.
We do this by proving the following property:

Property (A). Let t ′ ∈ TT ′ , ξ ∈ TΣ , q ∈Q, and c ∈ C. If t ′ ∈ ΘA′(q,ξ, c), then

• there is a t ∈ ΘA(q, h(ξ), c) with ϕq,ξ,c(t) = t ′ and

• for all t1, t2 ∈ ΘA(q, h(ξ), c): if ϕq,ξ,c(t1) = ϕq,ξ,c(t2) = t ′, then t1 = t2.

147

Chapter 4 Linear (S,Σ, K)-wta and Inverse Linear Tree Homomorphisms

We prove Property (A) by induction on t ′. First, let t ′ = q(p)→ α. Then ξ= α, h(α) = α,
and, by construction, q(p)→ α is an element of T . Thus, (q(p)→ α) ∈ ΘA(q, h(α), c) and,
by definition of ϕ, we have ϕq,ξ,c(q(p)→ α) = q(p)→ α. Moreover, ϕ−1

q,ξ,c(t
′) = {t ′} and,

thus, t1 = t2 = t ′.
Now let t ′ = τ′(t ′1, . . . , t ′m) for some m≥ 1, τ ∈ T ′ and computations t ′1, . . . , t ′m of A′. We

proceed with a case distinction on τ′.
Case 1: Let τ′ = (q(p)→ q′(f)), and t ′1 ∈ ΘA′(q

′,ξ, f (c)). Then, by construction, τ′ is
also an element of T . Moreover, by induction hypothesis, there is a t1 ∈ ΘA(q

′, h(ξ), f (c))

with ϕq′,ξ, f (c)(t1) = t ′1. Let t = τ′(t1). Clearly, t ∈ ΘA(q, h(ξ), c) and ϕq,ξ,c(t) = t ′.
Now consider t1, t2 ∈ ΘA(q, h(ξ), c) with ϕq,ξ,c(t1) = ϕq,ξ,c(t2) = t ′. For i ∈ {1, 2}, t i is of

the form τi(t i,1) for some τi ∈ T and computation t i,1 of A. By definition of ϕ, τ1 = τ2 = τ′.
Thus, t i,1 ∈ ΘA(q

′, h(ξ), f (c)) and ϕq′,ξ, f (c)(t i,1) = t ′1 for each i ∈ {1,2}. By induction
hypothesis, t1,1 = t2,1. Hence, t1 = t2.

Case 2: Let τ′ = q(p)→ γ(q1(f1), . . . , qm(fm)) for some γ 6= σ. Then ξ = γ(ξ1, . . . ,ξm)

and t ′
i
∈ ΘA′(qi ,ξi , fi(c)) for each i ∈ [m]. By construction, τ is also an element of T .

Moreover, by induction hypothesis, there is for each i ∈ [m] a t i ∈ ΘA(qi , h(ξi), fi(c)) with
ϕqi ,ξi , fi(c)

(t i) = t ′
i
. Let t = τ(t1, . . . , tm). Clearly, t ∈ ΘA(q, h(ξ), c) and ϕq,ξ,c(t) = t ′.

Now consider t1, t2 ∈ ΘA(q, h(ξ), c) with ϕq,ξ,c(t1) = ϕq,ξ,c(t2) = t ′. For i ∈ {1,2}, t i is
of the form τi(t i,1, . . . , t i,mi

) for some mi ∈ N, τi ∈ T , and computations t i,1, . . . , t i,mi
of A.

By definition of ϕ, τ1 = τ2 = τ′ and m1 = m2 = m. Then t i, j ∈ ΘA(q j , h(ξ j), f j(c)) and
ϕq j ,ξ j , f j(c)

(t i, j) = t ′
j

for each i ∈ {1,2} and j ∈ [m]. By induction hypothesis, t1, j = t2, j for
each j ∈ [m]. Thus, t1 = t2.

Case 3: Let m = n and τ′ = q(p) → σ(q1(f1), . . . , qn(fn)). Then ξ = σ(ξ1, . . . ,ξn) for
some ξ1, . . . ,ξn ∈ TΣ and t ′

i
∈ ΘA′(qi ,ξi , fi(c)) for each i ∈ [n]. By construction of A′ there

is a ι ∈ {l, . . . , l + k− 1} such that qι = [τ1, q̄ι,τ2],

τ1 = q(p)→ δ1(q1(f1), . . . , ql−1(fl−1), q̄ι(fι), ql+k(fl+k), . . . , qn(fn)),

and

τ2 = q′(p′)→ δ2(ql(fl), . . . , qι−1(fι−1), q′′(f ′′), qι+1(fι+1), . . . , ql+k−1(fl+k−1))

for some q̄ι, q′, q′′ ∈Q, p′ ∈ P, and f ′′ ∈ F . Moreover, also by construction of A′,

t ′ι = u′ ·τ′′(t ′′ι)

where u′ ∈ CT ′τ1,τ2
(X1), τ

′′ = [τ1, q′,τ2](p
′) → q′′(f ′′), and t ′′ι ∈ ΘA′(q

′′,ξι, c̄) where c̄ =

f ′′(f ′µ(. . . f ′1(fι(c)) . . .)) and f ′1 . . . f ′µ ∈ F∗ is the sequence of storage instructions occurring in
u′ read from top to bottom.

By induction hypothesis, there are t j ∈ ΘA(q j , h(ξ j), f j(c)) with ϕq j ,ξ j , f j(c)
(t j) = t ′

j
for each

j ∈ [n] \ {ι} and tι ∈ ΘA(q
′′, h(ξι), c̄) with ϕq′′,ξι ,c̄(tι) = t ′′ι . Then let

t = τ1(t1, . . . , t l−1, u ·τ2(t l , . . . , t l+k−1), t l+k, . . . , tn)

where u ∈ ϕ−1
τ1,τ2
(u′). Clearly, t ∈ ΘA(q, h(ξ), c) and ϕq,ξ,c(t) = t ′.

148

4.3 Inverse Elementary Tree Homomorphisms

Now consider t1, t2 ∈ ΘA(q, h(ξ), c) with ϕq,ξ,c(t1) = ϕq,ξ,c(t2) = t ′. By definition of ϕq,ξ,c ,
for each i ∈ {1, 2}, t i has to be of the form

τ1(t i,1, . . . , t i,l−1, ui ·τ2(t i,l , . . . , t i,l+k−1), t i,l+k, . . . , t i,n)

where we have that t i, j ∈ ΘA(q j , h(ξ j), f j(c)) and ϕq j ,ξ j , f j(c)
(t i, j) = t ′

j
for each j ∈ [n] \ {ι},

t i,ι ∈ ΘA(q
′′, h(ξι), c̄) and ϕq′′,ξι ,c̄(t i,ι) = t ′ι, and ui ∈ ϕ

−1
τ1,τ2
(u′). By induction hypothesis,

t1, j = t2, j for each j ∈ [n]. Moreover, ϕ−1
τ1,τ2
(u′) contains a unique element u. Thus, t1 = t2.

* * *

By Property (A), for each ξ ∈ TΣ the mapping ϕq0,ξ,c0
is a bijection between ΘA′(ξ) and

ΘA(h(ξ)). Moreover, since each transition in a computation t ′ ∈ ΘA′(ξ) corresponds to a
transition in ϕq0,ξ,c0

(t ′) with the same weight and vice versa, and since K is commutative,
we obtain that wt′(t ′) = wt(ϕq0,ξ,c0

(t ′)). Thus, we can conclude that

JA′K(ξ) =
∑

t ′∈ΘA′ (ξ)

wt′(t ′)

=
∑

t ′∈ΘA′ (ξ)

wt(ϕq0,ξ,c0
(t ′))

=
∑

t∈ΘA(h(ξ))

wt(t)

= JAK(h(ξ)) = (h−1(JAK))(ξ).

Hence, JA′K = h−1(JAK) and, therefore, the class
⋃

Σ RT l(S,Σ, K) is closed under the
inverse application of elementary tree homomorphisms of type 2. �

Now we can prove Lemma 4.3.1 from the beginning of this section which comprises the
closure of the class

⋃
Σ RT l(S,Σ, K) under inverse elementary tree homomorphisms of type

1 and 2 as restated below.

Lemma 4.3.7. Let K be a commutative and complete semiring, s a linear (S,∆, K)-recognizable

tree language, and h: K〈〈TΣ(X)〉〉 → K〈〈T∆(X)〉〉 an elementary tree homomorphism. Then h−1(s)

is a linear (S,Σ, K)-recognizable tree language.

Proof. This lemma follows from Lemma 4.3.4 and Lemma 4.3.6. �

This finishes the proof of Theorem 4.1.6.

149

Chapter 4 Linear (S,Σ, K)-wta and Inverse Linear Tree Homomorphisms

4.4 Chapter Conclusion

In this chapter, we proved that the class
⋃

Σ RT l(S,Σ, K), where K is a commutative and
complete semiring, is closed under the inverse application of linear tree homomorphisms.
This result could be shown by decomposing a linear tree homomorphism into linear alphabetic
tree homomorphisms as well as elementary tree homomorphisms and proving the respective
closure.

One further note

One motivation to prove the closure of the class lm-CFT under inverse linear tree homo-
morphisms in [ODH19] was given by a bimorphism characterization of linear extended
tree transducers (l-xtt). In [FMV11, Theorem 4.2] it was shown that a tree transformation
τ: TΣ → P(T∆) originates from the application of an l-xtt if and only if it can be decomposed
into the inverse application of a linear and nondeleting tree homomorphism h followed by
the intersection with a recognizable tree language R followed by the application of a linear
tree homomorphism g, i.e.,

τ(ξ) = g(h−1(ξ)∩ R)

for each ξ ∈ TΣ . Moreover, it is well known that the class lm-CFT is closed under intersection
with recognizable tree languages and under application of linear tree homomorphisms. Thus,
these results together with Theorem 4.0.1 yield the closure of lm-CFT under the application
of linear extended tree transducers.

Now it is an obvious question whether our (storage) generalization of Theorem 4.0.1
leads to a similar closure property, i.e., whether the class

⋃
Σ RT l(S,Σ,B) is closed under

application of l-xtt. As the construction in the proof of Lemma 2.6.2 preserves linearity, we
obtain the closure under intersection with recognizable tree languages. Having now shown
Theorem 4.1.6, the question remains whether

⋃
Σ RT l(S,Σ,B) is closed under application of

linear tree homomorphisms. We believe that this is true:
Given a linear (S,Σ)-ta A and a linear tree homomorphism g : TΣ(X)→ T∆(X)we construct

from each transition of the form

q(p)→ σ(q1(f1), . . . , qn(fn)) with g(σ) = ζ

the transition
τ′ = q(p)→ ζ[q1(f1), . . . , qn(fn)] .

Of course, τ′ is not a “valid” transition of our automaton model. However, it was shown in
[FV19b] that allowing such extended transitions does not increase the power of (S,Σ, K)-wta
in case of a complete and commutative semiring K and, thus, of (S,Σ)-ta. Moreover, by using
the construction of [Eng15, Theorem 3.22] to reobtain transitions recognizing at most one
symbol at a time, linearity is preserved.

Thus, we conjecture that also the class RT l(S,Σ,B) is closed under the application of an
l-xtt mapping. However, as a formal proof would go beyond the scope of this work, we leave
the definite answer to this question open.

150

Chapter 5

A Medvedev Characterization of

Recognizable Weighted Tree Languages

In his seminal paper [Kle51], Kleene investigated finite-state automata which he introduced
as an abstraction of McCulloch-Pitts nerve nets [MP43]. To describe the language of such an
automaton, he developed a first version of the well-known regular expressions and proved
that both formalisms are equally expressive. In his work, regular expressions are given in the
form of sets of tables (describing languages) and the operations union E ∨ F , concatenation
E · F , and Kleene star E ∗ F on them.

As explained by Medvedev [Med56], a problem arises from Kleene’s representation of a
language as a set of tables: On the one hand, a language can be described by different sets of
tables and such different sets are called equivalent if they describe the same language. On the
other hand, applying concatenation or Kleene star to equivalent sets might yield sets of tables
that are not equivalent anymore. Thus, these operations are not operations on languages
themselves.

We note that this problem is caused by Kleene’s particular representation of languages and
does not occur in the modern use of regular expressions. However, it constituted Medvedev’s
motivation to introduce an alternative representation of languages, which

«... describes the class of representable events in an intrinsic fashion by means of

“fundamental” operations on events.» [Med56]

Here events stand for languages. In this sense, the representable languages form a class
of languages that contains particular simple languages, called elementary sets, and that is
closed under particular operations, the elementary operations. These operations are union,
intersection, relabeling and “prefix restriction” R S T: a word w is in R S T(L) if and only if
each prefix of w is in L. As Medvedev showed, the class of representable languages coincides
with the class of recognizable languages.

Similar to Kleene’s work, this characterization found resonance and was the foundation for
further results. Elgot strengthened Medvedev’s theorem [Elg61, Theorem 3.6] and obtained
a characterization that is comparable with (albeit not equal to) the famous statement that
each regular language is the homomorphic image of a local language [CS63, Section 5,
Proposition 1]. This result was generalized by Doner [Don70, Theorem 1.15] to the tree
case and, also in this work, the influence of Medvedev was mentioned. For this reason,
Medvedev’s theorem is often associated with the homomorphic characterization of regular
languages (cf., e.g., [RP19]). Moreover, Costich [Cos72] generalized representable languages

151

Chapter 5 A Medvedev Characterization of Recognizable Weighted Tree Languages

to representable tree languages. Again, he achieved an equivalence result and, hence, obtained
a Medvedev characterization of recognizable tree languages.

Whereas Kleene’s characterization has been extended to weighted languages [BR82, AB87]
and weighted tree languages [DPV04], to the best of our knowledge a quantitative version of
Medvedev’s result is still open. We close this gap by introducing representable weighted tree

languages over semirings that are built from elementary weighted tree languages and elementary

operations. We use as operations the weighted versions of the operations of Medvedev and
Costich: sum for union, Hadamard product for intersection, relabeling lifted to weighted tree
languages, and a weighted “subtree restriction” R S T which is a product for all subtrees of
a tree. However, to obtain a characterization for recognizable weighted tree languages, we
have to restrict our representable weighted tree languages: We limit the application of the
Hadamard product as well as the restriction function to recognizable step functions. With the
help of this restriction, we obtain a Medvedev characterization of recognizable weighted tree

languages.
Moreover, we investigate the relation between unrestricted representable weighted tree

languages and weighted monadic second-order logic. Their relation is interesting because,
to obtain a characterization of recognizable weighted tree languages, MSO-formulas also
have to be restricted (by avoiding universal second-order quantification and by restricting
universal first-order quantifications to recognizable step functions) as mentioned in Section
1.5.2. Here we will prove that the class of representable weighted tree languages is a proper
subclass of the class of weighted tree languages definable by weighted MSO-formulas.

This chapter In Section 5.1 we introduce (Σ, K)-representations and the corresponding
class REPR(Σ, K) of (Σ, K)-representable weighted tree languages where K is a semiring. We
show in Section 5.2 that there are weighted tree languages in REPR(Σ, K)which are not (Σ, K)-
recognizable. Therefore, we introduce an appropriate restriction of (Σ, K)-representations
and state our main result (Theorem 5.2.2). This theorem is proved by showing in Section 5.2.1
that each restricted representable weighted tree language is recognizable and in Section 5.2.2
that each recognizable weighted tree language is restricted representable. Finally, in Section
5.3 we investigate the relation of (unrestricted) representable weighted tree languages and
(unrestricted) MSO-definable weighted tree languages.

Related work This work is based on the original characterization by Medvedev [Med56]
and its generalization by Costich [Cos72]. Variations of the first work, using other elementary
sets, can be found in [Elg61] and [Don70].

Local languages can be described by particular representations without relabeling and with
restricted usage of the union (as local languages are, in general, not closed under union).
The formalism of local languages was also considered in the tree case [Don70] as well as
in the weighted tree setting [Fül15]. Especially the result that recognizable languages are
a projection of local languages has been resumed lately [RP11, RP19]. A short explanation
of the relation of our formalism to (weighted) local tree languages can be found in Remark
5.2.10.

Also the original alternative to Medvedev’s representation of regular languages by partic-
ular expressions has been investigated in the setting of weighted tree languages: regular
expressions have been introduced, among others, for weighted tree languages over commu-

152

tative semirings [DPV04], distributive M-monoids [FMV09], and particular tree valuation
monoids [DFG16]. Lately, a Kleene characterization was extended to the class of weighted tree
languages recognizable by particular weighted regular tree grammars with storage [FV19a].

Our idea of restricting some elementary operations to recognizable step functions in order
to characterize the recognizable weighted tree languages has been borrowed from the logical
characterization of the recognizable weighted (tree) languages by restricted MSO logic, cf.
[DG05, DV06, DV11, DGMM11].

Note: This chapter is a generalized version of [Her17]: Whereas in [Her17] a Medvedev
characterization for recognizable weighted tree languages over commutative semirings was
proven, here we could drop this assumption and consider arbitrary semirings. For this, we
equipped the product of the restriction mapping by an order and strengthened our notion of
restricted representations.

153

Chapter 5 A Medvedev Characterization of Recognizable Weighted Tree Languages

5.1 Representable Weighted Tree Languages

The aim of this section is to define a weighted version of the representable sets introduced
by Medvedev, that we call representable weighted tree languages.14 These weighted tree
languages are built up from particular operations, called elementary operations, that are
applied to two types of very simple weighted tree languages, called elementary weighted tree
languages.

Convention. In this chapter we let (K ,+, ·, 0, 1) be an arbitrary semiring if not specified other-

wise.

Elementary weighted tree languages We call the following weighted tree languages over
Σ and K elementary:

• for each σ ∈Σ and a ∈ K the weighted tree language R Tσ,a ∈ K〈〈TΣ〉〉 defined for each
ξ ∈ TΣ by

R Tσ,a(ξ) =

¨
a if ξ(ǫ) = σ

0 otherwise,

• for each n ≥ 1, γ1, . . . ,γn ∈ Σ, and a ∈ K the weighted tree language N X Tγ1...γn,a ∈
K〈〈TΣ〉〉 defined for each ξ ∈ TΣ by

N X Tγ1...γn,a(ξ) =

¨
a if ξ(ǫ) ∈Σ(n) and ξ(i) = γi for each i ∈ [n]

0 otherwise.

Elementary operations We call the following operations on weighted tree languages ele-

mentary:

• +,

• ⊙,

• relabelings, and

• the (subtree) restriction mapping R S T : K〈〈TΣ〉〉 → K〈〈TΣ〉〉 which is defined for each
s ∈ K〈〈TΣ〉〉 and ξ ∈ TΣ by

(R S T(s))(ξ) =
∏

v∈pos(ξ)

s(ξ|v)

where in the product we follow the depth-first post-order ⊑dp.

Note that in the case Σ = Σ(0) ∪Σ(1) our definition of the restriction mapping coincides
with (R S T(s))(ξ) =

∏
t∈sub(ξ) s(t) for each s ∈ K〈〈TΣ〉〉 and ξ ∈ TΣ where, again, we use the

depth-first post-order ⊑dp in the product.

14Note that here the notion of representable weighted tree languages is different from the concept of representable
tree series in [Boz94].

154

5.1 Representable Weighted Tree Languages

Representable weighted tree languages The class of K-representable weighted tree lan-

guages, denoted by REPR(K), is the smallest class of weighted tree languages that contains
for each ranked alphabet Σ the elementary weighted tree languages over Σ and K and
that is closed under elementary operations. Moreover, for each ranked alphabet Σ, the
class REPR(Σ, K) of (Σ, K)-representable weighted tree languages is the subclass of REPR(K)
containing all weighted tree languages of type TΣ → K .

Representations A term made up of elementary weighted tree languages and elementary
operations that results in a (Σ, K)-representable weighted tree language is called a (Σ, K)-

representation. Clearly, each (Σ, K)-representation e can be seen as a tree by considering
elementary weighted tree languages as nullary symbols and elementary operations as unary
respectively binary symbols. Then we denote by ht(e) the height of the tree associated to e,
defined as usual. Moreover, we also speak about subrepresentations, meaning subtrees of the
representation e.

Example 5.1.1. Consider the ranked alphabet Σ = {σ(2),γ(1),α(0),β (0)} and the semiring
(P(Σ∗),∪, ·,;, {ǫ}). Moreover, recall from Example 1.4.18 the weighted tree language rR T ∈
P(Σ∗)〈〈TΣ〉〉which maps each tree ξ ∈ TΣ with ξ(ǫ) = γ to ; and all other trees to the singleton
set consisting of their root symbol.

This weighted tree language can be expressed by the (Σ,P(Σ∗))-representation

e = R Tσ,{σ} + (R Tα,{α} + R Tβ ,{β}).

of height ht(e) = 2.
Now consider the (Σ,P(Σ∗))-representation e′ = R S T(e). It maps each tree ξ ∈ T{σ,α,β} to

the string of the labels of ξ concatenated in depth-first post-order, e.g.,

R S T(e)

�
σ

α β

�
= e(α) · e(β) · e

�
σ

α β

�
= {αβσ}.

However, each tree containing at least one γ is mapped to ;, e.g.,

R S T(e)

σ

α γ

β

= ;

as e(γ(β)) = ;. �

Example 5.1.2. Let Σ = {σ(2),α(2)} and consider the semiring (N,+, ·, 0, 1). The weighted
tree language r ∈ N〈〈TΣ〉〉 mapping each ξ ∈ TΣ to 2|ξ| + 1 can be expressed by the following
(Σ,N)-representation. We let Ω =Σ∪{x (2), y(0)} and define the relabeling h: TΩ → TΣ given
by h(σ) = h(x) = σ(x1, x2) and h(α) = h(y) = α. Then we let

e1 = R S T(R Tσ,2 + R Tα,2), e2 = R S T(R T x ,1 + R T y,1).

and
e = h(e1 + e2).

155

Chapter 5 A Medvedev Characterization of Recognizable Weighted Tree Languages

Let ξ ∈ TΣ . It is easy to see that there are only two trees in the preimage h−1(ξ) that get a
non-zero weight by e1 + e2: ξ itself and the tree ξx ,y which results from replacing each σ in
ξ by x and each α in ξ by y. Obviously, e1(ξ) = 2|ξ|, e2(ξ) = e1(ξx) = 0, and e2(ξx ,y) = 1.
Hence, we have that

h(e1 + e2)(ξ) =
∑

ζ∈h−1(ξ)

e1(ζ) + e2(ζ) = e1(ξ) + e2(ξ) + e1(ξx ,y) + e2(ξx ,y) = 2|ξ| + 1= r(ξ)

and, thus, e = r. �

Convention. As + and ⊙ are associative, we often avoid brackets in subrepresentations, i.e.,

we sometimes write e1 + e2 + e3 instead of (e1 + e2) + e3. When we speak about the height of a

representation, we agree on left-associativity.

The next property of the restriction function follows directly from the definition of the set
of positions when respecting the depth-first post-order.

Observation 5.1.3. For each n ∈ N, σ ∈ Σ(n), ξ1, . . . ,ξn ∈ TΣ , and s ∈ K〈〈TΣ〉〉 we have that

(R S T(s))(σ(ξ1, . . . ,ξn)) = (R S T(s))(ξ1) · . . . · (R S T(s))(ξn) · s(σ(ξ1, . . . ,ξn)).

156

5.2 A Medvedev Characterization

5.2 A Medvedev Characterization

Now that we have introduced the representable weighted tree languages, we want to
give a characterization of the recognizable weighted tree languages by means of (Σ, K)-
representations. However, we cannot do this directly, as not all weighted tree languages that
are representable are also recognizable:

It is well known that the Hadamard product does in general not preserve recognizability
in the case of a non-commutative semiring (cf. [DG09, Exampe 3.4]). However, also in the
commutative case representations are too expressive as illustrated by the following example.

Example 5.2.1. Let Σ = {γ(1),α(0)} and K = (N,+, ·, 0, 1). Moreover, let rexp : TΣ → K be

the weighted tree language mapping each tree γn(α) ∈ TΣ to 2(n+1)2 for n ∈ N. It is well
known that this weighted tree language is not recognizable [DV06, p. 236]. Now consider
the (Σ, K)-representation

eexp = R S T(R Tγ,2 + R Tα,2)⊙ R S T(R S T(R Tγ,4 + R Tα,1)).

Since for each m≥ 1 and x ∈ {2, 4} it holds that R Tγ,x(γ
m(α)) = x , we obtain

R S T(R Tγ,2 + R Tα,2)(γ
n(α)) =
∏

t∈sub(γn(α))(R Tγ,2 + R Tα,2)(t) = 2(n+1)

and, with a similar argument, R S T(R Tγ,4 + R Tα,1)(γ
n(α)) = 4n. Using the Gaussian sum it

follows that

R S T(R S T(R Tγ,4 + R Tα,1))(γ
n(α)) =
∏

t∈sub(γn(α)) R S T(R Tγ,4 + R Tα,1)(t)

= 1 · 41 · . . . · 4n = 4
n2+n

2 = 2(n
2+n).

Then following the definition of ⊙ we obtain that eexp(γ
n(α)) = 2(n+1) · 2(n

2+n) = 2(n+1)2 =

rexp(γ
n(α)) and hence that rexp is (Σ, K)-representable. �

To obtain a characterization of recognizable weighted tree languages, we now introduce
two fragments of REPR(Σ, K). For this, we will use the concept of recognizable step functions,
which proved quite useful in the context of restricted weighted MSO logic, cf. [DG05, DV06,
DV11, DGMM11]. We limit the application of the elementary operations ⊙ and R S T to
recognizable step functions in order to ensure that recognizability is preserved. As the usage
of ⊙ only needs to be limited in the case of a non-commutative semiring, we will define two
versions of restricted representations.

Restricted representations Let e ∈ REPR(Σ, K) be a (Σ, K)-representation. We say that e

is

• restricted if whenever e contains a subrepresentation of the form R S T(e′), then e′ is a
recognizable step function and

• ⊙-restricted if e is restricted and, moreover, whenever e contains a subrepresentation of
the form e1 ⊙ e2, then e1 or e2 is a recognizable step function.

157

Chapter 5 A Medvedev Characterization of Recognizable Weighted Tree Languages

We call a weighted tree language r ∈ K〈〈TΣ〉〉 restricted (Σ, K)-representable or ⊙-restricted

(Σ, K)-representable if it can be expressed by a restricted (Σ, K)-representation or a⊙-restricted
(Σ, K)-representation, respectively.

In the rest of this section we will prove the following theorem which extends the Medvedev
characterization for tree languages to the weighted setting and generalizes our previous result
in [Her17] from commutative to arbitrary semirings.

Theorem 5.2.2 (cf. [Her17, Theorem 6]). Let K be a semiring and r ∈ K〈〈TΣ〉〉. Then

1. r is (Σ, K)-recognizable if and only if r is ⊙-restricted (Σ, K)-representable,

2. if K is commutative, then r is (Σ, K)-recognizable if and only if r is restricted (Σ, K)-

representable, and

3. if K is locally finite and commutative, then r is (Σ, K)-recognizable if and only if r is

(Σ, K)-representable.

Proof. This follows directly from Lemma 5.2.7 and Lemma 5.2.8 proved below. �

5.2.1 Restricted Representable Implies Recognizable

First we wish to prove that each restricted representable weighted tree language is recogniz-
able. For this, we show that the elementary weighted tree languages are recognizable and
that (restricted) elementary operations preserve recognizability. In fact, we even prove that
the elementary weighted tree languages are recognizable step functions as we will need this
property in the proof of the opposite direction.

Lemma 5.2.3 (cf. [Her17, Lemma 7]). Let a ∈ K and σ ∈ Σ. Then R Tσ,a is a recognizable

step function.

