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Abstract: Brain tumor diagnosis at an early stage can improve the chances of successful treatment
and better patient outcomes. In the biomedical industry, non-invasive diagnostic procedures, such
as magnetic resonance imaging (MRI), can be used to diagnose brain tumors. Deep learning, a
type of artificial intelligence, can analyze MRI images in a matter of seconds, reducing the time it
takes for diagnosis and potentially improving patient outcomes. Furthermore, an ensemble model
can help increase the accuracy of classification by combining the strengths of multiple models and
compensating for their individual weaknesses. Therefore, in this research, a weighted average
ensemble deep learning model is proposed for the classification of brain tumors. For the weighted
ensemble classification model, three different feature spaces are taken from the transfer learning
VGG19 model, Convolution Neural Network (CNN) model without augmentation, and CNN model
with augmentation. These three feature spaces are ensembled with the best combination of weights,
i.e., weight1, weight2, and weight3 by using grid search. The dataset used for simulation is taken
from The Cancer Genome Atlas (TCGA), having a lower-grade glioma collection with 3929 MRI
images of 110 patients. The ensemble model helps reduce overfitting by combining multiple models
that have learned different aspects of the data. The proposed ensemble model outperforms the three
individual models for detecting brain tumors in terms of accuracy, precision, and F1-score. Therefore,
the proposed model can act as a second opinion tool for radiologists to diagnose the tumor from MRI
images of the brain.

Keywords: ensembled; weighted average; brain tumor; data augmentation; biomedical; Convolution
Neural Network (CNN)

1. Introduction

A brain tumor, which is regarded as one of the most serious illnesses of the nervous
system, is an unexpected and uncontrollable development of brain cells. The Tumor Society
estimates that approximately 4 lakh people worldwide are impacted with brain tumors
every year [1,2]. Brain tumors can cause a range of complications, including seizures,
cognitive problems, and physical disabilities. Early detection and treatment can help
reduce the risk of these complications. Detection at an early stage allows for a wider range
of treatment options that can help improve the patient’s quality of life, by reducing the
need for more invasive treatments and minimizing the impact of the tumor [3,4].
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The use of deep learning for the detection of brain tumors is an active field of research
that shows significant potential for enhancing the precision and timeliness of brain tumor
diagnosis [5–7]. Known as a subfield of computer learning, deep learning entails teaching a
neural network to spot structures within large datasets. To detect brain tumors, for example,
deep learning algorithms can be trained on huge collections of medical photos to recognize
the telltale signs of these diseases.

There are several challenges associated with brain tumor detection using deep learning,
including the need for large, high-quality datasets, and the difficulty of interpreting the out-
put of the neural network [8]. The availability of enormous medical picture datasets, along
with recent advancements in deep learning algorithms, have led to encouraging outcomes
in this area. There is hope that future research and development into deep learning-based
techniques for brain tumor detection may increase the accuracy and efficiency of brain
tumor diagnosis, and ultimately improve patient outcomes.

In deep learning, use of ensemble models can be used to improve the accuracy and
robustness of predictions. In the context of brain tumor classification, an ensemble model
can help increase the accuracy of classification by combining the strengths of multiple
models and compensating for their individual weaknesses. By combining the models,
the ensemble model can take advantage of the strengths of each model and mitigate their
weaknesses. For example, if a particular model is more prone to overfitting, the ensemble
model can compensate by giving less weight to its predictions.

Overall, the use of an ensemble model can improve the accuracy and robustness of
brain tumor classification by leveraging the strengths of multiple models and mitigating
their individual weaknesses. This can ultimately help clinicians make more accurate and
informed decisions about the diagnosis and treatment of brain tumors.

