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Figure 1: Interactive control for various geometry processing and modeling applications made possible with weighted averages on surfaces.
From left to right: texture transfer, decal placement, semiregular remeshing and Laplacian smoothing, splines on surfaces.

Abstract

We consider the problem of generalizing affine combinations in Eu-
clidean spaces to triangle meshes: computing weighted averages of
points on surfaces. We address both the forward problem, namely
computing an average of given anchor points on the mesh with
given weights, and the inverse problem, which is computing the
weights given anchor points and a target point. Solving the forward
problem on a mesh enables applications such as splines on surfaces,
Laplacian smoothing and remeshing. Combining the forward and
inverse problems allows us to define a correspondence mapping be-
tween two different meshes based on provided corresponding point
pairs, enabling texture transfer, compatible remeshing, morphing
and more. Our algorithm solves a single instance of a forward or
an inverse problem in a few microseconds. We demonstrate that
anchor points in the above applications can be added/removed and
moved around on the meshes at interactive framerates, giving the
user an immediate result as feedback.
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1 Introduction

Computing weighted averages, or affine combinations of points in
Euclidean space is a fundamental operation. Given n anchor points
and corresponding weights, their weighted average can be easily
computed by coordinate-wise weighted averaging. In this paper,
we explore a generalization of weighted averages to points on tri-
angulated surfaces (meshes) and develop a fast method for find-
ing them. The natural way to generalize weighted averages to an
arbitrary metric space is the Fréchet mean [Cartan 1929; Fréchet

1948]: it is defined as the point that minimizes the sum of weighted
squared distances to the anchors. How to find this point, however,
is not obvious from the definition, and this task has so far received
little attention in the literature.

The Fréchet mean is typically studied with Riemannian metrics,
such as geodesic distance. Computing geodesic distance between
two arbitrary points on a triangle mesh, even despite the latest ad-
vancements, is relatively expensive. We therefore focus on a dif-
ferent class of metrics, which we call Euclidean-embedding met-
rics, that are derived by embedding the mesh in a (possibly high-
dimensional) Euclidean space and computing Euclidean distance
in that space. A number of known metrics, such as diffusion dis-
tance, commute-time distance and biharmonic distance [Lipman
et al. 2010] are Euclidean-embedding metrics. We adapt the con-
struction of Rustamov and colleagues [2009] to obtain a Euclidean-
embedding metric that mimics geodesic distance.

We show that for a Euclidean-embedding metric, the Fréchet mean
takes a special form: it is the result of taking the Euclidean weighted
average of the points in the embedding space and projecting it (i.e.,
finding the closest point) onto the embedded mesh. However, the
embedded mesh is not a smooth surface, and the Euclidean projec-
tion operator exhibits discontinuities near mesh edges. The Fréchet
mean therefore also behaves discontinuously. We introduce a new
projection operator which can be seen as a generalization of Phong
projection [Kobbelt et al. 1999] to Euclidean spaces of dimension
higher than three, and use this operator instead of the Euclidean
projection. We show experimentally that our Phong projection be-
haves in a qualitatively similar way to Euclidean projection onto a
smooth surface, although no smooth surface is actually constructed.

Armed with this Phong projection operator, we develop fast algo-
rithms for computing the forward problem and the inverse problem.
The forward problem is to find the weighted average of several an-
chors, given the anchors and the weights. The inverse problem is to
compute weights for a given set of anchors, such that the weighted
average is a given target point. In the Euclidean space, the inverse
problem is known as generalized barycentric coordinates. Unlike
the forward problem, the inverse problem has been previously stud-
ied from a computational point of view for geodesic distances [Rus-
tamov 2010], and we give a solution for our setup.

Weighted averages are a fundamental building block that can be
used for a variety of tasks in computer graphics and geometric mod-
eling. Using the forward problem, we construct splines on meshes
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and remesh surfaces semiregularly. Using both the forward and
the inverse problem together allows us to define a dense correspon-
dence between two meshes, which we can use to transfer surface-
varying data, such as a texture, from one mesh to another or set up
a morph between them. While all of the above tasks have special-
ized higher-quality algorithms, our methods are several orders of
magnitude faster. We can perform all mentioned tasks interactively,
providing more feedback to the user, and setting a new point on the
performance-vs-quality tradeoff curve.

Our main technical contributions are:

1. We develop Phong projection in higher dimensions as a
smoother alternative to Euclidean projection.

2. We present new generalized barycentric coordinates for scat-
tered points.

3. We present an efficient algorithm for solving the forward
problem.

2 Related work

The mathematical basis for weighted averages in a general metric
space is the Fréchet mean [Cartan 1929; Fréchet 1948], also known
as the Karcher mean [Karcher 1977] and the Riemannian center of
mass. It is typically used with geodesic distance or other Rieman-
nian metrics. However, geodesic distance is not C1 and is sensitive
to noise on meshes (Figure 10). Moreover, computing the geodesic
distance is relatively costly [Surazhsky et al. 2005], since it needs
to be done exactly (small errors in the distance can change the min-
imum location unpredictably), and between arbitrary points on the
mesh (not just vertices). This may preclude recent fast approximate
methods [Sethian 1996; Xin et al. 2012; Crane et al. 2013]. In-
stead, we use a metric obtained by embedding the mesh in a high-
dimensional Euclidean space, which is smooth and very fast to eval-
uate.

Methods for computing the Fréchet mean have been developed
on spheres [Buss and Fillmore 2001] and rotation groups [Pen-
nec 1998]. Methods for computing other kinds of weighted aver-
ages have been proposed for different subgroups of matrices [Alexa
2002; Pálfia 2009]. Somewhat surprisingly, to the best of our
knowledge, no efficient algorithms for computing the Fréchet mean
have been previously presented for general surfaces.