Proof. It is clear that the language L containing all trees ξ with ξ(ǫ) = σ is Σ-recognizable.
Then R Tσ,a = a ·✶L is a recognizable step function. �

Lemma 5.2.4 (cf. [Her17, Lemma 8]). Let a ∈ K, n ≥ 1, and γ1, . . . ,γn ∈ Σ. Then

N X Tγ1...γn,a is a recognizable step function.

Proof. We construct the tree automaton A= (Q, F,δ) with Q = {q0, q f } ∪ {qγi
| i ∈ [n]} and

F = {q f } as follows. For each k ∈ N, σ ∈ Σ(k), and q1, . . . , qk ∈Q we let (q1 . . . qk, qγi
) ∈ δσ

if σ = γi for some i ∈ [n] and (q1 . . . qk, q0) ∈ δσ otherwise. Moreover, if k = n, then we let
(qγ1

. . . qγn
, q f) ∈ δσ. It is not hard to see thatL(A) = {ξ ∈ TΣ | ξ(ǫ) ∈Σ

(n),ξ(i) = γi , i ∈ [n]}.
Therefore, N X Tγ1...γn,a = a ·✶L(A), which is a recognizable step function. �

We have already stated in Section 1.4.3 that recognizability is preserved by sum (Theorem
1.4.15), relabeling (Lemma 1.4.24), and Hadamard product in the case of a commutative
semiring (Theorem 1.4.16) respectively if at least one operand is a recognizable step function
(Lemma 1.4.22). It remains to prove that the restriction function preserves recognizability
provided it is applied to a recognizable step function.

158

5.2 A Medvedev Characterization

Lemma 5.2.5 (cf. [Her17, Lemma 10]). Let r ∈ K〈〈TΣ〉〉 be a recognizable step function. Then

R S T(r) is (Σ, K)-recognizable.

Proof. Let A = (Q, F,δ) be a (Σ, K)-wta recognizing r. By Lemma 1.4.19 we can assume
without loss of generality that A is total deterministic and has Boolean transition weights.
Thus, A has on each tree ξ ∈ TΣ exactly one run κ with wtA(ξ,κ) = 1, in the following
denoted by κξ, and wtA(ξ,κ′) = 0 for each run κ′ with κ′ 6= κξ. The weight A assigns to ξ

then results from the final state weight F(κξ(ǫ)). Moreover, κξ uniquely determines for each
v ∈ pos(ξ) the only run of A on ξ|v with non-zero weight, given by κξ|v = κ|v .15 Hence,

JAK(ξ|v) = F(κξ|v (ǫ)) = F(κξ(v)) (†)

for each ξ ∈ TΣ and v ∈ pos(ξ).
We construct a wta B that simulates A on each input ξ, but assigns as weight to each

transition the corresponding final state weight of A. Formally, we construct the (Σ, K)-wta
B recognizing R S T(r) as follows. We let B = (Q, F ′,δ′) where F ′(q) = 1 for each q ∈ Q.
Moreover, the familyδ′ of transitions is defined as follows. For eachσ ∈Σ, q, q1, . . . , qrk(σ) ∈Q

we let
δ′σ(q1 . . . qrk(σ), q) = δσ(q1 . . . qrk(σ), q) · F(q).

Clearly, B is deterministic. Note that, since for each k ∈ N and σ ∈Σ(k) by construction

{(q̄, q) ∈Qk ×Q | δ′σ(q̄, q) 6= 0} ⊆ {(q̄, q) ∈Qk ×Q | δσ(q̄, q) 6= 0},

κξ is also the only run in RunB(ξ) which can have a non-zero weight. Thus, we obtain for
each ξ ∈ TΣ

JBK(ξ) =
∑

κ∈RunB(ξ)

wtB(ξ,κ) · F ′(κ(ǫ))

= wtB(ξ,κξ)

=
∏

v∈pos(ξ)

δ′
ξ(v)

!
κξ(v1) . . .κξ(vrk(ξ(v))),κξ(v)

�

=
∏

v∈pos(ξ)

δξ(v)
!
κξ(v1) . . .κξ(vrk(ξ(v))),κξ(v)

�
· F(κξ(v))

=
∏

v∈pos(ξ)

F(κξ(v))

=
∏

v∈pos(ξ)

JAK(ξ|v) (by †)

= (R S T(JAK))(ξ)

where in the product we follow the depth-first post-order ⊑dp.
This proves that R S T(JAK) = JBK. �

15Recall the definition of the subrun κ|v on page 31.

159

Chapter 5 A Medvedev Characterization of Recognizable Weighted Tree Languages

Example 5.2.6. Let Σ = {σ(2),γ(1),α(0),β (0)} and consider the semiring (P(Σ∗),∪, ·,;, {ǫ}).
Moreover, recall the recognizable step function rR T ∈ P(Σ∗)〈〈TΣ〉〉 and the corresponding
(Σ,P(Σ∗))-dwta AR T = (Q, F,δ) with Boolean transition weights from Example 1.4.18. The
weighted tree language R S T(JAR TK) is described in Example 5.1.1.

Now we apply the above construction to obtain an (Σ,P(Σ∗))-wtaB recognizing R S T(JAR TK).
Recall that Q = {qu | u ∈ Σ}. We obtain B = (Q, F ′,δ′) where F ′(qu) = {ǫ} for each u ∈ Σ
and, moreover, for each u′ ∈ {σ,α,β} and q, q1, . . . , qrk(u′) ∈Q

δ′u′(q1 . . . qrk(u′), q) =

¨
{ǫ} · {u′} if q = qu′

; otherwise

and
δ′γ(q, q′) = ;

for each q, q′ ∈Q.
Hence, for each ξ ∈ TΣ with |ξ|γ > 0 we obtain JBK(ξ) = ;= R S T(JAR TK)(ξ). Moreover,

for each ξ ∈ TΣ with |ξ|γ = 0 there exists exactly one run in RunB(ξ) with non-zero weight.
This run is denoted by κξ and of the form κξ(w) = qξ(w) for each w ∈ pos(ξ). By construction
of δ′, in wtB(ξ,κξ) all labels of ξ are concatenated in depth-first post-order. Thus, JBK(ξ) =
R S T(JAK)(ξ). �

Now we are capable of proving that each (restricted) (Σ, K)-representation is also (Σ, K)-
recognizable.

Lemma 5.2.7 (cf. [Her17, Lemma 11]). Let K be a semiring and r ∈ K〈〈TΣ〉〉.

1. If r is ⊙-restricted (Σ, K)-representable, then r is (Σ, K)-recognizable.

2. If K is commutative and r is restricted (Σ, K)-representable, then r is (Σ, K)-recognizable.

3. If K is locally finite and commutative and r is (Σ, K)-representable, then r is (Σ, K)-

recognizable.

Proof. Let e be a (Σ, K)-representation. We will prove this statement by induction on the
structure of e.

For statement (1) assume that e is⊙-restricted. If e is an elementary weighted tree language,
then the property holds by Lemma 5.2.3 and Lemma 5.2.4. If e = e1+ e2 for some ⊙-restricted
(Σ, K)-representations e1 and e2 that are (Σ, K)-recognizable, then e is (Σ, K)-recognizable by
Theorem 1.4.15. Now let e = e1⊙e2 for some⊙-restricted (Σ, K)-representations e1 and e2 that
are (Σ, K)-recognizable and either e1 or e2 is a recognizable step function. Then e is (Σ, K)-
recognizable by Theorem 1.4.22. If e = h(e1) for some relabeling h: K〈〈T∆〉〉 → K〈〈TΣ〉〉 and
⊙-restricted (∆, K)-representation e1 that is (∆, K)-recognizable, then e is (Σ, K)-recognizable
by Lemma 1.4.24. Finally, if e = R S T(e1) for some ⊙-restricted (Σ, K)-representation e1 that
is a recognizable step function, then e is (Σ, K)-recognizable by Lemma 5.2.5.

The proof of statement (2) follows the proof of statement (1) unless we do not need to
require that in the case e = e1 ⊙ e2 one of the operands is a recognizable step function. This

160

5.2 A Medvedev Characterization

is due to Theorem 1.4.16 which holds since K is commutative. Hence, in this case each
restricted (Σ, K)-representation is (Σ, K)-recognizable.

Statement (3) follows from statement (1) as in the case of a locally finite and commutative
semiring K each (Σ, K)-recognizable weighted tree languages is a recognizable step function
by Lemma 1.4.20. Hence, each (Σ, K)-representation is ⊙-restricted. �

5.2.2 Recognizable Implies Restricted Representable

Now we prove that each recognizable weighted tree language is ⊙-restricted representable
by constructing a ⊙-restricted (Σ, K)-representation. As the restriction function can only
be applied to recognizable step functions, at this place we need the fact that elementary
weighted tree languages are recognizable step functions shown beforehand.

Lemma 5.2.8 (cf. [Her17, Lemma 12]). Let K be a semiring and let r ∈ K〈〈TΣ〉〉. If r is

(Σ, K)-recognizable, then r is ⊙-restricted (Σ, K)-representable.

Proof. Let A = (Q, F,δ) be a (Σ, K)-wta such that JAK = r. Then let Ω = Σ ×Q be a new
ranked alphabet by adopting the ranks of Σ. Moreover, we define the relabeling h: TΩ → TΣ
by letting h(σ, q) = σ(x1, . . . , xn) for each n ∈ N and (σ, q) ∈ Ω(n). Now we construct the
three weighted tree languages

s1 =
∑

(σ,q)∈Ω

R T(σ,q),F(q), s2 =
∑

(σ,q)∈Ω(0)

R T(σ,q),δσ(ǫ,q),

s3 =
∑

n≥1,(σ,q)∈Ω(n),
(σi ,qi)∈Ω,i∈[n]

(N X T(σ1,q1)...(σn,qn),1 ⊙ R T(σ,q),δσ(q1...qn,q)),

and we let
s = h(R S T(s2 + s3)⊙ s1) .

By Lemmas 5.2.3, 5.2.4, and 1.4.21 we have that s1 and s2 + s3 are recognizable step
functions. Thus, s is ⊙-restricted (Σ, K)-representable. Next we show that JAK= s.

Intuitively, a tree t in TΩ can be seen as a tree ξ ∈ TΣ extended by labeling each node
additionally with the appropriate state from some run in RunA(ξ). Formally, for each tree
ξ ∈ TΣ we define a bijection runξ : RunA(ξ) → TΩ by letting for each κ ∈ RunA(ξ) and
v ∈ pos(ξ) !

runξ(κ)
�
(v) =
!
ξ(v),κ(v)
�

.

Then we obtain
(runξ(κ))|v = runξ|v (κ|v) (†)

and
h−1(ξ) = {runξ(κ) | κ ∈ RunA(ξ)} (∗)

for each ξ ∈ TΣ , κ ∈ RunA(ξ), and v ∈ pos(ξ). Moreover, we can prove the following property
by structural induction on ξ.

161

Chapter 5 A Medvedev Characterization of Recognizable Weighted Tree Languages

Property (A). Let ξ ∈ TΣ and κ ∈ RunA(ξ). Then wtA(ξ,κ) = (R S T(s2 + s3))(runξ(κ)).

First, let ξ= α for some α ∈Σ(0) and let κ ∈ RunA(α). Then

(R S T(s2 + s3))(runξ(κ)) = (R S T(s2 + s3))(α,κ(ǫ))

= s2(α,κ(ǫ)) + s3(α,κ(ǫ))

= R T(α,κ(ǫ)),δα(ǫ,κ(ǫ))(α,κ(ǫ)) + 0

= δα(ǫ,κ(ǫ))

= wtA(ξ,κ).

Now let ξ = σ(ξ1, . . . ,ξn) for some n ≥ 1, σ ∈ Σ(n), ξ1, . . . ,ξn ∈ TΣ , and let κ ∈ RunA(ξ).
Then we obtain

(R S T(s2 + s3))(runξ(κ))

= (R S T(s2 + s3))(runξ1
(κ|1)) · . . . · (R S T(s2 + s3))(runξn

(κ|n)) ·

(s2 + s3)(runξ(κ)) (Observation 5.1.3 and †)

= wtA(ξ1,κ|1) · . . . ·wtA(ξn,κ|n) · (s2 + s3)(runξ(κ)) (by IH)

= wtA(ξ1,κ|1) · . . . ·wtA(ξn,κ|n) ·

(N X T(ξ(1),κ(1))...(ξ(n),κ(n)),1 ⊙ R T(σ,κ(ǫ)),δσ(κ(1)...κ(n),κ(ǫ)))(runξ(κ))

= wtA(ξ1,κ|1) · . . . ·wtA(ξn,κ|n) ·δσ(κ(1) . . .κ(n),κ(ǫ))

=
∏

v∈pos(ξ1)

δξ1(v)
(κ|1(v1) . . .κ|1(vl1),κ|1(v)) · . . . ·

∏

v∈pos(ξn)

δξn(v)
(κ|n(v1) . . .κ|n(vln),κ|n(v)) ·

δσ(κ(1) . . .κ(n),κ(ǫ))

=
∏

v∈pos(ξ)

δξ(v)(κ(v1) . . .κ(vrk(ξ(v))),κ(v))

= wtA(ξ,κ),

where li = rk(ξi(v)) for each i ∈ [n] and in the product we follow the depth-first post-order
⊑dp. This completes the proof of Property (A).

162

5.2 A Medvedev Characterization

Now we can proceed with

h(R S T(s2 + s3)⊙ s1)(ξ) =
∑

t∈h−1(ξ)

R S T(s2 + s3)(t) · s1(t)

=
∑

κ∈RunA(ξ)

R S T(s2 + s3)(runξ(κ)) · s1(runξ(κ)) (by ∗)

=
∑

κ∈RunA(ξ)

R S T(s2 + s3)(runξ(κ)) · F(κ(ǫ)) (∗∗)

=
∑

κ∈RunA(ξ)

wtA(ξ,κ) · F(κ(ǫ)) (by Property (A))

= JAK(ξ).

where ∗∗ holds since s1(runξ(κ)) = R T(ξ(ǫ),κ(ǫ)),F(κ(ǫ))(runξ(κ)) = F(κ(ǫ)). This proves that
JAK = s and, therefore, each (Σ, K)-recognizable weighted tree language is ⊙-restricted
(Σ, K)-representable. �

Example 5.2.9. Let Σ = {σ(2),α(1)} and consider the semiring (P(Σ∗),∪, ·,;, {ǫ}). Moreover,
recall from Example 1.4.12 the weighted tree language rpath : TΣ → P(Σ∗) as well as the
(Σ,P(Σ∗))-wta Apath = (Q, F,δ) recognizing rpath.

We construct a ⊙-restricted (Σ,P(Σ∗))-representation epath by applying the above construc-
tion. Let Ω = {(σ, q)(2), (σ, qx)

(2), (α, q)(0), (α, qx)
(0)} be a ranked alphabet and h: TΩ → TΣ

a relabeling given by

h(σ, u) = σ(x1, x2) and h(α, u) = α

for each u ∈ {q, qx}. Then
epath = h(R S T(s2 + s3)⊙ s1)

for the following weighted tree languages s1, s2, and s3 in P(Σ∗)〈〈TΩ〉〉. We note that for the
sake of clarity we omit those summands in s1, s2, and s3 which map each tree to ; and, thus,
do not contribute to the sum. We obtain

s1 = R T(σ,qx),{ǫ} + R T(α,qx),{ǫ},

s2 = R T(α,q),{ǫ} + R T(α,qx),{α},

and

s3 =
∑

u,v∈Σ

!
(N X T(u,q)(v,q),{ǫ} ⊙ R T(σ,q),{ǫ}) + (N X T(u,qx)(v,q),{ǫ} ⊙ R T(σ,qx),{σ})

+(N X T(u,q)(v,qx),{ǫ} ⊙ R T(σ,qx),{σ})
�

.

In the construction belonging to Lemma 5.2.8 also, e.g., N X T(σ,qx)(σ,q),{ǫ} ⊙ R T(σ,q),; is a
summand of s3. However, since it maps each tree to ;, we omit it here.

Intuitively, the evaluation of h enriches a given tree ξ ∈ TΣ by a run of Apath and, thus,
simulates a summation over all possible runs. Then the inner part R S T(s2 + s3)⊙ s1 applies
the weights of the transitions and the final state weight corresponding to the respective run.

163

Chapter 5 A Medvedev Characterization of Recognizable Weighted Tree Languages

σ

α σ

α α

h−1

R S T(s2 + s3)⊙ s1

{ . . . , (σ, qx)

(α, qx) (σ, q)

(α, q) (α, q)

, . . . , (σ, qx)

(α, q) (σ, qx)

(α, qx) (α, q)

, . . . , (σ, qx)

(α, q) (σ, qx)

(α, q) (α, qx)

, . . . }

; ∪ . . . ∪ ; ∪ {ασ} ∪ ; ∪ . . . ∪ ; ∪ {ασσ} ∪ ; ∪ . . . ∪ ; ∪ {ασσ} ∪ ; ∪ . . . ∪ ;

Figure 5.1: A visualization of the application of epath to the tree
σ(α,σ(α,α)). The grey arrows illustrate the respective (inverted) path
word an enriched tree is mapped to.

Only those runs where the state qx marks exactly one path from root to leaf get a non-zero
weight: the inverted path word. The application of epath to the tree σ(α,σ(α,α)) is visualized
in Figure 5.1. �

Remark 5.2.10. Note that the weighted tree language R S T(s2+ s3)⊙ s1 in the proof of Lemma
5.2.8 is a local weighted tree language in the sense of [Fül15]. In contrast to [Fül15], we use
sums to define s1, s2, and s3. However, we note that for each input tree at most one summand
of these sums evaluates to a non-zero value. Thus, our proof entails the result that each
recognizable weighted tree language is the image of a local weighted tree language under a
relabeling (for the original proof see [Fül15, Theorem 1]). However, in general the fragment
of representable weighted tree languages without relabelings is more expressive than local
weighted tree languages. This is due to the fact that sums are allowed at each position of a
representation. To see this, consider the ranked alphabet Σ = {γ(1),α(0),β (0)} and the two
weighted tree languages rα, rβ ∈ B〈〈TΣ〉〉 over the Boolean semiring given by

rα(ξ) =

¨
1 if ξ= γ(α)

0 otherwise
and rβ(ξ) =

¨
1 if ξ ∈ {γn(β) | n ∈ N}

0 otherwise

for each ξ ∈ TΣ . It is easy to see that both, rα and rβ , are local weighted tree languages.
Moreover, it can be proved by contradiction that the sum rα+rβ is not local anymore. However,
as

rα + rβ = (R Tγ,1 ⊙ N X Tα,1) + R S T((R Tγ,1 ⊙ N X Tβ ,1) + (R Tγ,1 ⊙ N X Tγ,1) + R Tβ ,1),

(Σ,B)-representations without relabeling describe a proper superset of the local weighted
tree languages. Ã

164

5.3 Comparison with Unrestricted MSO Logic

5.3 Comparison with Unrestricted MSO Logic

This section investigates the relation between unrestricted (Σ, K)-representations and weighted
monadic second-order logic. We will prove that MSO-formulas are more expressive than
representations.

First we will prove that elementary operations preserve (Σ, K)-definability.

Lemma 5.3.1 (cf. [Her17, Lemma 14]). Let s1, s2 be (Σ, K)-definable weighted tree languages.

Then s1 + s2 and s1 ⊙ s2 are (Σ, K)-definable.

It is not hard to see that also definable weighted tree languages are closed under relabelings,
even if they are not recognizable.

Lemma 5.3.2 (cf. [Her17, Lemma 15]). Let s be a (Σ, K)-definable weighted tree language

and h: TΣ → T∆ a relabeling. Then h(s) is (∆, K)-definable.

Proof. Let ϕ ∈MSO(Σ, K) such that s = JϕK. We let {σ1, . . . ,σn} be an enumeration of the
(pairwise distinct) elements of Σ for n = |Σ|. Moreover, let VΣ = {Xσ | σ ∈ Σ} be a set of
second-order variables. Then we construct the MSO(∆, K)-formula

ψ= ∃Xσ1
. . .∃Xσn

.(ϕ′ ∧ψ+part ∧ψ
+
check)

with the subformulas ϕ′, ψpart, and ψcheck defined below.16 Intuitively, for each tree ζ ∈ T∆,
the existential quantification ∃Xσ1

. . .∃Xσn
guesses an assignment of positions of ζ to symbols

from Σ. Then the subformula ψpart checks whether this assignment forms a partition, i.e.,
each position is assigned to exactly one symbol from Σ. The subformula ψcheck ensures that
the assignment encodes a preimage ξ of h. Additionally, ϕ′ simulates ϕ on this ξ. Formally,

• ϕ′ is obtained from ϕ by replacing each occurrence of labelσ(x) by (x ∈ Xσ),

• ψpart = ∀x .
�∨

i∈[n]

!
(x ∈ Xσi

)∧
∧

j∈[n]: j 6=i ¬(x ∈ Xσ j
)
��

, and

• ψcheck = ∀x .
!∧

i∈[n](¬(x ∈ Xσi
)∨ labelh(σi)

(x))
�
,

where both ψpart and ψcheck are in MSO(∆).
Now we want to show that JψK= h(JϕK):
Let in the following [Xσi

7→ Iσi
] stand for [Xσ1

7→ Iσ1
, . . . , Xσn

7→ Iσn
]. For each ζ ∈ T∆ we

obtain

JψK(ζ) =
∑

Iσ1
,...,Iσn

⊆pos(ζ)

Jϕ′ ∧ψ+part ∧ψ
+
checkKVΣ

(ζ[Xσi
7→ Iσi

])

=
∑

Iσ1
,...,Iσn

⊆pos(ζ)

Jϕ′KVΣ
(ζ[Xσi

7→ Iσi
]) · Jψ+part ∧ψ

+
checkKVΣ

(ζ[Xσi
7→ Iσi

]).

16Recall from Section 1.5.2 that, given an MSO(Σ) formula ψ, ψ+ denotes the unambiguous MSO(Σ, K) formula
representing ψ.

165

Chapter 5 A Medvedev Characterization of Recognizable Weighted Tree Languages

Obviously, for each ξ ∈ h−1(ζ) it holds by construction of ϕ′ that

Jϕ′K(ζ[Xσi
7→ posσi

(ξ)]) = JϕK(ξ).

Thus, it remains to restrict the summation to those variable positions Iσ1
, . . . , Iσn

that encode
a preimage ξ ∈ h−1(ζ). This is ensured by ψpart and ψcheck as

Jψ+partKVΣ
(ζ[Xσi

7→ Iσi
]) = 1 ⇔ {Iσ1

, . . . , Iσn
} is a partition of pos(ζ)

and

Jψ+checkKVΣ
(ζ[Xσi

7→ Iσi
]) = 1

⇔

∀v ∈ pos(ζ), i ∈ [n]: v ∈ Iσi
→ ζ(v) = h(σi) .

Finally, as Jψ+partKVΣ
and Jψ+checkKVΣ

map each argument to 0 or 1, we obtain

Jψ+part ∧ψ
+
checkKVΣ

(ζ[Xσi
7→ Iσi

]) = 1 ⇔ ∃ξ ∈ h−1(ζ)∀i ∈ [n]: Iσi
= posσi

(ξ)

for all Iσ1
, . . . , Iσn

⊆ pos(ζ). Hence, we can proceed with
∑

Iσ1
,...,Iσn

⊆pos(ζ)

Jϕ′KVΣ
(ζ[Xσi

7→ Iσi
]) · Jψ+part ∧ψ

+
checkKVΣ

(ζ[Xσi
7→ Iσi

])

=
∑

ξ∈h−1(ζ)

Jϕ′KVΣ
(ζ[Xσi

7→ posσi
(ξ)])

=
∑

ξ∈h−1(ζ)

JϕK(ξ)

= h(JϕK)(ζ)

and, therefore, JψK= h(JϕK). �

Although the restriction mapping does in general not preserve recognizability, it preserves
definability as we will show next.

Lemma 5.3.3 (cf. [Her17, Lemma 16]). Let s be a (Σ, K)-definable weighted tree language.

Then R S T(s) is (Σ, K)-definable.

Proof. Letϕ ∈MSO(Σ, K) such that s = JϕK. We want to construct a formula ϕ′ ∈MSO(Σ, K)

such that Jϕ′K = R S T(JϕK). As the restriction mapping multiplies values for all positions of a
given tree ξ, we can use a first-order universal quantification ∀z (for some new variable z) to
simulate this calculation. However, in contrast to the logical quantifier, R S T multiplies for
each position v of ξ values only depending on the subtree ξ|v . Thus, we also need to restrict
the evaluation of ϕ to the respective subtree. This can be done by defining (1) formulas
of the form path(x , y) checking whether y is located below x and (2) a transformation
πz : MSO(Σ, K)→MSO(Σ, K) that, applied to ϕ, yields a formula simulating the evaluation
of ϕ restricted to positions below z.

We define the following formulas in MSO(Σ) modeling paths between positions: We let

166

5.3 Comparison with Unrestricted MSO Logic

- closed(X) = ∀x .∀y.(¬edge(x , y)∨¬(x ∈ X)∨ (y ∈ X)),

- path(x , y) = ∀X .(¬closed(X)∨¬(x ∈ X)∨ (y ∈ X)), and

- path(x , Y) = ∀y.(¬(y ∈ Y)∨ path(x , y)).

Intuitively, path(x , y) holds if there is a path from x to y (and y is below x or y = x) and
path(x , Y) holds if for each y ∈ Y there is such a path from x to y .

Now let z be a new variable not occurring in ϕ. Recall from Section 1.5.2 that, given an
MSO(Σ) formula ψ, ψ+ denotes the unambiguous MSO(Σ, K) formula representing ψ. Then
we define the mapping πz : MSO(Σ, K)→ MSO(Σ, K) inductively on the structure of ϕ as
follows:

• πz(ψ)=ψ for every atom ψ,

• πz(¬ψ)=¬ψ for every atom ψ,

• πz(ϕ1 ∧ϕ2)=πz(ϕ1)∧πz(ϕ2),

• πz(ϕ1 ∨ϕ2)=πz(ϕ1)∨πz(ϕ2),

• πz(∃x .ϕ1)=∃x .
!
path(z, x)+ ∧πz(ϕ1)

�
,

• πz(∀x .ϕ1)=∀x .
!
(¬path(z, x))+ ∨ (path(z, x)+ ∧πz(ϕ1))

�
,

• πz(∃X .ϕ1)=∃X .
!
path(z, X)+ ∧πz(ϕ1)

�
, and

• πz(∀X .ϕ1)=∀X .
!
(¬path(z, X))+ ∨ (path(z, X)+ ∧πz(ϕ1))

�
,

where ϕ1,ϕ2 ∈ MSO(Σ, K). Intuitively, πz(ϕ) restricts the evaluation of ϕ on a tree ξ

to the subtree of ξ at the position assigned to z. Moreover, for existential and universal
quantifications, the evaluation of πz(ϕ) yields for positions not below z the neutral elements
of addition and multiplication, respectively. Then we construct the formula

ϕ′ = ∀z.πz(ϕ).

Next we show that R S T(JϕK) = Jϕ′K. For this, we prove the following statement by
structural induction on ϕ:

Property (A). Let ξ ∈ TΣ , V ⊇ Free(ϕ) with z /∈ V, i ∈ pos(ξ), and ρ ∈ ΦV,ξ|i . Then

JϕKV(ξ|i ,ρ) = Jπz(ϕ)KV∪{z}(ξ, (i ·ρ)[z 7→ i]).

Let ϕ = labelσ(x) and note that JϕK can only be 1 or 0. Then

Jlabelσ(x)KV(ξ|i ,ρ) = 1 ⇔ ξ|i(ρ(x)) = σ

⇔ ξ((i ·ρ)(x)) = σ

⇔ Jlabelσ(x)KV(ξ, i ·ρ) = 1

⇔ Jπz(labelσ(x))KV∪{z}(ξ, (i ·ρ)[z 7→ i]) = 1

167

Chapter 5 A Medvedev Characterization of Recognizable Weighted Tree Languages

where the last equivalence holds since πz(labelσ(x)) = labelσ(x). All other cases of ϕ being
an atom or of the form ¬ψ for some atom ψ can be proved analogously.