In this research, a weighted average ensemble deep learning model for brain tumor
detection is presented. The article’s most significant contributions are as follows:

• A weighted average ensemble model is proposed for the classification of brain tumors
by using the grid search for the best combination of weights, i.e., weight1, weight2,
and weight3, that are taken for transfer learning model, Convolution Neural Net-
work (CNN) model without augmentation, and CNN model with augmentation,
respectively;

• The results of the weighted average ensemble model are compared with the individual
model, i.e., transfer learning model, Convolution Neural Network (CNN) model
without augmentation, and CNN model with augmentation, in which the proposed
ensemble model has outperformed the other individual models;

• Adam optimizer and a 32 batch size were used to evaluate the proposed weighted
average ensemble model for brain tumor classification from MRI scans.

The remaining article is prepared as follows: Section 2 demonstrates the literature
review, followed by the proposed methodology in Section 3, and the conclusion is shown
in Section 4.

2. Related Work

The present literature methods are reviewed here. Gill et al. [9] used a VGG19 ar-
chitecture and achieved an accuracy of 73.0%, precision of 87.0%, sensitivity of 75.0%,
and an F1-score of 81.0% on a dataset of 3000 brain MRI images to classify brain tumor.
Rajinikanth [10] also used the VGG19 architecture and achieved a higher performance, with
an accuracy of 98.17%, precision of 98.50%, sensitivity of 98.75%, and specificity of 97%
on a dataset of 1400 MRI images. Khan [11] used both VGG16 and VGG19 architectures
and achieved high accuracy on different datasets, with 98.16% on BraTs2015, 97.26% on
BraTs2017, and 93.40% on BraTs2018. Khan [12] used a CNN and attained an accuracy of
97.8% on a dataset of 3216 images. Asiri et al. [13] used the VGG19 architecture and attained
an accuracy of 98.0% on a dataset of 2870 images. Raj et al. [14] in 2020 used a recurrent
neural network technique and achieved an accuracy of 96%, specificity of 98%, and sensi-
tivity of 97%. Poonguzhali et al. [15] in 2019 analyzed 20 patient images using RCNN and
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SVM classifiers and achieved a sensitivity of 82% and specificity of 99%. Pandian et al. [16]
in 2017 analyzed 1000 images using Convnet techniques and attained an accuracy of 97%.
Joshi et al. [17] in 2019 used a CNN technique for image analysis and achieved an accuracy
of 79.07%. Rao et al. [18] selected patches in each voxel’s plane and trained a CNN. The
outputs of each CNN’s final FC layer using softmax were then combined and used to build
an RF classifier.

A CNN model is suggested by Kao et al. [19] using the block location data. The
ambiguity can be decreased, and the accuracy can be significantly increased by combining
the tumor data that has been taken from many advanced networks. To gain more precise
anatomical data on brain tumors, Nassar et al. [20,21] fed the CNN model by integrating the
image features of long skip-linked lesions. W. Chen et al. [22] showed a separate 3D U-Net
model that got around the memory limit by using different 3D convolutions. Wang et al. [23]
made a TransBTS structure that worked well with a transformer. Liu et al. [24,25] suggested
a customized deep 3D V-Net model based on encoders and decoders that used less memory
and computing power and were based on fewer parameters. An attention module with
group cross-channel was used to keep track of the most important things [25–27]. The
suggested work used standard 2017 and 2018 records for research studies. From these two
datasets, 2D slices with only the tumorous area were taken.

3. Proposed Weighted Average Ensemble Deep Learning Model Architecture

Figure 1 illustrates the architecture of the proposed Weighted Average Ensemble Deep
Learning Model for classifying MRI images of brain tumors. The whole methodology
is divided into two phases. The classification is performed using a weighted average
ensemble of three models, in which the first model is a transfer learning-based model, the
second model is Convolution Neural Network (CNN) model without augmentation and the
third model is the CNN model with augmentation. From these three models, three different
feature spaces are extracted, which are ensembled, to make an optimized feature space. For
this, three different weights, i.e., weight 1, weight 2, and weight 3 are assigned to three
different models using a grid search combination to find the best-optimized classification
model. By merging the results of several models, an ensemble model can provide more
precise forecasts. It is more robust than individual models because if one of the models in
the ensemble makes an incorrect prediction, the other models can compensate and provide
a correct prediction.
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3.1. Input Dataset

