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ABSTRACT

Min, D.-J, Yoo, H.S., Shin, C., Hyun, H.-J. and Suh, 1.H.,2002. Weighted-averaging

finite-element method for scalar wave equation in the frequency domain. Journal of Seismic
Exp loration, 11 : 197 -222.

We develop a new weighted-averaging finite-element method which can be applied to
generate synthetic seismograms using scalar wave equation in the frequency domain. Our method
introduces three kinds of supplementary element sets in addition to a basic element set which is used
in standard finite-element method. By constructing global stiffness and mass matrices for four kinds
of element sets and then averaging them with weighting coefficients, we obtain a,new global stiffness
and mass matrix. With the optimal weighting coefficients minimizing grid dispersion and grid
anisotropy, we can reduce the number of grid points required per wavelength to 4 for a l% tpper
limit of error. This reduction of the number of grid points, achieved by using the weighted-averaging
finite-element method, makes it possible to reduce computer memory to 32.7Vo of that for the
eclectic finite-element method. We confirm the accuracy of our weighted-averaging finite-element
method through accuracy analyses for a homogeneous and a horizontal-layer model. By synthetic
data example, we reconfirm that our method is more efficient for simulating a geological model than
previous finite-element methods.

KEY WORDS: weighted-averaging finite-element method, scalar wave equation,
frequency domain, weighting coefficients, synthetic seismograms.
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INTRODUCTION

Seismic forward modeling plays an important role in seismic inversion

and migration, which are useful tools for interpretation of seismic data.

Efficiency of seismic inversion and migration is strongly dependent on seismic

modeling algorithm used in the seismic inversion and migration. The seismic

forward modeling can be carried out in either the time-space, time-wavenumber

(pseudospectral method), or frequency-space domains by using finite-difference

or finite-element methods. Since all of these methods have their own respective

advantages, we solve a given problem using the modeling technique suitable for

our purpose.

The frequency-domain method, among them, is valuable for simulating

a viscoelastic medium with a multiple source. This is accomplished by the

advantages of frequency-domain method that the complex impedance matrix

independent of source location is constructed and the wave equation which

describes the viscosity properties of a medium is very simple. Since the

frequency-domain modeling technique does not exchange any infolmation across

different frequencies, parallelization in the frequency domain can easily be

implemented by distributing frequencies across the computation processors. For

these reasons, Pratt and Worthington (1990), Pratt (1990a; 1990b; 1999) and

Pratt and Shipp (1999) have applied the frequency-domain modeling to the

inversion of crosshole tornography, seismic waveform inversion, and seismic

imaging. The frequency-domain modeling, however, has a major drawback that

it needs more grid points per wavelength than the time-domain methods. As a

result, the frequency-domain modeling has been found to be impractical, even

though a number of vector parallel computers have been developed.

In recent years, extensive studies have been done to make the

frequency-domain modeling technique practical. Most of the studies were

completed by performing dispersion analysis as Alford et al. (1974), Marfurt
(1984) and Holberg (1987) did. As a practical frequency-domain modeling

technique of 2D scalar wave equation, Jo et al. (1996) and Shin and Sohn
(1998) suggested a weighted-averaging finite-difference scheme. Jo et al. (1996)

used 9 points around the collocation to solve the 2-D scalar wave equation; Shin
and Sohn (1998) used 25 points. They used a few sets of rotated finite-
difference operators in addition to a standard operator for discretizing the
Laplacian operator. To approximate the mass acceleration term, Jo et al. (1996)

and Shin and Sohn (1998) applied an eclectic method which Marfurt (1984)

proposed in the finite-element method. The eclectic method is characterized by
composing and combining the lumped mass and the consistent mass matrix
operators. They applied the eclectic method to finite-difference method by
distributing mass at the collocation point into the adjacent 9 or 25 points. The
9-point weighted-averaging scheme proposed by Jo et al. (1996) reduced the
number of grid points to 5 per wavelength, keeping errors within L%; The



FINITE.ELEMENT METHOD 199

25-point weighted-averaging scheme designed by Shin and Sohn (1998) reduced

the number of grid points to 2.5 per wavelength within l% enor.

For the elastic wave equations, Stekl and Pratt (1998) and Min et al.