Now let ϕ = ∃x .ψ and assume that the statement holds for ψ. Then

J∃x .ψKV(ξ|i ,ρ) =
∑

k∈pos(ξ|i)

JψKV∪{x}(ξ|i ,ρ[x 7→ k])

=
∑

k∈pos(ξ|i)

Jπz(ψ)KV∪{x ,z}(ξ, (i ·ρ[x 7→ k])[z 7→ i]) (IH)

=
∑

k∈pos(ξ):
∃k′ : k=ik′

Jπz(ψ)KV∪{x ,z}(ξ, (i ·ρ)[x 7→ k][z 7→ i])

=
∑

k∈pos(ξ):
∃k′ : k=ik′

Jπz(ψ)KV∪{x ,z}(ξ, (i ·ρ)[z 7→ i][x 7→ k])

=
∑

k∈pos(ξ)

!
Jpath(z, x)+KV∪{x ,z}(ξ, (i ·ρ)[z 7→ i][x 7→ k])

· Jπz(ψ)KV∪{x ,z}(ξ, (i ·ρ)[z 7→ i][x 7→ k])
�

(∗)

=
∑

k∈pos(ξ)

Jpath(z, x)+ ∧πz(ψ)KV∪{x ,z}(ξ, (i ·ρ)[z 7→ i][x 7→ k])

= J∃x .
!
path(z, x)+ ∧πz(ψ)

�
KV∪{x ,z}(ξ, (i ·ρ)[z 7→ i])

= Jπz(∃x .ψ)KV∪{z}(ξ, (i ·ρ)[z 7→ i]) (by constr.)

where ∗ holds since Jpath(z, x)+KV∪{x ,z}(ξ, (i · ρ)[z 7→ i][x 7→ k]) = 1 if k = ik′ for some
k′ ∈ N∗ and 0 otherwise.

Now let ϕ = ∀x .ψ and assume that the statement holds for ψ. Then

J∀x .ψKV(ξ|i ,ρ) =
∏

k∈pos(ξ|i)

JψKV∪{x}(ξ|i ,ρ[x 7→ k])

=
∏

k∈pos(ξ|i)

Jπz(ψ)KV∪{x ,z}(ξ, (i ·ρ[x 7→ k])[z 7→ i]) (IH)

=
∏

k∈pos(ξ):
∃k′ : k=ik′

Jπz(ψ)KV∪{x ,z}(ξ, (i ·ρ)[x 7→ k][z 7→ i])

=
∏

k∈pos(ξ):
∃k′ : k=ik′

Jπz(ψ)KV∪{x ,z}(ξ, (i ·ρ)[z 7→ i][x 7→ k])

=
∏

k∈pos(ξ)

J¬path(z, x)+KV∪{x ,z}(ξ, (i ·ρ)[z 7→ i][x 7→ k]) +

!
Jpath(z, x)+KV∪{x ,z}(ξ, (i ·ρ)[z 7→ i][x 7→ k]) ·

Jπz(ψ)KV∪{x ,z}(ξ, (i ·ρ)[z 7→ i][x 7→ k])
�

(∗)

=
∏

k∈pos(ξ)

J(¬path(z, x))+ ∨ (path(z, x)+ ∧πz(ψ))KV∪{x ,z}

(ξ, (i ·ρ)[z 7→ i][x 7→ k])

168

5.3 Comparison with Unrestricted MSO Logic

= J∀x .
!
(¬path(z, x))+ ∨ (path(z, x)+ ∧πz(ψ))

�
KV∪{x ,z}(ξ, (i ·ρ)[z 7→ i])

= Jπz(∀x .ψ)KV∪{z}(ξ, (i ·ρ)[z 7→ i]) (by constr.)

where in the products we follow the depth-first post-order ⊑dp. Moreover, (∗) holds since
Jpath(z, x)+KV∪{x ,z}(ξ, (i ·ρ)[z 7→ i][x 7→ k]) = 1 if k = ik′ for some k′ ∈ N∗ and 0 otherwise.
It is not hard to see that for all other cases of ϕ we can argue in a similar way. Therefore,
these cases are omitted here. This finishes the proof of Property (A).

Now let ξ ∈ TΣ . Then

R S T(JϕK)(ξ) =
∏

i∈pos(ξ)

JϕK(ξ|i)

=
∏

i∈pos(ξ)

Jπz(ϕ)K{z}(ξ, [z 7→ i]) (by Property (A))

= J∀z.πz(ϕ)K(ξ)

where in the product we follow the depth-first post-order ⊑dp. Thus, R S T(JϕK) is (Σ, K)-
definable. �

Example 5.3.4. Let Σ = {α(0),γ(1),δ(1)} and K = (N,+, ·, 0, 1). Moreover, consider the
MSO(Σ, K) formula ϕ = ∀x .(¬labelγ(x)∨ 2) mapping each tree ξ ∈ TΣ to 2|ξ|γ . If we now

apply the function R S T to ϕ, the value 2|(ξ|i)|γ is multiplied for each subtree ξ|i of ξ. Thus,
we obtain

R S T(J∀x .(¬labelγ(x)∨ 2)K)(ξ) =
∏

i∈pos(ξ)

2|(ξ|i)|γ = 2
∑

i∈pos(ξ) |(ξ|i)|γ .

Now we want to construct a formula ϕ′ ∈ MSO(Σ, K) such that Jϕ′K = R S T(JϕK). Ob-
viously, it is not sufficient to simply add an outermost universal quantification ∀z to ϕ as,
additionally, the positions at which γs occur have to be taken into account. For this, we apply
the construction from the proof above and obtain the formula

∀z.πz(∀x .(¬labelγ(x)∨ 2))

= ∀z.(¬path(z, x))+ ∨
!

path(z, x)+ ∧ (πz(¬labelγ(x)∨ 2))
�

= ∀z.(¬path(z, x))+ ∨
!

path(z, x)+ ∧ (¬labelγ(x)∨ 2)
�

Intuitively, the evaluation of this formula results in a product over all positions of ξ. However,
in the inner part of this product it is checked, whether the position z is assigned to occurs
above the position of x: if not, simply 1 is used as factor, if yes, then ϕ is evaluated. In this
way, ϕ is evaluated on the subtree of ξ at the position of z. �

Using the previous lemmas we can prove the first main result of this section.

Theorem 5.3.5 (cf. [Her17, Theorem 17]). Let K be a semiring and let r ∈ K〈〈TΣ〉〉. If r is

(Σ, K)-representable, then r is (Σ, K)-definable.

169

Chapter 5 A Medvedev Characterization of Recognizable Weighted Tree Languages

Proof. Clearly, elementary weighted tree languages are (Σ, K)-definable. Using now Lemmas
5.3.1, 5.3.2, and 5.3.3, we can prove the theorem by induction on the structure of (Σ, K)-
representations. �

However, the reverse direction does not hold: there are definable weighted tree languages
that are not representable as it is shown in the next theorem.

Theorem 5.3.6 ([Her17, Theorem 18]). Let K be a semiring. There is a (Σ, K)-definable

weighted tree language r that is not (Σ, K)-representable.

Proof. Consider the ranked alphabet Σ = {α(0),γ(1)}, the semiring (N,+, ·, 0, 1) and the
formula ϕ = ∀X .2 in MSO(Σ,N). Clearly, for each ξ ∈ TΣ we have JϕK(ξ) = 2(2

|ξ|).
On the other hand, we will show that every (Σ,N)-representable weighted tree language

is bounded exponentially.
For this, we define ê(n) = e(ξn) for each (Σ,N)-representation e and each n ≥ 1 where

ξ1 = α and ξ j = γ(ξ j−1) for each j > 1.
Now we prove the following property by structural induction on e.

Property (A). Let e by a (Σ,N)-representation and let n≥ 1. Then ê(n) ∈O(2(n
ht(e))).

First, let e = R Tγ,k for some γ ∈Σ, k ∈ N. Clearly, ê(n) ∈O(1) ⊆O(2(n
ht(e))). This holds for

all elementary weighted tree languages.
Now, let e = R S T(e1) and assume that the statement holds for e1. Let sub(ξn) = {t1, . . . , tn}

with ht(t i)< ht(t i+1) for each i ∈ [n− 1]. Then

ê(n) = e(ξn) = e1(t1) · . . . · e1(tn) = ê1(1) · . . . · ê1(n)

∈ O(2(1
ht(e1)) · . . . · 2(n

ht(e1))) ⊆ O(2n·(nht(e1))) = O(2(n
ht(e))).

All other cases of e can be proved with similar arguments. This finishes the proof of Property
(A).

So if there were a (Σ,N)-representation e with e = JϕK, then for each ξ ∈ TΣ we had
e(ξ) ∈O(2|ξ|

c

) for some constant c, which clearly is a contradiction. �

Thus, we obtain that the (Σ, K)-definable weighted tree languages are a proper superset of
the (Σ, K)-representable weighted tree languages.

170

5.4 Chapter Conclusion

5.4 Chapter Conclusion

In this section we generalized the notion of representable languages and representable tree
languages to (Σ, K)-representable weighted tree languages where K is a semiring. This
class of weighted tree languages is constituted by (Σ, K)-representations which are terms
consisting of particular elementary weighted tree languages and the operations +, ⊙, the
restriction mapping R S T, and relabelings. As the class of (Σ, K)-representable weighted tree
languages is a proper superset of the recognizable weighted tree languages, we introduced an
appropriate restriction. Therewith we could prove that the restricted representable weighted
tree languages are exactly the recognizable weighted tree languages and, thus, obtained a
Medvedev characterization of the class RT(Σ, K).

Moreover, we analyzed the relation of (unrestricted) representable weighted tree languages
and (unrestricted) MSO-definable weighted tree languages. Whereas for each representation
there exists an MSO-formula which defines the same weighted tree language, the opposite
direction does not hold: there are MSO-definable weighted tree languages, that are not
representable.

Future work For the contradiction in the proof of Theorem 5.3.6 we used the second-
order universal quantification of MSO logic. However, we conjecture that also the fragment
of MSO(Σ, K) that uses no second-order universal quantification is more expressive than
(Σ, K)-representations. For this, consider the ranked alphabet Σ = {α(0),γ(1),δ(1)}, the arctic
semiring (N∪{−∞}, max,+,−∞, 0), and the MSO(Σ,N∪{−∞})-formula ϕ = ∀y.Pγ(y)→
2. It is easy to see that for each tree ξ ∈ TΣ we have JϕK(ξ) = 2 · |ξ|γ. Moreover, this weighted
tree language can be expressed by the (Σ,N∪ {−∞})-representation

e = R S T(R Tγ,2 + (R Tδ,0 + R Tα,0)) .

Now consider the weighted tree language J∀x .ϕK that maps each tree ξ ∈ TΣ to 2 · |ξ| · |ξ|γ.
We believe that this weighted tree language is not (Σ,N)-representable anymore with the
following intuition: We can only obtain a weighted tree language with this growth by nesting
at least two restriction functions. But restriction functions do not only consider the number
of γs in ξ but also the positions of their occurrences and, thus, may map trees with the same
height and number of γs to different values. However, a proof of this conjecture is still an
open problem.

171

Chapter 6

Weighted Symbolic Automata with Data

Storage

Classical automata theory is based on the assumption that each symbol processed by a finite-
state automaton comes from some finite alphabet Σ. This allows to consider all elements α
from Σ with a finite amount of transitions of the form

(q,α, q′) .

However, when it comes to modeling real-world problems, this assumption often cannot be
made: In several scenarios as, e.g., the processing of XML or the analysis of program traces,
one has to deal with data coming from some infinite domain. Therefore, in the last years
there was a great interest in extending finite-state automata to infinite alphabets. Meanwhile,
there exists a plethora of such generalized automaton models with different functionality
and expressiveness. The work of this chapter was mainly inspired by two approaches:

An automaton model which recognizes strings of the form d1 . . . dn with symbols di from
some (possibly) infinite domain D is that of symbolic automata [VBdM10, Vea13]. Those
automata read their input with transitions of the form

(q,π, q′)

where, in contrast to a concrete symbol, a predicate π allows to process all symbols from D

which satisfy π. Symbolic automata keep nice properties of finite-state automata: they are
closed under Boolean operations and equivalence is decidable. They proved to be useful for
many practical applications [Vea13] and were extended into several directions. One such
extension are symbolic visibly pushdown automata [DA14] which enrich symbolic automata
by an additional visibly pushdown storage.

On the other hand, there are formalisms operating on particular strings over an infinite
domain – so-called data words, i.e., strings of the form

(a1, x1) . . . (an, xn)

where each ai comes from a finite alphabet and each data value x i is taken from some (possibly)
infinite set. Two automaton models which accept (particular) data words are register automata

[KF90] and timed automata [AD94]. Whereas they read the symbols a1, . . . , an similar to
finite-state automata, the data values x1, . . . , xn are processed by some additional storage – a
finite amount of registers with register automata and a finite number of clocks with timed

173

Chapter 6 Weighted Symbolic Automata with Data Storage

automata. These storage devices are sensitive for the input, i.e., they can store and compare
data values. This makes these models interesting for practical applications – e.g., timed
automata are used in the context of model checking. Both formalisms were also considered
in a weighted setting as weighted register automata [BDP18] and weighted (or priced) timed
automata [ATP01].

The aim of the following chapter is to combine (and generalize) both of the above ap-
proaches. We present weighted symbolic automata with data storage which are based on
weighted string automata with storage from [HV15] with two differences: our transitions are
of the form

(q,π, p, q′, f)

where (i) we allow input predicates π as for symbolic automata and (ii) each storage predicate
p and storage instruction f does not only depend on the current storage configuration but
additionally on the current input. As in [HV15], we use as weight structure unital valuation
monoids.

Thus, considering the trivial storage type, we provide a weighted version of symbolic
automata. Moreover, it turns out that our combination of input predicates and an input
sensitive data storage is rich enough to capture automaton models from both worlds mentioned
above: We define the data storage types VP(N) and TIME(C) and show that weighted symbolic
automata over VP(N) and TIME(C) are exactly the (weighted version of) symbolic visibly
pushdown automata and weighted timed automata, respectively.

Moreover, we show a weighted MSO logic over data storage types extending [VDH16] by
employing an infinite set of input symbols and a data storage type. Each formula of this logic
has the form ∑η

B
e

where η is a relabeling of input symbols into storage inputs. Moreover,
∑η

B represents the
weighted version of a second-order existential quantification over the second-order behavior
variable B. This variable ranges over behaviors of the underlying data storage type. The
subformula e is an expression as defined in [FSV12, Def. 3.1] but adopted to unital valuation
monoids as in [FV15] and with additional atoms of the form

labelπ(x) and B(x) = (p, f).

Whereas the former atom checks whether the label at the position assigned to x satisfies the
predicate π, the latter tests for the behavior assigned to B at the position assigned to x .

We prove that weighted symbolic automata over data storage types are expressively equiv-
alent to weighted MSO logic over data storage types. In particular, we obtain a logical
characterization of the weighted languages recognizable by weighted symbolic visibly push-
down automata (which is new) and recognizable by weighted timed automata (which is an
alternative to [Qua11, Thm. 41]). For a comparison of the logic from this chapter with our
logic for weighted tree automata with storage in Chapter 3 we refer to Section 3.3.2.

This chapter In Section 6.1 we present our concept of a data storage type and the appro-
priate data storage behavior. Then we define in Section 6.2 our automaton model. After
discussing several restrictions of it, we recall and extend some closure properties. Section 6.3

174

and Section 6.4 are dedicated to show that our automata indeed capture symbolic visibly
pushdown automata and weighted timed automata, respectively. Finally, in Section 6.5 we
provide a logical characterization of weighted symbolic automata with data storage.

Related work As already mentioned above, a lot of work was done in extending finite-state
automata to the case of an infinite input set. Here we want to give a short overview of some
important approaches. However, note that this listing is not exhaustive.

The idea of using predicates instead of concrete symbols in the transitions of an automaton
goes back to [Wat96] and was formalized in [vNG01] for finite-state transducers. Symbolic
automata were introduced in [VdHT10] and in the following years intensively examined and
extended (e.g., to symbolic visibly pushdown automata [DA14] or symbolic tree transducers
[FV14b, VB15]). For a good overview about recent results for symbolic automata we refer
the reader to [DV17b].

The seminal paper about automata using some input-sensitive storage to recognize words
over some infinite alphabet is [KF90]. It introduces finite-memory automata, later also called
register automata [NSV01]. Shortly after, in [AD94] timed automata were introduced which
accept data words over Σ ×R≥0. Other important models operating on infinite input sets
are data automata [BDM+11] and variable automata [GKS10]. Moreover, several of those
formalisms were extended to the weighted setting by introducing weighted timed automata
[ATP01], weighted register automata [BDP18], and weighted variable automata [PR14].

There are also several logical views on languages over infinite alphabets as for example
[Wil94], [Bou02], [Qua11], and [BDP18]. Recently, a symbolic extension of monadic second-
order logic was introduced [DV17a].

Another recent approach of combining the above dimensions of symbolic automata and
storage-extended automata over infinite alphabets was done in [DFSS19] by introducing
symbolic register automata. Similar to our automaton model this formalism uses both input
predicates and (one particular) input-sensitive storage.

Note: This chapter is a corrected and extended version of [HV16]. Here, the definition of a
label structure is slightly changed in order to prevent problems with the Boolean closure. The
notion of state-normalized automata and the related Lemma 6.2.3 is new – it simplifies some
constructions in this chapter. Moreover, Lemma 6.2.5 generalizes [HV16, Lemma 5] and we
added in Section 6.2.1 a discussion on finite input sets. We note that [HV16, Theorem 17
and Corollary 18] are incorrect. We think these results can be slightly changed by keeping
their essence. However, the technical effort would have gone beyond the scope of this work.

175

Chapter 6 Weighted Symbolic Automata with Data Storage

6.1 Data Storage Types and Data Storage Behavior

In this section we extend the notion of storage type we used in the previous parts of this
work: We define the predicates and instructions such that they do not only depend on the
current storage configuration, but also on storage inputs (which, in their turn, are encodings
of the input of an automaton).

Data storage types A data storage type is a tuple Sd = (C , M , P, F, c0) where

• C is a set (its elements called configurations),

• M is a set (its elements called storage inputs),

• P is a set of functions each of the type p : C ×M → {0, 1} (called (storage) predicates),

• F is a set of partial functions each of the type f : C ×M → C (called instructions), and

• c0 ∈ C (called the initial configuration).

If M is a singleton, then we nearly reobtain the concept of a (usual) storage type used in the
previous parts of this work. However, note that we here do not require a data storage type to
contain an always-true predicate or an identity instruction – all constructions in this chapter
work without this assumption.

Example 6.1.1. For some fixed elements c and m we define the trivial data storage type as the
data storage type TR I Vd = ({c}, {m}, {pT R U E}, {fI D}, c) where

pT R U E(c, m) = 1 and fI D(c,m) = c .

Clearly, TR I Vd corresponds to the storage type TR I V. �

Example 6.1.2. In Section 2.1 we recalled the storage type CO U N T that can, in each step,
increment or decrement an integer by 1. Here we want to extend this functionality by defining
a data storage type CO U N Td. This memory is allowed to increment (respectively decrement)
a storage configuration by a storage input.

Let CO U N Td be the data storage type (Z,Z, {⊤?, 0?}, {+,−}, 0)where for each configuration
c ∈ Z and for each storage input d ∈ Z we let

⊤?(c, d) = 1, 0?(c, d) = 1 ⇔ c = 0,

and

+(c, d) = c + d, −(c, d) = c − d . �

Convention. Throughout this chapter we let Sd denote an arbitrary data storage type (C , M , P, F, c0)

unless specified otherwise.

176

6.1 Data Storage Types and Data Storage Behavior

b : (⊤?,+) (⊤?,+) (⊤?,+) (⊤?,−) (⊤?,−) (0?,+)

c̄ : 0 2 10 14 7 0 0

w : 2 8 4 7 7 0

Figure 6.1: The w-behavior b over {⊤?, 0?} × {+,−} from Example 6.1.3
induces the sequence c̄ of storage configurations.

Data storage behavior As in the previous parts of this work, the behavior of a data storage
type Sd plays a central role for our results, especially in the context of an appropriate MSO
logic. Since the result of applying a predicate or an instruction now not only depends on a
configuration but also on a storage input, we will adapt our definition of storage behavior.
Moreover, as we consider string automata in this section, we only need string behaviors
instead of trees.

Let Ω be a finite subset of P × F . Also, let n ∈ N, m1, . . . , mn ∈ M , and

b = (p1, f1) . . . (pn, fn) ∈ Ω
∗ .

We call b an m1 . . . mn-behavior (over Ω) if there exists a sequence c1 . . . cn+1 of configurations
c j ∈ C , j ∈ [n+ 1], such that

• c1 is the initial storage configuration c0,

• pi(ci , mi) = 1, and

• fi(ci , mi) = ci+1

for each i ∈ [n]. We denote the set of all m1 . . . mn-behaviors over Ω by B(Ω, m1 . . . mn).

Example 6.1.3. Consider the data storage type CO U N Td and the word w = 284770 ∈ Z∗

with |w|= 6. Then

b = (⊤?,+)(⊤?,+)(⊤?,+)(⊤?,−)(⊤?,−)(0?,+)

is a w-behavior over {⊤?, 0?} × {+,−} since, choosing the sequence c̄ = 0 2 10 14 7 0 0, the
three conditions from above are satisfied. For example, ⊤?(c̄(2), w(2)) =⊤?(2,8) = 1 and
+(c̄(2), w(2)) = +(2, 8) = c̄(3), as depicted in Figure 6.1. �

177

Chapter 6 Weighted Symbolic Automata with Data Storage

6.2 Weighted Symbolic Automata with Data Storage

In this section, we define and investigate our model of weighted symbolic automata with data
storage. For this, let us first consider a structure which provides predicates for the automaton
input.

Predicates and label structures Let D be a non-empty set. A predicate (over D) is a mapping
π: D → {0,1} and the set {a ∈ D | π(a) = 1} is denoted by JπK. We let ⊤ and ⊥ be two
predicates over D such that J⊤K = D and J⊥K = ;. Moreover, we use the Boolean connectives
¬, ∧, and ∨ in the usual way by setting

J¬π1K= D \ Jπ1K, Jπ1 ∧π2K= Jπ1K∩ Jπ2K, Jπ1 ∨π2K= Jπ1K∪ Jπ2K

for all predicates π1 and π2 over D. In the following we denote by Pred(D) the set of all
predicates over D. Obviously, (Pred(D),∨,∧,¬,⊥,⊤) is a Boolean algebra.

Let Π ⊆ Pred(D). Recall from Section 1.2.3 that BC(Π) is the Boolean closure of Π. By
Lemma 1.2.2, if Π is finite, then so is BC(Π).

A label structure (over D) is a tuple (D,Π), where Π ⊆ Pred(D) is a finite set of predicates
such that BC(Π) =Π. If D is clear from the context, then we only write Π instead of (D,Π).

Remark 6.2.1. We note that in the literature the set Π of a label structure (D,Π) is often
assumed to be recursively enumerable (instead of finite). However, since each automaton
uses finitely many predicates, our definition is no restriction. Ã

Example 6.2.2. Let (N,Π) be the label structure where Π = BC({even, odd, zero}) with

even(a) =

¨
1 if a 6= 0 and a is even

0 otherwise
, odd(a) =

¨
1 if a is odd

0 otherwise
,

and

zero(a) =

¨
1 if a = 0

0 otherwise

for each a ∈ N. �

Convention. Throughout this chapter we let D denote a non-empty set and (D,Π) an arbitrary

label structure over D unless specified otherwise.

Weighted Symbolic Automata with Data Storage

Now we define weighted symbolic automata with data storage. First, let us agree on the
weight structure we will use: unital valuation monoids.

Convention. Throughout this chapter we let K denote an arbitrary unital valuation monoid

(K ,+, val, 0, 1) unless specified otherwise.

Intuitively, the following automaton model extends the model in [HV15] by using predicates
to read input symbols and by using a data storage type that is sensitive for the automaton’s
input. To map the input symbols into the data storage, we use a relabeling η as an adapter.
Moreover, also the weight function is sensitive for the input. This is important for capturing
existing automaton models as, e.g, timed automata.

178

6.2 Weighted Symbolic Automata with Data Storage

The model A K-weighted symbolic automaton with data storage type Sd and input D (short:
(Sd, D, K)-automaton) is a tuple A= (Q,Π,Q0,Q f , T, wt,η) where

• Q is a finite set (its elements called states),

• Π is a label structure over D,

• Q0 ⊆Q and Q f ⊆Q (their elements called initial and final states, resp.),

• T ⊆Q×Π × P ×Q× F is a finite set (its elements called transitions),

• wt : T × D→ K is a function (called the weight assignment), and

• η : D→ M is a relabeling (called the storage encoding).

Given a transition τ = (q,π, p, q′, f)we sometimes call π the input predicate of τ in order to
avoid confusion betweenπ and p. AsΠ is closed under the Boolean connectives, we sometimes
use expressions instead of input predicates in transitions, e.g., we write (q,π1 ∧π2, p, q′, f)

and mean with π1 ∧π2 the predicate π ∈Π with JπK= Jπ1 ∧π2K.

Convention. When considering a transition of the form (q,π, p, q′, f) of an (Sd, D, K)-automaton,

then we will often omit the quantifications for q, q′, π, p, and f as they should be clear from the

transition’s form.

For each τ ∈ T , we denote by wt(τ, J(τ)2K) the set {a ∈ K | wt(τ, d) = a, d ∈ J(τ)2K}. We
call A projective if η is a projection and if η is the ith projection for some i ∈ N, then we
sometimes call A i-projective. Moreover, we call A homogeneous if for each transition τ ∈ T

and for every d1, d2 ∈ J(τ)2K we have wt(τ, d1) = wt(τ, d2), i.e, wt(τ, J(τ)2K) is a singleton.
In this case we view wt as function of type T → K .

Computations Assume in the following an (Sd, D, K)-automaton A = (Q,Π,Q0,Q f , T, wt,η).
The set of A-configurations is given by the set Q×D∗×C . For each transition τ = (q,π, p, q′, f)

in T we define the binary relation ⊢τ on the set of A-configurations as follows: for every
d ∈ D, w ∈ D∗, and c ∈ C , we let

(q, dw, c) ⊢τ (q′, w, f (c,η(d)))

if π(d) = 1, p(c,η(d)) = 1, and f (c,η(d)) is defined. The computation relation of A is the
binary relation ⊢=

⋃
τ∈T ⊢

τ.
A computation is a sequence

ζ0 ⊢
τ1 ζ1 · · · ⊢

τn ζn

such that n ∈ N, τ1, . . . ,τn are transitions, ζ0, . . . ,ζn are A-configurations, and ζi−1 ⊢
τi ζi for

each i ∈ [n]. Sometimes we abbreviate this computation by ζ0 ⊢
τ1...τn ζn. Let w= d1 . . . dn

in D∗ for some n ∈ N and d1, . . . , dn ∈ D. A computation is called a successful computation on

w if it is of the form
θ = ((q0, w, c0) ⊢

τ1...τn (q f ,ǫ, c′))

for some q0 ∈ Q0, q f ∈ Q f , c′ ∈ C , and τ1, . . . ,τn ∈ T . We denote the set of all successful
computations of A on w by ΘA(w).

179

Chapter 6 Weighted Symbolic Automata with Data Storage

The weight assignment Let θ = ((q0, w, c0) ⊢
τ1...τn (q f ,ǫ, c′)) be a successful computation

of A on a word w = d1 . . . dn ∈ D∗ of length n. The weight of θ is the element in K defined by

wt(θ) = val(wt(τ1, d1) . . . wt(τn, dn)) .

