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1 Introduction

The matrix Hausdorff operators defined on n-dimensional Euclidean space R" was first reported in [1], in
the following form:

Houf () = j O y)f (KA(Y))dy. L1)
J,

Taking into consideration the duality of the Hardy space H' and bounded mean oscillation (BMO) space, Lerner
and Liflyand in [1] have shown that Hy 4 is bounded on Hardy spaces. Subsequently, similar boundedness of
Hg 4 was reconsidered in [2] using atomic decomposition of Hardy spaces. The above cited publications are
important as their results are the first attempts to study the high-dimensional Hausdorff operators on H'(R").
Recently, Liflyand and Miyachi [3] extended these results on H? (R") spaces with O < p < 1.
In 2012, Chen et al. [4] modified the form of (1.1) by replacing the kernel function @ (y) with @ (y)/|y|":
D(y)

Houf (x) = j Tt Aoy 1.2)

n

As a subcase, when A(y) = diag[1/|yl, 1/Iyl, ..., 1/Iyl], they give another definition of the n-dimensional
Hausdorff operator:

_ (20, x
Hof (x) = [ﬁ[ e f [ldey- (1.3)

Their results include the boundedness of Hausdorff operators on Hardy spaces, local Hardy spaces, Herz
and Herz-type Hardy spaces with a conclusion that these operators have better performance on Herz-type
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Hardy spaces than their performance on Hardy spaces. In the same year, with different co-authors, Chen
et al. [5] extended the problem on the boundedness of He 4 to the product of Hardy-type spaces. The
boundedness results regarding Hausdorff operators on H! (R™) were improved in [6]. The continuity of (1.2)
on Morrey spaces, Hardy-Morrey spaces, Block spaces and rectangularly defined spaces has also been
discussed in [7], [8], [9] and [10], respectively. Similarly, some results regarding the boundedness of Hq
can be found in [11-13].

In the same way, the study of commutators to integral operators is important as it has many applications
in the theory of partial differential equations and in characterizing function spaces (see, for instance,
[14-16]). An attempt has been made in [17] to discuss the boundedness of commutators of Hg 4, defined by:

@ (y)
Iyl

H3af 00 = [ ZXbx) - bxa S cA 0N, 04
[Rn

on function spaces when the symbol function b is either from the Lipschitz space or central BMO space.
However, when the matrix A (y) is diagonal, we get the commutators of Hy which were studied in [18-20].
For detailed history and other developments regarding Hausdorff operators, we refer the interested readers
to the review articles [21,22].

Besides the Euclidean space R", the matrix Hausdorff operator can be defined on the p-adic linear
space Q},, which is a locally compact commutative group under addition (see, for instance, [23,24]), and
on the Heisenberg group H" [25-27]. Since, we are mainly concerned with the study of the commutators of
Hausdorff operators defined on the Heisenberg group H", therefore, it is mandatory to introduce this group
briefly and the definition of matrix Hausdorff operators on it first.

With underlying manifold R?* x R, the Heisenberg group H" is the Lie group under the law of non-
commutative multiplication

n
Xy = (Xl, X2, --~,X2n+1)'()’1, Y5, ~~-,y2n+1) =Xt VseeosXon + Yoy Xone1 t+ Yoy t 2 Z ()’]'ij - ijn+j) .
j=1
The above definition suggests that for x € H", we have x-0 = x and x-—x = 0. Therefore, the identity
and inverse elements of H" are same as that of R%"*! Euclidean space. The basis for the corresponding Lie

algebra is formed by the vector fields
0 0 . 0 0 . 9

X=L 120,20, 1<j<n, Xuj=—2 -2
J n+j ’ =)=, n+j i
a%; 0Xon+1 Xy ons1

The only non-vanishing commutator relations satisfied by these vector fields are
(X, Xn4jl = ~4Xons1, 1<j<n.
The dilation, on the Heisenberg group H", is defined as
8, (X1, Xy ..y Xons Xons1) = (X0, 1X0, PXony P0n41), T > O.

Also, the Haar measure on H" coincides with the usual Lebesgue measure on R?* x Rl Thus, for any
measurable set E ¢ H", we denote its measure by |E|. Moreover, it is easy to see that

16, (E)| = r%El, d(&x) = rldx,

where Q = 2n + 2 is the so-called homogeneous dimension of H™.
The Heisenberg group is a homogeneous group with the norm:

on 2 1/4
2 2
|X|h = [z XiJ + Xon+1 ’
i=1

and the Heisenberg distance d, generated by this norm is given by
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d(,q) =d(q'p,0) = g 'pln.
Note that d satisfies triangular inequality and is left-invariant in the sense that
d(rp,rq)=d(p,q), VYV p,q,reH".
The ball and sphere on H", for r > 0 and x € H", can be defined as
B(x,r)={y e H: d(x,y) < r}
and
Sx,r)={y eH": d(x,y) =1},
respectively. To compute the measure of this ball on H", we proceed as follows:
IB(x,1)| = |B(0, )| = Qqr&,
where Q, being a function of n only, is the volume of the unit ball B(0, 1). Also, the area of unit sphere
S(0,1) onH™ is wy = QQq. For further readings on the Heisenberg group, we refer the interested reader to
the book by Folland and Stein [28] and previous studies [29-31].