For the inverse problem, there generally exists more than one set
of weights for which given anchors average to a given point. For
most applications, however, a particular weight vector is needed.
Weights that vary smoothly and have other desirable properties are
known as generalized barycentric coordinates. Their construction
is a well-studied problem in Euclidean space [Floater 2003; Ju
et al. 2005; Joshi et al. 2007; Lipman et al. 2007]. Langer and
colleagues [2006] define generalized barycentric coordinates on a
sphere and Rustamov [2010] on arbitrary surfaces as we do. How-
ever, the generalized barycentric coordinate schemes that Rustamov
uses are defined for polygons, while we have a set of anchors in no
particular order. We therefore use a simple scheme generalizing a
recent idea by Waldron [2011] and Moving Least Squares (MLS).
MLS interpolation has been generalized to surfaces [Jin et al. 2009]
using geodesic distance, which has to be recomputed whenever an
anchor changes. Rustamov’s method suffers from the same draw-
back.

Prior methods have used interpolated tangent planes and normals
at vertices to obtain smoother behavior on triangle meshes in 3D.
The classical example of such a method is Phong shading [Phong
1975]. Kobbelt and colleagues [1999] use projection along the
Phong normal to construct multiresolution mesh hierarchies. Reg-
istration techniques [Chen and Medioni 1991] and other methods

[Sander et al. 2000] establish correspondences between nearby sur-
faces by shooting rays in the interpolated normal direction from
one surface to the other. Phong tessellation [Boubekeur and Alexa
2008] uses tangent planes at mesh vertices to replace triangles with
quadratic patches for smoother display. We develop an analog of
Phong projection [Kobbelt et al. 1999] in higher dimensions for
our purposes (Section 3.2).

Since weighted averages can be used for a variety of tasks, we
briefly review the relevant literature for the most important appli-
cations of our framework.

Cross-parametrization. Recently, a lot of effort has been spent
on establishing mappings between surfaces, due to the large num-
ber of practical applications that benefit from it, such as texture
transfer and morphing [Eckstein et al. 2001; Tzur and Tal 2009].
The computed map may be optimized to be as isometric as possi-
ble [Ovsjanikov et al. 2010] or as conformal as possible [Kim et al.
2011]. In [Schreiner et al. 2004], progressive meshes are used to
find the mapping, while in [Kraevoy and Sheffer 2004] the meshes
are simplified and parametrized on a common base domain. Other
similar methods have been developed [Sumner and Popović 2004;
Yeh et al. 2011]. None of these techniques are fast enough to be
interactive. Our method, while not specialized for this task, can be
used to define a cross-parametrization between two surfaces given
compatible anchors. When the anchors are changed (i.e., removed,
added or displaced), our map can be updated at interactive rates,
whereas all prior methods require minutes of computation or more
on complicated cases.

On-surface deformations. Weighted averages on surfaces can
similarly be used to construct a mapping from a surface to itself and
thus deform a signal defined on it. An alternative method tailored
to this problem was presented by Ritschel and colleagues [2010],
who show various applications of on-surface deformations, allow-
ing artists to control shadows, caustics and deform textures interac-
tively. They simulate a piece of elastic cloth sliding over the surface
and use a specialized GPU solver to achieve interactive frame rates.
Constrained parametrization [Hormann et al. 2008] could also be
used for the same goal, but handling surfaces with genus greater
than one is complicated and computationally expensive.

Splines on surfaces. Buss and Fillmore [2001] demonstrated
spherical splines as an application of their averaging operator.
Spline curves on general surfaces have been studied in a varia-
tional setting [Hofer and Pottmann 2004], but the necessary op-
timization is relatively costly. Jin and colleagues [2009] defined
curves on surfaces as iso-contours of an interpolated scalar field,
but again, the computational requirements are significant. Wallner
and Pottmann [2006] introduced an averaging-based definition of
splines over smooth surfaces, where an averaging operator that pro-
duces points on the surface is defined. Their approach is to simply
compute the weighted average in 3D space and project the result
onto the surface. This is similar to our method, but without a high-
dimensional embedding and without Phong projection the results
can be less robust (Figure 3, left) and discontinuous on discrete
meshes.

3 Method

Our method consists of several building blocks. We start
by introducing notation and terminology for the Fréchet mean
and Euclidean-embedding metrics and establishing some basic
facts (Section 3.1). We then introduce Phong projection for higher
dimensions (Section 3.2), describe our method for computing the
forward problem (Section 3.3), and then show how to solve the in-
verse problem of generalized barycentric coordinates (Section 3.4).



Finally we describe how we construct the specific Euclidean-
embedding metric that we use (Section 3.5).

3.1 Preliminaries

We refer to the n points xi whose average is to be computed as an-
chors. In Rk, the forward problem is solved simply by coordinate-
wise averaging using the given weights wi,

P

wi = 1:

x̂ =

n
X

i=1

wixi. (1)

The generalization of weighted averages to metric spaces is called
the Fréchet mean. The Fréchet mean of n anchors and weights wi

over a metric space M with metric d is defined as:

x̂ = argmin
x∈M

F (x), where F (x) =

n
X

i=1

wi d(x,xi)
2. (2)

As long as d is smooth, the gradient of F (x) at the minimum x̂
must be zero:

n
X

i=1

wi rd(x̂,xi)
2 = 0. (3)

For Euclidean space, rd(x,xi)
2 = x� xi and it is easy to check

that the Fréchet mean definition reduces to the usual one (1).

In general, the Fréchet mean is not always well-defined: F (x) may
have multiple minima. For example, on a sphere, consider anchors
that are vertices of a platonic solid, and identical weights. If d is the
Euclidean metric of the ambient 3D space then F is constant, and if
d is the geodesic metric on the sphere then F has multiple minima
due to symmetry. Even if F has a unique minimum, its location
may not be continuous in wi and xi, and Equation (3) can be satis-
fied at a local minimum. Karcher [1977] and Kendall [1990] among
others have studied the conditions for which the Fréchet mean is
well-behaved on Riemannian manifolds. At a high-level, if the an-
chors are close together, Gaussian curvature is not too high, and
the weights are nonnegative, x̂ is well-defined and continuous in
all variables. Our focus is on fast computation, and we leave it up
to the user to ensure that there are enough close-by anchors; our
experiments show that this is not difficult (see the accompanying
video for an example of anchor placement).