The weighted language recognized by A is the K-weighted language JAK: D∗→ K defined
for every w ∈ D∗ by

JAK(w) =
∑

θ∈ΘA(w)
wt(θ) .

We note that the empty word ǫ ∈ D∗ can be recognized by computations of the form θ =

(q,ǫ, c0) where q ∈ Q0 ∩Q f . Then wt(θ) = val(ǫ) = 1. As |ΘA(ǫ)| = |Q0 ∩Q f |, we obtain
JAK(ǫ) =
∑

q∈Q0∩Q f
1.

A weighted language r : D∗→ K is (Sd, D, K)-recognizable if there is an (Sd, D, K)-automaton
A such that r = JAK. In the obvious way, we define (i-)projectively (Sd, D, K)-recognizable

and homogeneously (Sd, D, K)-recognizable. Moreover, we denote the class of all (Sd, D, K)-
recognizable languages by RE C(Sd, D, K).

Normalized automata In contrast to usual automata (over a finite alphabet), (Sd, D, K)-
automata possess a remarkable property due to the predicates of their label structure: there
may be two transitions τ1 = (q,π1, p, q′, f) and τ2 = (q,π2, p, q′, f) with Jπ1K 6= Jπ2K and
Jπ1K∩ Jπ2K 6= ;, i.e., τ1 and τ2 only differ in their input predicate but allow some “shared”
input. As the weight assignment of τ1 and τ2 may be different, this sometimes leads to
difficulties when constructing new transitions with slightly changed input predicates (which
then may describe the same set of input symbols). Thus, we introduce a normal form for
(Sd, D, K)-automata that avoids this difficulty.

We say that an (Sd, D, K)-automaton A = (Q,Π,Q0,Q f , T, wt,η) is normalized if for all
distinct two transitions τ1 = (q,π1, p, q′, f) and τ2 = (q,π2, p, q′, f) in T we have Jπ1K ∩
Jπ2K = ;. Moreover, we say that A is state normalized if for all states q, q′ ∈ Q there is at
most one transition (q,π, p, q′, f) ∈ T leading from q to q′. Obviously, each state-normalized
(Sd, D, K)-automaton is normalized. Moreover, each (Sd, D, K)-automaton can be made state
normalized as shown next.

Lemma 6.2.3. For each (Sd, D, K)-automaton A there is a state normalized (Sd, D, K)-automaton

A
′ with JAK= JA′K.

Proof. Let A= (Q,Π,Q0,Q f , T, wt,η) be an (Sd, D, K)-automaton. Intuitively, to normalize
A, we encode the transitions that are used during a computation into the set of states, i.e.,
we use as states elements from T ×Q (and, additionally, Q0). In this way, from state (τ, q) to
state (τ′, q′) at most one transition may occur – the transition ((τ, q),π, p, (τ′, q′), f) if τ′ is
of the form (q,π, p, q′, f).

Formally, we construct the (Sd, D, K)-automaton A
′ = (Q′,Π,Q0,Q′

f
, T ′, wt′,η) where

Q′ = (T ×Q)∪Q0 and Q′
f
= T ×Q f . For each transition τ= (q,π, p, q′, f) ∈ T and τ̄ ∈ T

• the transition τ′ = ((τ̄, q),π, p, (τ, q′), f) is in T ′ and wt′(τ′, d) = wt(τ, d) for each
d ∈ D, and

180

6.2 Weighted Symbolic Automata with Data Storage

• if q ∈Q0, then the transition τ′′ = (q,π, p, (τ, q′), f) is in T and wt′(τ′′, d) = wt(τ, d)

for each d ∈ D.

Obviously, A′ is state normalized.
Now we prove that JA′K= JAK: Let n ∈ N and w= d1 . . . dn for d1, . . . , dn ∈ D. Moreover,

let
θ = (q0, w, c0) ⊢

τ1...τn (qn,ǫ, cn)

be a successful computation in ΘA(w) with transitions τi = (qi−1,πi , pi , qi , fi) ∈ T for each
i ∈ [n]. Then we construct the computation

θ ′ = (q0, w, c0) ⊢
τ′1...τ′n ((qn,τn),ǫ, cn)

in ΘA′(w) such that τ′1 = (q0,π1, p1, (τ1, q1), f1) and τ′
i
= ((τi−1, qi−1),πi , pi , (τi , qi), fi) for

each i ∈ [n] \ {1}. Clearly, wt′(θ ′) = wt(θ).
Conversely, each computation in ΘA′(w) has the form of θ ′ and we can similarly construct

the computation θ ∈ ΘA(w). Hence, there exists a bijection ϕ : ΘA(w)→ ΘA′(w) such that
wt(θ) = wt′(ϕ(θ)) for each θ ∈ ΘA(w).

We obtain for each w ∈ D∗

JAK(w) =
∑

θ∈ΘA(w)

wt(θ) =
∑

θ ′∈ΘA′ (w)

wt′(θ ′) = JA′K(w)

and, thus, that JA′K= JAK. �

Example 6.2.4. Consider the language Lsum ⊆ N
∗ consisting of all words of the form

u1 . . . unv1 . . . vm0

for some m, n≥ 1 such that

• ui is greater than 0 and even for each i ∈ [n],

• v j is odd for each j ∈ [m], and

• u1 + . . .+ un = v1 + . . .+ vm.

Now recall the unital valuation monoid Kavg = (R∪ {−∞,∞}, sup, avg,−∞,∞) from
Example 1.2.14. We define the weighted language ravg such that each word w in Lsum is
mapped to the average value of all even symbols in w. Formally, let ravg : N∗→ Kavg where
for each w= d1 . . . dn ∈ D∗ for some n ∈ N and d1, . . . , dn ∈ D

ravg(w) =

¨
1
j ·
∑

i∈[j] di if w ∈ Lsum and d j+1 is the first odd symbol in w

−∞ otherwise.

This weighted language can be recognized by the following state normalized, projective,
and non-homogeneous (CO U N Td,N, Kavg)-automaton A = ({e, o, f },Π, {e}, { f }, T, wt,η),
also shown in Figure 6.2. We let Π = BC({even,odd, zero}) with the intuitive interpretations

181

Chapter 6 Weighted Symbolic Automata with Data Storage

e o f

τ1 = (e, even,⊤?, e,+)

τ2 = (e, odd,⊤?, o,−)

τ3 = (o, odd,⊤?, o,−)

τ4 = (o, zero, 0?, f ,+)

Figure 6.2: The projective (CO U N Td,N, Kavg)-automaton A recognizing
ravg.

of even, odd, and zero as in Example 6.2.2 (recall that 0 /∈ JevenK). Moreover, T consists of
the following four transitions:

τ1 = (e, even,⊤?, e,+),

τ2 = (e, odd,⊤?, o,−),

τ3 = (o, odd,⊤?, o,−),

τ4 = (o, zero, 0?, f ,+).

Finally, for each d ∈ D we let

wt(τ1, d) = d, wt(τ2, d) = wt(τ3, d) = wt(τ4, d) =∞,

and η(d) = d.
It is easy to see that for each word w ∈ D∗ the automaton A has at most one successful

computation. For example the word w= 2 6 4 7 5 0 is recognized with the computation

(e, w, 0) ⊢τ1τ1τ1τ2τ3τ4 (f ,ǫ, 0)

which leads to the weight

JAK(2 6 4 7 5 0) =avg(wt(τ1, 2) wt(τ1, 6) wt(τ1, 4) wt(τ2, 7) wt(τ3, 5) wt(τ4, 0))

=avg(2 6 4∞∞∞)

=avg(2 6 4) = 4. �

Clearly, the automaton A in Example 6.2.4 cannot be made homogeneous as the weight
assignment wt maps to infinitely many distinct values. However, we can show that for each
(Sd,Σ, K)-automaton using a weight assignment with finite image there exists an equivalent,
homogeneous (Sd,Σ, K)-automaton. This result extends [HV16, Lemma 5] where it was
shown that each (Sd, D,B)-automaton can be made homogeneous.

Lemma 6.2.5 (cf. [HV16, Lemma 5]). Let A = (Q,Π,Q0,Q f , T, wt,η) be an (Sd, D, K)-

automaton such that wt(T × D) is finite. Then there is a homogeneous (Sd, D, K)-automaton A
′

with JA′K= JAK.

Proof. Let A = (Q,Π,Q0,Q f , T, wt,η) be an (Sd, D, K)-automaton such that wt(T×D) is finite.
By Lemma 6.2.3 we can assume that A is state normalized. We construct a homogeneous

182

6.2 Weighted Symbolic Automata with Data Storage

(Sd, D, K)-automaton A
′ with the following intuition. We split each transition τ of A into

several transitions by partitioning the set J(τ)2K: for each value x ∈ wt(τ, J(τ)2K)we construct
a transition that can read all symbols d ∈ J(τ)2K with wt(τ, d) = x while keeping the original
weight assignment. Hereby we ensure that the transitions of A′ are assigned a weight not
depending on the symbol read.

For this, let Πwt be the set of predicates containing for each transition τ ∈ T and each value
x ∈ wt(τ, J(τ)2K) the predicate πτ,x with

Jπτ,xK= {d ∈ D | wt(τ, d) = x} .

Clearly, the set {J(τ)2 ∧πτ,xK | x ∈ wt(τ, J(τ)2K)} is a partition of the set J(τ)2K. Since Πwt is
finite, we can define the new label structure Π′ = BC(Π ∪Πwt).

Now let A′ = (Q,Π′,Q0,Q f , T ′, wt′,η) be the (Sd, D, K)-automaton where for each transi-
tion τ= (q,π, p, q′, f) ∈ T and x ∈ wt(τ, J(τ)2K) the transition τx = (q,π∧πτ,x , p, q′, f) is
in T ′. Moreover, for each d ∈ D we let wt′(τx , d) = wt(τ, d). Note that wt′ is well-defined
since A is state normalized. Furthermore, it follows that for each d1, d2 ∈ Jπ∧πτ,xK we have
wt′(τx , d1) = wt′(τx , d2) = x . Thus, A′ is homogeneous.

Now we show that JA′K = JAK. Let n ∈ N and w = d1 . . . dn for d1, . . . , dn ∈ D. Moreover,
let

θ = (q0, w, c0) ⊢
τ1...τn (qn,ǫ, cn)

be a successful computation in ΘA(w) with transitions τi = (qi−1,πi , pi , qi , fi) for each i ∈ [n].
Moreover, let x i = wt(τi , di) for each i ∈ [n]. Then we construct the computation

θ ′ = (q0, w, c0) ⊢
τ′1...τ′n (qn,ǫ, cn)

in ΘA′(w) such that, for each i ∈ [n], τ′
i
= (qi−1,π∧πτi ,x i

, pi , qi , fi). Clearly, wt′(θ ′) = wt(θ).
Conversely, each computation in ΘA′(w) has the form of θ ′ and we can similarly construct

the computation θ ∈ ΘA(w). Hence, there is a weight preserving bijection between ΘA(w)

and ΘA′(w).
We obtain for each w ∈ D∗

JAK(w) =
∑

θ∈ΘA(w)

wt(θ) =
∑

θ ′∈ΘA′ (w)

wt′(θ ′) = JA′K(w)

and, thus, that JA′K= JAK. �

In the context of automata over some finite alphabet Σ it is quite common to keep an
additional storage separated from the automaton input, i.e., the current input symbol does
not change the behavior of an instruction. However, when using infinite input sets, it is
sometimes useful to define a memory that is sensitive for the symbols read by the automaton.
We will see in Section 6.4, that this technique is used for timed automata and, thus, our
definition of a data storage type is reasonable. In fact, symbolic automata equipped with
a data storage are more expressive than symbolic automata using only (non-data) storage
types.

183

Chapter 6 Weighted Symbolic Automata with Data Storage

Observation 6.2.6. There is an (Sd, D, K)-recognizable weighted language r that is not (S′, D, K)-

recognizable for any data storage type S′ with a singleton set M of storage inputs.

For an intuition behind this observation consider the language Lsum from Example 6.2.4.
Clearly, this language can not be recognized by any (S′,Σ,B)-automaton A with a singleton
set M of storage inputs: On the one hand, there are infinitely many u1, u2, v1, v2 ∈ N such that
u1u2v1v20 is in Lsum. On the other hand, A uses finitely many transitions and, thus, finitely
many storage instructions. Hence, it is not possible to verify the constraint u1 + u2 = v1 + v2

using S′.

6.2.1 Particular Restrictions

Now we want to consider several instances of our automaton model obtained by restricting
some of its components.

Boolean unital valuation monoid

Let K = B. As in this case the image of each weight assignment wt is finite, by Lemma 6.2.5,
we can assume each (Sd, D,B)-automaton A to be homogeneous:

Corollary 6.2.7 ([HV16, Lemma 5]). For each (Sd, D,B)-automaton A there is a homogeneous

(Sd, D,B)-automaton B with JBK= JAK.

Therefore, the weight assignment wt does not depend on its second argument and we can
presume that the set of transitions of A consists of those transitions which are mapped to 1.
Thus, we can specify an (Sd, D,B)-automaton (now also called an (Sd, D)-automaton) by a
tuple A= (Q,Π,Q0,Q f , T,η) and define the language recognized by A as the set

L(A) = supp(JAK) .

Trivial data storage

Let Sd = TR I Vd. Then we drop all references to Sd from the concepts introduced for (Sd, D, K)-
automata. Thus, T ⊆Q×Π ×Q, we speak about (D, K)-automata and (D, K)-recognizability,
and a (D, K)-automaton A is a tuple A = (Q,Π,Q0,Q f , T, wt). Note that homogeneous
(D, K)-automata can be seen as a K-weighted version of symbolic automata.

Boolean unital valuation monoid and trivial data storage

Let Sd = TR I Vd and K = B. Then we use both conventions mentioned above and, thus,
reobtain symbolic automata; in our context we speak about D-automata and D-recognizable.
Moreover, we say that a D-automaton A= (Q,Π,Q0,Q f , T) is deterministic if |Q0|= 1 and
for every two transitions (q,π1, q1) and (q,π2, q2) in T with Jπ1K∩ Jπ2K 6= ; we have q1 = q2,
and total if for each q ∈Q and d ∈ D there is a transition (q,π, q′) ∈ T with d ∈ JπK.

In [VB15, Theorem 1] it was proved that symbolic tree automata can be made total and
deterministic. As a special case we easily obtain that for each D-automaton there exists an
equivalent total and deterministic D-automaton (cf. also [VdHT10]).

184

6.2 Weighted Symbolic Automata with Data Storage

Lemma 6.2.8 (cf. [VB15, Theorem 1]). For every D-automaton A there is a total and deter-

ministic D-automaton B such that L(A) = L(B).

Finite input set

Let D be a non-empty and finite set (i.e., an alphabet). As in this case the image of each
weight assignment wt is finite, by Lemma 6.2.5, we can assume each (Sd, D, K)-automaton A

to be homogeneous:

Corollary 6.2.9. Let D be an alphabet. For each (Sd, D, K)-automaton A there is a homogeneous

(Sd, D, K)-automaton B with JBK= JAK.

Moreover, we also obtain that each (Sd, D, K)-recognizable language can be recognized by
an (S′, D, K)-automaton for some (non-data) storage type S′.

Lemma 6.2.10. Let D be an alphabet. For every data storage type Sd there is a data storage

type S′ with a singleton set M of storage inputs such that RE C(Sd, D, K) ⊆ RE C(S′, D, K).

Proof. Let D be an alphabet and let Sd = (C , M , P, F, c0) be a data storage type. Moreover,
let m̄ be a new storage input such that m̄ /∈ M . Then we define the data storage type
S′ = (C , {m̄}, P ′, F ′, c0) as follows: For each p ∈ P, f ∈ F , and m ∈ M

• the predicate pm with pm(c, m̄) = p(c, m) for each c ∈ C is in P ′ and

• the instruction fm with fm(c, m̄) = f (c, m) for each c ∈ C is in F ′.

Now let A= (Q,Π,Q0,Q f , T, wt,η) be an (Sd, D, K)-automaton. By Lemma 6.2.3 we can
assume that A is state normalized. Let ΠD be a new set of predicates such that for each d ∈ D

the predicate πd with
JπdK= {d}

is in ΠD. Then we define the new label structure Π′ = BC(ΠD).
Now we construct the (S′, D, K)-automaton B = (Q,Π′,Q0,Q f , T ′, wt′,η′) as follows. For

each transition τ = (q,π, p, q′, f) in T and for each d ∈ JπK we let the transition τ′ =

(q,πd , pη(d), q′, fη(d)) be in T ′ and we set wt′(τ′, d) = wt(τ, d) and wt′(τ′, d ′) = 0 for each
d ′ 6= d. Finally, we let η′(d) = m̄ for each d ∈ D. It is easy to see that JAK= JBK:

Let n ∈ N and w= d1 . . . dn for d1, . . . , dn ∈ D. Moreover, let

θ = (q0, w, c0) ⊢
τ1...τn (qn,ǫ, cn)

be a successful computation in ΘA(w) with transitions τi = (qi−1,πi , pi , qi , fi) ∈ T for each
i ∈ [n]. Then we construct the computation

θ ′ = (q0, w, c0) ⊢
τ′1...τ′n (qn,ǫ, cn)

inΘB(w) such that, for each i ∈ [n], τ′
i
= (qi−1, (πi)di

, (pi)η(di)
, qi , (fi)η(di)

). Clearly, wt′(θ ′) =

wt(θ).

185

Chapter 6 Weighted Symbolic Automata with Data Storage

Conversely, each computation in ΘB(w) has the form of θ ′ and we can similarly construct
the computation θ ∈ ΘA(w). Hence, there is a weight preserving bijection between ΘA(w)

and ΘB(w).
We obtain for each w ∈ D∗

JAK(w) =
∑

θ∈ΘA(w)

wt(θ) =
∑

θ ′∈ΘB(w)

wt′(θ ′) = JBK(w)

and, thus, that JBK= JAK. �

Note that we could not prove an equality of the classes RE C(Sd, D, K) and RE C(S′, D, K)

from the above lemma. This is due to the fact that, using the above construction, there is no
possibility to ensure that an (S′, D, K)-automaton A

′ uses pη(d) and fη(d) while reading d.

6.2.2 Closure Properties

Here we consider some closure properties of (Sd, D, K)-automata (and instantiations of them)
that we will need later to prove our logical characterization.

Most of the following results can easily be obtained by slightly modifying usual constructions.
However, we conjecture that (Sd, D, K)-automata show a surprising difference to classical
automaton models: due to their storage encodings, we think that (Sd, D, K)-automata are
in general not closed under sum. As two different encodings η1 and η2 of two (Sd, D, K)-
automata A1 and A2 may force the data storage to treat the automata’s input differently, it is
not clear how to join the storage behavior of A1 and A2 in one automaton.

However, if A1 and A2 use the same storage encoding (for example, a projection), then we
obtain the closure under sum using a simple disjoint union.

Lemma 6.2.11 (cf. [HV16, Lemma 7(1.)]). Let r1 and r2 be (Sd, D, K)-recognizable weighted

languages. If r1 and r2 can be recognized by two (Sd, D, K)-automata using the same storage

encoding η, then r1 + r2 is (Sd, D, K)-recognizable. In particular, if r1 and r2 are i-projectively

(Sd, D, K)-recognizable, then r1 + r2 is i-projectively (Sd, D, K)-recognizable as well.

We note that from the above lemma obviously the closure of (TR I Vd, D, K)-recognizable
weighted languages under sum follows.

Lemma 6.2.12 ([HV16, Lemma 7(2.)]). Let r be an (Sd, D, K)-recognizable weighted language

and let L be a D-recognizable language. Then r ∩ L is (Sd, D, K)-recognizable.

Proof. Let A = (Q,Π,Q0,Q f , T, wt,η) be an (Sd, D, K)-automaton. Moreover, consider the D-
automaton B = (Q′,Π′,Q′0,Q′

f
, T ′). By Lemma 6.2.3 we can assume that A is state normalized

and by Lemma 6.2.8 we can assume that B is total and deterministic. Moreover, without
loss of generality we can assume that Q ∩Q′ = ;. Then we construct by the usual product
construction the automaton Ā= (Q̄, Π̄,Q0̄,Q f̄ , T̄ , wt̄,η), where

• Q̄ =Q×Q′, Q0̄ =Q0 ×Q′0, and Q f̄ =Q f ×Q′
f
,

• Π̄ = BC(Π ∪Π′), and

186

6.2 Weighted Symbolic Automata with Data Storage

• for each transition τ = (q1,π, p, q2, f) ∈ T andτ′ = (q′1,π′, q′2) ∈ T ′ such that Jπ∧π′K 6=
; the transition τ̄ = ((q1, q′1),π∧π

′, p, (q2, q′2), f) is in T̄ and wt̄(τ̄, d) = wt(τ, d) for
each d ∈ D.

We note that since A is state normalized, B is deterministic, and we require Jπ∧π′K 6= ; in
the above bullet, the weight assignment of Ā is well-defined.

First let w ∈ L(B). Then there is exactly one run θw ∈ ΘB(w). By the construction, we
obtain that ΘĀ(w) = {θ × θw | θ ∈ ΘA(w)} where θ × θw is the computation obtained by
combining the states and input predicates in the transitions of θ and θw as indicated above.
Moreover, by construction, we obtain that wt̄(θ × θw) = wt(θ). Thus, JĀK(w) = JAK(w).

Now let w ∈ D∗ \ L(B). Then ΘB(w) = ; and, hence, ΘĀ(w) = ;. It follows that JĀK =
JAK∩L(B). �

The next lemma follows as a special case from the closure of tree languages recognizable
by symbolic tree automata from [FV14b] under nondeterministic relabelings. Here, we mean
by a nondeterministic relabeling a mapping of the form ρ : D→ P(D′) as well as its unique
extension ρ′ : D∗→ P((D′)∗) for non-empty sets D and D′. We identify ρ and ρ′.

Lemma 6.2.13 ([FV14b, Lemma 3.4(2.)]). Let D, D′ be non-empty sets, L a D-recognizable

language, and ρ : D→ P(D′) a nondeterministic relabeling. Then ρ(L) is D′-recognizable.

Proof. Let A= (Q,Π,Q0,Q f , T) be a D-automaton such that L(A) = L. Then we construct
the D′-automaton B = (Q, BC(Π′),Q0,Q f , T ′) where Π′ = {πρ | π ∈Π} such that

JπρK= {d ′ ∈ D′ | ∃d ∈ JπK: d ′ ∈ ρ(d)}

for each πρ ∈Π
′ and T ′ = {(q,πρ, q′) | (q,π, q′) ∈ T}.

It is easy to see that L(B) = ρ(L(A)). �

Moreover, it is well known that D-recognizable languages are closed under difference.

Lemma 6.2.14 ([VBdM10, Section 5]). Let L1 and L2 be D-recognizable languages. Then

L1 \ L2 is D-recognizable.

187

Chapter 6 Weighted Symbolic Automata with Data Storage

6.3 Data Storage for Symbolic Visibly Pushdown Automata

In this section we want to show that our automaton model captures symbolic visibly pushdown
automata (svpda). For this, we define a data storage type VP(N) and prove that the projectively
(VP(N), N)-recognizable languages are exactly the languages recognizable by svpda. Before
we start with this, let us recall from [DA14] some definitions we need.

In [DA14], symbolic visibly pushdown automata were defined over a so-called label theory,
which is similar to a label structure but additionally provides binary predicates. Moreover,
the set of predicates of a label theory does not have to be finite. However, as each symbolic
visibly pushdown automaton only uses finitely many predicates, this difference is not crucial.

Label theory Let D be a set. A binary predicate (over D) (often also just called a predicate)
is a mapping π: D× D→ {0, 1} and the set {(a, b) ∈ D | π(a, b) = 1} is denoted by JπK. We
denote the set of all binary predicates over D by Pred2(D). Similar to (unary) predicates
over D, we let J¬π1K, Jπ1 ∧π2K, and Jπ1 ∨π2K be defined by the set operations \, ∩, and
∪, respectively, for all binary predicates π1,π2 ∈ Pred2(D). Moreover, given a predicate
π ∈ Pred(D) and a binary predicate π′ ∈ Pred2(D), we set

Jπ∧π′K= Jπ′ ∧πK= {(a, b) ∈ D | a ∈ JπK and (a, b) ∈ Jπ′K}

and

Jπ∨π′K= Jπ′ ∨πK= {(a, b) ∈ D | a ∈ JπK or (a, b) ∈ Jπ′K} .

A label theory (over D) is a recursively enumerable set Ψ ⊆ Pred(D)∪Pred2(D) that is closed
under the Boolean operations ¬, ∧, and ∨. We let Ψ1 = Ψ ∩ Pred(D) and Ψ2 = Ψ ∩ Pred2(D).

Nested sets A nested set is a non-empty set N = Ni ∪Nc ∪Nr , where Ni (its elements called
internal symbols), Nc (its elements called call symbols), and Nr (its elements called return

symbols) are pairwise disjoint sets.

Symbolic visibly pushdown automata Let N be a nested set and let Ψ be a label theory
over N . A symbolic visibly pushdown automaton (using Ψ) (or a svpda) is a tuple M =

(Q,Q0,Γ ,δi ,δc ,δr ,δb,Q f) where

• Q is a finite set (its elements called states),

• Q0 ⊆Q (its elements called initial states),

• Γ is a finite set (its elements called pushdown symbols),

• δi ⊆Q×Ψ1 ×Q is a finite set (its elements called internal transitions),

• δc ⊆Q×Ψ1 ×Q× Γ is a finite set (its elements called call transitions),

• δr ⊆Q×Ψ2 × Γ ×Q is a finite set (its elements called return transitions)

• δb ⊆Q×Ψ1 ×Q is a finite set (its elements called empty-pushdown return transitions).

188

6.3 Data Storage for Symbolic Visibly Pushdown Automata

The set ofM-configurations is the set Q×N ∗×(Γ×Nc)
∗. For each transition τ in δi∪δc∪δr∪δb

we define the binary relation ⊢τ on the set of M-configurations as follows: for every q, q′ ∈Q,
d ∈ N , w ∈ N ∗, and u, u′ ∈ (Γ × N)∗, we let

(q, dw, u) ⊢τ (q′, w, u′)

if one of the following holds:

• τ is an internal transition of the form (q,π, q′) for some π ∈ Ψ1, d ∈ Ni and d ∈ JπK,
and u′ = u,

• τ is a call transition of the form (q,π, q′,γ) for some π ∈ Ψ1 and γ ∈ Γ , d ∈ Nc and
d ∈ JπK, and u′ = (γ, d)u,

• τ is a return transition of the form (q,π,γ, q′) for some π ∈ Ψ2 and γ ∈ Γ , d ∈ Nr ,
u= (γ, a)u′ for some a ∈ N , and (a, d) ∈ JπK, or

• τ is an empty-pushdown return transition of the form (q,π, q′) for some π ∈ Ψ1, d ∈ Nr

and d ∈ JπK, and u= u′ = ǫ.

A computation (of M) is a sequence

ζ0 ⊢
τ1 ζ1 · · · ⊢

τn ζn

such that n ∈ N, τ1, . . . ,τn are transitions of M, ζ0, . . . ,ζn are M-configurations, and ζi−1 ⊢
τi

ζi for each i ∈ [n]. Sometimes we abbreviate this computation by ζ0 ⊢
τ1...τn ζn. Let w =

d1 . . . dn ∈ N ∗ for some n ∈ N and d1, . . . , dn ∈ N . A computation is called a successful

computation on w if it is of the form

θ = ((q0, w,ǫ) ⊢τ1...τn (q f ,ǫ, u))

for some q0 ∈Q0, q f ∈Q f , u ∈ (Γ × N)∗, and transitions τ1, . . . ,τn in δi ∪δc ∪δr ∪δb. We
denote the set of all successful computations of M on w by ΘM(w). Then the language of M,
denoted by L(M), is the set

L(M) = {w ∈ N ∗ | ΘM(w) 6= ;}.