Now, we are in position to define the Hausdorff operator and its commutators on the Heisenberg group
H™ Let @ be a locally integrable function on H". The Hausdorff operators on H" are defined by:

() ()
Tof ) = | ﬁ?f (G0, Toaf 0= | ly(é)f(A(wx)dy,
H" H"

where A (y) is a matrix-valued function, and we assume that det A (y) # 0 almost everywhere in the support
of @. Also, we define the commutators Tcﬁ’ 4 of Ty 4 with locally integrable function b as

TS 4(f) = bToa(f) — Toa (bf). (1.5)

In this article, we will study the boundedness of Té’,, 4 on the weighted Herz spaces K;f’p H™; w),
defined in Section 2, with the Heisenberg group as underlying space. Section 2 contains some basic
definitions and notations likewise some necessary propositions which will be used in the succeeding
sections. Finally, Section 3 is reserved for the main results of this study along with their proofs.

2 Some definitions and notations

In 1972, Muckenhoupt [32] studied the Hardy-Littlewood maximal function on weighted L” spaces and
introduced the theory of A, weights as a result. The theory was well studied in the later work by Garcia-Cuerva
and Rubio de Francia [33]. An extension of this theory, in the settings of the Heisenberg group H", was provided
in [29] and studied in [30,31]. Any non-negative, locally integrable function w on H" can be given the role of a

weight. The notation w(E) serves to define weighted measure of E c H", that is, w (E) = IE w(x)dx. Also, if p

and p’ satisfy 1/p + 1/p’ = 1, then they will be called mutually conjugate indices. Next, let us recall some basic
definitions and properties of A, weights on the Heisenberg group which will be used in the sequel.

Definition 2.1. We say that w belongs to the Muckenhoupt class A,(H"), 1< p < co, if there exists a

C > 0 such that for every ball B c H",

pip’
1 j w(x)P'Pdx <C.
B

1
H j w (x)dx ﬁ

B

Also, w € 4 if there exists a constant C > 0 such that for every ball B ¢ H",



DE GRUYTER Weighted CBMO estimates for commutators of matrix Hausdorff operator =——— 499

1

— I w(x)dx | < C essinf w (x).
|B| XxeB
B

When p = oo, we define Ay, = Ui<p<coAp.

According to Proposition 2.2 in [25], we have A,(H") c A;(H"), for 1<p <q<oo, and if
weA,(H"), 1< p < co, then there is an € > 0 such that p — € >1 and w € A,_.(H"). Therefore, we may
use q,, = inf{g > 1: w € A4} to denote the critical index of w.

Definition 2.2. We say that w belongs to the reverse Holder class RH, (H"), if there exists a fixed constant
C > 0 and r > 1, such that for every ball B c H",

1/r

%' I w’ (x)dx < % j w (x)dx.
B B

In [31], it was proved that w € A, (H") if and only if there exist some r > 1 such that w € RH,(H"). In
addition, if w € RH,(H"), r > 1, then for some £ >0 we have w € RH,,.(H"). We therefore use
ry == supf{r > 1: w € RH,(H™)} to denote the critical index of w for the reverse Hoélder condition.

A particular case of Muckenhoupt A, (H") weights is the power weight function |x|;. From Proposition
2.31n [25], for x € H", we have x|}, € A (H") if and only if - Q < a < 0. Also, for1 < p < co, |x|n € A,(H"), if
and only if - Q < a < Q(p - 1). In view of these observations, it is easy to see that for 0 < a < co,

IXh € 1 Ap(HM),

Q+a
q <p<co

where (Q + a)/Q is known as the critical index of |x|}.
The following two Propositions, proved in [25], concerning A, (H") weights will be useful in establishing

weighted estimates for Ttll;,A on Herz-type spaces on H™.

Proposition 2.3. Let w € A, N RH,(H"), p > 1 and r > 1. Then, there exist constants Cy, G, > O such that

p r-1/r
Cl (ﬂj < M < CZ (EJ y
B w(B) Bl

for any measurable subset E of a ball B. In general, for any A > 1,

w (B (xg, AR) < A%w (B (xo, R)).

Proposition 2.4. If w € A,(H"), 1< p < oo, then for any f € L,.(H") and any ball B ¢ H"
1/p
1 J‘ 1
= [ rwiaxs | [ Feorwemads
B - w(B) -

For any measurable set E ¢ H", the weighted Lebesgue space L? (E; w) is the space of all functions f
satisfying the norm condition

1/p

Il gy = flf(xﬂpw(x)dx < oo,
E

where 1 < p < oo and w is a weight function on H". When p = co, we have L®(H"; w) = L®(H") and
Iz @y = WFllz gimy-
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Let By == {x e H": |x|y < 2X}, Ej = By/By_; for k € Z. Then, the homogeneous weighted Herz space in
the setting of the Heisenberg group can be defined as follows.