While the Fréchet mean is usually used with geodesic distances,
geodesics between arbitrary points on a mesh are slow to compute.

Figure 2: Cubic B-splines on surfaces are shown as yellow curves.
The red curve is a linear spline and illustrates the control polygon.

Euclidean Phong Euclidean Phong

Figure 3: Left: A line segment in 3D space projected onto a mesh
using Euclidean and Phong projection. Right: Quad remeshing
(see Section 4) using Euclidean and Phong projection in RD . No-
tice the jagginess of the Euclidean projections.

A different class of metrics, that we call Euclidean-embedding met-
rics, has been gaining popularity in recent literature. A Euclidean-
embedding metric is defined by an embedding e : M ! R

D and
the distance between two points on the surface is the Euclidean dis-
tance between their embeddings d(x1,x2) = ke(x1)�e(x2)k. On
a mesh, the embedding is defined on the vertices and is linear over
each face interior. Euclidean-embedding metrics are very fast to
evaluate, and if e is smooth, there is no C1-discontinuous cut locus,
unlike with geodesic distance. In this work, we always compute
distances using a Euclidean embedding; see Section 3.5 for details
on how this embedding is constructed.

For a Euclidean-embedding metric, the Fréchet mean has a sim-
pler form. Letting yi = e(xi) and substituting the metric into the
definition of F , we obtain:

F (x) =

n
X

i=1

wike(x)� yik
2. (4)

Letting ȳ =
Pn

i=1 wiyi and using that
P

wi = 1, we can simplify
F to:

F (x) =

n
X

i=1

⇣

wi e(x)
T
e(x)� 2wi e(x)

T
yi + wi y

T
i yi

⌘

=

= e(x)T e(x)� 2 e(x)T ȳ +

n
X

i=1

wi y
T
i yi =

= ke(x)� ȳk2 � ȳ
T
ȳ +

n
X

i=1

wi y
T
i yi, (5)

where only the first term depends on x. Thus, we have just shown
that minimizing F over the original surface in R3 is equivalent to
minimizing the distance to ȳ, the weighted average of the anchors
in the embedding spaceRD . The computation of the Fréchet mean
for a Euclidean-embedding metric thus consists of computing the
Euclidean weighted average ȳ in the embedding space and project-
ing it onto the embedded mesh. Because a mesh is not smooth,
Euclidean projection, and therefore the exact Fréchet mean, is not
a smooth function of the weights or the anchor locations. We
therefore use a different projection operator that provides a better-
behaved weighted average.

Smooth projection. The Euclidean projection operator ŷ =
PE(ȳ) that projects ȳ onto a mesh M is discontinuous at the me-
dial axis of the mesh. Because, unlike for smooth surfaces, the
medial axis of a mesh extends all the way to the mesh edges, the
projection operator is discontinuous no matter how close ȳ is to the
mesh. Even away from the medial axis, PE has undesirable behav-
ior, as shown in Figure 3.



Assuming that the mesh is approximating a smooth surface, one
would like a projection operator with smoother behavior. One
can use the fact that projection onto a smooth surface is always
along the direction perpendicular to the surface. Kobbelt and col-
leagues [1999] propose projecting along a continuous normal field
in 3D, as follows (see also [Botsch and Sorkine 2008] , Section
IID): If ŷ is a projection of ȳ, and n is the normal at ŷ, then
n ⇥ (ŷ � ȳ) = 0. For a mesh embedded in 3D one can take
estimated surface normals at the mesh vertices and define a contin-
uous surface normal on the mesh triangles using barycentric inter-
polation (as is commonly done for Phong shading). This simulates
the behavior of projecting onto a smooth surface without actually
having a smooth surface. Suppose that at vertex i of a triangle t
(for i = 1, 2, 3) the vertex position is vi and the normal is ni. To
project ȳ, [Kobbelt et al. 1999] look for a point ŷ on the triangle
t with barycentric coordinates ξi that satisfy:

(ξ1n1 + ξ2n2 + ξ3n3)⇥ (ξ1v1 + ξ2v2 + ξ3v3 � ȳ) = 0. (6)

For a mesh embedded in D-dimensional space, the normal is not a
vector, but a (D � 2)-dimensional subspace, hence the above con-
struction does not directly generalize. To make Phong projection
work for a D-dimensional space, we use the fact that the normal
at ŷ is the subspace orthogonal to the tangent plane at y, and so a
similar construction can be developed by interpolating the tangent
planes at the triangle’s vertices instead of normals. Note that it is
similar, but not equivalent to the previous one in 3D, since linearly
interpolating bases of tangent planes is different than interpolating
the normals. Interpolating bases can, however, be more easily ex-
tended to work in higher dimensional spaces. Since the same tan-
gent plane can be represented by an infinite number of bases, we
must carefully select which basis we use for the linear interpolation
to avoid degeneracies. The next section describes our Phong pro-
jection more formally; the supplemental material provides a more
extended description.

3.2 Phong projection

We denote our triangle mesh as M = (V, E ,F) with embed-

ded vertices V ⇢ R
D . Each vertex has an associated tangent

plane (computed e.g. using the Loop [1987] limit stencil in
R

D), represented by two basis vectors, which we assume to
be orthonormal. Denote the tangent planes at the vertices
of a triangle t = (v1,v2,v3) as T1, T2, T3 2 R

2×D . Let

Ψ(ξ1, ξ2, ξ3) 2 R2×D be an interpolated tangent plane basis for
the point ξ1v1 + ξ2v2 + ξ3v3 inside t, where ξi are barycentric
coordinates. Ψ will be precisely defined later (Definition 3).