Thus, the pushdown operations M executes during a run are predetermined by the input
string – each call symbol forces a push operation, each internal symbol forces a stay operation
and each return symbol forces a pop operation (unless the pushdown is empty, then a stay
operation is performed). This behavior induces a matching relation over the positions of
each input word w. A pair (i, j) of positions of w is matching if the pushdown cell pushed
at position i is popped at position j. We denote the set of all matching position pairs by
match(w).

In contrast to a symbolic automaton, M uses binary predicates over matching positions.
We will now define the data storage type VP(N) which simulates the pushdown part of an
svpda and encodes these binary predicates as parameters of storage instructions.

189

Chapter 6 Weighted Symbolic Automata with Data Storage

Data storage type VP(N) Let N be a nested set. We define the data storage type VP(N) =
(C , N , P, F,ǫ) where

• C = (Λ× Nc)
∗ and Λ is an infinite set of pushdown symbols,

• P = {T R U E} with T R U E(c, d) = 1 for each c ∈ C , d ∈ N , and

• F = {P U S Hγ | γ ∈ Λ}∪{P O Pγ,π | γ ∈ Λ,π ∈ Pred(Nc×Nr)}∪{S TA Y i , S TA Y r} such that
for each γ ∈ Λ, π ∈ Pred(Nc × Nr), c ∈ C , and d ∈ N we have

– P U S Hγ(c, d) = (γ, d)c if d ∈ Nc ,

– P O Pγ,π(c, d) = c′ if d ∈ Nr , c = (γ, a)c′ for some a ∈ Nc , and (a, d) ∈ JπK,

– S TA Y i(c, d) = c if d ∈ Ni , and

– S TA Y r(c, d) = c if d ∈ Nr and c = ǫ,

and undefined otherwise.

The storage encoding of an (VP(N), N)-automaton admits to map an input symbol d ∈ N

to another symbol d ′ ∈ N with d 6= d ′. Thus, for our equivalence result, we require projective
(VP(N), N)-automata. Then we can show the following statement.

Theorem 6.3.1 ([HV16, Theorem 9]). Let N be a nested set and L ⊆ N ∗. L is recognizable by

a symbolic visibly pushdown automaton if and only if L is projectively (VP(N), N)-recognizable.

Proof. For the “only if” part let N be a nested set and let Ψ be a label theory over N . Moreover,
let M = (Q,Q0,Γ ,δi ,δc ,δr ,δb,Q f) be a symbolic visibly pushdown automaton using Ψ.
Recall that Λ is the set of pushdown symbols occurring in configurations of VP(N). We define
an injective function f : Γ → Λ and for the sake of simplicity we identify f (γ) with γ. Then
we construct the (VP(N), N)-automaton A = (Q, BC(Π),Q0,Q f , T,η) where Π is the set of
all unary predicates occurring in the transitions of M, η is the identity on N , and the set T

of transitions is defined as follows:

• for each (q,π, q′) ∈ δi the transition (q,π, T R U E, q′, stayi) is in T ,

• for each (q,π, q′,γ) ∈ δc the transition (q,π, T R U E, q′, P U S Hγ) is in T ,

• for each (q,π,γ, q′) ∈ δr the transition (q,⊤, T R U E, q′, P O Pγ,π) is in T , and

• for each (q,π, q′) ∈ δb the transition (q,π, T R U E, q′, stayr) is in T .

It is not difficult to see that L(M) = L(A): Let n ∈ N and w = d1 . . . dn for some d1, . . . , dn ∈ N .
Moreover, let

θ = (q0, w,ǫ) ⊢τ1...τn (qn,ǫ, u)

be a successful computation in ΘM(w). Then we construct the computation

θ ′ = (q0, w,ǫ) ⊢τ
′
1...τ′n (qn,ǫ, u)

in ΘA(w) where, for each i ∈ [n],

190

6.3 Data Storage for Symbolic Visibly Pushdown Automata

• if τi = (q,π, q′) in δi , then τ′
i
= (q,π, T R U E, q′, stayi),

• if τi = (q,π, q′,γ) in δc , then τ′
i
= (q,π, T R U E, q′, P U S Hγ),

• if τi = (q,π,γ, q′) in δr , then τ′
i
= (q,⊤, T R U E, q′, P O Pγ,π), and

• if τi = (q,π, q′) in δb, then τ′
i
= (q,π, T R U E, q′, stayr).

Conversely, each computation in ΘA(w) has the form of θ ′ and we can similarly construct
the computation θ ∈ ΘM(w). Hence, L(M) = L(A).

For the “if” part let A = (Q,Π,Q0,Q f , T,η) be a projective (VP(N), N)-automaton. We
construct the symbolic visibly pushdown automaton M using a new label theory Ψ as follows.
Let Π̄ = {π̄ ∈ Pred2(N) | π ∈Π} where for each π̄ ∈ Π̄ we set

Jπ̄K= {(d, d ′) | d ∈ N , d ′ ∈ JπK} .

Moreover, let Π′ be a set of binary predicates containing for each transition in T of the
form (q,π, T R U E, q′, P O Pγ,ϕ) the binary predicate ϕ̄ ∈ Pred2(N) with Jϕ̄K = JϕK. Now we
set Ψ = BC(Π ∪Π′ ∪ Π̄). Moreover, let Γ be the finite set of pushdown symbols used in
transitions of A. Then we construct M= (Q,Q0,Γ ,δi ,δc ,δr ,δb,Q f) such that

• for each (q,π, T R U E, q′, stayi) ∈ T the transition (q,π, q′) is in δi ,

• for each (q,π, T R U E, q′, P U S Hγ) ∈ T the transition (q,π, q′,γ) is in δc ,

• for each (q,π, T R U E, q′, P O Pγ,ϕ) ∈ T the transition (q, π̄∧ϕ,γ, q′) is in δr , and

• for each (q,π, T R U E, q′, stayr) ∈ T the transition (q,π, q′) is in δb.

Again, it is not difficult to see that L(A) = L(M): In the same way as above, for each word
w ∈ N ∗, we can relate a computation θ ∈ ΘA(w) to a computation θ ′ ∈ ΘM(w) as induced
by the construction. �

Example 6.3.2. Let N be a nested set with Ni = N+, Nc = {〈x | x ∈ N+}, and Nr = {x〉 | x ∈
N+}. We consider the language L ⊆ N ∗ which consists of all words w such that for every two
symbols 〈x and y〉 at matching positions of w we have x = y if x is even, i.e.,

w ∈ L ⇔ ∀(i, j) ∈match(w) : (w(i) = 〈x and x is even)⇒ w(j) = x〉

for each w ∈ N ∗. For an example consider the word

w= 3〉〈2 4 〈3 5〉 2〉

in L with |w|= 6 and matching positions (2, 6) and (4, 5).
This language can be recognized by an svpda. Recall from Example 6.2.2 the unary

predicates even and odd and let ∼ be a binary predicate with (〈x , y〉) ∈ J∼K iff x = y for
each x , y ∈ N+. Let Ψ = BC({even,odd,∼}). Now we let M = ({q}, {q},Γ ,δi ,δc ,δr ,δb, {q})
be an svpda using Ψ where Γ = {e, o}, and

191

Chapter 6 Weighted Symbolic Automata with Data Storage

• δi = {(q,⊤, q)},

• δc = {(q, even, q, e), (q, odd, q, o)},

• δr = {(q,∼, e, q), (q,⊤, o, q)}, and

• δb = {(q,⊤, q)}.

It is not hard to see that L(M) = L: for each even call symbol 〈x a pushdown cell γ = (e, 〈x)
is pushed. If a return symbol y〉 is read while γ is the topmost pushdown cell, it is checked
whether x = y .

Now we construct the projective (VP(N), N ,B)-automaton A = ({q},Π, {q}, {q}, T,η)
where Π = BC({even, odd,⊤}), η is the identity function, and T contains the following
transitions:

• from δi the transition (q,⊤, T R U E, q, stayi) is constructed,

• from δc the transitions (q, even, T R U E, q, P U S H e) and (q, odd, T R U E, q, P U S Ho) are
constructed,

• from δr the transitions (q,⊤, T R U E, q, P O Pe,∼) and (q,⊤, T R U E, q, P O Po,⊤) are con-
structed, and

• from δb the transition (q,⊤, T R U E, q, stayr) is constructed.

Clearly, L(A) = L. �

Now Theorem 6.3.1 opens the possibility of considering weighted svpda. For example
we can easily construct a (VP(N), N , Kavg)-automaton A

′ which maps each word in L to the
average value of all its even call symbols.

192

6.4 Data Storage for Weighted Timed Automata

6.4 Data Storage for Weighted Timed Automata

Now we want to provide another data storage type TIME(C) and show that projective
(TIME(C),Σ×R≥0, K)-automata recognize a timed series r if and only if r is recognized by a
weighted timed automaton. First of all, we briefly recall some concepts for defining timed
automata.

Our definition of timed words and weighted timed automata closely resembles the one in
[Qua11]. The only difference is that in our definition of timed words, each symbol stores the
time difference to its predecessor as in [DP14], while in [Qua11] the corresponding point
in time is recorded. However, there exists a straight forward bijection between both views
[Per16].

Convention. In the course of this section let Σ be a non-empty and finite set and let K be an

arbitrary semiring if not specified otherwise.

Timed words and timed series A timed word (over Σ) is a non-empty finite sequence
(a1, t1) . . . (an, tn) ∈ (Σ ×R≥0)

+. The set of timed words over Σ is denoted by TΣ+ and for
some semiring K a mapping r : TΣ+→ K is called a timed series (over Σ and K).

Clocks A clock variable is a variable ranging over R≥0 and we denote the set of all clock
variables by C. Moreover, we let a clock constraint ϕ over C be a conjunction of expressions
x ∼ c with x ∈ C, c ∈ N, and ∼ ∈ {<,≤,=,≥,>}. The set of all clock constraints over C is
denoted by Φ(C).

A clock valuation is a function ν: C→ R≥0 and we let ν0(x) = 0 for each x ∈ C. Now let
ν: C→ R≥0, t ∈ R≥0, and λ ⊆ C. Then we define the clock valuation ν+ t by (ν+ t)(x) =

ν(x) + t for all x ∈ C. Moreover the clock valuation ν[λ := 0] is defined by ν[λ := 0](x) = 0
for all x ∈ λ and ν[λ := 0](x) = ν(x) for all x /∈ λ.

The satisfaction relation |= ⊆ RC≥0 × Φ(C) is defined as expected, by checking the valuation
of each clock against the respective constraints in the conjunction. For this, for each ϕ ∈ Φ(C)
and ν: C→ R≥0, we let ϕ[ν] denote the expression obtained by replacing each occurrence
of a clock variable x in ϕ by ν(x). Then ν |= ϕ if ϕ[ν] evaluates to true.

Weighted timed automata A K-weighted timed automaton over Σ (and C) is a tuple A=

(Q,Q i ,Q f ,C, E, ewt, dwt), where

• Q is a finite set (its elements called states),

• Q i ⊆Q and Q f ⊆Q (their elements called initial states resp. final states),

• C is a finite set of clock variables,

• E ⊆Q×Σ ×Φ(C)×P(C)×Q is a finite set (its elements called edges),

• ewt: E→ K is a function (assigning so-called edge weights), and

• dwt: Q×R≥0→ K is a function (assigning so-called delay weights).

193

Chapter 6 Weighted Symbolic Automata with Data Storage

q0 q1

b / x ≥ 0 a / x ≥ 1∧ x ≤ 4

a / x ≥ 0 / x := 0

Figure 6.3: A graphical representation of the edges of the weighted timed
automaton A from Example 6.4.1.

A run of A is a finite sequence

θ =
!
(q0,ν0)

t1
−→

e1
−→ (q1,ν1)

t2
−→

e2
−→ . . .

tn
−→

en
−→ (qn,νn)
�

where n≥ 1, q0, . . . , qn ∈Q, ν0, . . . ,νn are clock valuations, t1, . . . , tn ∈ R≥0, and e1, . . . , en ∈
E such that the following conditions hold: q0 ∈Q i , qn ∈Q f , and ei = (qi−1, ai ,ϕi ,λi , qi) such
that νi−1+ t i |= ϕi and νi = (νi−1+ t i)[λi := 0] for each i ∈ [n]. Thus, each step of θ consists
of (i) adding a time delay to the current clock valuation and (ii) applying an edge.

The label of θ is the timed word label(θ) = ((e1)2, t1) . . . ((en)2, tn), and the running weight

rwt(θ) of θ is the value in K given by

rwt(θ) =
∏

i∈[n] dwt(qi−1, t i) · ewt(ei)

where the product is ordered naturally.
For any timed word w ∈ TΣ+ let RunA(w) denote the set of all runs θ ofA with label(θ) = w.

The timed series recognized by A is the mapping JAK: TΣ+→ K such that

JAK(w) =
∑

θ∈RunA(w)
rwt(θ).

Example 6.4.1. Let Σ = {a, b}, C = {x}, and consider the max-plus semiring (R≥0 ∪
{−∞}, max,+,−∞, 0) of non-negative reals. Now letA = ({q0, q1}, {q0}, {q0},C, E, ewt,dwt)
be the R≥0-weighted timed automaton over Σ where E consists of the three edges

e1 = (q0, b, x ≥ 0,;, q0) e2 = (q0, a, x ≥ 1∧ x ≤ 4,;, q1) e3 = (q1, a, x ≥ 0, {x}, q0)

and where ewt(ei) = 0 for each i ∈ [3] and, for each t ∈ R≥0, dwt(q0, t) = t and dwt(q1, t) =

0. A graphical representation of the edges of A is given in Figure 6.3.
Intuitively, A recognizes non-empty strings over Σ ×R≥0 where all as occur as pairs (i.e.,

two in succession) and between two such pairs (and before the first pair) there is a time delay
from 1 up to 4. For example,

w= (b, 2)(a, 2)(a, 3) ∈ supp(JAK)

and
w′ = (b, 2)(a, 3)(a, 3) /∈ supp(JAK)

194

6.4 Data Storage for Weighted Timed Automata

as in w′ before the first occurrence of a there is a time delay of 5 (note that by the semantics
of a timed automaton, the time at a position i is added to the clocks before an edge is applied
and, thus, the symbol at i is read).

Formally, for each n ≥ 1 and w = (w1, x1) . . . (wn, xn) ∈ TΣ+ we let Ind(w) be the set of
all pairs (i, j) ∈ [n]× [n] such that either (i ≤ j, i = 1, w j = a, and w1 = . . .= w j−1 = b) or
(i < j, wi−1 = w j = a, and wi = . . .= w j−1 = b). Then w ∈ supp(JAK) if and only if

• w1 . . . wn ∈ ({b}
∗ · {aa})∗ and

• for all (i, j) ∈ Ind(w): 1≤ (x i + . . .+ x j)≤ 4

and for each w fulfilling these requirements we have

JAK(w) =
∑

(i, j)∈Ind(w)

x i + . . .+ x j .

For example, the timed word w = (b, 2)(a, 2)(a, 3) is recognized by A with the run θ of
the form

(q0, [x = 0])
2
−→

e1
−→ (q0, [x = 2])

2
−→

e2
−→ (q1, [x = 4])

3
−→

e3
−→ (q0, [x = 0])

where [x = a] denotes the clock valuation ν with ν(x) = a. Then

rwt(θ) = dwt(q0, 2) + ewt(e1) + dwt(q0, 2) + ewt(e2) + dwt(q1, 3) + ewt(e3)

= 2+ 2

= 4 .

As θ is the only run for w, we obtain JAK(w) = rwt(θ) = 4. �

Now we define a data storage type TIME(C) to simulate the clock behavior of weighted
timed automata.

Data storage type TIME(C) Let C be a finite set of clock variables and let TIME(C) =
(RC≥0,R≥0, P, F,ν0) where P = {pϕ | ϕ ∈ Φ(C)}, F = { fλ | λ ⊆ C}, and for every ϕ ∈ Φ(C),
λ ⊆ C, ν ∈ RC≥0, and t ∈ R≥0 we let

• pϕ(ν, t) = 1 iff (ν+ t) |= ϕ and

• fλ(ν, t) = (ν+ t)[λ := 0].

Theorem 6.4.2 ([HV16, Theorem 10]). Let K be a semiring and r : TΣ+→ K a timed series.

Then r is recognized by a K-weighted timed automaton over Σ and C if and only if r is projectively

(TIME(C),Σ ×R≥0, K)-recognizable.

Proof. For the “only if” part let A = (Q,Q i ,Q f ,C, E, ewt, dwt) be a K-weighted timed au-
tomaton over Σ and C. We construct the (TIME(C),Σ ×R≥0, K)-automaton B where each
transition τ of B results from a given edge from E and the weight of τ amounts to the product
of dwt (applied to the source state of e) and ewt. However, we have to regard a technical
difficulty: There might be two edges e1 = (q, a,ϕ1,λ, q′) and e2 = (q, a,ϕ1,λ, q′) which only

195

Chapter 6 Weighted Symbolic Automata with Data Storage

differ in their clock constraints but such that ν |= ϕ1 if and only if ν |= ϕ2 for each ν ∈ RC≥0.
In this case, pϕ1

= pϕ2
and, thus, we would construct from e1 and e2 the same transition τ.

To guarantee a unique weight assignment, we encode the edges of A into the states of B.
Formally, let B = (E ∪Q f , BC(Π),Q0,Q f , T, wt,η), where

• Π = {πa | a ∈ Σ} such that for every a, b ∈ Σ and t ∈ R≥0 we have (b, t) ∈ JπaK if
and only if a = b,

• Q0 = {e ∈ E | (e)1 ∈Q i},

• for every edge e = (q, a,ϕ,λ, q′) and e′ in E with (e′)1 = q′ the transition τ =

(e,πa, pϕ, e′, fλ) is in T and wt(τ, (b, t)) = dwt(q, t) · ewt(e) for every (b, t) ∈Σ×R≥0,

• for every edge e = (q, a,ϕ,λ, q′) in E with q′ ∈Q f the transition τ= (e,πa, pϕ, q′, fλ)

is in T and wt(τ, (b, t)) = dwt(q, t) · ewt(e) for every (b, t) ∈Σ ×R≥0, and

• η(a, t) = t for every a ∈Σ, t ∈ R≥0.

Now let w= (a1, t1) . . . (an, tn) ∈ TΣ+ be a timed word for some n≥ 1. Moreover, let

θ = (q0,ν0)
t1
−→

e1
−→ . . .

tn
−→

en
−→ (qn,νn)

be a run in RunA(w) with ei = (qi−1, ai ,ϕi ,λi , qi) for i ∈ [n]. Then we construct the compu-
tation

θ ′ = (e1, w,ν0) ⊢
τ1...τn (qn,ǫ,νn)

inΘB(w)whereτi = (ei−1,πai
, pϕi

, ei , fλi
) for each i ∈ [n−1] andτn = (en−1,πan

, pϕn
, qn, fλn

).
Note that wt(τi , (ai , t i)) = dwt(qi−1, t i) · ewt(ei) for each i ∈ [n] and therefore

rwt(θ) =
∏

i∈[n] dwt(qi−1, t i) · ewt(ei) =
∏

i∈[n]wt(τi , (ai , t i))
(∗)
= wt(θ ′),

where the products are ordered naturally and (∗) holds since K is a semiring.
Conversely, for every computation θ ′ ∈ ΘB(w) by definition of T there is a uniquely

determined run θ ∈ RunA(w) such that θ ′ is the computation constructed above. Hence, for
every w ∈ TΣ+ we have that RunA(w) and ΘB(w) are in a one-to-one correspondence and
for two corresponding θ ∈ RunA(w) and θ ′ ∈ ΘB(w) we have rwt(θ) = wt(θ ′). It follows
that

JAK(w) =
∑

θ∈RunA(w)
rwt(θ) =
∑

θ ′∈ΘB(w)
wt(θ) = JBK(w)

and, hence, JAK= JBK.
For the “if” part let B = (Q,Π,Q0,Q f , T, wt,η) be a projective (TIME(C),Σ × R≥0, K)-

automaton. Thus, η : Σ ×R≥0→ R≥0 is the projection to the second component. Then we
construct a K-weighted timed automaton A over Σ and C such that JAK = JBK. We construct
an edge e for each given transition τ and first input component a satisfying the predicate
of τ. Moreover, we have to distribute the weight of τ to ewt and dwt. Since the weight of
τ depends on a concrete input, we have to use dwt to simulate wt and let ewt map each
element to 1. However, as dwt depends on a state and a time delay (instead of a transition

196

6.4 Data Storage for Weighted Timed Automata

and the complete input symbol), we encode the transitions and the symbols from Σ into the
set of states.

For this let A = (Q′,Q′
i
,Q′

f
,C, E, ewt, dwt) with Q′ = (T × Σ) ∪ Q f , Q′

i
= T0 × Σ for

T0 = {τ ∈ T | (τ)1 ∈ Q0}, and Q′
f
= Q f . Moreover, for each transition τ = (q,π, p, q′, fλ),

τ′ ∈ T with (τ′)1 = q′, and a, b ∈ Σ such that (a, t) ∈ JπK for some t ∈ R≥0 the following
edges are in E:

• The edge e = ((τ, a), a,ϕ,λ, (τ′, b)) is in E, where ϕ is an arbitrary but fixed clock
constraint such that pϕ = p (there might be more than one). For each t ∈ R≥0 we let
dwt((τ, a), t) = wt(τ, (a, t)) if (a, t) ∈ JπK and 0 otherwise and we let ewt(e) = 1.

• If q′ ∈Q f , then additionally the edge e′ = ((τ, a), a,ϕ,λ, q′), with ϕ as above, is in E

and ewt(e′) = 1.

Now let w = (a1, t1) . . . (an, tn) ∈ TΣ+ be a timed word for some n ≥ 1 and let θ =
(q0, w,ν0) ⊢

τ1...τn (qn,ǫ,νn) be a computation in ΘB(w) with τi = (qi−1,πi , pi , qi , fλi
) for

i ∈ [n]. Then we construct the run

θ ′ = ((τ1, a1),ν0)
t1
−→

e1
−→ . . .

tn
−→

en
−→ (qn,νn)

in RunA(w) where we let ei = ((τi , ai), ai ,ϕi ,λi , (τi+1, ai+1)) for i ∈ [n − 1] and en =

((τn, an), an,ϕn,λn, qn) with ϕ1, . . . ,ϕn as defined above.
Note that dwt((τi , ai), t i) = wt(τi , (ai , t i)) and ewt(ei) = 1 for each i ∈ [n], and therefore

wt(θ)
(∗)
=
∏

i∈[n]wt((ai , t i),τi) =
∏

i∈[n] dwt((τi , ai), t i) · 1= rwt(θ ′),

where the products are ordered naturally and (∗) holds since K is a semiring.
Conversely, for every run θ ′ ∈ RunA(w) by definition of E there is a uniquely determined

computation θ ∈ ΘB(w) such that θ ′ is the computation constructed above. Thus again, for
every w ∈ TΣ+ we have that ΘB(w) and RunA(w) are in a one-to-one correspondence and
for two corresponding runs θ ′ and θ we have rwt(θ ′) = wt(θ). It follows that

JBK(w) =
∑

θ∈ΘB(w)
wt(θ) =
∑

θ ′∈RunA(w)
rwt(θ ′) = JAK(w)

and, hence, JBK= JAK. �

Example 6.4.3. Recall the alphabetΣ = {a, b}, the set C = {x} containing one clock variable x ,
and the R≥0-weighted timed automaton A = ({q0, q1}, {q0}, {q0},C, E, ewt,dwt) over Σ from
Example 6.4.1. Using the above construction, we define the (TIME(C),Σ×R≥0, K)-automaton
B with JBK= JAK as follows:

We let B = (E ∪ {q0}, BC({πa,πb}), {e1, e2}, {q0}, T, wt,η) where

JπaK= {(a, t) | t ∈ R≥0} and JπbK= {(b, t) | t ∈ R≥0}

and where T consists of the transitions

τ1 = (e1,πb, px≥0, e1, f;), τ′1 = (e1,πb, px≥0, e2, f;), τ′′1 = (e1,πb, px≥0, q0, f;),

τ2 = (e2,πa, px≥1∧x≤4, e3, f;),

τ3 = (e3,πa, px≥0, e1, f{x}), τ′3 = (e3,πa, px≥0, e2, f{x}), τ′′3 = (e3,πa, px≥0, q0, f{x}).

197

Chapter 6 Weighted Symbolic Automata with Data Storage

Moreover, for each (x , t) ∈ Σ ×R≥0 we let wt(τ, (x , t)) = t for every τ ∈ {τ1,τ′1,τ′′1 ,τ2},
wt(τ′, (x , t)) = 0 for every τ′ ∈ {τ3,τ′3,τ′′3}, and η(x , t) = t.

Now recall from Example 6.4.1 the timed word w= (b, 2)(a, 2)(a, 3). The automaton B

recognizes w with the unique computation

(e1, (b, 2)(a, 2)(a, 3), [x = 0]) ⊢τ
′
1 (e2, (a, 2)(a, 3), [x = 2])

⊢τ2 (e3, (a, 3), [x = 4])

⊢τ
′′
3 (q0,ǫ, [x = 0]) .

Thus, JBK(w) = 4 as well. �

198

6.5 Weighted Symbolic MSO Logic with Storage Behavior

6.5 Weighted Symbolic MSO Logic with Storage Behavior

The aim of this section is to give a logical characterization of the weighted languages recog-
nized by symbolic weighted automata with storage. For this, we present a weighted symbolic
MSO logic with storage behavior. Our logic is based on the concepts of M-expression [FSV12,
Definition 3.1], their adoption to unital valuation monoids [FV15], and B-expression [VDH16,
Definition 5]. Since these expressions depend on unweighted MSO-formulas, we first extend
unweighted MSO logic to symbolic MSO logic.

Most of the concepts we use extend the notions from Section 1.5. Thus, we often only
explain the change to the basic case. As before, we let Vfo and Vso be disjoint sets of first-order
and second-order variables, respectively.

Symbolic MSO logic

Here we extend unweighted MSO logic to the symbolic setting: instead of the atom labelσ(x)
we will use labelπ(x), where π is a predicate from some label structure. Moreover, as
preparation for a logic with storage behavior, we additionally define atoms of the form
B(x) = (p, f), where B is a particular variable that can be instantiated with a storage behavior.
As our logic gives no possibility to check whether a string (p1, f1) . . . (pn, fn) of predicates pi

and instructions fi is a storage behavior, we will implement this requirement in the semantics
by an intersection with “valid strings”.

Symbolic MSO-formulas In addition to the usual first-order and second-order variables,
we use one more variable B which we call second-order behavior variable and which ranges
over behaviors of S.

Let D be a non-empty set, Π a label structure over D, and Ω a finite subset of P × F . We
define the set of formulas of symbolic MSO logic over Ω and Π, denoted by MSO(Ω,Π), by
the following EBNF:

ψ ::= labelπ(x) | next(x , y) | x ∈ X | B(x) = (p, f)

ϕ ::=ψ | ¬ϕ | ϕ ∧ϕ | ∃x .ϕ | ∃X .ϕ

where π ∈ Π, x , y ∈ Vfo, (p, f) ∈ Ω, and X ∈ Vso. Let ϕ ∈ MSO(Ω,Π). The set Free(ϕ) is
defined as usual where we additionally set Free(labelπ(x)) = {x} and Free(B(x) = (p, f)) =

{x , B}. Moreover, we use the typical abbreviations for MSO-formulas that we recalled in
Section 1.5.1.