(2000) also suggested a weighted-averaging method. Stekl and Pratt (1998)

introduced a rotated operators within a standard operator of the elastic wave

equations. The method used by Stekl and Pratt (1998) needs approximately 9

grid points per wavelength within l% errors in the case where weighting

coefficients dependent on Poisson's ratio are used. Min et al. (2000) designed

the weighted-averaging finite-difference operators using 25 grid points around

the collocation point for solving the elastic wave equations like in the method

suggested by Shin and Sohn (1998), but they did not introduce any rotated

operator. They composed almost all the possible finite-difference operators for

the approximation of a spatial second-order derivatives, and then averaged them

with weighting coefficients. Min et al. (2000) reduced the number of grid points

per wavelength from 33.3 (using the conventional method) to 3.3 (using the

weighted-averaging method).

In this paper, we apply these ideas to the finite-element method. We also

propose a practical weighted-averaging finite-element method for the scalar

wave equation in the frequency domain. The finite-element method, which uses

the basis function defined on the element, solves a given problem on the ground

of integral principle unlike finite-difference method. The integrals are finally

expressed by stiffness matrix, mass matrix and force vector. The weighted-

a.veraging method applied to the finite-element method, therefore, has to be

different from that of the finite-difference method. The method which we
present in this paper is to use three kinds of supplementary quadrilateral element

sets as well as a fundamental quadrilateral element set. We construct global

stiffness and mass matrices for four kinds of element sets and then average them

with weighting coefficients to yield a new global stiffness and mass matrix. The
weighting coefficients are determined to give the ideal, numerical phase and
group velocities for the full ranges of propagation angles.

This paper is organized as follows: in the first place, we explain the
weighted-averaging finite-element method of scalar wave equation in detail, and
present how to obtain the optimal weighting coefficients used in the
weighted-averaging finite-element method. Next, we demonstrate the accuracy

of the weighted-averaging finite-element method by comparing the numerical
solutions computed by the weighted-averaging finite-element method with
analytic solutions for a homogeneous model. We also examine whether or not
the weighted-averaging finite-element method gives reliable solutions for a
horizontal-layer model by comparing the numerical solutions computed by the
eclectic method and the weighted-averaging finite-element method with each
other. To estimate computational efficiency of the weighted-averaging method,
we compare computer memory requirements of the weighted-averaging method
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for a band-type matrix solver and a nested dissection method with those of the

standard and the eclectic finite-element method. Finally, we synthesize the

seismogram using the weighted-averaging finite-element method for a syncline
model.

FINITE.ELEMENT FORMULAS OF SCALAR WAVE EQUATION

The frequency-domain scalar wave equation can be expressed in a

heterogeneous medium with a source as

p@26 + (d/dxXk(ddldx)l + (0102)[k(06102)] : f(x,z,r,.r) , (1)

where d is the displacement or the pressure field in the frequency domain, k is
the bulk modulus, p is the density, and f is the source. If we derive the
finite-element formula using the Galerkin method which chooses interpolation
function for a weighting function as a special case of the weighted residual
methods (Marfurt, 1984), we obtain

J J w'{(a/ax)[k(dd"/dx)l+ (0102)lk(06"102)l - f  + p<,r26']dxdz:0 , (2)

where d' : El=t\dj, \ is the basis function, w, is the weighting function
(which is written as N, for the Galerkin method), and r is the number of nodal
points. If we integrate equation (2) by parts, we can obtain

c , r2Mo+Ko- f  .

with

tk(aN/ax)(a\/ax) + k(dN,/dz)(d\/dz)dx dz ,

pN' N'dx dz ,

fN, dx dz ,

and

(7)

where K and M are the (r x r) global stiffness and mass matrices, respectively,
O is the (r x 1) pressure field vector, and f is the (r x 1) source vector.
Equation (3) can be expressed in a simple form, as follows

(3)

(4)

(s)

(6)

J

J

Ki j :  J

Mi j :  J

f - JJ
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S iD : f  o r  .D :S - r f  ,

wirh

S=c , r2M+K

where S is the (r x r) complex impedance matrix. We obtain frequency-domain

solutions by decomposing the huge sparse matrix S with numerical method and

then obtain the time-domain solutions by taking the inverse Fourier transform

of the frequency-domain solutions.