Brain MRI scans from 110 patients with 3929 brain MRI images are included in the
dataset using FLAIR abnormalities. Out of the total 3929 dataset images, 90% of the data
are used for training and 10% are used for testing. After that, out of the 90% training data,
15% are used for the validation set. Figure 2 illustrates the brain MRI images taken from
Kaggle [28,29]. Figure 2a displays the normal image and Figure 2b displays the tumor
image of the brain in which two tumor regions are shown with a break in between. It is
difficult to segment this break region in the tumor part. The proposed methodology shown
in Figure 3 is also segmenting this break part accurately.
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Figure 3. Confusion matrix parameter values of different transfer learning models, i.e., EfficientNetB0,
InceptionV3, ResNet50, and VGG19. (a) Precision, (b) Sensitivity, (c) F1-score.

3.2. Feature Space Extraction Using Three Different Models

In this section, the classification of three models is performed. In model 1, the clas-
sification is performed using three different transfer learning models. In model 2, the
classification using the Convolution Neural Network (CNN) architecture without augmen-
tation is performed, and in the model 3, the classification is performed using the CNN
architecture with augmentation.

3.2.1. Model 1: Classification Using Transfer Learning Models and Evaluation of Best
Transfer Learning Model

The different Transfer Learning (TL) models that are used for the classification of brain
tumors are EfficientNetB0, InceptionV3, ResNet50 [30], and VGG19. The values of the
confusion matrix parameters, such as Precision (PR), Sensitivity (SN), and F1-score (FS)
are obtained on all four transfer learning models and are shown in Figure 3. From the
analysis of PR, SN, and FS as presented in Figure 3a–c, respectively, it is concluded that
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the VGG19 model outperforms the other three TL models, i.e., EfficientNetB0, InceptionV3,
and ResNet50. The VGG19 model has obtained a precision of 95%, sensitivity of 96%, and
F1-score of 95% for brain tumor classes.

3.2.2. Model 2: Classification Using Convolution Neural Network (CNN) Architecture
without Augmentation

The Convolution Neural Network (CNN) architecture consists of five convolution
blocks, as shown in Figure 4. Each convolution block consists of different convolution
layers, ReLU layer, batch normalization, max pool layer, and dropout layer. Therefore,
the CNN architecture consists of five convolution layers, five ReLU layers, two batch
normalization, five max pool layers, three dropout layers, flatten layer, and a dense layer.
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Figure 5 displays the confusion matrix parameter values obtained using the CNN
model. The values of FS, SN, and PR are 97%, 98%, and 95%, respectively, for the tumor
class. The CNN model outperformed the VGG19 transfer learning model.
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3.2.3. Model 3: Classification Using Convolution Neural Network (CNN) Architecture
with Augmentation

To obtain more, and more varied images of brain tumors, the data augmentation tech-
nique is used with the existing images. The different data augmentation techniques [31–33]
that are applied are vertical flipping and horizontal flipping. Figure 6a displays the original
sample of the brain tumor image, Figure 6b displays the vertically flipped image, and
Figure 6c displays the horizontally flipped image.



Diagnostics 2023, 13, 1320 7 of 13

Diagnostics 2023, 13, x FOR PEER REVIEW 7 of 14 
 

 

 

Figure 5. Confusion matrix parameter values for the CNN model. 

3.2.3. Model 3: Classification Using Convolution Neural Network (CNN) Architecture 

with Augmentation 

To obtain more, and more varied images of brain tumors, the data augmentation 

technique is used with the existing images. The different data augmentation techniques 

[31–33] that are applied are vertical flipping and horizontal flipping. Figure 6a displays 

the original sample of the brain tumor image, Figure 6b displays the vertically flipped 

image, and Figure 6c displays the horizontally flipped image.  