Definition 1. A point ŷ = ξ1v1 + ξ2v2 + ξ3v3 on the triangle t
having vertices vi is a Phong projection of ȳ 2 RD onto t if:

Ψ(ξ1, ξ2, ξ3)(ξ1v1 + ξ2v2 + ξ3v3 � ȳ) = 0, (7)

ξ1 + ξ2 + ξ3 = 1, (8)

ξi � 0. (9)

As previously discussed, a Phong projection is a point ŷ on the
triangle, where the interpolated tangent plane is perpendicular
to the line connecting ŷ and ȳ. Note that this characterization
corresponds to the Euclidean projection onto a smooth manifold.

Definition 2. The Phong projection of a point ȳ onto a mesh M is
the closest Phong projection with respect to every triangle of M.

Unlike Euclidean projection, the Phong projection onto a triangle
may not exist or multiple points on a single triangle may be Phong

Ψ31

Ψ23 Ψ

v1

v2

v3

Ψ12

Figure 4: We define a continuous blend for each pair of adjacent
triangles (flaps) on the mesh (left). To compute Ψ over the black
triangle, we blend the interpolants on the overlapping flaps using
the weights 1/ξ1, 1/ξ2, 1/ξ3 (right).

projections of ȳ. In some cases (Figure 5) there are points that have
no Phong projection onto any triangle of a closed mesh. While
such situations can be constructed, in all our experiments, for rea-
sonably tessellated meshes, Phong projection does exist for points
away from the medial surface. The supplemental material sketches
out how a formal version of this claim might be proved.

We now turn to defining Ψ. We call two tangent plane bases
T,K 2 R

2×D equivalent and write T ⌘ K if they represent
the same tangent plane. We seek a continuous function Ψ that
interpolates the vertex tangent planes to the triangle interiors, i.e.
Ψ(1, 0, 0) ⌘ T1, etc. Defining Ψ is a non-trivial task, since the
bases that describe a tangent plane are not unique, and the inter-
polant should be independent of the particular basis choice and also
consistent on edges and vertices shared by multiple triangles. Fur-
thermore, we want to keep the blending linear so that it can be easily
inverted, but linearly blending bases of 2D subspaces is not guar-
anteed to always generate another basis of a 2D subspace. For ex-
ample, T and �T may both be bases, but blending them with equal
weights yields the zero matrix; our goal is to construct Ψ while
avoiding such scenarios.

We first define Ψ for each mesh edge, based on the tangent planes
of its end vertices. We then extend each on-edge Ψ to interpolate
tangent planes over the incident flap, i.e., both triangles adjacent to
the edge. Hence, for each point inside a triangle, with barycentric
coordinates (ξ1, ξ2, ξ3), we obtain three possible tangent planes,
and we linearly blend between these tangent planes using blending
weights 1/ξi. See Figure 4 for an illustration of the construction.
Starting from on-edge interpolation and using 1/ξi weights ensures
continuity of Ψ on mesh vertices and edges, as proved in the sup-
plemental document.

The main intuition for our construction is that we have some de-
grees of freedom when choosing the bases representing the vertex
tangent planes Ti, and we can choose the bases locally, per-triangle
t, when constructing Ψ within t. We will choose them such that
they are “as close as possible” to each other in the sense of vec-
tors inRD; this ensures (under some mild assumptions on M) that
their linear blending cannot degenerate. When considering two or-
thonormal bases T1, T2 2 R2×D for tangent planes of edge end
vertices v1,v2, we can choose the basis T2 for v2 and the basis
Ort(T2T

T
1 )T1 for v1, where

Ort(A) = argmin
B∈O(2)

kB �AkF . (10)

Ort can be computed using polar decomposition, see the sup-
plemental document. In this way, the tangent plane basis of
v1 is brought as close as possible relative to that of v2, and
linearly blending between them is “safe”. We will thus have



Figure 5: In some cases, Phong projection may not exist. On the
left, we discretize a circle as a hexagon with exact normals. The
points in each colored region project to the corresponding edge. On
the right, we slightly rotate all the normals clockwise. The white
hexagon in the middle now consists of points that do not have a
Phong projection.

Ψ12(ξ1, ξ2, 0) ⌘ ξ1R12T1 + ξ2T2, where R12 = Ort(T2T
T
1 ), and

similarly Ψ23,Ψ31 for the other edges of a triangle t.

We have an additional degree of freedom to exploit: the tangent
plane bases at v1,v2 can both be rotated in-plane by the same 2⇥2
orthogonal matrix E12 without changing the planes themselves
and without affecting their linear blending, up to equivalence
(and the same holds for the other edges). We choose the matrices
E12, E23, E31 such that the bases we linearly blend in the end for
each point inside t are as close as possible to each other. Formally:

Definition 3. Tangent plane interpolation:

Ψ(ξ1, ξ2, ξ3) =
ξ1ξ2ξ3

ξ1ξ2 + ξ2ξ3 + ξ3ξ1

✓

1

ξ3
Ψ12(ξ1, ξ2, ξ3)+ (11)

+
1

ξ1
Ψ23(ξ1, ξ2, ξ3) +

1

ξ2
Ψ31(ξ1, ξ2, ξ3)

◆

,

where

Ψ12(ξ1, ξ2, ξ3) = ξ1E12R12T1+ξ2E12T2+ξ3
1

2
(E23+E31R31)T3.

The formulas for the other edge blends Ψ23,Ψ31 are obtained by
cyclic permutation of the indices. Eij 2 R2×2 are computed as

E12, E23, E31 = argmin
E12,E23,E31∈O(2)

X

1≤i<j≤6

kAi �Ajk
2
F , (12)

where A1 = E12R12T1, A2 = E12T2, A3 = E23R23T2,
A4 = E23T3, A5 = E31R31T3, A6 = E31T1. The E matri-
ces can be iteratively optimized by fixing two out of the three and
solving a Procrustes problem for the third, which is guaranteed to
decrease the energy; this optimization converges quickly. We refer
to the supplemental for a more detailed explanation of the construc-
tion of Ψ and for a formal proof of its continuity and interpolation
properties.