Variable assignment and updates Let V be a finite set of variables with B ∈ V, let η : D→
M be a relabeling, and let w ∈ D∗. A (V,η)-assignment for w is a function with domain V

which maps each first-order variable in V to an element of pos(w), each second-order variable
in V to a subset of pos(w), and B to an η(w)-behavior over Ω. We let Φ(V,η),w denote the set
of all (V,η)-assignments for w. In the usual way we define updates of (V,η)-assignments.
Let σ ∈ Φ(V,η),w and i ∈ pos(w). By σ[x 7→ i] we denote the (V ∪ {x},η)-assignment for w

that agrees with σ on V \ {x} and that satisfies σ[x 7→ i](x) = i. Similarly, we define the
updates σ[X 7→ I] and σ[B 7→ b] for each set I ⊆ pos(w) and each behavior b ∈ B(Ω,η(w)),

199

Chapter 6 Weighted Symbolic Automata with Data Storage

respectively. For each η(w)-behavior b we denote by [B 7→ b] the variable assignment
σ ∈ Φ({B},η),w that maps B to b.

Extended input set and valid words Extending the usual technique we encode a pair
(w,σ), where w ∈ D∗ and σ ∈ Φ(V,η),w, as a word over an extended set as follows. For each
finite set V of variables with B ∈ V we let

DV = D×P(fo(V)∪ so(V))×Ω

where fo(V) and so(V) are the subsets of all first-order and second-order variables occurring
in V, respectively.

Let ζ = ζ1 . . .ζn ∈ D∗
V

for some n ∈ N and ζ1, . . . ,ζn ∈ DV . We call ζ fo-valid if for each
x ∈ fo(V) there is a unique i ∈ pos(ζ) such that x occurs in the second component of ζi . We
denote the set of all fo-valid words over DV by D∗fo

V
. Moreover, we call ζ η-valid if the word

(ζ1)3 . . . (ζn)3

is an η((ζ1)1 . . . (ζn)1)-behavior over Ω. We denote the set of all η-valid words over DV by
D
∗η
V

.
It is clear that, for each finite set V of variables with B ∈ V and relabeling η : D→ M , there

is a one-to-one correspondence between the sets

{(w,σ) | w ∈ D∗,σ ∈ Φ(V,η),w} and D∗fo
V
∩ D
∗η
V

.

Thus, as usual, we will not distinguish between the pair (w,σ) and the corresponding word
ζ ∈ D∗fo

V
∩ D
∗η
V

.

Lemma 6.5.1 ([HV16, Lemma 11]). Let D be a set and let V be a finite set of variables with

B ∈ V. Then D∗fo
V

is DV -recognizable.

Proof. Without loss of generality assume fo(V) = {x1, . . . , xn}. It is easy to see that D∗fo
V
=⋂

j∈[n] L j , where L j = {w ∈ D∗
V
| x j occurs at exactly one position of w}.

Then we let Π = {π1, . . . ,πn}, where for each i ∈ [n] and u ∈ DV we have

u ∈ JπiK iff x i ∈ (u)2.

For every j ∈ [n] we construct a DV -automaton A j = (Q, BC(Π),Q0,Q f , T) such that
L(A j) = L j . For this, let Q = {0, 1}, Q0 = {0}, Q f = {1}, and the set T of transitions is defined
as follows:

• for every i ∈ [n] \ { j} the transitions (0,πi ∧¬π j , 0) and (1,πi ∧¬π j , 1) are in T , and

• the transition (0,π j , 1) is in T .

Obviously, L(A j) = L j and, therefore, L j is DV -recognizable. Since, by Lemma 6.2.12, the
class of DV -recognizable languages is closed under intersection, we have that D∗fo

V
is DV -

recognizable. �

200

6.5 Weighted Symbolic MSO Logic with Storage Behavior

Semantics of a formula Let ϕ ∈ MSO(Ω,Π) and V be a finite set of variables such that
Free(ϕ) ⊆ V and B ∈ V. Moreover, let η : D→ M be a relabeling. For every (w,σ) ∈ D∗fo

V
∩D
∗η
V

we define the relation (w,σ) |= ϕ by extending the satisfaction relation of classical MSO logic
as defined in Section 1.5.1 where we set

(w,σ) |= labelπ(x) ⇐⇒ w(σ(x)) ∈ JπK

and
(w,σ) |= (B(x) = (p, f)) ⇐⇒ σ(B)(σ(x)) = (p, f) .

Then we define the set of models of ϕ as the set

LV,η(ϕ) = {(w,σ) | w ∈ D∗, σ ∈ Φ(V,η),w, (w,σ) |= ϕ}.

Thus, LV,η(ϕ) ⊆ D∗fo
V
∩ D
∗η
V

.

Remark 6.5.2. In contrast to usual MSO logic (and besides the predicates for the symbolic
part) we require a valid storage behavior as assignment to B. However, by choosing the trivial
data storage type TR I Vd and using Ω = {(pT R U E , fI D)} we basically obtain a logic for symbolic
automata.

We note that, independently (and a few month earlier), D’Antoni and Veanes [DV15]
introduced a very similar logic for symbolic automata – they also use an atomic formula to
check whether an input symbol satisfies a predicate of their label theory. However, as in that
work (and in the follow-up paper [DV17a]) a major focus is on the implementation of the
formalism, the presentation of the logic (and the reduction to symbolic automata) slightly
differs from our work. Ã

Lemma 6.5.3 ([HV16, Lemma 12]). Let D be a set and Π a label structure over D, let Ω be a

finite subset of P × F, and let η : D→ M be a relabeling. For each ϕ ∈ MSO(Ω,Π) and each

finite set V ⊇ Free(ϕ) of variables with B ∈ V there is a DV -recognizable language L such that

LV,η(ϕ) = L ∩ D
∗η
V

.

Proof. We prove this statement by induction on the structure of ϕ. First let ϕ be an atom.
We only show two cases, as the other cases are resolved in a very similar way.

If ϕ = labelπ(x), then we construct the DV -automaton A = ({q, q′}, BC({πx}), {q}, {q
′}, T),

where JπxK = {(a, U ,ω) ∈ DV | a ∈ π, x ∈ U} and T = {(q,⊤, q), (q,πx , q′), (q′,⊤, q′)}. Let
L = L(A)∩ D∗fo

V
. Then LV,η(ϕ) = L ∩ D

∗η
V

and, by Lemma 6.2.12, L is DV -recognizable.
If ϕ = (B(x) = (p, f)), we construct the DV -automaton A = ({q, q′}, BC({πx}), {q}, {q

′}, T),
where JπxK = {(a, U ,ω) ∈ DV | x ∈ U ,ω = (p, f)} and T = {(q,⊤, q), (q,πx , q′), (q′,⊤, q′)}.
Let L = L(A)∩ D∗fo

V
. Then LV,η(ϕ) = L ∩ D

∗η
V

and, by Lemma 6.2.12, L is DV -recognizable.
The induction step on the structure of ϕ is straightforward using Lemmas 6.2.12,6.5.1,

and 6.2.13. �

Weighted symbolic MSO logic

Here we introduce our new weighted MSO logic over data storage types. This logic extends
the one in [VDH16, Def. 5] from a finite set Σ to a non-empty but possibly infinite set D.

201

Chapter 6 Weighted Symbolic Automata with Data Storage

B-expressions Let D be a non-empty set, Π a label structure over D, and Ω a finite subset of
P× F . We define the set BExp(Ω,Π, K) of B-expressions over (Ω,Π, K) to be the set generated
by the EBNF:

e ::= Valκ | (e+ e) | (ϕ Â e) |
∑

x
e |
∑

X
e ,

where κ: DU → K is a relabeling for some finite set U of variables with B ∈ U , and ϕ ∈
MSO(Ω,Π). As in the unweighted case the sets Free(e) and Bound(e) for each B-expression e

are defined as usual where we set Free(Valκ) = U . Note that, therefore, for each B-expression
e in BExp(Ω,Π, K) we have B ∈ Free(e).

MSO-expressions We define the set Exp(Ω,Π, K) of MSO-expressions over (Ω,Π, K) as the
set of all expressions of the form ∑η

B
e

with e ∈ BExp(Ω,Π, K), Free(e) = {B}, and relabeling η : D→ M . An MSO-expression over

(S, D, K) is an MSO-expression over (Ω,Π, K) for some finite Ω ⊆ P × F and label structure
Π over D.

Semantics of an expression Let e ∈ BExp(Ω,Π, K), let V be a finite set of variables con-
taining Free(e), and let η : D→ M be a relabeling. The semantics of e with respect to V and η

is the weighted language JeKV,η : D∗
V
→ K such that supp(JeKV,η) ⊆ D∗fo

V
∩ D
∗η
V

and for each
ζ= (w,σ) ∈ D∗fo

V
∩ D
∗η
V

we define JeKV,η(ζ) inductively as follows:

• for every U ⊆ V with B ∈ U and every κ: DU → K we let

JValκKV,η(ζ) = val(κ(ζU))

where ζU is obtained from ζ by replacing each symbol (a, V,ω) by (a, V ∩ (fo(U) ∪
so(U)),ω),

• for every e1, e2 ∈ BExp(Ω,Π, K) we let

Je1 + e2KV,η

!
ζ
�
= Je1KV,η

!
ζ
�
+ Je2KV,η

!
ζ
�
,

• for every ϕ ∈MSO(Ω,Π) and e ∈ BExp(Ω,Π, K) we let

Jϕ Â eKV,η

!
ζ
�
=

¨
JeKV,η

!
ζ
�

if ζ ∈ LV,η(ϕ)

0 otherwise,

• for every first-order variable x and e ∈ BExp(Ω,Π, K) we let

J
∑

x
eKV,η

!
ζ
�
=
∑

i∈pos(ζ)

JeKV∪{x},η
!
w,σ[x 7→ i]
�
,

• for every second-order variable X and e ∈ BExp(Ω,Π, K) we let

J
∑

X
eKV,η

!
ζ
�
=
∑

I⊆pos(ζ)

JeKV∪{X },η
!
w,σ[X 7→ I]
�

.

202

6.5 Weighted Symbolic MSO Logic with Storage Behavior

Let e =
∑η

B e′ be an MSO-expression over (Ω,Π, K). We define the weighted language
JeK: D∗→ K for each w ∈ D∗ by:

J
∑η

B
e′K(w) =
∑

b∈B(Ω,η(w))

Je′K{B},η
!
w, [B 7→ b]
�

.

We say that a weighted language r : D∗→ K is definable by an MSO-expression over (S, D, K)

if there is an MSO-expression e over (S, D, K) such that r = JeK.

Example 6.5.4. In this example we want to define the (CO U N Td,N, Kavg)-recognizable
weighted language ravg from Example 6.2.4 by an MSO-expression. For this, recall the
label structure Π = BC({even,odd, zero}) and let Ω consist of the three elements

ω1 = (⊤?,+), ω2 = (⊤?,−), and ω3 = (0?,+).

Moreover, we define the mapping κ: D{B}→ Kavg for each element (d,;,ω) ∈ D{B} by

κ(d,;,ω) =

d if d is even and ω=ω1

∞ if (d is odd and ω=ω2) or (d = 0 and ω=ω3)

−∞ otherwise

Then we construct the MSO-expression eavg over (Ω,Π, Kavg) as

eavg =
∑η

B
((ϕlength ∧ϕ ∧ϕzero)Â Valκ)

where we let

• ϕlength = ∃x y.next(x , y),

• ϕ = ¬∃x y.next(x , y)∧ labelodd(x)∧ labeleven(y), and

• ϕzero = ∀x .(∀y.¬next(x , y))↔ labelzero(x).

Intuitively, ϕlength ensures that each word has at least length 2 (in order to exclude (0,;,ω3)

from the support of eavg). Then the formula ϕlength∧ϕ∧ϕzero makes sure that each word that
is passed to Valκ (ignoring the variable assignment for B) is an element of the setN+evenN

+
odd{0}

where Neven and Nodd are the sets of all even respectively odd natural numbers. Thus, it is
easy to see that JeavgK= ravg. �

Remark 6.5.5. As it can be seen in the previous example, the atom Valκ is very powerful
as it is sensitive for the concrete input (similar to the weight function of our automaton
model). However, we note that this functionality is, especially in the context of weighted
timed automata, not unusual and indeed needed to simulate this model. Ã

In the remaining part of this section, we wish to prove the following theorem showing the
strong connection between (Sd, D, K)-automata and MSO-expressions over (Sd, D, K).

Theorem 6.5.6 (cf. [HV16, Theorem 13 and Theorem 16]). Let r : D∗ → K. Then r is

(Sd, D, K)-recognizable if and only if r is definable by some MSO-expression over (Sd, D, K).

This theorem follows from the subsequent Lemmas 6.5.7 and 6.5.10.

203

Chapter 6 Weighted Symbolic Automata with Data Storage

From automata to logic

The proof of the claim that recognizability implies definability follows the standard construc-
tion idea and is exactly the same as the proof of Lemma 9 of [VDH16] where D is a finite set
(there denoted by Σ), except that (1) the atomic formula labela(x) (for a ∈Σ) in ψ1 has to
be replaced by labelπ(x) and (2) κ(d, V,ω) = wt(τ, d) if V = {Xτ} and 0 otherwise, where
wt is the weight function of the given automaton.

Lemma 6.5.7 ([HV16, Theorem 13]). Let r : D∗→ K. If r is (Sd, D, K)-recognizable, then r

is definable by some MSO-expression over (Sd, D, K).

Proof. Let A = (Q,Π,Q0,Q f , T, wt,η). Without loss of generality we can assume that T =

{τ1, . . . ,τn} for some n ∈ N and pairwise distinct τ1, . . . ,τn ∈ T . We define the set V =
{Xτ | τ ∈ T} and consider each element of V to be a second-order variable. Let Ω = {(p, f) |
(q,π, p, q′, f) ∈ T for some q, q′ ∈Q,π ∈Π}.

Now we define an MSO-expression e over (Ω,Π, K) simulating A. For this, let us first
define the mapping κ: DV∪{B}→ K for each (d, V,ω) ∈ DV∪{B} by:

κ(d, V,ω) =

¨
wt(τ, d) if V = {Xτ}

0 otherwise.

Now let
e =
∑η

B

∑
Xτ1

. . .
∑

Xτn

!
(ϕ Â Valκ) + (ϕǫ Â Valκ + . . .+ Valκ︸ ︷︷ ︸

k

)
�

where k = |Q0 ∩Q f | and
ϕ = ϕpart ∧ϕcomp ∧¬ϕǫ

with

• ϕpart = ∀x .
∨

τ∈T

�
(x ∈ Xτ)∧
∧

τ′∈T :
τ 6=τ′
¬(x ∈ Xτ′)
�
,

• ϕcomp = ∀x . ψ∧ψ′ ∧
∧

τ=(q,π,p,q′, f)∈T

!
(x ∈ Xτ)→ (ψ1 ∧ψ2 ∧ψ3)

�
where

– ψ= first(x)→
∨

τ′∈T : (τ′)1∈Q0
(x ∈ Xτ′),

– ψ′ = last(x)→
∨

τ′∈T : (τ′)4∈Q f
(x ∈ Xτ′)

– ψ1 = labelπ(x),

– ψ2 = (B(x) = (p, f)),

– ψ3 = ∀y.
!
next(x , y)→
∨

τ′∈T : (τ′)1=q′ (y ∈ Xτ′)
�
, and

• ϕǫ = ∀x .next(x , x).

Intuitively, ϕ models the computations of A as it is usual for weighted symbolic automata
without storage; additionally, ψ2 assures that the behavior guessed by the semantics of

∑η
B

fits to the behavior guessed by the semantics of the sequence
∑

Xτ1
· · ·
∑

Xτn
. We use ϕǫ to

204

6.5 Weighted Symbolic MSO Logic with Storage Behavior

handle the empty input word appropriately: Since JAK(ǫ) =
∑

q∈Q0∩Q f
val(ǫ) and val(ǫ) = 1,

we sum up k-times Valκ.
Let m ≥ 1 and w ∈ D∗ with |w| = m. It is not hard to see that Free(ϕ) = V ∪ {B} and for

each (w,σ) ∈ D∗fo
V∪{B}∩D

∗η
V∪{B} we have (w,σ) ∈ LV∪{B}(ϕ) if and only if there is a computation

(q0, w, c0) ⊢
τ1...τm (qm,ǫ, cm) in ΘA(w) such that

(w,σ)(i) = (w(i), Xτi
, ((τi)3, (τi)5))

for each i ∈ [m]. We let L(ϕ, w) = {(w,σ) ∈ D∗fo
V∪{B} ∩ D

∗η
V∪{B} | (w,σ) |= ϕ}. Then the above

connection constitutes a bijection

h: ΘA(w)→ L(ϕ, w) .

Moreover, by definition of κ we obtain wt(θ) = val(κ(h(θ))) for each θ ∈ ΘA(w). Thus, we
obtain

JeK(w) =
∑

b∈B(Ω,η(w))

∑

I1,...,Im⊆pos(w)

Jϕ Â ValκKV∪{B},η(w[Xτ1
7→ I1, . . . , Xτm

7→ Im, B 7→ b])

=
∑

σ∈Φ(V∪{B},η),w

Jϕ Â ValκKV∪{B},η(w,σ)

=
∑

(w,σ)∈L(ϕ,w)

JValκKV∪{B},η(w,σ)

=
∑

(w,σ)∈L(ϕ,w)

val(κ(w,σ))

=
∑

(w,σ)∈L(ϕ,w)

wt(h−1(w,σ))

=
∑

θ∈ΘA(w)

wt(θ)

= JAK(w).

Finally, note that L(ϕ,ǫ) = ; and that LV∪{B},η(ϕǫ) = {(ǫ,σǫ)} with σǫ(Xτi
) = ; for each

i ∈ [n] and σǫ(B) = ǫ. Thus, we obtain

JeK(ǫ) = JValκ + . . .+ Valκ︸ ︷︷ ︸
k=|Q0∩Q f |

KV∪{B},η(ǫ,σǫ) =
∑

q∈Q0∩Q f

1= JAK(ǫ) ,

where the last but one equation holds because JValκKV∪{B},η(ǫ,σǫ) = 1. Thus, JAK is definable
by an MSO-expression over (S, D, K). �

From logic to automata.

We can prove the following lemma by induction on the structure of the B-expression e by
showing generalizations of Lemmas 11-14 of [VDH16]. Due to the symbolic extension, some
cases are technically more involving.

205

Chapter 6 Weighted Symbolic Automata with Data Storage

Lemma 6.5.8 ([HV16, Lemma 14]). Let e ∈ BExp(Ω,Π, K) and V ⊇ Free(e) a finite set of

variables with B ∈ V. Moreover, let η : D→ M be a relabeling. There is a (DV , K)-recognizable

weighted language r such that JeKV,η = r ∩ D
∗η
V

.

Proof. We prove this lemma by induction on the structure of e. For the induction base let
e = Valκ for some U ⊆ V with B ∈ U and relabeling κ: DU → K. Then we construct the
(DV , K)-automaton A = ({∗}, BC({⊤}), {∗}, {∗}, T, wt) where T is a singleton consisting of the
transition τ= (∗,⊤,∗) and we have wt(τ, (d, V,ω)) = κ(d, V ∩ (fo(U)∪ so(U)),ω) for each
(d, V,ω) ∈ DV . Obviously, JValκKV,η = (JAK∩ D∗fo

V
)∩ D

∗η
V

and by Lemma 6.2.12 and Lemma
6.5.1 JAK∩ D∗fo

V
is (DV , K)-recognizable.

Now let e = e1 + e2 for e1, e2 ∈ BExp(Ω,Π, K). By induction hypothesis, there are (DV , K)-
recognizable weighted languages r1 and r2 such that Je1KV,η = r1∩D

∗η
V

and Je2KV,η = r2∩D
∗η
V

.
By Lemma 6.2.11 there is a (DV , K)-recognizable language r such that r(w) = r1(w) + r2(w)

for each w ∈ D∗
V

. Then Je1 + e2KV,η = r ∩ D
∗η
V

.
Let e = (ϕ Â e1) for some ϕ ∈MSO(Ω,Π), e1 ∈ BExp(Ω,Π, K). By definition, we have that

Jϕ Â e1KV,η = Je1KV,η∩LV,η(ϕ) and, by induction hypothesis, there is a (DV , K)-recognizable
weighted language r such that Je1KV,η = r ∩ D

∗η
V

. By Lemma 6.5.3 there is a DV -recognizable
language L such that LV,η(ϕ) = L ∩ D

∗η
V

. Thus, Jϕ Â e1KV,η = (r ∩ L) ∩ D
∗η
V

. By Lemma
6.2.12 there is a (DV , K)-recognizable weighted language r ′ such that r ′ = r ∩ L. Then
Jϕ Â e1KV,η = r ′ ∩ D

∗η
V

.
As last step we only prove the case e =

∑
x e1 for some e1 ∈ BExp(Ω,Π, K) since the case e =∑

X e1 works similarly. By induction hypothesis, there is a (DV∪{x}, K)-recognizable weighted
language r such that Je1KV∪{x},η = r ∩ D

∗η
V∪{x}. Moreover, without loss of generality we can

assume that x /∈ V.17 Let A = (Q,Π,Q0,Q f , T, wt) be a (DV∪{x}, K)-automaton recognizing r.
By Lemma 6.2.3 A can assumed to be state-normalized. We construct the (DV , K)-automaton
B which simulates A by guessing exactly one position for x . For this, in a first step we will
split up each predicate π ∈Π into two predicates πx and π¬x : JπxK contains all d ∈ JπK that
include an x in their second component and, analogously, Jπ6=xK those without x . For this we
construct a (DV∪{x}, K)-automaton A

′ = (Q, BC(Πx ∪Π¬x),Q0,Q f , T ′, wt′) as follows. We let

• Πx = {πx | π ∈Π} such that for each (d, V,ω) ∈ DV∪{x} and πx ∈Πx we have

(d, V,ω) ∈ JπxK iff (d, V,ω) ∈ JπK and x ∈ V .

• Π¬x = {π¬x | π ∈Π} such that for each (d, V,ω) ∈ DV∪{x} and π¬x ∈Π¬x we have

(d, V,ω) ∈ Jπ¬xK iff (d, V,ω) ∈ JπK and x /∈ V .

• For each transition τ = (q,π, q′) ∈ T we let τ1 = (q,πx , q′) and τ2 = (q,π¬x , q′) be in
T ′ and wt′(τ1, d) = wt′(τ2, d) = wt(τ, d) for each d ∈ DV∪{x}.

As A is state-normalized, from each transition τ two transitions are constructed that are
distinct from all other transitions in T ′. Hence, the weight assignment is unique and it is
obvious that JA′K= JAK. Moreover, A′ is normalized.

17If x ∈ V, we can obtain this property by a simple renaming of variables.

206

6.5 Weighted Symbolic MSO Logic with Storage Behavior

In a second step we construct the (DV , K)-automaton

B = (QB, BC(Πx ,B ∪Π¬x ,B),Q0,B,Q f ,B, TB, wtB)

as follows. We let QB =Q× {0, 1}, Q0,B =Q0 × {0}, and Q f ,B =Q f × {1}. Furthermore,

• Πx ,B = {πx ,B | πx ∈Πx} such that for each (d, V,ω) ∈ DV and πx ,B we have

(d, V,ω) ∈ Jπx ,BK iff (d, V ∪ {x},ω) ∈ JπxK,

• Π¬x ,B = {π¬x ,B | π¬x ∈Π¬x} such that for each (d, V,ω) ∈ DV and π¬x ,B we have

(d, V,ω) ∈ Jπ¬x ,BK iff (d, V,ω) ∈ Jπ¬xK.

The set TB consists of the following transitions:

• For each transition τ= (q,πx , q′) in T ′ such that πx ∈Πx we let the transition

τ′ = ((q, 0),πx ,B, (q′, 1))

be in TB and wtB(τ
′, (d, V,ω)) = wt′(τ, (d, V ∪ {x},ω)) for every (d, V,ω) ∈ DV .

• For each transition τ= (q,π¬x , q′) in T ′ such that π¬x ∈Π¬x we let the transitions

τ′ = ((q, 0),π¬x ,B, (q′, 0)) and τ′′ = ((q, 1),π¬x ,B, (q′, 1))

be in TB and wtB(τ
′, d) = wtB(τ

′′, d) = wt′(τ, d) for every d ∈ DV .

Now let n ∈ N and w = w1 . . . wn for some w1, . . . , wn ∈ DV . Obviously, for each θ ∈ ΘB(w)

there is exactly one i ∈ [n] such that the i-th transition of θ uses a predicate π ∈ Πx ,B

and all other transitions of θ use predicates from Π¬x ,B. In the further, we denote by
Θ

i
B
(w) ⊆ ΘB(w) those transitions using with their i-th transition a predicate from Πx ,B.

Clearly, {Θi
B
(w) | i ∈ [n]} is a partition of ΘB(w).

Now let i ∈ [n]. It is easy to see that there exists a bijection

hi : Θ
i
B
(w)→ ΘA′(w[x 7→ i])

and, moreover, wtB(θ) = wt′(hi(θ)) for each θ ∈ Θi
B
(w). Thus, we obtain

JBK(w) =
∑

θ∈ΘB(w)

wtB(θ)

=
∑

i∈pos(w)

∑

θ∈Θi
B
(w)

wtB(θ)

=
∑

i∈pos(w)

∑

θ∈Θi
B
(w)

wt′(hi(θ))

=
∑

i∈pos(w)

∑

θ ′∈ΘA′ (w[x 7→i])

wt′(θ ′)

=
∑

i∈pos(w)

JA′K(w[x 7→ i])

Hence, J
∑

x e1KV,η = JBK∩ D
∗η
V

. �

207

Chapter 6 Weighted Symbolic Automata with Data Storage

As we consider here symbolic automata, the next lemma again generalizes Lemma 15 of
[VDH16] and we have to regard some technical peculiarities of our setting.

Lemma 6.5.9 ([HV16, Lemma 15]). Let e ∈ BExp(Ω,Π, K) with Free(e) = {B} and let

η : D → M be a relabeling. If JeK{B},η = r ∩ D
∗η
{B} for some (D{B}, K)-recognizable weighted

language r, then J
∑η

B eK is an (Sd, D, K)-recognizable weighted language.

Proof. Let A = (Q,Π,Q0,Q f , T, wt) be a (D{B}, K)-automaton such that JeK{B},η = JAK∩ D
∗η
{B}.

By Lemma 6.2.3 we can assume that A is state-normalized, i.e., for all states q, q′ ∈Q there
is at most one predicate π ∈Π such that (q,π, q′) ∈ T .

We will construct an (Sd, D, K)-automaton A
′ such that JA′K = J

∑η
B eK, using the following

idea. Since each predicate π: D× {;} ×Ω→ {0, 1} occurring in T combines elements from
D and Ω, we have to keep these combinations also in A

′. For this, we split π into predicates
π(p, f) for each (p, f) ∈ Ω and attach the occurrence of p and f in a transition of A′ to the
usage of π(p, f).

Formally, letA′ = (Q′, BC(Π′),Q0,Q f , T ′, wt′,η) be defined as follows. We setΠ′ = {π(p, f) |
π ∈Π, (p, f) ∈ Ω} where we let

Jπ(p, f)K= {d ∈ D | (d,;, (p, f)) ∈ JπK}

for each π(p, f) ∈Π
′. Now we let for each transition τ = (q,π, q′) ∈ T and each (p, f) ∈ Ω the

transition τ(p, f) = (q,π(p, f), p, q′, f) be in T ′ and we set wt′(τ(p, f), d) = wt(τ, (d,;, (p, f)))

for each d ∈ D. Note that since A is state-normalized, there cannot be another transition τ′

from which τ(p, f) results as well.
Next we prove that JA′K = J

∑η
B eK. Let w = d1 . . . dn ∈ D∗. We define the mapping

ν: ΘA′(w)→ B(Ω,η(w)) for each θ ′ = (µ0 ⊢
τ′1...τ′n µn) by

ν(θ ′) = ((τ′1)3, (τ′1)5) . . . ((τ′n)3, (τ′n)5) .