   
(a) (b) (c) 

Figure 6. Samples of Brain MRI Images [31]: (a) Original Image, (b) Vertical Flip, (c) Horizontal Flip. 

In this section, the results are obtained using the CNN model with augmented im-

ages. Figure 7 displays the confusion matrix parameter values on the CNN model with 

data augmentation. The values of FS, SN, and PR are 97%, 96%, and 99%, respectively. 

The CNN model with data augmentation, outperformed the previous models. 

Figure 6. Samples of Brain MRI Images [31]: (a) Original Image, (b) Vertical Flip, (c) Horizontal Flip.

In this section, the results are obtained using the CNN model with augmented images.
Figure 7 displays the confusion matrix parameter values on the CNN model with data
augmentation. The values of FS, SN, and PR are 97%, 96%, and 99%, respectively. The CNN
model with data augmentation, outperformed the previous models.
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3.3. Classification Using Ensembling of Three Different Models

The proposed weighted average ensembled model is designed by combining three
feature spaces obtained from the TL model, CNN model without augmentation, and CNN
model with augmentation. For this, a grid search is performed to find the best combination
of weights assigned to three different feature spaces. Weight 1 (wt1) is obtained from the
VGG19 TL model, weight 2 (wt2) is taken from the CNN model without augmentation,
and weight 3 (wt3) is obtained from the CNN model with data augmentation [34–36].

Figure 8 illustrates the weighted ensemble of three feature maps extracted from three
different models. These weights are further optimized by using a grid search combination
to achieve the maximum accuracy value of the ensemble model. Equation (1) shows the
formula of the hybrid feature map for the best combination of weights.

Hybrid feature map = VGG19 feature map F1 × wt1 + CNN feature map without augmentation F2 × wt2 +
CNN feature map with augmentation F3 × wt3

(1)

With the help of optimized weights, a hybrid feature map is generated which is further
fed to a fully connected layer to determine the classified output.
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From Figure 9, it can be seen that for the different values of wt1, wt2, and wt3, different
values of accuracies are obtained. The best value of accuracy 98.18% is obtained on weights
0.3, 0.4, and 0.4 as shown in Figure 9.
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Figure 9. Weights obtained from different models.

Figure 10 shows the confusion matrix and confusion matrix parameters of the ensemble
model [37,38]. Figure 10a displays the confusion matrix for normal and brain tumor classes.
Figure 10b displays the values of FS, SN, and PR as 98%, 99%, and 98%, respectively, for
the tumor class.
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3.4. Comparison of Ensembled Model with Individual Models

Figure 11 displays the comparison of the Ensembled model with individual models,
i.e., transfer learning model, CNN model without augmentation, and CNN model with
augmentation in terms of accuracy, FS, SN, and PR. For the ensemble model, the values of
accuracy, FS, SN, and PR are 98%, 98.5%, 98.7%, and 98.25%, respectively.
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3.5. Comparison of Ensembled Model with State-of-Art

Table 1 provides a summary of different research studies on medical image analysis,
along with the number of images used, the technique employed, and the performance
parameters achieved by each study.

Raj et al. [14] used a recurrent neural network and achieved an accuracy of 96%,
specificity of 98%, and sensitivity of 97%. Poonguzhali et al. [15] used a RCNN and
SVM classifier on 20 patient images and achieved a sensitivity of 82% and specificity of
99%. Pandian et al. [16] used convnet, slicenet, and VGNet on 1000 images and achieved
an accuracy of 97%. Joshi et al. [17] used a CNN and achieved an accuracy of 79.07%.
Gill et al. [9] used VGG19 on 3000 images and achieved an accuracy of 73.0%, precision
of 87.0%, sensitivity of 75.0%, and F1-score of 81.0%. Rajinikanth [10] used VGG19 on
1400 images and achieved an accuracy of 98.17%, precision of 98.50%, sensitivity of 98.75%,
and specificity of 97%. Khan [11] used VGG16 and VGG19 on various datasets and achieved
accuracies ranging from 93.40% to 98.16%. Khan [12] used a CNN on 3216 images and
achieved an accuracy of 97.8%. Asiri et al. [13] used VGG19 on 2870 images and achieved
an accuracy of 98.0%.