Phong projection has several useful properties:

1. Phong projection takes each point on the mesh to itself.

Proof. When ŷ is on the mesh and ξ1, ξ2, ξ3 are its barycen-
tric coordinates, Equation (7) is trivially satisfied.

2. Phong projection onto a plane is the same as Euclidean pro-
jection.

Proof. For a discretized plane, all tangent planes and triangle
planes are the same. Ψ will be constant and identical to them:
the resulting projection will thus simply be the Euclidean pro-
jection onto the triangle.

(a) Eucl. projection onto (b) Phong projection (c) Euclidean projection

a smooth surface onto a mesh onto a mesh

Figure 6: Comparison of the qualitative behavior of (a) projection
onto a smooth surface, (b) Phong projection, and (c) Euclidean
projection onto a mesh. The smooth surface is a torus, which is
discretized in (b) and (c). Each image shows a plane through the
center of the torus; each point is colored based on the angle be-
tween the vector from that point to its projection and the x-axis.
Phong projection behaves similarly to projecting onto the smooth
torus, while Euclidean projection shows clear discontinuities.

3. If the Euclidean projection of a point ȳ onto a tangent plane
at vertex v is v itself, then v is a Phong projection of ȳ.

Proof. Assume w.l.o.g. that v is the first vertex in the triangle.
Then Ψ(1, 0, 0) is by definition the tangent plane at v, and
Equation 7 corresponds to Euclidean projection.

4. Assume that a point ŷ, which is on an edge shared by triangles
t1 and t2, is a Phong projection of a point ȳ onto t1. Then ŷ
is also a Phong projection of ȳ onto t2.

Proof. Equation (7) is identical in both triangles up to an in-
dex permutation, and Ψ is the same due to continuity.

5. Given a point ŷ on a triangle, the set of points in ambient
space for which ŷ is a Phong projection is an affine subspace.

Proof. Equation (7) is linear in ȳ, so its solution set is an
affine subspace.

The third and fourth properties explain why Phong projection is
consistent on mesh vertices and edges, and are the reasons for our
involved definition, and the fifth property allows us to solve the
inverse problem with relative ease.

Phong projection on a triangle is computed by solving Equations (7)
and (8), using Newton’s method starting from ( 1

3
, 1
3
, 1
3
); the solu-

tion is discarded if Equation (9) is not satisfied.

We illustrate the advantage of Phong projection in Figures 3 and 6.

3.3 The forward problem

To compute the weighted average of n anchors over a Euclidean-
embedding metric, we first use the embedding to map them to RD

and compute their weighted average ȳ in Euclidean space. The
remaining task is then to find the Phong projection of ȳ onto the
embedded mesh. The simplest brute-force approach is to compute
the Phong projection onto every triangle and pick the closest point,
but this is very expensive. Acceleration structures, such as KD-
trees or bounding volume hierarchies are typically used to speed up
Euclidean projection, but they scale poorly to higher dimensions.

Instead, we use a simple local search approach, based on the fact
that Euclidean and Phong projections are fairly close. We start with
an initial guess vertex, for example, the vertex closest to the pro-
jection from a previous computation, or the anchor with the highest
weight, if a better initial guess is not available. We then walk over
the edge graph, greedily choosing edges that get us closer to ȳ,



Figure 7: Example of remeshing using weighted averages. From left to right: the original mesh, a coarse quad mesh, a uniformly subdivided
quad mesh (without Laplacian smoothing), and the final result after 5 steps of Laplacian smoothing on the surface.

stopping when we hit a vertex closer to ȳ than all of its neighbors.
From that vertex, we do a breadth-first search over triangles, trying
to find a Phong projection on each triangle and stopping as soon as
we find a triangle for which a Phong projection exists.

This method is not guaranteed to find the Phong projection, but it
fails when there are multiple close projection candidates and the
weighted average is therefore meaningless. We compared the re-
sults of this method to the brute force solution for all of the forward
problems in Figure 7 and the projections are all exactly the same.
For the forward problems in Figure 12, the covering by anchors is
not perfect and our method produced different results on 2.5 percent
of the pixels, with a maximum error of 7 times the average length
of a mesh edge.

3.4 The inverse problem

For many applications, we need to be able to compute, for given
anchors and a given point on the surface x̂, a set of weights w =
(w1, . . . , wn)

T for which x̂ is the weighted average (the weights
must sum to one). In Euclidean space, finding such weights is
known as the generalized barycentric coordinates problem. Rusta-
mov [2010] solves this problem for the Fréchet mean with geodesic
distances, but we need to be able to invert our formulation to be
consistent with the forward problem.

There are many ways to define the generalized barycentric coordi-
nates, since Equation (3) has multiple solutions. The particular so-
lution needs to satisfy three properties: locality, interpolation, and
smoothness. Locality means that the anchors that are far away from
x̂ should have very low weights. This is important for most appli-
cations shown in Section 4 because it restricts the effect of every
anchor to a small region around it. Interpolation means that when
x̂ coincides with an anchor, the weight for all other anchors should
be zero. Finally smoothness means that small changes to anchors
and x̂ result in small changes to the weights. Many existing gen-
eralized barycentric coordinates satisfy these properties, but they
assume that the anchors are given as a simple polygon. For our ap-
plications we cannot use such schemes because the polygon would
have to change its connectivity in order to remain simple as the an-
chors move, violating smoothness.

Instead, we propose a new set of generalized barycentric coordi-
nates, obtained by simply treating the Phong projection and parti-
tion of unity as linear constraints and solving a quadratic optimiza-
tion problem that penalizes weights for far-away anchors. Given a
point on a triangle t with barycentric coordinates ξ, we solve:

arg min
w

kDwk2 (13)

s.t. Ψ(ξ1, ξ2, ξ3)(ξ1v1 + ξ2v2 + ξ3v3 �
X

i

wiyi) = 0,

X

i

wi = 1.