If we introduce the damping term [for example, resulting from applying
sponge boundary condition suggested by Shin (1995)l into the problem, equation
(3) can be written as

o2MO+ i r , rC0*K<D: f (10)

A WEIGHTED-AVERAGING FINITE-ELEMENT METHOD

The general type of element set used in finite-element method is either a
triangular or a quadrilateral element. We adopted the simplest rectangular
element in the weighted-averaging finite-element method. If we apply a standard
finite-element method to solve equation (10), a set of rectangular element

[whose size is (Ax,Az) as shown in Fig. la] is used. In the weighted-averaging
finite-element method, we use three supplementary sets of rectangular elements

[whose sizes are (ZAx,2Lz), (2Ax,Az), and (Ax,2Az) as shown in Figs. lb, lc
and ldl in addition to the elementary rectangular set used in the standard
finite-element method.

If we take the (Ax, Az)-element set as the criterion of grid sets, all the
nodal points are located on the apex of the (Ax, Az)-element, In the (2Ax,ZAz)-,
(ZAx,Az)- and (Ax,2Az)-element sets, however, some of nodal points lie on the
sides of the element or within the element (e.9., the r points in Figs. 2a, 3a and
4a). The nodal points located on the sides of the element or within the element
do not contribute to making up the stiffness and mass matrix at all, which leads
to inaccurate solutions. As a possible solution for the problem, we use three
additional (2Ax,2Az)-element sets shown in Figs. 2b, 2c and 2d as well as the
fundamental (2Ax,2Az)-element set shown in Fig. 2a. For the (2Ax,Az)- and
(Ax,2Az)-element sets, we also add one supplementary element set (Figs. 3b and
4b) to the basic element set (Figs. 3a and 4a), respectively. As a result, we
construct 9 global stiffness and mass matrices for the 9 elemenr sers: one
(Ax,Az)-, four (2Ax,2Az)-, two (2Ax,Az)- and two (Ax,2Lz)-elemenr sers.

(8)

(e)
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2dx

2dx

Fig. 1. Four kinds of the rectangular element sets used in the weighted-averaging finite-element
method: (a) the fundamental (Ax,Az)-element set and the supplementary @) QAx,2Az)-, (c)
(2Ax,Az)- and (d) (Ax,2Az)-element sets.

Next, we have to combine the 9 global stiffness and mass matrices into
a new global stiffness and mass matrix. In the process of combining the stiffness
and mass matrices, we need weighting coefficients. By assuming that the same
weighting coefficients are given to the same-size element sets and the (2Ax,Az)-

and (Ax,2Az)-element sets has the same coefficients, we only require 3
weighting coefficients c1, c2 and c, for combining the 9 stiffness matrices: c, is
used for the (Ax,Az)-element set; c2 for the four (2Ax,2Az)-element sets; and
c, for the two (2Ax,Az)- and two (Ax,2Az)-element sets.

dx

dz

(b)(a)

(d)(c)

dx
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2dx

2dz

2dx

2dz

. - . - . . : . . . . . . . :  2dz

203

2dx

(b)

2dx

2dz

Fig. 2. Four (2Ax,2Az)-element sets used for all the nodal points to be included in the construction

of the stiffness and.mass matfix. The r indicates the nodal points excluded in the construction of the

stiffness and mass matrix.

For the mass term, we use the eclectic method to combine the lumped

mass with the consistent mass linearly. Since the lumped mass matrices are

constructed in the same form for the four kinds of element sets, we only use the

lumped mass matrix constructed in the fundamental (Ax,Az)-element set. As a

result, we use 4 weighting coefficients e1, e,2, e, and f: et is used for the

consistent mass matrix of the (Ax,Az)-element set; ez for the four

QAx,2Az)-element sets; % for the two (2Ax,Az)- and two (Ax,2Az)-element

sets; and f is for the lumped mass matrix of the (Ax,Az)-element set.

(d)(c)



2dx

(a)

2dx

drl

(b)

Fig. 3. Two (2Ax,Az)-element sets used for
all the nodal points to be included in the
construction of the stiffness and mass matrix.
The o indicates the nodal points excluded in
the construction of the stiffness and mass
matrix.