Finally, the proposed model used a weighted average ensemble model on 3929 images
and achieved an accuracy of 98.00%, sensitivity of 98.7%, F1-Score of 98.5%, and precision
of 98.25%.

Table 1. Review of State-of-the-Art Methods Compared to the Proposed Model.

Ref. Year Images Technique Used Performance Parameters

Raj et al. [14] 2020 - Recurrent Neural Network
Accuracy = 96%
Specificity = 98%
Sensitivity = 97%

Poonguzhali et al. [15] 2019 20 patients RCNN and SVM classifier Sensitivity = 82%
Specificity = 99%
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Table 1. Cont.

Ref. Year Images Technique Used Performance Parameters

Pandian et al. [16] 2017 1000 Convnet and slicenet and VGNet Accuracy = 97%

Joshi et al. [17] 2019 - CNN Accuracy = 79.07%

Gill et al. [9] 2022 3000 VGG19

Accuracy = 73.0%
Precision = 87.0%

Sensitivity = 75.0%
F1-score = 81.0%

Rajinikanth [10] 2020 1400 VGG19

Accuracy = 98.17%
Precision = 98.50%

Sensitivity = 98.75%
Specificity = 97%

Khan [11] 2020 - VGG16
VGG19

Accuracy on
BraTs2015 = 98.16%
BraTs2017 = 97.26%
BraTs2018 = 93.40%

Khan [12] 2022 3216 CNN Accuracy = 97.8%

Asiri et al. [13] 2022 2870 VGG19 Accuracy = 98.0%

Proposed model 2023 3929 Weighted average ensemble model

Accuracy = 98.00%
Sensitivity = 98.7%
F1-Score = 98.5%

Precision = 98.25%

4. Conclusions

Deep learning models can be sensitive to the random initialization of weights, the
choice of hyperparameters, and the randomness in the training data. By mixing numerous
models trained on distinct portions of the data and using varying hyperparameters, an
ensemble model can aid in reducing this unpredictability. In order to classify brain tumors
from MRI scans, this research offers a weighted average ensemble deep learning model. The
presented work has been estimated on the brain MRI database. It performs classification
by using the grid search for the best combination of weights, i.e., weight1, weight2, and
weight3 that are taken for the VGG19 TL model, CNN model without augmentation, and
CNN model with augmentation, respectively. The proposed ensemble model outperforms
the three individual models in relations of accuracy, precision and F1-score, having values
of 98%, 98.25%, and 98.5%, respectively. Accordingly, radiologists can use this model as a
second opinion resource for making a diagnosis of brain tumors from MRI images.

The study’s inability to generalize findings to other cancer forms attacking MRI
pictures is a significant shortcoming. A number of image modalities and segmentation
techniques, including the Pyramid Scene Parsing Network (PSPNet), UNet, DeepLab, and
Feature Pyramid Network (FPN), can be used in future studies to achieve a good enough
approximation of affected brain regions to separate them from healthy ones. It is possible
that a combination of modalities, each with its own approach to image registration, will be
required to properly display the missing features of image in the patterns over time and
execute classification. It is possible that using ensembles would allow for greater precision
and accuracy.