D is a diagonal matrix that contains a weighting term for every an-
chor. This is a standard linearly-constrained minimum-norm prob-
lem, which we solve using the pseudoinverse.

We are left with the problem of defining D. Note that for far-away
anchors whose weights should be low, Di,i should be high. Addi-
tionally, we penalize anchors far away from the tangent plane more
because they are likely to be less reliable. Given the locations (in
the embedded mesh) of the anchors, yi = e(xi), and of the in-
put surface point, ŷ = e(x̂), we split the vector yi � ŷ into the
component vT in the tangent plane at ŷ and the component vO or-
thogonal to the tangent plane. Using Di,i = kvT k

2 + γkvOk
2

guarantees interpolation: if a given point on the surface is also an
anchor i, then Di,i = 0 and the weight combination that assigns
wi = 1 and wj = 0 for all other anchors satisfies the constraints
and sets the objective in (13) to zero; the quadratic nature of the
optimization problem guarantees uniqueness of this solution. We
have found that this definition of D works well for a wide range of
γ (we use 10 for all examples).

This formulation is a weighted variant of Waldron’s method [2011],
which, without D, produces weights that are not interpolatory.
If one removes the Phong projection constraints, our weights re-
duce to Moving Least Squares (see the supplemental material for
the derivation). Our weights are C1 on a smooth manifold, since
the corresponding MLS formulation generates C1 weights and we
are only adding additional linear constraints (on piecewise-linear
meshes the weights are, of course, C0 on the mesh edges).

Maximum Entropy Coordinates [Hormann and Sukumar 2008] sat-
isfy all our desiderata, if the inverse of the squared distances is used
as a prior. They lead to similar results to our weights, but are too ex-
pensive to compute for our purposes, since they require minimizing
a nonlinear energy with Newton’s method.

The accompanying video shows examples of our weights on a sur-
face.

3.5 Euclidean-embedding metric

We now discuss how we construct a Euclidean-embedding metric
suitable for our purposes. Lipman et al. [2010] compare several al-
ternative metrics: diffusion distance, commute-time distance, and
their proposed biharmonic distance. These metrics are defined in
terms of eigenvectors of the Laplace-Beltrami operator, which can
behave poorly, as small features can collapse in the embedding
(Figure 8). Instead, we use a metric that is based on Rustamov
and colleagues’ [2009] boundary embedding construction.

Rustamov et al. [2009] embed a mesh by computing the geodesic
distances between all pairs of points and using Metric Multidimen-
sional Scaling (MMDS) [Cox and Cox 2000] . This approach
does not scale, as constructing and working with the distance ma-
trix for a mesh with 100,000 vertices is impractical: even storing
such a matrix would require just under 20 GB in single precision.
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Figure 8: Top: The original surface (Euclidean embedding) and
the first three dimensions of the biharmonic embedding and our
embedding for the hand mesh. The biharmonic embedding tends
to collapse thin features, making it unsuitable for weighted aver-
ages computations on these regions. Bottom: Cubic B-splines us-
ing different Euclidean-embedding metrics. Discontinuities in the
weighted averages computed with Euclidean and Biharmonic em-
beddings can be seen as both the yellow curve passing through the
surface (to connect to a far-away point) and as artifacts on the fin-
gers. All of these results were computed using Phong projection.

The IsoCharts method [Zhou et al. 2004] employs Landmark MDS
[de Silva and Tenenbaum 2002] to efficiently compute a Euclidean
embedding into higher dimensions for spectral mesh segmentation
and parameterization applications. We take a conceptually similar
landmark approach and adapt it to our purposes to ensure a smooth
embedding. We sample a representative subset S of the mesh ver-
tices, compute approximate pairwise geodesic distances only for
these vertices and embed S into RD using MMDS. We then use
least-squares meshes [Sorkine and Cohen-Or 2004] to embed the
remaining mesh vertices, creating a mesh in RD whose triangles
are shaped similarly to the original mesh.

We find the subset of mesh vertices S by decimating the mesh using
an algorithm from OpenMesh [Botsch et al. 2002] that iteratively
collapses the halfedge that changes the face normals least. This
way, the subsequent LS-mesh upsampling will have an easier time
correctly approximating areas with low curvature. When a user-
specified number of points (we use 1000) is left, the decimation
stops and these vertices are used as S.

To embed the samples S, we use the fast marching method [Sethian
1996] to construct the dissimilarity matrix Q: Qi,j = dgeo(si, sj) .
We use the implementation of MMDS in MATLAB 11, minimizing
the following stress criterion:

n
X

i=1

n
X

j=1

✓

1�
ke(si)� e(sj)k

Qi,j

◆2

, (14)

where e(si) 2 RD is the embedding of si. We use D=8 for all
examples. We have not observed any improvement in quality above
eight dimensions, and as 8 floats fit into an AVX register, we would
gain little performance improvement from using fewer dimensions.

Denote the set of all original mesh vertices by Ṽ = {ṽ1, . . . , ṽN},

and the final embedded version of each ṽi by vi 2 RD . To com-

plete the embedding v 2 RN×D of the remaining vertices Ṽ\S,

Euclidean Exact Geodesic

Biharmonic Our metric

Figure 9: Distance and isolines from a point on the tip of the index
finger using different metrics. Due to the collapse shown in Fig. 8,
the isolines of biharmonic distance are aligned with the fingers and
do not discriminate between different points around each finger.

we compute a smooth mesh in the D-dimensional space as a least-
squares mesh:

v = argmin
v

tr
⇣

v
T
�

LM
−1

L
�

v
⌘

s.t. vi = e(si), 8i 2 S,
(15)

where L and M are the stiffness matrix (cotangent Laplacian) and
the lumped mass matrix of the original mesh, respectively [Botsch
and Sorkine 2008]. The optimization in (15) amounts to solving a
sparse linear system and we use MATLAB’s built-in solver.