MIN, YOO, SHIN, HYUN & SUH

(b)

Fig. 4. Two (Ax,2Az)-element sets used for
all the nodal points not to be included in the
construction of the stiffness and mass matrix.
The o indicates the nodal points excluded in
the construction of the stiffness and mass
matrix.

dx

2dz

WEIGHTING COEFFICIENTS

The weighted-averaging finite-element method is completed by
determining the optimal weighting coefficients. There were two methods for
determining the weighting coefficients in the previous weighted-averaging

j

1
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finite-difference methods. One is to solve the linear problem by introducing the

constraints as the method used by Jo et al. (1996), Shin and Sohn (1998) and

Stekl and Pratt (1998). The other is to solve the inverse problem with a

Gauss-Newton method, used by Min et al. (2000). The latter is useful in case

it is difficult to convert the problem into the linear form in spite of introducing

constraints. In this weighted-averaging finite-element method of scalar wave
equation, we use the method of Jo et al. (1996), Shin and Sohn (1998) and Stekl
and Pratt (1998).

To obtain the optimal weighting coefficients which give the minimal phase
and group velocity errors, we need the dispersion relation of the weighted-

averaging finite-element method. The dispersion relation of the weighted-
averaging finite-element method is written in a similar form to that of the
finite-difference method. as follows

cd2D* : -v2(D** * Drr) , ( i  1 )

where ar is the angular frequency, v is the velocity, and D,, D*" and D, are the
operators used for approximating the mass term and the spatial derivative terms.
D,, D** and D, are obtained in the process of composing stiffness and mass
matrices. We begin with the conventional method which uses a set of (Ax,Az)-

element. The operator D**(Ax,Az) is represented in the standard finite-element
method as

D*,(Ax,Az) = ( I /6)(AzlAx)(P,-, , , - ,  -  2P,, i - ,  *  Pi*r j -r)

+ (213)(AzlAx)(P,-,, - /Pi.i * Pi*r,i)

+ (ll6)(AzlAx)(P,-,r*, - ZPr,*, * P,*,j*,) , (12)

where P,, are the pressures or the displacements. (AzlAx) comes from the
process of constructing the stiffness matrix. From the viewpoint of the
finite-difference technique, the finite-element method is already the form of
being weighted-averaged.

To obtain the D** operator of the weighted-averaging finite-element
method, we compose operators for the (2Ax,2Az)-, (ZLx,Az)- and
(Ax,2Az)-element sets in addition to the D** operator for the (Ax,Az)-element
set and then average them with weighting coefficientS c1, c, and cr:

D** = c,[D**(Ax,Az)] * cr[D-*QAx,2Az)f

* cr[D**(2Ax,Az)] * cr[D**(Ax,2Az)] ,

where

(13)
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D**(2Ax,2Az) = (ll6)QAzl2Ax)(P,_ zj_2 
- ZP,;_r. * P,*r,i_r)

+ (213)(2\zl2Ax)(Pr_r, - 2Pi,t * Pi*2,.i)

+ (ll6)(2Azl2Ax)(Pr_r,*, - 2P,j*, * P,*rj*r) , (L4)

D**(ZLx,Az) = (1/6XAzl2Ax)(Pi_r,1_, - 2Pr,:_, * P,*r,t_,)

+ (213)(Azl2Ax)(P,_r, - )Pij * Pi*r;)

+ (ll6)(Azl2Ax)(P,_rr*, - Zp,j*, * p,*r,j*r) , (15)

and

D**(Ax,ZAz) = (Il6)(2AzlAx)(P,_, .i_z 
- ZPi.i_, * P,*,,j_r)

+ (213)(2AzlAx)(P,_,, - 2Pi,i * Pi*r,.i)

+ (ll6)(2AzlAx)(P,_,,,*, - 2P,.j*, * P,*,,j*) . (16)

The D,, operator of the weighted-averaging finite-element method is
constructed in a similar manner. For the D- operator , (axlLz) is substituted for
(LzlAx) in the D** operator. The D,, operator is written as

D,, = c, [D,"(Ax,A z)l * cr[D,"(2Ax,2Az)]

* crlD-(2Ax,Az)l * cr[D,,(Ax,2Az)l , (17)

where

D,"(Ax,Az) = (ll6)(LxlAz)(P,_,r_, - 2Pi_t.t * P,_,j*,)

+ (213)(AxlAz)(P,.,_, - 2Pi,i * P,;*,)