Author Contributions: Conceptualization, V.A., S.G., D.G., Q.X.; and Y.G.; methodology, V.A, S.G.,
Y.G., Q.X., and S.J.; software, V.A., S.G. and D.G.; validation, S.G., D.G., Y.G. and Q.X.; formal
analysis, V.A., S.G. and D.G.; investigation, S.G., D.G., Y.G.; resources, V.A., S.G., D.G.; data curation,
V.A., S.G., D.G., Y.G. and S.J.; writing—original draft preparation, V.A., S.G., D.G.; writing—review
and editing, V.A., S.G., D.G., Y.G., Q.X., S.J., A.S. (Asadullah Shah), and A.S. (Asadullah Shaikh);
visualization, V.A., S.G., D.G., Y.G.; supervision, Y.G. and S.J.; project administration, Y.G. and Q.X..;



Diagnostics 2023, 13, 1320 12 of 13

funding acquisition, Y.G. and Q.X. All authors have read and agreed to the published version of
the manuscript.

Funding: The publication of this work was supported by the Deanship of Scientific Research, Vice
Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia, under
Project GRANT2,792.

Data Availability Statement: Data Will be available form first author on request.

Acknowledgments: The publication of this work was supported by the Deanship of Scientific
Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi
Arabia, under Project GRANT2,792. The authors are also thankful to International Islamic University,
Malaysia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ghaffari, M.; Samarasinghe, G.; Jameson, M.; Aly, F.; Holloway, L.; Chlap, P.; Koh, E.S.; Sowmya, A.; Oliver, R. Automated

post-operative brain tumour segmentation: A deep learning model based on transfer learning from pre-operative images. Magn.
Reson. Imaging 2022, 86, 28–36. [CrossRef]

2. Ahmadi, A.; Kashefi, M.; Shahrokhi, H.; Nazari, M.A. Computer aided diagnosis system using deep convolutional neural
networks for ADHD subtypes. Biomed. Signal Process. Control 2021, 63, 102227. [CrossRef]

3. Kumar, T.S.; Arun, C.; Ezhumalai, P. An approach for brain tumor detection using optimal feature selection and optimized deep
belief network. Biomed. Signal Process. Control 2022, 73, 103440. [CrossRef]

4. Akter, S.; Das, D.; Haque, R.U.; Tonmoy, M.I.Q.; Hasan, M.R.; Mahjabeen, S.; Ahmed, M. AD-CovNet: An exploratory analysis
using a hybrid deep learning model to handle data imbalance, predict fatality, and risk factors in Alzheimer’s patients with
COVID-19. Comput. Biol. Med. 2022, 146, 105657. [CrossRef] [PubMed]

5. Ma, Q.; Zhou, S.; Li, C.; Liu, F.; Liu, Y.; Hou, M.; Zhang, Y. DGRUnit: Dual graph reasoning unit for brain tumor segmentation.
Comput. Biol. Med. 2022, 149, 106079. [CrossRef]

6. Li, Z.; Sun, Y.; Zhang, L.; Tang, J. Ctnet: Context-based tandem network for semantic segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 2022, 44, 9904–9917. [CrossRef] [PubMed]

7. Sun, Y.; Li, Z. Ssa: Semantic structure aware inference for weakly pixel wise dense predictions without cost. arXiv 2021,
arXiv:2111.03392.

8. Ghaffari, M.; Sowmya, A.; Oliver, R. Automated brain tumour segmentation using cascaded 3d densely-connected u-net. In
International MICCAI Brainlesion Workshop; Springer: Berlin/Heidelberg, Germany, 2020; pp. 481–491.

9. Gill, K.S.; Sharma, A.; Anand, V.; Gupta, R. Brain Tumor Detection using VGG19 model on Adadelta and SGD Optimizer. In
Proceedings of the 2022 6th International Conference on Electronics, Communication and Aerospace Technology, Coimbatore,
India, 1–3 December 2022; pp. 1407–1412.

10. Rajinikanth, V.; Joseph Raj, A.N.; Thanaraj, K.P.; Naik, G.R. A customized VGG19 network with concatenation of deep and
handcrafted features for brain tumor detection. Appl. Sci. 2020, 10, 3429. [CrossRef]
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