We compare our metric with Euclidean, biharmonic and exact
geodesic distance [Surazhsky et al. 2005] in Figure 9. Our metric
is smooth everywhere, while still providing a good approximation
of geodesic distance. In Figure 8, we show results of splines de-
fined using our algorithm with three different metrics. The overall
precomputation usually takes a few minutes (Table 1).

4 Results

Our method was timed on a quad core 2.6 GHz Intel Core i7 pro-
cessor, using all four cores to solve weighted averages problems in
parallel. The software is written in C++, manually optimized using
AVX intrinsics and OpenMP, and compiled using the Intel Com-
piler. The GPU was only used for rendering and did not participate
in timings. Table 1 shows the timings for forward and inverse prob-
lems on our meshes. The inverse problem timings appear sublinear
in the number of anchors due to a constant time component for con-
structing the constraint matrix and solving. The performance of the
forward problem is more complicated, depending on mesh structure
and anchor placement more than on vertex count.

Below we present some of the possible applications of weighted
averages on surfaces.

4.1 Forward problem

The following applications only make use of the forward problem.

Splines on surfaces. Most splines can be defined in terms of
weighted averages: for example, a point on a B-spline is the
weighted average of control points using the basis functions as



Mesh Faces Anchors Forw. Inverse Pre.

pig 8016 27 0.69 µs 0.87 µs 1.1 m

3Holes 28800 64 0.64 µs 1.26 µs 1.2 m

lizard 39036 93 0.85 µs 1.53 µs 1.9 m

chubby 40808 93 0.85 µs 1.57 µs 2.0 m

dog 50528 93 1.54 µs 1.60 µs 2.7 m

horse 58616 100 1.64 µs 1.62 µs 2.0 m

boy 149996 93 1.71 µs 1.65 µs 7.7 m

Table 1: We timed our method by running 100,000 random points,
finding their weights with respect to a fixed set of anchors, and then
solving the forward problems with those weights (to arrive back at
the original points). The computations were done in four parallel
threads; the table shows the average per vertex times. In this way,
we can solve approximately 300,000 forward and inverse problems
per second on reasonably-sized meshes. For these timings we do
not use an initial guess.

weights. By replacing averages in Euclidean space with the Fréchet
mean and using our computation, splines on surfaces become easy
to define and fast to compute. Figure 2 shows examples using cu-
bic B-splines. As shown in our video, splines can be edited inter-
actively by dragging control points, and we use the results of the
previous frame as the initial guesses for the forward problem.

Semiregular remeshing and Laplacian smoothing on the sur-

face. Given a coarse base quadrilateral mesh, it is possible to pro-
duce a finer quad mesh by splitting every quadrilateral into four.
If the coarse base mesh is defined on a surface, we can perform
the regular subdivision directly on the mesh by finding the posi-
tion of every newly inserted vertex using weighted averages. When
the refined mesh is generated, a few steps of Laplacian smoothing
(moving each vertex to the average of its neighbors on the surface)
produces a high-quality quadrilateral mesh. The points of the orig-
inal mesh can be moved interactively (again, the previous frame is
used as an initial guess), and as an anchor is dragged, the resulting
fine quadrangulation is generated at 8.5 fps for the final (rightmost)
example in Figure 7 (35 fps without Laplacian smoothing).

4.2 Inverse problem

Local surface parametrization. As shown by Rustamov [2010],
the solution to the inverse problem can be used to compute de-
cals [Schmidt et al. 2006] on the surface. As Figure 10 shows, our
method produces smooth results even in the presence of noise.

4.3 Forward and inverse problems

By combining the inverse and forward problems and using corre-
sponding sets of anchors, we can establish a correspondence be-
tween two surfaces, or from a surface to itself. To map a point from
the first surface to the second, we use the inverse problem to find
weights with respect to the anchor set and then solve the forward
problem on the second surface with those weights. Such corre-
spondences are useful for many applications. We measure the sym-
metrized L2 stretch distortion [Schreiner et al. 2004] of every map-
ping. We present the result for the whole surface, parts of which
are incorrectly transferred due to small areas not covered by the an-
chors, presence of holes (Figure 12) and ambiguity of the Fréchet
mean projection. Since we do not have a robust way of determining
where this happens, we also report the average on the best 95% of
the triangles, discarding the rest as outliers.
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Figure 10: The inverse problem with four anchors defines a map-
ping from mesh vertices onto a checkerboard, which is used as a tex-
ture. For a smooth mesh, our method and Rustamov’s [2010] per-
form similarly, but when the mesh is corrupted by a small amount of
noise, our metric is more robust than exact geodesic distance. The
symmetrized L2 stretch [Schreiner et al. 2004] of the mapping on
the smooth wing is slightly worse with our method (0.75 compared
to 0.88 for [Rustamov 2010]), the ideal measure being 1. Similarly
for the hand, our mapping has a stretch of 0.74 compared to 0.83.

1
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Figure 11: Together, the forward and inverse problem are used to
establish a correspondence between surfaces. Here this correspon-
dence is used to transfer textures from the boy to the chubby man.
The 93 anchors are shown in corresponding colors. For this tex-
ture, 531,326 texels were transferred in 1.18s. The color plot shows
the symmetrized L2 stretch. The distortion for the whole surface
is 0.05, with 95% of the triangles having an average distortion of
0.40. 10k faces are flipped during the mapping, covering an area of
2.8% of the target surface.