+ (1/6)(Ax/Az)(P,*,,,_, - ZPi+rj * Pi*,,j*,) , (18)

D,,(2Ax,2Az) = (I I 6)(2Axl2 Az)(p i_2j _z - 2p i _2,: * p 
i _z,i *r)

+ (213)(2Axl2\z)(P,,,, - 2Pii * P,;*r)

+ (Il6)(2Axl2Az)(Pu.r,,_z - ZP,*rj + P,*r,;*r) , (19)
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D,,(2 Ax, Az) = (l I 6) (2 Axl Az)(P i _r.i _ r 
- 2P i _z; * Pi _z j * r)

+ (213)(2AxlAz)(Pi,,-1 - ZPij * P,;*,)

+ (ll6)(2AxlAz)(Pi*r,-, - 2Pi+z,j * Pi*z,j*,) , (20)

and

D,,(Ax,2Az) = (1/6XA xl2Az)(P,-r,i-z - 2Pi-r,i * Pr-r j*z)

+ (213)(Axl2Az)(Pi,i-2 - 2Ptj * P,,.i*r)

+ (ll6)(Axl2Az)(P,*r,-, - ZPi+tj P,*,j*r) (21)

The D,n operator is obtained from mass matrices. The lumped mass
operator approximates the mass term only with the collocation point; the
consistent mass operator approximates the mass term with the distributed mass
to the adjacent nodal points. Therefore, the lumped mass operator is expressed
by P,'; and the consistent mass operator is obtained from the mass matrix formed
using the conventional finite-element method. For the (Ax,Az)-element, the D,n
operator by the consistent mass operator is expressed as

D*(Ax,Az) : (1/36)AxAz(P1_1;_1 + 4Pi,j_r * Pi*r,j_,)

| (1/9)AxAz(Pi-r.i + 4Pij * Pi*r;)

| (1/36)AxAz(Pi-rj*r + 4Pij+r * Pi*r,j*r) QZ)

We can also formulate the D. operators for the (2Ax,2Az)-, (ZAx,Az)-
and (Lx,2az)-element sets. For the lumped mass, we only formulate an operator
for the (Ax,Az)-element set. If we average the lumped mass and the consistent
mass operators with weighting coefficients, we obtain

D,: e,D.(Ax,Az) * erD,(2Ax,2Az) * erD^(2Ax,Az)

* erD,(Ax,2Az) + fP,,,AxAz , (23)

where D,(2Ax,ZAz), D*(2Ax,Az), and D,(Ax ,ZAz) are expressed as

D^(2Ax,2Az) : (1136)4AxAz(P,_2,i_z +  pi,J_z * p,*r,j_r)

+ (1/9)4AxAz(Pr_r,, + 4Pij * Pi*z;)

+ (1136)4AxAz(P,_r.,*, + 4Pij+2 * P,*rj*r) , (24)

207
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D,(2Ax,Az) : (1136)2AxAz(P'-r.,-t + 4Pi,j-r * P'*rj-r)

+ (ll9)2AxAz(Pt-r.t + 4Pij * Pi*2,:)

+ (I136)2AxAz(P'-r,,*t + 4Pi,j*r * Pi*z,j*r) , (2s)

(30)

and

and

D,(Ax,2Az) :  (1136)2\xAz(P'- tr-r  . : - .4P,t-z * Pi*t j - r)

+ (ll9)2AxAz(P'-,, + 4Pij * Pi*r;)

+ (1136)2AxAz(P,-r,,*, + 4Pi,i+2 * P,*,,j*r) (26)

The dispersion relation for the weighted-averaging finite-element method is

obtained by substituting equations (13), (17) and (23) into equation (11).