Clearly, for every η(w)-behavior b = (p1, f1) . . . (pn, fn) in B(Ω,η(w)) and variable assign-
ment [B 7→ b] ∈ Φ({B},η),w that maps B to b, we have

(w, [B 7→ b]) = (d1,;, (p1, f1)) . . . (dn,;, (pn, fn)),

which we simply denote by wb. We define the mapping δ : ΘA(wb)→ ΘA′(w)∩ ν
−1(b) as

follows. Let
θ = (q0, wb) ⊢

τ1 . . . ⊢τn (qn,ǫ)

be in ΘA(wb) with τi = (qi−1,πi , qi) for i ∈ [n]. Then we construct the computation

θ ′ = (q0, d1 . . . dn, c0) ⊢
τ′1 . . . ⊢τ

′
n (qn,ǫ, cn)

where τ′
i
= (qi−1, (πi)(pi , fi)

, pi , qi , fi) and ci = fi(. . . f1(c0,η(d1)) . . . ,η(di)) for each i ∈ [n].
Obviously, as b is an η(w)-behavior, θ ′ is a successful computation in ΘA′(w). Moreover, note
that wt(τi , wb(i)) = wt′(τ′

i
, di) for each i ∈ [n] and therefore

wt(θ) = val(wt(τ1, wb(1)) . . . wt(τn, wb(n))) = val(wt′(τ′1, d1) . . . wt(τ′n, dn)) = wt′(θ ′).

208

6.5 Weighted Symbolic MSO Logic with Storage Behavior

Conversely, for each computation θ ′ = (q0, d1 . . . dn, c0) ⊢
τ′1 . . . ⊢τ

′
n (qn,ǫ, cn) in ΘA′(w)∩

ν−1(b) there is a uniquely determined computation θ inΘA(w) such that θ ′ is the computation
constructed above.

Thus, for each w ∈ D∗ and b ∈ B(Ω,η(w)), the mapping δ is a bijection and wt(θ) =

wt′(δ(θ)).
Then we can calculate as follows:

J
∑η

B
eK(w) =
∑

b∈B(Ω,η(w))

JeK{B},η(w, [B 7→ b])

=
∑

b∈B(Ω,η(w))

�
JAK∩ D

∗η
{B}

�!
w, [B 7→ b]
�

=
∑

b∈B(Ω,η(w))

JAK(w, [B 7→ b])

=
∑

b∈B(Ω,η(w))

∑

θ∈ΘA(w,[B 7→b])

wt(θ)

=
∑

b∈B(Ω,η(w))

∑

θ ′∈ΘA′ (w)∩ν−1(b)

wt′(θ ′)

=
∑

θ ′∈ΘA′ (w)

wt′(θ ′) (∗)

= JA′K(w) .

where (∗) holds since {ΘA′(w) ∩ ν
−1(b) | b ∈ B(Ω,η(w))} is a partition of the set ΘA′(w).

Consequently, JA′K= J
∑η

B eK. �

Using Lemma 6.5.8 for V = {B} and Lemma 6.5.9 we finally obtain the following statement.

Lemma 6.5.10 ([HV16, Theorem 16]). Let r : D∗ → K. If r is definable by some MSO-

expression over (Sd, D, K), then r is (Sd, D, K)-recognizable.

Proof. Let r : D∗ → K be definable by an MSO-expression over (Sd, D, K), i.e., there is a
label structure Π over D, a finite set Ω ⊆ P × F , a relabeling η : D→ M , and a B-expression
e ∈ BExp(Ω,Π, K) with Free(e) = {B} such that r = J

∑η
B eK. By Lemma 6.5.8 we know that

JeK{B},η = r ′∩D
∗η
{B} for some (D{B}, K)-recognizable weighted language r ′. Thus, we can apply

Lemma 6.5.9 and obtain that r is (Sd, D, K)-recognizable. �

This finishes the proof of Theorem 6.5.6.

209

Chapter 6 Weighted Symbolic Automata with Data Storage

6.6 Chapter Conclusion

In this chapter we introduced weighted symbolic automata with data storage which extend
the weighted automata with storage of [HV15] by input predicates and an input-sensitive
storage type. We proved that our new automaton model is expressive enough to capture
recently introduced languages classes: the class of symbolc visibly pushdown recognizable
languages as well as the class of semiring-weighted timed series. For this, we defined the
appropriate storage types VP(N) and TIME(C), respectively. Moreover, we provided a logical
characterization of the languages recognized by weighted symbolic automata with data
storage.

210

Conclusion

Alles Wissen und alles Vermehren

unseres Wissens endet nicht mit

einem Schlußpunkt, sondern mit

einem Fragezeichen.

(Hermann Hesse)

In this thesis we introduced and investigated a very general automaton model comprising
tree automata, weighted automata and automata with storage – weighted tree automata with

storage where the weights are taken from a multioperator monoid.
The aim of our work was to examine this automaton model theoretically by ascertaining

which results for its origins can be extended to our very general setting. Let us summarize
here the main contributions of our research on weighted tree automata with storage.

In Section 2 we started our investigation with basic automata-theoretic considerations
and obtained the following results: Weighted tree automata with finite storage are equally
expressive as weighted tree automata since the finite storage type can be simulated by a
finite-state control. Moreover, the support language of a weighted tree automaton with
storage over a commutative, complete strong bimonoid is recognizable by an unweighted
tree automaton with storage. If we consider compressible M-monoids and weighted tree
automata with storage where storage configurations are not modified by ǫ-transitions, then
ǫ-transitions can be removed. Finally, the basic closure properties such as closure under sum,
intersection with recognizable tree languages, relabeling, and inverse relabeling also hold for
the weighted tree languages recognized by weighted tree automata with storage.

In Section 3 we established two characterizations for our language classes: On the one
hand, the weighted tree languages recognizable by our automaton model can be decomposed
and, thus, characterized by three more elementary formalisms – a tree transformation, a
recognizable tree language, and an alphabetic monomial mapping. On the other hand, we
showed how our characterization by decomposition can be used to implement a logical
characterization of the weighted tree languages recognizable by weighted tree automata with
storage.

Moreover, we also investigated certain restrictions and modifications of our formalism:
In Section 4 we introduced the concept of linear weighted tree automata with storage over
commutative complete semirings and proved that the weighted tree languages recognizable by
this model are closed under inverse linear tree homomorphisms. In Section 5 we introduced a
Medvedev characterization for weighted tree languages over arbitrary semirings recognizable
by weighted tree automata without storage. Finally, in Section 6 we investigated weighted
string automata with storage over an infinite input set. We showed that this formalism is
expressive enough to capture two recently introduced automaton models from the literature

211

Conclusion

and provided a logical characterization.
Of course, this thesis does not only give answers but also raises new questions. Besides

the open problems we mentioned in the respective chapters, additional issues arise by the
combination of results in this work. Two such questions concern our Medvedev characteri-
zation in Section 5. In contrast to our main model, representable weighted tree languages
were defined over semirings. Is it possible to extend this concept to multioperator monoids?
Moreover, we wonder if representable tree languages can be defined over an infinite input
set. As in the literature symbolic regular expressions were considered [VdHT10], a symbolic
version of Medvedev’s alternative to the Kleene characterization could be interesting as well.

212

Index

(D, K)-automaton, see weighted symbolic
automaton

(S,Σ)-ta, see tree automaton with storage
(S,Σ, K)-wta, see weighted tree automaton

with storage
(Sd, D)-automaton, see symbolic automa-

ton with storage
(Sd, D, K)-automaton, see weighted sym-

bolic automaton with data storage
(Σ, K)-automaton, see weighted automa-

ton
(Σ, K)-representation, see representation
(Σ, K)-wta, see weighted tree automaton
D-automaton, see symbolic automaton
〈Λ,Σ〉, 98
Σ-term algebra, 27
Σ-algebra, see algebra
Σ-automaton, see automaton
Σ-pta, see pushdown tree automaton
Σ-ta, see tree automaton
Σ∗, 22
TΣ(H), 27
ΘA(Q

′,ξ, c), 63
Jz̄Kā, 86
⊑dp, 28
⌊z̄⌋k, 86
≤lex, 22
�, 122
⊑pos, 49
⊑, 22

algebra, 12
carrier set, 12
finite-, 12
homomorphism, 12
subalgebra, 12

finitely generated-, 12

generated-, 12
alphabet, 12

symbols, 12
alphabetic monomial mapping, 103

strict-, 103
asymptotic notation, 11

upper bound, 11
automaton, 23

Σ-recognizable, 24
Σ-automaton, 23
RE C(Σ), 24
computation, 23
computation relation, 23
language, 24

B(Λ, c), 60
Boolean algebra, 14
Boolean closure, 14
Boolean numbers, 8

Cartesian power, 8
Cartesian product, 8
CF(Σ), 24
CFT(Σ), 33
closed, 49
composition, 9
context-free language, 24
cut operation, 86
⌊z̄⌋k ∈ N

n, 86

data storage type, 176
B(Ω, m1 . . . mn), 177
CO U N Td, 176
TR I Vd, 176
VP(N), 190
behavior, 177
configuration, 176

initial-, 176

213

Index

instruction, 176
predicate, 176
storage inputs, 176

Def(S,Σ, K), 112
degree, 87

elementary operation, 154
restriction mapping, 154

empty tuple, 8
expression with storage behavior, 112

family, 10
index set, 10

finite-state automaton, see automaton
function, 9

bijective-, 9
extension, 10
injective-, 9
partial-, 10

defined, 10
projection, 10
surjective-, 9

homomorphism, 12

infinitary summation, 13
integers, 8

label structure, 178
predicate, 178

language, 23
Σ-recognizable, 24
concatenation, 23

lattice, 13
bounded-, 14
distributive-, 14

linear, 122

M(Σ, K), 52
M-monoid, see multioperator monoid
mapping, see function
matrix, 10

entry, 10
Min(M), 86
monadic second-order logic, 45

atom, 45
closed formula, 45
extended ranked alphabet, 46

valid tree, 46
formulas, 45
free variables, 45
models, 47
over words, 48
quantification, 45
satisfaction relation, 46
V-assignment, 46

update, 46
monoid, 13

commutative-, 13
complete-, 13
completely idempotent-, 13
idempotent-, 13
locally finite-, 13
submonoid, 13
zero, 13
zero-divisor free-, 13
zero-sum free-, 13, 15

monomial, 37
multioperator expression, 50

family of operations, 50
induced homomorphism, 50
M-expression, 50
semantics, 51

multioperator monoid, 16
(1,∗)-composition closed-, 19
(1, n)-composition closed-, 19
Kλ

D I S C
, 18

M(K), 18
Boolean-, 17
complete-, 17
completely 1-sum closed-, 18
completely distributive-, 17
compressible-, 19
distributive-, 17
matrix over unary operations, 19

product, 19
unit-, 19

natural numbers, 8

214

Index

nested set, 188

operation, 10
absorbing element, 10
absorptive-, 16
associative-, 10
commutative-, 10
constant, 10
distributive-, 10

left-, 10
right-, 10

idempotent-, 10
neutral element, 10

order
depth-first post-order, 28

power set
algebra, 14

projection, 10
pushdown automaton, 24

computation relation, 24
language, 24

pushdown tree automata
linear, 124

pushdown tree automaton, 32
ǫ-transitions, 33
computation relation, 33
language, 33
read transitions, 33

ranked alphabet, 12
maximal rank, 12
non-trivial, 12
rank, 12

real numbers, 8
nonnegative, 8

RE C(Sd, D, K), 180
RE C(Σ), 24
RE C(Σ, K), 26
recognizable step function, 40
RTǫ-free(S,Σ, K), 64
RT l(S,Σ, K), 123
RT(S,Σ), 69
RT(S,Σ, K), 63
RT(Σ), 31

RT(Σ, K), 38
RTsimple(S,Σ, K), 79
relation, 8

antisymmetric-, 9
domain, 8
equivalence-, 9

class, 9
quotient set, 9

identity-, 9
image, 9
inverse-, 8
linear order, 9
partial order, 9
preimage, 9
reflexive-, 9
symmetric-, 9
total-, 9
transitive closure, 9

reflexive-, 9
transitive-, 9

REPR(Σ, K), 155
representation, 155
⊙-restricted, 157
restricted, 157
sub-, 155

semiring, 15
arctic-, 16
Boolean-, 15
commutative-, 15
complete-, 15
idempotent-, 15
locally finite-, 15
of formal languages, 16
tropical-, 16
zero-divisor free-, 15
zero-sum free-, 15

set, 8
cardinality, 8
Cartesian power, 8
Cartesian product, 8
countable, 8
disjoint, 8
element, 8

215

Index

partition, 8
power set, 8
set builder notation, 8
singleton, 8
tuple, 8

storage behavior, 60
BΛ(ξ), 98
B(Λ, c), 60
corresponding ranked alphabet, 60
family of configurations, 60

storage type, 57
configuration, 57

initial-, 57
counter-, 59
finite, 58
instruction, 57
iterated pushdown storage, 59
predicate, 57

always-true-, 57
pushdown of S, 58
pushdown-, 59
resettable, 122
trivial-, 58

strong bimonoid, 14
commutative-, 15
complete-, 15
idempotent-, 15
zero-divisor free-, 15

symbolic automaton, 184
deterministic, 184
total, 184

symbolic automaton with storage, 184
language, 184

symbolic MSO logic, 199
MSO(Ω,Π), 199
formulas, 199
models, 201
second-order behavior variable, 199

symbolic visibly pushdown automata
binary predicate, 188

symbolic visibly pushdown automaton, 188
M-configurations, 189
computation, 189
label theory, 188

language, 189
matching relation, 189

timed series, 193
timed word, 193
tree, 27

root(ξ), 28
sub(ξ), 28
context, 29

composition, 29
depth-first post-order, 28
height, 28
label, 28
leaf, 28
linear, 29
node, 28
path, 28
path word, 28
positions, 28
root, 28
root symbol, 28
size, 28
subtree, 28
variable, 29
ξ(v), 28
ξ|v , 28
yield, 29

tree automaton, 31
Σ-ta, 31
run, 31

valid-, 31
subrun, 31
total deterministic, 31
tree language, 31

tree automaton with storage, 69
tree language, 69
unambiguous-, 69

tree homomorphism, 34
alphabetic-, 34
elementary-, 34

type 1, 135
type 2, 135

linear-, 34
relabeling, 34

216

Index

tree language, 29
(S,Σ)-recognizable, 69
Σ-definable, 47
Σ-recognizable, 31
Σ-recognizable

deterministically-, 31
context-free, 33
yield language, 29

tree transformation, 29
composition, 37

unital valuation monoid, 20

weighted automaton, 26
(Σ, K)-automaton, 26
weighted language, 26

weighted language, 25
(Sd, D, K)-recognizable, 180

homogeneously-, 180
projectively-, 180
(Σ, K)-recognizable, 26
intersection, 25
sum, 25
support, 25

weighted monadic second-order logic, 48
formulas, 48
free variables, 48
semantics, 49
unambiguous formula, 50

weighted symbolic automaton, 184
weighted symbolic automaton with data

storage, 179
A-configurations, 179
ΘA(w), 179
computation, 179

successful-, 179
weight, 180

computation-relation, 179
normalized, 180
state-normalized, 180
weighted language, 180

weighted symbolic MSO logic, 201
BExp(Ω,Π, K), 202
Exp(Ω,Π, K), 202

B-expressions, 202
MSO-expressions, 202

weighted timed automaton, 193
clock constraint, 193

satisfaction relation, 193
clock valuation, 193
clock variable, 193
run, 194

label, 194
timed series, 194

weighted tree automaton, 38
Boolean root weights, 38
Boolean transition weights, 38
deterministic, 38
total deterministic, 38
weighted tree language, 38
wtA(ξ,κ), 38

weighted tree automaton with storage, 62
ǫ-free, 62
ǫ-transition, 62
computation, 63
ΘA(Q

′,ξ, c), 63
ΘA(ξ), 63
wt(t), 63

linear-, 122
simple-, 79
weighted tree language, 63

weighted tree homomorphism, 42
inverse, 42
relabeling, 42

weighted tree language, 35
(S,Σ, K)-definable, 112
(S,Σ, K)-recognizable, 63

linear-, 123
(Σ, K)-recognizable, 38
(Σ, K)-representable
⊙-restricted, 158
restricted, 158
(Σ, K)-definable, 50
(Σ, K)-representable, 155
characteristic-, 36
elementary-, 154
Hadamard product, 37
local weighted tree language, 164

217

Index

M-definable, 52
monomial, 37
scalar multiplication, 37
sum, 37
support, 36

word, 22
concatenation, 22
empty-, 22

label, 22
length, 22
lexicographic order, 22
positions, 22
prefix, 22
relabeling, 22

zero generation problem, 86

218

Bibliography

[AB87] Athanasios Alexandrakis and Symeon Bozapalidis. Weighted Grammars and
Kleene’s Theorem. Information Processing Letters, 24(1):1–4, 1987.

[ABH08] Mohamed F. Atig, Benedikt Bollig, and Peter Habermehl. Emptiness of Multi-
Pushdown Automata is 2ETIME-Complete. In M. Ito and M. Toyama, editors,
Developments in Language Theory, DLT 2008, volume 5257 of Lecture Notes in

Computer Science, pages 121–133. Springer Berlin Heidelberg, 2008.

[AD77] André Arnold and Max Dauchet. Un Theoreme de Chomsky-Schützenberger
pour les Forets Algebriques. CALCOLO, 14(2):161–184, 1977.

[AD78] André Arnold and Max Dauchet. Forêts Algébriques et Homomorphismes In-
verses. Information and Control, 37(2):182–196, 1978.

[AD94] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoretical

Computer Science, 126(2):183–235, 1994.

[Aho69] Alfred V. Aho. Nested Stack Automata. Journal of the ACM, 16(3):383–406,
1969.

[AK09] Jürgen Albert and Jarkko Kari. Digital Image Compression. In M. Droste,
W. Kuich, and H. Vogler, editors, Handbook of Weighted Automata, Monographs
in Theoretical Computer Science. An EATCS Series, pages 453–479. Springer,
Berlin, Heidelberg, 2009.

[AL80] André Arnold and Bernard Leguy. Une Propriété des Forêts Algébriques «de
Greibach». Information and Control, 46(2):108–134, 1980.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-

niques, and Tools. Addison-Wesley Longman Publishing Co., Inc., 1986.

[ATP01] Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal Paths in Weighted
Timed Automata. In M.D. Di Benedetto and A. Sangiovanni-Vincentelli, editors,
Hybrid Systems: Computation and Control, HSCC 2001, volume 2034 of Lecture

Notes in Computer Science, pages 49–62. Springer, Berlin, Heidelberg, 2001.

[AU] Alfred V. Aho and Jeffrey Ullman. private communication, cited after [Gre70].

[BDM+11] Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc
Segoufin. Two-Variable Logic on Data Words. ACM Transactions on Computa-

tional Logic, 12(4):1–26, 2011.

219

Bibliography

[BDP18] Parvaneh Babari, Manfred Droste, and Vitaly Perevoshchikov. Weighted Register
Automata and Weighted Logic on Data Words. Theoretical Computer Science,
744:3–21, 2018.

[BNV11] Matthias Büchse, Mark-Jan Nederhof, and Heiko Vogler. Tree Parsing with
Synchronous Tree-Adjoining Grammars. In H. Bunt and J. Nivre Ö. Çetinoglu,
editors, Proceedings of the 12th International Conference on Parsing Technologies,

IWPT 2011, pages 14–25. Association for Computational Linguistics, 2011.

[Bor04] Björn Borchardt. A Pumping Lemma and Decidability Problems for Recognizable
Tree Series. Acta Cybernetica, 16(4):509–544, 2004.

[Bou02] Patricia Bouyer. A Logical Characterization of Data Languages. Information

Processing Letters, 84(2):75–85, 2002.

[Boz94] Symeon Bozapalidis. Representable Tree Series. Fundamenta Informaticae,
21(4):367–389, 1994.

[BR82] Jean Berstel and Christophe Reutenauer. Recognizable Formal Power Series on
Trees. Theoretical Computer Science, 18(2):115–148, 1982.

[Bra69] Walter S. Brainerd. Tree Generating Regular Systems. Information and Control,
14(2):217–231, 1969.

[BS81] Stanley Burris and Hanamantagouda Pandappa Sankappanavar. A Course in

Universal Algebra, volume 78 of Graduate Texts in Mathematics. Springer-Verlag,
New York, 1981.

[BS06] Stanley Burris and Hanamantagida Pandappa Sankappanavar. A Course in

Universal Algebra – With 36 Illustrations. 2006.

[Büc60] Julius Richard Büchi. Weak Second-Order Arithmetic and Finite Automata.
Mathematical Logic Quarterly, 6(1-6):66–92, 1960.

[Büc62] Julius Richard Büchi. On a Decision Method in Restricted Second Order Arith-
metic. In E. Nagel, P. Suppes, and A. Tarski, editors, Logic, Philosophy and

Methodology of Sciences, pages 1–11. Stanford University Press, 1962.

[Cho56] Noam Chomsky. Three Models for the Description of Language. IRE Transactions

on Information Theory, 2(3):113–124, 1956.

[Chu59] Alonzo Church. Application of Recursive Arithmetic to the Theory of Computers
and Automata, notes, summer conference course. In Advanced Theory of the

Logical Design of Digital Computers, pages 1–68. University of Michigan, 1959.

[Cos72] Oliver L. Costich. A Medvedev Characterization of Sets Recognized by General-
ized Finite Automata. Mathematical Systems Theory, 6(1-2):263–267, 1972.

220

Bibliography

[Cou86] Bruno Courcelle. Equivalences and Transformations of Regular Systems - Appli-
cations to Recursive Program Schemes and Grammars. Theoretical Computer

Science, 42:1–122, 1986.

[Cou97] Bruno Courcelle. The Expression of Graph Properties and Graph Transformations
in Monadic Second-Order Logic. In G. Rozenberg, editor, Handbook of Graph

Grammars and Computing by Graph Transformation, pages 313–400. World
Scientific, 1997.

[CS63] Noam Chomsky and Marcel P. Schützenberger. The Algebraic Theory of Context-
Free Languages. Studies in Logic and the Foundations of Mathematics, 35:118–161,
1963.

[DA14] Loris D’Antoni and Rajeev Alur. Symbolic Visibly Pushdown Automata. In
Armin Biere and Roderick Bloem, editors, Computer Aided Verification, CAV 2014,
volume 8559 of Lecture Notes in Computer Science, pages 209–225. Springer,
2014.

[Dam82] Werner Damm. The IO- and OI-Hierarchies. Theoretical Computer Science,
20(2):95–207, 1982.

[DDK19] Manfred Droste, Sven Dziadek, and Werner Kuich. Weighted Simple Reset
Pushdown Automata. Theoretical Computer Science, 777:252–259, 2019.

[Dei10] Oliver Deiser. Einführung in die Mengenlehre. Springer, 2010.

[Den15] Tobias Denkinger. A Chomsky-Schützenberger Representation for Weighted
Multiple Context-free Languages. In T. Hanneforth and C. Wurm, editors,
Proceedings of the 12th International Conference on Finite-State Methods and

Natural Language Processing, FSMNLP 2015. Association for Computational
Linguistics, 2015.

[Den16] Tobias Denkinger. An Automata Characterisation for Multiple Context-Free
Languages. In S. Brlek and C. Reutenauer, editors, Developments in Language

Theory, DLT 2016, volume 9840 of Lecture Notes in Computer Science, pages
138–150. Springer, Berlin, Heidelberg, 2016.

[Den17] Tobias Denkinger. Approximation of Weighted Automata with Storage. In
P. Bouyer, A. Orlandini, and P. San Pietro, editors, 8th Symposium on Games,

Automata, Logics and Formal Verification, GandALF 2017, volume 256 of Electronic

Proceedings in Theoretical Computer Science, pages 91–105. Open Publishing
Association, 2017.

[Den20] Tobias Denkinger. Two Characterisation Results of Multiple Context-Free Grammars

and Their Application to Parsing. PhD thesis, Technische Universität Dresden,
2020.

221

Bibliography

[DFG16] Manfred Droste, Zoltán Fülöp, and Doreen Götze. A Kleene Theorem for
Weighted Tree Automata over Tree Valuation Monoids. In A.-H. Dediu,
J. Janousek, C. Martín-Vide, and B. Truthe, editors, Language and Automata

Theory and Applications, LATA 2016, volume 9618 of Lecture Notes in Computer

Science, pages 452–463. Springer, 2016.

[DFSS19] Loris D’Antoni, Tiago Ferreira, Matteo Sammartino, and Alexandra Silva. Sym-
bolic Register Automata. In I. Dillig and S. Tasiran, editors, Computer Aided

Verification, CAV 2019, volume 11561 of Lecture Notes in Computer Science, pages
3–21. Springer, 2019.

[DG81] Werner Damm and Iréne Guessarian. Combining T and Level-N. In J. Gruska
and M. Chytil, editors, Mathematical Foundations of Computer Science, MFCS

1981, volume 118 of Lecture Notes in Computer Science, pages 262–270. Springer,
Berlin, Heidelberg, 1981.

[DG00] Manfred Droste and Paul Gastin. On Aperiodic and Star-free Formal Power
Series in Partially Commuting Variables. In D. Krob, A.A. Mikhalev, and A.V.
Mikhalev, editors, Formal Power Series and Algebraic Combinatorics, pages 158–
169. Springer, Berlin, Heidelberg, 2000.

[DG05] Manfred Droste and Paul Gastin. Weighted Automata and Weighted Logics.
In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors,
Automata, Languages and Programming, ICALP 2005, volume 3580 of Lecture

Notes in Computer Science, pages 513–525. Springer, 2005.

[DG07] Manfred Droste and Paul Gastin. Weighted Automata and Weighted Logics.
Theoretical Computer Science, 380(1-2):69–86, 2007.

[DG09] Manfred Droste and Paul Gastin. Weighted Automata and Weighted Logics. In
M. Droste, W. Kuich, and H. Vogler, editors, Handbook of Weighted Automata,
Monographs in Theoretical Computer Science. An EATCS Series, pages 175–211.
Springer, Berlin, Heidelberg, 2009.

[DGMM11] Manfred Droste, Doreen Götze, Steffen Märcker, and Ingmar Meinecke. Weighted
Tree Automata over Valuation Monoids and Their Characterization by Weighted
Logics. In W. Kuich and G. Rahonis, editors, Algebraic Foundations in Computer

Science, volume 7020 of Lecture Notes in Computer Science, pages 30–55. Springer,
2011.

[DH15] Manfred Droste and Doreen Heusel. The Supports of Weighted Unranked Tree
Automata. Fundamenta Informaticae, 136(1-2):37–58, 2015.

[Dic13] Leonard E. Dickson. Finiteness of the Odd Perfect and Primitive Abundant
Numbers with n Distinct Prime Factors. American Journal of Mathematics,
35(4):413–422, 1913.

222

Bibliography

[DK09] Manfred Droste and Werner Kuich. Semirings and Formal Power Series. In
M. Droste, W. Kuich, and H. Vogler, editors, Handbook of Weighted Automata,
Monographs in Theoretical Computer Science. An EATCS Series, chapter 1,
pages 3–28. Springer, Berlin, Heidelberg, 2009.

[DKV09] Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted

Automata. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Berlin, Heidelberg, 2009.

[DL91] Jürgen Dassow and Klaus-Jörn Lange. Computational Complexity and Hardest
Languages of Automata with Abstract Storages. In L. Budach, editor, Fundamen-

tals of Computation Theory, FCT 1991, volume 529 of Lecture Notes in Computer

Science, pages 200–209. Springer, Berlin, Heidelberg, 1991.

[DM10] Manfred Droste and Ingmar Meinecke. Describing Average- and Longtime-
Behavior by Weighted MSO Logics. In P. Hliněný and A. Kučera, editors, Mathe-

matical Foundations of Computer Science, MFCS 2010, volume 6281 of Lecture

Notes in Computer Science, pages 537–548. Springer, 2010.