Texture transfer. An obvious use of surface correspondence is
to transfer texture (or skinning weights, scattering coefficients, or
any other quantity) from a textured model onto another shape that
has a texture atlas. For each point on the target shape’s texture
that is mapped onto some point on the target shape, we find that
point, find which point on the source shape it corresponds to us-
ing weighted averages, and then sample the source texture at that
point. For medium resolution textures, our algorithm is interac-
tive, providing the user with quick feedback when specifying the
anchors. We currently sample the original texture bilinearly, but
mipmapping and supersampling could be used for a higher-quality
transfer. An implementation of our algorithm in a GPU fragment
shader could compute this mapping on the fly, but we leave this as
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Figure 12: Here the texture is transferred “flipped” because the
93 user-placed anchors on the dog are a mirror-reflection. The
correspondence set up by weighted averages does not require the
orientations to be preserved. The holes in the dog’s eyes do not
impede the transfer because only the inverse problem is solved on
the dog. The color plot shows the symmetrized L2 stretch. The
distortion for the whole surface is 0.12, with 95% of the triangles
having an average distortion of 0.32. 2.8k faces are flipped during
the mapping, covering an area of 2.5% of the target surface.

future work. For target shapes without readily available texture at-
lases we used [Sorkine et al. 2002] to compute them. Figures 11
and 12 demonstrate two texture transfers, between humanoids and
quadrupeds, respectively. By changing the anchor positions, the
texture can be deformed, as shown in Figure 13.

Mesh morphing. Another straightforward application of a map-
ping between two surfaces is mesh morphing. We show an example
in Figure 14, where a lizard is morphed into a horse. The target
horse has the connectivity of the lizard model and the vertex posi-
tions are the vertex positions on the lizard mapped through our cor-
respondence onto the horse. We computed the morphing sequence
using patch-based linear rotation-invariant coordinates [Baran et al.
2009]. We used 98 anchors to define the map.

4.4 Limitations

Under certain conditions (such as a Riemannian metric of nonpos-
itive Gaussian curvature or anchors sufficiently close together), F
has no local minima other than the global minimum, but for real-
world meshes, we cannot expect this. Our initial guesses generally
get us to the global minimum, but we cannot guarantee this, and
synthetic counterexamples can be constructed. Additionally, for
sets of anchors that do not cover the surface well, there are likely
to be regions on the surface that are not weighted averages of the
anchors for any weights (Figure 15). For these regions, the weights
produced by the inverse problem are meaningless. To detect this
problem and guide the user in positioning the anchors (e.g., for the
target surface in a correspondence), for every mesh vertex, we com-
pute the inverse problem followed by the forward problem and only
consider the correspondence to be defined if we end up back where
we started. We also do not use the correspondence on mesh ver-
tices for which there are large negative weights with respect to the
current anchors.

When we have corresponding anchors on two surfaces, A and B
and define a correspondence from A to B by solving the inverse
problem on A and the forward problem on B, we can also define
the symmetric correspondence from B to A. A subtle but important
point is that even though both correspondences may be bijective,
they will not, in general, be inverses of each other. In fact, we do
not know an efficient method for inverting these correspondences.
Furthermore, when a new anchor point is added, the mapping might
change locally. It might be possible to optimize the insertion of
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Figure 13: Example of texture transfer and deformation between a
humanoid character and a piggybank model. This transfer uses 27
anchors. The full-resolution transfer computes the correspondence
for 2,878,322 texels and takes 3.6 seconds. The user places the
markers using a lower-resolution texture for interactive feedback.
The color plots show the L2 stretch of the mapping.

the new anchor to reduce the amount of distortion introduced. In
practice, this is not a serious problem since correspondences are
placed interactively.

Compared to dedicated user-guided cross-parameterization meth-
ods [Kraevoy and Sheffer 2004; Schreiner et al. 2004] our method
requires several times as many anchors and does not optimize
stretch or conformality. However, in many cases, it is more valu-
able to be able to quickly see and adjust the mapping than to wait
for a more automatic algorithm to execute.

5 Conclusion and future work

We presented an efficient method for computing and inverting
weighted averages on surfaces. We demonstrated its usefulness as
a building block for several important applications, enabling solu-
tions that are much faster than previously possible. We have by no
means exhausted the space of possible applications. For example,
we plan to experiment with symmetric painting and mass transport
interpolation over a surface [Bonneel et al. 2011].

Exploring the space of metrics based on Euclidean embeddings is
another interesting challenge. Our method is an attempt at a smooth
approximation of geodesic distance that can be computed extremely
quickly between arbitrary points. Better embedding algorithms and
embedding into more powerful norms (such as L∞) provide inter-
esting directions for future research.

Figure 15: For a relatively small bump (left) weighted averages
of the four anchors (one is obscured) cover the bump. As the bump
grows larger, no weighted average of the anchors reaches the top
(middle). Placing an additional anchor at the bump top (right) al-
lows the entire surface to be covered by weighted averages again.



Figure 14: A morph between a lizard and a horse, using a dense correspondence computed with weighted averages. The symmetrized
L2 stretch for the whole surface is 0.09, with 95% of the triangles having an average distortion of 0.46. 2.1k faces are flipped during the
mapping, covering an area of 2.6% of the target surface.
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riemannienne. J. Math. Pures Appl. 8, 1–33.

CHEN, Y., AND MEDIONI, G. 1991. Object modeling by regis-
tration of multiple range images. In Proc. IEEE International
Conference on Robotics and Automation, 2724–2729.

COX, T. F., AND COX, M. A. A. 2000. Multidimensional Scaling,
Second Edition. Chapman & Hall/CRC, Sept.

CRANE, K., WEISCHEDEL, C., AND WARDETZKY, M. 2013.
Geodesics in heat. ACM Trans. Graph.. to appear.

DE SILVA, V., AND TENENBAUM, J. B. 2002. Global versus local
methods in nonlinear dimensionality reduction. In Proc. NIPS,
705–712.

ECKSTEIN, I., SURAZHSKY, V., AND GOTSMAN, C. 2001. Tex-
ture mapping with hard constraints. Comput. Graph. Forum 20,
3, 95–104.

FLOATER, M. S. 2003. Mean value coordinates. Computer Aided
Geometric Design 20, 1, 19–27.
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