The phase and group velocities can be obtained from the dispersion

relation. The phase and group velocities are defined as

Vp5 : {d/k , (27)

vr, : dolldk , (28)

where vp5 and vsr are the numerical phase and group velocities, respectively, &)
is the angular frequency and k is the wavenumber. Substituting equation (11)

into equations (27) and (28) gives

vo6 /v : l l l (2rlc)1",[ l(-D**-D,,)/D,],

and

vr, /v : ft l (2r lc)l[lzD|l

x [{(Dl. + DL)|A\D, - (D"* + D",)D;)/A] ,

(2e)

for the special case of A : Ax : Az, where G is the number of grid points per
wavelength and Di*, Di, and Di are the first derivatives of D*,, D,, and D, with
respect to k. We can obtain the optimal weighting coefficients by making
equations (29) and (30) be unity and by introducing the constraints c, * 4c, *
4c, : I and e, * 4e, I 4e, * f : 1 (e.g., Jo et al., 1996; Shin and Sohn,



FIMTE-ELEMENT METHOD 209

1998; Srckl and Pratt, 1998). The optimal set of weighting coefficients obtained
for the weighted-averaging finite-element method is

cr : 1.63034868,

er :0.168119922,

f : 0.586794913.

cz : 0.0663752854, %: -0.223962456,

ez : -0.0953879654, e: : 0.15665926,

(3 1)

Note that the optimal weighting coefficients were determined to be independent
of material properties of model.

DISPERSION ANALYSIS

We need to estimate the validity of the weighting coefficients obtained in
the previous section through a dispersion relation. The dispersion relation is
investigated by computing and displaying the normalized phase and group
velocities for different propagation angles with respect to the grid and for
different grid intervals. To compare the dispersion relation of the
weighted-averaging finite-element method with those of the previous
finite-element methods, we calculate the phase and group velocities by using the
lumped mass, the consistent mass, the eclectic and the weighted-averaging
method. Fig. 5 shows phase and group velocities computed by the lumped mass
operator. In Fig. 5 we can see that the numerical phase and group velocities are
very dispersive and the numerical waves propagate with smaller velocities than
the real velocities for the small G. G indicates the number of grid points per
wavelength. Fig. 6 shows phase and group velocities computed by the consistent
mass operator. The numerical phase and group velocities are also dispersive and
the numerical waves propagate with larger velocities than the real velocities for
the small G. To bound the errors within r% with the lumped and consistent
mass operator, we need 33.3 grid points per wavelength. phase and group
velocities calculated by the eclectic and the weighted-averaging method are
shown in Figs. 7 and 8. Since the eclectic method is the combination of the
lumped and the consistent mass operator, the above effects that the numerical
waves propagate with faster or slower velocities than the real velocities
disappear in parts. The phase and group velocities are less dispersive. To
maintain the errors within r% by using the eclectic method, the number of grid
points required per wavelength is 14. Fig. 8 shows the phase and group
velocities obtained by the weighted-averaging finite-element merhod. The
weighted-averaging finite-element method gives the best results. The
weighted-averaging method requires 4 grid, points per wavelength, achieving
errors within l%. From the results, we know that when we solve the problem
that requires large computer memory, it is the most useful to apply the
weighted-averaging finite-element method.
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0.9
0 0.1 0.2 0.3 0.4

1tc

(b)

Fig. 5. Normalized (a) phase and (b) group velocities obtained by the lumped mass operator for
propagation angles of 0", l5o, 30", 45", 60', 75', and 90o with respect to the x-axis. G is the
number of grid points per wavelength.
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Fig. 6. Normalized (a) phase and (b) group velocities obtained by the consistent mass operator for

propagation angles of 0o, 15o, 30', 45', 60o, 75o and 90" with respect to the x-axis. G is the

number of grid points per wavelength.
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I
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ft)

Fig. 7. Normalized (a) phase and (b) group velocities obtained by the eclecric method for
propagation angles of 0o, 15o, 30", 45", 60", 75', and 90' with respect to the x-axis. G is the
number of grid points per wavelength.
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Fig. 8. Normalized (a) phase and (b) group velocities obtained by the weighted-averaging

finite-element method for propagation angles of 0o, 15o, 30o, 45", 60", 75" and 90" with respect

to the x-axis. G is the number of grid points per wavelength.
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200 m

ACCURACY ANALYSIS

In order to validate the accuracy of the weighted-averaging finite-element

method, we calculate numerical soiutions by using the- weighted-averaging

finite-element method for a homogeneous and a horizontalJayer model' and then

compare them with analytic solutions or numerical solutions computed by the

eclectic method.