[DM11] Manfred Droste and Ingmar Meinecke. Weighted Automata and Regular Expres-
sions over Valuation Monoids. International Journal of Foundations of Computer

Science, 22(8):1829–1844, 2011.

[Don70] John Doner. Tree Acceptors and Some of Their Applications. Journal of Computer

and System Sciences, 4(5):406 – 451, 1970.

[DP14] Manfred Droste and Vitaly Perevoshchikov. A Nivat Theorem for Weighted Timed
Automata and Weighted Relative Distance Logic. In J. Esparza, P. Fraigniaud,
T. Husfeldt, and E. Koutsoupias, editors, Automata, Languages, and Programming,

ICAL 2014, volume 8573 of Lecture Notes in Computer Science, pages 171–182.
Springer, Berlin, Heidelberg, 2014.

[DPV04] Manfred Droste, Christian Pech, and Heiko Vogler. A Kleene Theorem for
Weighted Tree Automata. Theory of Computing Systems, 38(1):1–38, 2004.

[DSV10] Manfred Droste, Torsten Stüber, and Heiko Vogler. Weighted Finite Automata
over Strong Bimonoids. Information Sciences, 180(1):156 – 166, 2010.

[DV06] Manfred Droste and Heiko Vogler. Weighted Tree Automata and Weighted Logics.
Theoretical Computer Science, 366(3):228–247, 2006.

[DV11] Manfred Droste and Heiko Vogler. Weighted Logics for Unranked Tree Automata.
Theory of Computing Systems, 48(1):23–47, 2011.

[DV12] Manfred Droste and Heiko Vogler. Weighted Automata and Multi-Valued Logics
over Arbitrary Bounded Lattices. Theoretical Computer Science, 418:14–36, 2012.

223

Bibliography

[DV13] Manfred Droste and Heiko Vogler. The Chomsky-Schützenberger Theorem for
Quantitative Context-Free Languages. In M.-P. Béal and O. Carton, editors,
Developments in Language Theory, DLT 2013, volume 7907 of Lecture Notes in

Computer Science, pages 203–214. Springer, Heidelberg, Berlin, 2013.

[DV14] Manfred Droste and Heiko Vogler. The Chomsky-Schützenberger Theorem for
Quantitative Context-Free Languages. International Journal of Foundations of

Computer Science, 25(8):955–969, 2014.

[DV15] Loris D’Antoni and Margus Veanes. Symbolic WS1S. In A. Fehnker, A. McIver,
G. Sutcliffe, and A. Voronkov, editors, 20th International Conferences on Logic

for Programming, Artificial Intelligence and Reasoning - Short Presentations, LPAR

2015, volume 35, pages 59–66. EasyChair, 2015.

[DV17a] Loris D’Antoni and Margus Veanes. Monadic Second-Order Logic on Finite
Sequences. In G. Castagna and A. D. Gordon, editors, Principles of Programming

Languages, POPL 2017, volume 52, pages 232–245. Association for Computing
Machinery, 2017.

[DV17b] Loris D’Antoni and Margus Veanes. The Power of Symbolic Automata and
Transducers. In R. Majumdar and V. Kunčak, editors, Computer Aided Verification,

CAV 2017, volume 10426 of Lecture Notes in Computer Science, pages 47–67.
Springer, 2017.

[EH89] Joost Engelfriet and Hendrik Jan Hoogeboom. Automata with Storage on Infinite
Words. In G. Ausiello, M. Dezani-Ciancaglini, and S.R. Della Rocca, editors,
Automata, Languages and Programming, ICALP 1989, volume 372 of Lecture

Notes in Computer Science, pages 289–303. Springer, Berlin, Heidelberg, 1989.

[EH93] Joost Engelfriet and Hendrik Jan Hoogeboom. X-Automata on ω-Words. Theo-

retical Computer Science, 110(1):1–51, 1993.

[Eil74] Samuel Eilenberg. Automata, Languages, and Machines. Academic Press, 1974.

[ÉK03] Zoltán Ésik and Werner Kuich. Formal Tree Series. Journal of Automata,

Languages and Combinatorics, 8(2):219–285, 2003.

[Elg61] Calvin C. Elgot. Decision Problems of Finite Automata Design and Related
Arithmetics. Transactions of the American Mathematical Society, 98(1):21–52,
1961.

[Eng86] Joost Engelfriet. Context-Free Grammars with Storage. Technical Report 86-11,
University of Leiden, 1986. see also: arXiv:1408.0683 [cs.FL], 2014.

[Eng15] Joost Engelfriet. Tree Automata and Tree Grammars, 2015. arXiv:1510.02036
[cs.FL], slightly revised version of lecture notes from 1975.

[EV86] Joost Engelfriet and Heiko Vogler. Pushdown Machines for the Macro Tree
Transducer. Theoretical Computer Science, 42:251–368, 1986.

224

Bibliography

[EV88] Joost Engelfriet and Heiko Vogler. High Level Tree Transducers and Iterated
Pushdown Tree Transducers. Acta Informatica, 26(1-2):131–192, 1988.

[EV19] Joost Engelfriet and Heiko Vogler. A Büchi-Elgot-Trakhtenbrot Theorem for
Automata with MSO Graph Storage, 2019. arXiv:1905.00559 [cs.FL].

[FHV17] Zoltán Fülöp, Luisa Herrmann, and Heiko Vogler. Weighted Regular Tree
Grammars with Storage. 2017. arXiv:1705.06681 [cs.FL].

[FHV18] Zoltán Fülöp, Luisa Herrmann, and Heiko Vogler. Weighted Regular Tree Gram-
mars with Storage. Discrete Mathematics & Theoretical Computer Science, 20(1),
2018.

[FK00] Akio Fujiyoshi and Takumi Kasai. Spinal-Formed Context-Free Tree Grammars.
Theory of Computing Systems, 33:59–83, 2000.

[FMV09] Zoltán Fülöp, Andreas Maletti, and Heiko Vogler. A Kleene Theorem for Weighted
Tree Automata over Distributive Multioperator Monoids. Theory of Computing

Systems, 44(3):455–499, 2009.

[FMV11] Zoltán Fülöp, Andreas Maletti, and Heiko Vogler. Weighted Extended Tree
Transducers. Fundamenta Informaticae, 111(2):163–202, 2011.

[FS02] Henning Fernau and Ralf Stiebe. Sequential Grammars and Automata with
Valences. Theoretical Computer Science, 276(1-2):377–405, 2002.

[FSV12] Zoltán Fülöp, Torsten Stüber, and Heiko Vogler. A Büchi-Like Theorem for
Weighted Tree Automata over Multioperator Monoids. Theory of Computing

Systems, 50(2):241–278, 2012.

[Fül15] Zoltán Fülöp. Local Weighted Tree Languages. Acta Cybernetica, 22(2):393–402,
2015.

[FV09] Zoltán Fülöp and Heiko Vogler. Weighted Tree Automata and Tree Transducers.
In M. Droste, W. Kuich, and H. Vogler, editors, Handbook of Weighted Automata,
Monographs in Theoretical Computer Science. An EATCS Series, pages 313–403.
Springer, Berlin, Heidelberg, 2009.

[FV14a] Severine Fratani and El Makki Voundy. Dyck-Based Characterizations of Indexed
Languages, 2014. arXiv:1409.6112 [cs.FL].

[FV14b] Zoltán Fülöp and Heiko Vogler. Forward and Backward Application of Symbolic
Tree Transducers. Acta Informatica, 51(5):297–325, 2014.

[FV15] Zoltán Fülöp and Heiko Vogler. Characterizations of Recognizable Weighted
Tree Languages by Logic and Bimorphisms. Soft Computing, 22(4):1035–1046,
2015.

225

Bibliography

[FV19a] Zoltán Fülöp and Heiko Vogler. Rational Weighted Tree Languages with Storage
and the Kleene-Goldstine Theorem. In M. Ćirić, M. Droste, and J.-É. Pin, editors,
Algebraic Informatics, CAI 2019, volume 11545 of Lecture Notes in Computer

Science, pages 138–150. Springer, 2019.

[FV19b] Zoltán Fülöp and Heiko Vogler. Principal Abstract Families of Weighted Tree
Languages. Information and Computation, 2019. accepted for publication.

[GG69] Seymour Ginsburg and Sheila Greibach. Abstract Families of Languages. In
S. Ginsburg, S. Greibach, and J. Hopcroft, editors, Studies in Abstract Families of

Languages, number 87 in Memoirs of the American Mathematical Society, pages
1–32. 1969.

[GH09] Steven Givant and Paul Halmos. Introduction to Boolean Algebras. Undergraduate
Texts in Mathematics. Springer, 2009.

[GKS10] Orna Grumberg, Orna Kupferman, and Sarai Sheinvald. Variable Automata
over Infinite Alphabets. In A.H. Dediu, H. Fernau, and C. Martín-Vide, editors,
Language and Automata Theory and Applications, LATA 2010, volume 6031 of
Lecture Notes in Computer Science, pages 561–572. Springer, Berlin, Heidelberg,
2010.

[GM15] Paul Gastin and Benjamin Monmege. A Unifying Survey on Weighted Logics
and Weighted Automata. Soft Computing, 22(4):1047–1065, 2015.

[GO15] Kilian Gebhardt and Johannes Osterholzer. A Direct Link between Tree-Adjoining
and Context-Free Tree Grammars. In T. Hanneforth and C. Wurm, editors,
Proceedings of the 12th International Conference on Finite-State Methods and

Natural Language Processing, FSMNLP 2015. The Association for Computer
Linguistics, 2015.

[Gol77] Jonathan Goldstine. Automata with Data Storage. In Proceedings of the Confer-

ence on Theoretical Computer Science, pages 239–246, 1977.

[Gol79] Jonathan Goldstine. A Rational Theory of AFLs. In Automata, Languages and

Programming, ICALP 1979, volume 71 of Lecture Notes in Computer Science, pages
271–281. Springer, 1979.

[Gol99] Jonathan S. Golan. Semirings and Their Applications. Springer Netherlands,
1999.

[Grä08] George Grätzer. Universal algebra. Springer, 2008.

[Gre69] Sheila A. Greibach. An Infinite Hierarchy of Context-Free Languages. Journal

of the ACM, 16(1):91–106, 1969.

[Gre70] Sheila A. Greibach. Full AFLs and Nested Iterated Substitution. Information

and Control, 16(1):7–35, 1970.

226

Bibliography

[GS84] Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadémiai Kiadó, 1984.
see also arXiv:1509.06233 [cs.FL].

[Gue83] Irène Guessarian. Pushdown Tree Automata. Mathematical Systems Theory,
16(1):237–263, 1983.

[Gö17] Doreen Götze. Weighted Unranked Tree Automata over Tree Valuation Monoids.
PhD thesis, Universität Leipzig, 2017.

[HDV19] Luisa Herrmann, Manfred Droste, and Heiko Vogler. Weighted Automata with
Storage. Information and Computation, 269, 2019.

[Heb20] Udo Hebisch. Verbandstheorie, 2020. Vorlesungsskript SS 2020.

[Her17] Luisa Herrmann. A Medvedev Characterization of Recognizable Tree Series.
In É. Charlier, J. Leroy, and M. Rigo, editors, Developments in Language Theory,

DLT 2017, volume 10396 of Lecture Notes in Computer Science, pages 210–221.
Springer, 2017.

[HKO16] Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. Unboundedness and
Downward Closures of Higher-Order Pushdown Automata. In R. Bodik and
R. Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2016. ACM Press,
2016.

[HMU01] John E. Hopcroft, Rajeev. Motwani, and Jeffrey D. Ullman. Introduction to

Automata Theory, Languages, and Computation. Addison-Wesley, 2001.

[HV15] Luisa Herrmann and Heiko Vogler. A Chomsky-Schützenberger Theorem for
Weighted Automata with Storage. In A. Maletti, editor, Algebraic Informatics,

CAI 2015, volume 9270 of Lecture Notes in Computer Science, pages 115–127.
Springer, 2015.

[HV16] Luisa Herrmann and Heiko Vogler. Weighted Symbolic Automata with Data
Storage. In S. Brlek and C. Reutenauer, editors, Developments in Language Theory,

DLT 2016, volume 9840 of Lecture Notes in Computer Science, pages 203–215.
Springer, Berlin, Heidelberg, 2016.

[HW98] Udo Hebisch and Hanns Joachim Weinert. Semirings: Algebraic Theory and

Applications in Computer Science. World Scientific, 1998.

[JLT75] Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. Tree Adjunct Grammars.
Journal of Computer and System Sciences, 10(1):136–163, 1975.

[JS97] Aravind K. Joshi and Yves Schabes. Tree-Adjoining Grammars. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, volume 3, pages 69–123.
Springer, Berlin, Heidelberg, 1997.

227

Bibliography

[Kam09] Mark Kambites. Formal Languages and Groups as Memory. Communications in

Algebra, 37(1):193–208, 2009.

[KF90] Michael Kaminski and Nissim Francez. Finite-Memory Automata. In Proceedings

31st Annual Symposium on Foundations of Computer Science. IEEE, 1990.

[KG05] Kevin Knight and Jonathan Graehl. An Overview of Probabilistic Tree Transducers
for Natural Language Processing. In A. Gelbukh, editor, Computational Linguistics

and Intelligent Text Processing, CICLing 2005, volume 3406 of Lecture Notes in

Computer Science, pages 1–24. Springer, Berlin, Heidelberg, 2005.

[Kir09] Daniel Kirsten. The Support of a Recognizable Series over a Zero-Sum Free,
Commutative Semiring Is Recognizable. In V. Diekert and D. Nowotka, editors,
Developments in Language Theory, DLT 2009, volume 5583 of Lecture Notes in

Computer Science, pages 326–333. Springer, Berlin, Heidelberg, 2009.

[Kir11] Daniel Kirsten. The Support of a Recognizable Series over a Zero-Sum Free,
Commutative Semiring is Recognizable. Acta Cybernetica, 20(2):211–221, 2011.

[Kle51] Stephen C. Kleene. Representation of Events in Nerve Nets and Finite Automata.
1951.

[Knu68] Donald E. Knuth. Semantics of Context-Free Languages. Mathematical Systems

Theory, 2(2):127–145, 1968.

[KR10] Stephan Kepser and James Rogers. The Equivalence of Tree Adjoining Grammars
and Monadic Linear Context-Free Tree Grammars. In C. Ebert, G. Jäger, and
J. Michaelis, editors, The Mathematics of Language, MOL 2009, MOL 2007,
volume 6149 of Lecture Notes in Computer Science, pages 129–144. Springer,
Berlin, Heidelberg, 2010.

[KS86] Werner Kuich and Arto Salomaa. Semirings, Automata, Languages, volume 5 of
EATCS Monographs on Theoretical Computer Science. Springer, Berlin, Heidelberg,
1986.

[Kui97] Werner Kuich. Formal Power Series over Trees. In S. Bozapalidis, editor,
Developments in Language Theory, DLT 1997, pages 61–101. Aristotle University
of Thessaloniki, 1997.

[Kui99] Werner Kuich. Full Abstract Families of Tree Series I. In J. Karhumäki, H. Maurer,
G. Păun, and Rozenberg G., editors, Jewels are Forever, pages 145–156. Springer,
Berlin, Heidelberg, 1999.

[Kui00a] Werner Kuich. Abstract Families of Tree Series II. In R. Freund and A. Kele-
menova, editors, Proceedings of the International Workshop on Grammar Systems

2000, pages 347–358. Schlesische Universität Troppau, 2000.

228

Bibliography

[Kui00b] Werner Kuich. Formal Series over Algebras. In M. Nielsen and B. Rovan, editors,
Mathematical Foundations of Computer Science, MFCS 2000, volume 1893 of
Lecture Notes in Computer Science, pages 488–496. Springer-Verlag, 2000.

[Kui01] Werner Kuich. Pushdown Tree Automata, Algebraic Tree Systems, and Algebraic
Tree Series. Information and Computation, 165(1):69–99, 2001.

[LSS99] Clemens Lautemann, Nicole Schweikardt, and Thomas Schwentick. A Logical
Characterisation of Linear Time on Nondeterministic Turing Machines. In
C. Meinel and S. Tison, editors, Annual Symposium on Theoretical Aspects of

Computer Science, STACS 1999, volume 1563 of Lecture Notes in Computer Science,
pages 143–152. Springer, Berlin, Heidelberg, 1999.

[LST95] Clemens Lautemann, Thomas Schwentick, and Denis Thérien. Logics for Context-
Free Languages. In L. Pacholski and J. Tiuryn, editors, Computer Science Logic,

CSL 1994, volume 933 of Lecture Notes in Computer Science, pages 205–216.
Springer, Berlin, Heidelberg, 1995.

[Mai07] Robert S. Maier. Parametrized Stochastic Grammars for RNA Secondary Struc-
ture Prediction. In Information Theory and Applications Workshop, pages 256–
260. IEEE, 2007.

[Mas74] A. N. Maslov. The Hierarchy of Indexed Languages of an Arbitrary Level. Dokl.

Akad. Nauk SSSR, 2017(5):1013–1016, 1974.

[Med56] Yu. T. Medvedev. On the Class of Events Representable in a Finite Automa-
ton. Automata Studies, 1956. also in Sequential machines – Selected papers
(translated from Russian), Addison-Wesley, 215–227, (1964).

[Moh97] Mehryar Mohri. Finite-State Transducers in Language and Speech Processing.
Computational Linguistics, 23(2):269–311, 1997.

[MP43] Warren S. McCulloch and Walter Pitts. A Logical Calculus of the Ideas Immanent
in Nervous Activity. The Bulletin of Mathematical Biophysics, 5(4):115–133,
1943.

[MP11] P. Madhusudan and Gennaro Parlato. The Tree Width of Auxiliary Storage. ACM

SIGPLAN Notices, 46(1):283–294, 2011.

[MPR02] Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted Finite-State
Transducers in Speech Recognition. Computer Speech & Language, 16(1):69–88,
2002.

[MS01] Victor Mitrana and Ralf Stiebe. Extended Finite Automata over Groups. Discrete

Applied Mathematics, 108(3):287–300, 2001.

[Ned09] Mark-Jan Nederhof. Weighted Parsing of Trees. In H. Bunt and É. Villemonte
de la Clergerie, editors, Proceedings of the 11th International Conference on Parsing

229

Bibliography

Technologies, IWPT 2009, page 13–24. Association for Computational Linguistics,
2009.

[NSV01] Frank Neven, Thomas Schwentick, and Victor Vianu. Towards Regular Languages
over Infinite Alphabets. In J. Sgall, A. Pultr, and P. Kolman, editors, Mathematical

Foundations of Computer Science, MFCS 2001, volume 2136 of Lecture Notes in

Computer Science, pages 560–572. Springer, Berlin, Heidelberg, 2001.

[ODH19] Johannes Osterholzer, Toni Dietze, and Luisa Herrmann. Linear Context-Free
Tree Languages and Inverse Homomorphisms. Information and Computation,
269, 2019.

[Ong13] Luke Ong. Recursion schemes, collapsible pushdown automata and higher-order
model checking. In A.-H. Dediu, C. Martín-Vide, and Truthe B., editors, Language

and Automata Theory and Applications, LATA 2013, volume 7810 of Lecture Notes

in Computer Science, pages 13–41. Springer, Berlin, Heidelberg, 2013.

[Ost14] Johannes Osterholzer. Pushdown Machines for Weighted Context-Free Tree
Translation. In M. Holzer and M. Kutrib, editors, Implementation and Application

of Automata, CIAA 2014, volume 8587 of Lecture Notes in Computer Science,
pages 290–303. Springer, 2014.

[Per16] Vitaly Perevoshchikov, 2016. personal communication.

[PR14] Maria Pittou and George Rahonis. Weighted Variable Automata over Infinite
Alphabets. In M. Holzer and M. Kutrib, editors, Implementation and Application

of Automata, CIAA 2014, volume 8587 of Lecture Notes in Computer Science,
pages 304–317. Springer, 2014.

[Qua09] Karin Quaas. On the Supports of Recognizable Timed Series. In J. Ouaknine
and F.W. Vaandrager, editors, Formal Modeling and Analysis of Timed Systems,

FORMATS 2009, volume 5813 of Lecture Notes in Computer Science, pages 243–
257. Springer, Berlin, Heidelberg, 2009.

[Qua11] Karin Quaas. MSO logics for weighted timed automata. Formal Methods in

System Design, 38(3):193–222, 2011.

[Rad10] Dragica Radovanovic. Weighted Tree Automata over Strong Bimonoids. Novi

Sad Journal of Mathematics, 40(3):89–108, 2010.

[Rou69] William C. Rounds. Context-Free Grammars on Trees. In Proceedings of the first

annual ACM symposium on Theory of computing - STOC, pages 143–148. ACM
Press, 1969.

[Rou70] William C. Rounds. Tree-Oriented Proofs of some Theorems on Context-Free
and Indexed Languages. In Proceedings of the second annual ACM symposium on

Theory of computing, STOC 1970, pages 109–116. ACM Press, 1970.

230

Bibliography

[RP11] Stefano Crespi Reghizzi and Pierluigi San Pietro. From Regular to Strictly
Locally Testable Languages. In Š. Holub P. Ambrož and Z. Masáková, editors,
International Conference WORDS 2011, volume 63 of Electronic Proceedings in

Theoretical Computer Science, pages 103–111. Open Publishing Association,
2011.

[RP19] Stefano Crespi Reghizzi and Pierluigi San Pietro. Regular Languages as Local
Functions with Small Alphabets. In M. Ćirić, M. Droste, and J. É. Pin, editors,
Algebraic Informatics, CAI 2019, volume 11545 of Lecture Notes in Computer

Science, pages 124–137. Springer, 2019.

[RT19] George Rahonis and Faidra Torpari. Weighted Context-Free Grammars Over
Bimonoids. Scientific Annals of Computer Science, 29(1):59–80, 2019.

[Sak09] Jacques Sakarovitch. Rational and Recognisable Power Series. In M. Droste,
W. Kuch, and H. Vogler, editors, Handbook of Weighted Automata, Monographs
in Theoretical Computer Science. An EATCS Series, pages 105–174. Springer,
Berlin, Heidelberg, 2009.

[Sch61] Marcel P. Schützenberger. On the Definition of a Family of Automata. Information

and Control, 4(2-3):245–270, 1961.

[Sch63] Marcel Paul Schützenberger. On Context-Free Languages and Push-Down
Automata. Information and Control, 6(3):246–264, 1963.

[Sch12] Thomas Schwentick. Foundations of XML based on logic and automata: A
snapshot. In Lecture Notes in Computer Science, pages 23–33. Springer Berlin
Heidelberg, 2012.

[Sco67] Dana Scott. Some Definitional Suggestions for Automata Theory. Journal of

Computer and System Sciences, 1(2):187–212, 1967.

[SVF09] Torsten Stüber, Heiko Vogler, and Zoltán Fülöp. Decomposition of Weighted
Multioperator Tree Automata. International Journal of Foundations of Computer

Science, 20(2):221–245, 2009.

[Tei16] Markus Teichmann. Regular Approximation of Weighted Linear Nondeleting
Context-Free Tree Languages. In Y.S. Han and K. Salomaa, editors, Implementa-

tion and Application of Automata, CIAA 2016, volume 9705 of Lecture Notes in

Computer Science, pages 273–284. Springer, 2016.

[Tha67] James W. Thatcher. Characterizing Derivation Trees of Context-Free Grammars
through a Generalization of Finite Automata Theory. Journal of Computer and

System Sciences, 1(4):317–322, 1967.

[TO15] Markus Teichmann and Johannes Osterholzer. A Link between Multioperator and
Tree Valuation Automata and Logics. Theoretical Computer Science, 594:106–119,
2015.

231

Bibliography

[Tra58] Boris A. Trakhtenbrot. The Synthesis of Logical Nets Whose Operators are
Described in Terms of Monadic Predicates. Doklady AN SSR, 118(4):646–649,
1958.

[Tra08] Boris A. Trakhtenbrot. From Logic to Theoretical Computer Science – An Update.
In A. Avron, N. Dershowitz, and A. Rabinovich, editors, Pillars of Computer

Science, volume 4800 of Lecture Notes in Computer Science, pages 1–38. Springer,
Berlin, Heidelberg, 2008.

[TW68] James W. Thatcher and Jesse B. Wright. Generalized Finite Automata Theory
with an Application to a Decision Problem of Second-Order Logic. Mathematical

Systems Theory, 2(1):57–81, 1968.

[UH67] Jeffrey D. Ullman and John E. Hopcroft. An Approach to a Unified Theory of
Automata. Bell System Technical Journal, 46(8):1793–1829, 1967.

[VB15] Margus Veanes and Nikolaj Bjørner. Symbolic Tree Automata. Information

Processing Letters, 115(3):418–424, 2015.

[VBdM10] Margus Veanes, Nikolaj Bjørner, and Leonardo de Moura. Symbolic Automata
Constraint Solving. In C.G. Fermüller and A. Voronkov, editors, Logic for

Programming, Artificial Intelligence, and Reasoning, LPAR 2010, volume 6397 of
Lecture Notes in Computer Science, pages 640–654. Springer, Berlin, Heidelberg,
2010.

[VDH16] Heiko Vogler, Manfred Droste, and Luisa Herrmann. A Weighted MSO Logic
with Storage Behaviour and Its Büchi-Elgot-Trakhtenbrot Theorem. In A. H.
Dediu, J. Janoušek, C. Martín-Vide, and Bianca Truthe, editors, Language and

Automata Theory and Applications, LATA 2016, volume 9618 of Lecture Notes in

Computer Science, pages 127–139. Springer, 2016.

[VdHT10] Margus Veanes, Peli de Halleux, and Nikolai Tillmann. Rex: Symbolic Regular
Expression Explorer. In Third International Conference on Software Testing,

Verification and Validation, ICST 2010, pages 498–507. IEEE, 2010.

[Vea13] Margus Veanes. Applications of Symbolic Finite Automata. In S. Konstantinidis,
editor, Implementation and Application of Automata, CIAA 2013, volume 7982 of
Lecture Notes in Computer Science, pages 16–23. Springer, Berlin, Heidelberg,
2013.

[vNG01] Gertjan van Noord and Dale Gerdemann. Finite State Transducers with Predi-
cates and Identities. Grammars, 4(3):263–286, 2001.

[Vou17] El Makki Voundy. Langages Epsilon-Sûrs et Caractérisations des Langages D’Ordres

Supérieurs. PhD thesis, Aix-Marseille Université, 2017.

[VP75] Leslie G. Valiant and Michael S. Paterson. Deterministic One-Counter Automata.
Journal of Computer and System Sciences, 10(3):340–350, 1975.

232

Bibliography

[Wan98] Huaxiong Wang. On Rational Series and Rational Languages. Theoretical

Computer Science, 205(1-2):329–336, 1998.

[Wat96] Bruce W. Watson. Implementing and Using Finite Automata Toolkits. Natural

Language Engineering, 2(4):295–302, 1996.

[Wec92] Wolfgang Wechler. Universal Algebra for Computer Scientists, volume 25 of
Monographs in Theoretical Computer Science. An EATCS Series. Springer-Verlag,
1992.

[Wil94] Thomas Wilke. Specifying Timed State Sequences in Powerful Decidable Logics
and Timed Automata. In H. Langmaack, W. P. de Roever, and J. Vytopil, editors,
Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT 1994, volume
863 of Lecture Notes in Computer Science, pages 694–715. Springer, Berlin,
Heidelberg, 1994.

[Zet13] Georg Zetzsche. Silent Transitions in Automata with Storage. In F.V. Fomin,
R. Freivalds, M. Kwiatkowska, and D. Peleg, editors, Automata, Languages, and

Programming, ICALP 2013, volume 7966 of Lecture Notes in Computer Science,
pages 434–445. Springer, Berlin, Heidelberg, 2013.

[Zet15] Georg Zetsche. Monoids as Storage Mechanisms. PhD thesis, Technische Univer-
sität Kaiserslautern, 2015.

233