*l- 1Y

2v 3V

200 m

Fig. 9. The geometry of the homogeneous model'

F i g . g s h o w s t h e i n f i n i t e h o m o g e n e o u s m o d e l . T h e v e l o c i t y a n d t h e

density of the homogeneous medium arJ tOgO m/s and 2.0 glcm3, respectively'

In Fig. 10 we display the numerical and analytic solutions obtained at three

receivers shown in Fig- 9. The number of grid points used in computing the

numerical solutions is"4 per wavelength. Sinie the scalar wave equation gives

solutions independeni of'propagation-direction, the solutions are only affected

u v , t ' " d i s t a n c e f r o m s o u r c e t o r e c e i v e r . A s a r e s u l t , w e o b t a i n e d t h e s a m e

solutions at receivers I and 2. We can see that the numerical solutions give

goodagreementw i th theana ly t i cso lu t ionswi th in l%er rors inF ig .10 .

W e a l s o n e e d t o e x a m i n e t h e a c c u r a c y o f r e f l e c t i o n a n d t r a n s m i s s i o n

wavescomputedbytheweighted-averagingf ini te-elementmethod.Inorderto

confirm the accuracy of t.fre.tion and trinsmission waves, we calculate the

numerical solutions ior the horizontal-layer model shown in Fig' 11 by using the

eclectic and the wlighted-averaging finite-element method. The material

properties are shown ii taUte 1. A vJrtical force with the maximum frequency

ft:b ffr is applied at the surface. The two receivers are located at the distances
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- Analytic
+ Weighted-averaging

- 1 . 0
0.0 0.2

Time (s)

(a)

- Analytic
+ Weighted-averaging

-1 .0
0.0 0.2

Time (s)

(b)

- Analytic
+ Weighted-averaging

-  t . u
0.0 0.2

Time (s)

(c)

Fig. 10. Numerical solutions computed by the weighted-averaging finite-element method (plus
symbols) and analytic solutions (solid line) at (a) receiver 1, (b) receiver 2, and (c) receiver 3 of
Fig. 9. The number of grid points per wavelength is 4.

0.40.30.1

0.40.1

0.40 .1
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of 60 m above the reflectors and 90 m under the reflectors, respectively, as

shown in Fig. 11. Figs. 12 and 13 show the reflection and transmission waves

calculated at the two receivers. In Fig. 12 we see the direct and the reflection

waves recorded at the distance of 60 m above the reflectors; in Fig. 13, the

transmission waves recorded at the distance of 90 m under the reflectors. From

Figs. 12 and 13, we conclude that the weighted-averaging finite-element method

gives compatible solutions with those of the eclectic method only with 4 grid

points per wavelength.

Table 1. The material properties of the horizontal-layer model shown in Fig. 11.

Layer Velocity Density

1800 m/s

3600 m/s

1 )  o l a a S

2.6 glcm3

G)
o)
o

3

(n
A
o

3

E
r-\ I
v l

I
I

- l
F I- l

600 m

1200 m

Fig. 11. The geometry of the horizontal-layer model.
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0.0

0.0 0.3 0.4

12. Synthetic seismogram (ofdirect and reflectionwaves) obtained by the weighted-averaging
method (plus symbols) and the eclectic method (solid line) at the distance of 60 m

the reflectors of the horizontal-layer model shown in Fig. 11.

1.0

- Eclectic
+ Weighted-averaging

0.2
Time (s)

0.0 0.4

Fig. 13. Synthetic seismogram (of transmission waves) obtained by the weighted-averaging
finite-element method (plus symbols) and the eclectic method (solid line) at the distance of 90 m
under the reflectors ofttre horizontal-layer model shown in Fig. 14.

0.1 0.2
Time (s)

0.3

- Eclectic
+ Weighted-averaging
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COMPUTATIONAL EFFICIENCY

In our weighted-averaging finite-element method which uses four kinds

of element sets, we use bigger-size element sets than that of the previous

finite-element methods. We, therefore, construct a global stiffness and mass

matrix whose band width is two times wider than that of the standard

finite-element methods. We examine how much the weighted-averaging

finite-element method is computationally efficient by calculating the storage

amount of the complex impedance matrix.

We compare the storage amount of the weighted-averaging finite-element

method with those of the standard and the eclectic finite-element method for a

band+ype matrix solver and a nested dissection method. As noted by the

dispersion analysis, in order to maintain the group velocity errors within l%,

the standard and the eclectic finite-element method require 33.3 and 14 grid

points per wavelength, respectively; the weighted-averaging finite-element

method, 4 grid points per wavelength. Assume that the standard finite-element

method requires N x N grid points to simulate a 2D given model. To obtain the

solutions having the same accuracy for the same model, the eclectic and the

weighted-averaging finite-element method need (14133.3)N x (14133.3)N and
(4/33.3)N x (4/33.3)N grid points, respectively.

The storage amounts for the band+ype matrix solver and the nested

dissection method are shown in Tables 2 and 3, respectively. According to
George and Liu (1981) and Stekl and Pratt (1998), the storage amount for the
nested dissection method is CrN2logrN + ONl. By assuming that the second
term O(N2) can be neglected compared to the first term CrN2logrN, we simply
obtain the storage requirements by only using the first term as shown in Table
3. On the ground of the storage requirements in Tables 2 and 3, we know that
when we solve the same problem by using the weighted-averaging finite-element
method, we just need 4 .7 % (for the band+ype matrix solver) and 321 % (for the
nested dissection method) of computer memory required by the eclectic method.
These results prove that the weighted-averaging finite-element method is more
efficient for simulating a realistic model than any other frequency-domain
finite-element methods.

SYNTHETIC SEISMOGRAM

We synthesized seismogram for a syncline model. The geometry of the
syncline model is shown in Fig. 14; the material properties are in Table 4. The
vertical source with a maximum frequency of 40 Hz is excited in the middle of
surface; The receivers are spread on the surface. The spatial grid spacings are
Lx : Az : 15.625 m and the numbers of spatial grid points for horizontal and
vertical directions, N* = 154 and N, : I29. To remove edge reflections
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resulting from the finite-size model, we applied the sponge boundary condition

developed by Shin (1995).

Table 2. The storage requirements of the band-type matrix solver for the complex impedance matrix.

Cr is a constant.

Storage Amount Percent Improvement

Standard method

Eclectic method

C,  N,

c ,  [ (14133.3)N]3

r00%

7.4%

0.35%Weighted-averaging method 2Cr [(14133.3)N]l

Table 3. The storage requirements of the nested dissection matrix solver for the complex impedance

matrix. C, is a constant.

Storage Amount Percent Improvement

Standard method C, N2 logrN 100%

Eclectic method C, [(14/33.3)N]'?logu(14l33.4)N 17.7

Weighted-averaging method 4C, [(4/33.3)N]2logr(4/33.4)N 5.8%

Table 4. The material properties of the syncline model shown in Fig. 14.

Layer Velocity Density

I

2

2500 m/s

4000 m/s

z.J gtcm'

In Fig. 15, we display the synthetic seismogram computed for the syncline

model shown in Fig. 14. In Fig. 15, we can see the "bow-tie" generated by

synclinal structure. Although we use different-size element sets, no ringing

reflections are observed. From this result, we know that the weighted-averaging

finite-element method can be applicable to any model.
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1 2 0 0  m

14. The geometry of the syncline model.
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Fig. 15. Synthetic seismogram obtained by the weighted-averaging finite-element method for the
syncline model.
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CONCLUSIONS

We developed the weighted-averaging finite-element method which uses

four kinds of element sets. The method is to construct the stiffness and mass

matrices for the four kinds of element sets and then average them with

weighting coefficients. The weighting coefficients were determined to give the

numerical phase and group velocities which are almost consistent with the real

velocities. By using the weighted-averaging finite-element method, we reduced

the number of grid points per wavelength from 33.3 (using the standard

finite-element operator) and 14 (using the eclectic method) to 4. By substantially

reducing the number of grid points per wavelength with the weighted-averaging

finite-element method, we achieved a 95.3 % reduction (for the band-type solver)

and a 67 .3 % reduction (for the nested dissection method) in the storage amount

of the complex impedance matrix. From comparing the numerical solutions

obtained by using the weighted-averaging finite-element method for the

homogeneous and horizontal-layer models with the analytic solutions or the

numerical solutions calculated by the eclectic method, we concluded that the

weighted-averaging finite-element method gives accurate solutions for all of the

direct, reflection and transmission waves with less grid points per wavelength

than those required by the previous finite-element methods. From the synthetic
seismogram generated for the syncline model, we also found out that the
weighted-averaging finite-element method simulates the geological models with
fewer grid points than the previous frequency-domain finite-element methods

and is applicable to any model.
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