Definition 2.5. [25] Let a € R,0 < p,q < 00, and w is a weight function on H". The homogeneous
weighted Herz space K, (H") is defined by

K "M w) =< fe LE (H"/{0}; w): WAl amswy < 00 ¢

where

1/p
(o)

”f"f(qa'p([l'ln;w) = z Bl )ap/Q”f"LP (Ek W)

k=—-c0

When w = 1, we obtain K; P (H™) introduced in [34]. It is easy to verify that I ([H") LP(H™, |-1P).
Hence, Herz space can be considered as an extension of power weighted Lebesgue space. Some relevant papers
on Herz-type spaces and Hardy spaces associated with them along with their application include [35-43].

Definition 2.6. [44] Let1 < g < co and w be a weight function on H". Then, we say a function f € LI (H"; w)
belongs to the weighted central bounded mean oscillation (CBMO) space CMO4 (H"; w) if
1/q
y noy = Sup| ———— e Tw (x < 00,
Ifllcaror @mswy = R>§ w(B(O R) j If 00) = fl?w (x) 00
where
—_ dx.
fz = |B(0 " I f) (2.1)

B(0,r)
For detailed study of CBMO space on R", we refer the reader to [45,46].
Recently, weighted boundedness of matrix Hausdorff operators and their commutators defined on
different underlying spaces are reported in [44,47-53].
Lemma 2.7. [25] Suppose that the (2n + 1) x (2n + 1) matrix M is invertible. Then,
IM|¢ < |detM™| < M2, (2.2)

where

Mx
M) = sup M

. (2.3)
xeHnxz0  [Xln

Also, when A, weights are reduced to the power function, we shall use the notation v(-) instead of
w(-), that is, v(-) = |~|ff. In that case, an easy computation results in:

V(B = j M dx = wg2 BB + Q). (2.4)

|x|p<2k

Moreover, in the case of boundedness of Té’,’ 4 on the power-weighted Herz space, we shall frequently
use the piecewise defined function G:

Mm% if B >0,

G (M, 8p) =
(M 9F) {annﬁﬁ if <o,
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where M is any invertible matrix, a € R and § is a positive real number. Then, it is easy to see that G
satisfies:

GM,B(1/q +1/p)) = GM, B/q)G (M, B/p), (2.5)

where p,q € Z*.

Proposition 2.8. Suppose that the 2n + 1) x 2n + 1) matrix M is invertible. Let f > —n,v(x) = |x|£ and
x € H", then

=GWM, B)v (x).

B .
V(M) < IMIPv(x) if B>0,
1My (o if B<oO,

From this point forward, the notations A < B will imply that A < CB, for some C > 0. Similarly, for
some positive constants C; and G, if A < ;B and B < GA, then we will write A = B. Also, we set
AB(0,R) = B(0, AR), for A > 0.

3 Main results and their proofs

This section contains the main results of this study and the relevant proofs. Our first result is as follows.

Theorem 3.1. Let 1<p,q,q,q <00 and a;, a; € R with a; < 0. Suppose that 1/s =1/q, + 1/q and
a/Q + 1/q1 = 4/Q + 1/q>. In addition, let w € A, with the critical index r,, for the reverse Holder condition
and s > g1,/ (ry — 1).

(i) If1/q, + a1/Q > O, then for any1 < 6 < r,,,

b .
1T, af k27 @any < Kallbllearor wimsw) W llg o7 iy

where

1e)) 2
PO (1 + 1detat () 1914 (I0/9)] det A ()19 1A () log

K =
' V2 A

A1

| @y# (1+ [det 4™ () OA()|2/9)] det A" (y) [0 A )|/~ @+ @10 6113 log 24 1)y
h

dy

IA)I=1

(ii) If m/Q +1/q, < O, then forany1 < 6 < r,,

b .
170, alk 22 @rnswy < KallDllearos @) WPl sy s

where
D
K - PO (14 |detat ()77 14)1979) | det 47 ()9 1A () [ log 214 () Iy
ek
PO (14 |detat ()77 145)[2/9) | det 4 () /9 1A (y) [olar-(ar/ar6-015 1og —2 gy,
i3 A

1Ay)I<1

When general weights are reduced to power weights, then the next theorem is as follows.



502 —— Amna Ajaib and Amjad Hussain DE GRUYTER

Theorem 3.2. Let1<p <00,1<q,q1, g < c0and > -n.If1/qg, =1/q + 1/gy and 1/q + a/Q = &4/ Q, then
we have

b
170, alk 27 @rnsyy < Kslbllcaror @msw) Wl gamsyys

where K is

6 (y)(1 +loga (1AM AW I))dy, if &y =0

K=
6(y)GA' (), m(Q+B)/Qdy, if o #0,
[Hn
and
1D (y)| _ . 2
0@) = 0 | det A ()[4 [10% 1A Xmamy * log 2|A(y )||X{||A<y)|>1}]
A1), B/a) (A + | det A1 () [VIG (A (y), B/ IAW)@P/a),

3.1 Proof of Theorem 3.1

Here, we have to show that
1/p
(o]
{ Z W(Bk)azp/Q"Tcg,Afufqz (Ek,W)} < "f”]‘(:zz'P H™w)*
k=-c0

By the Minkowski inequality and necessary splitting, an upper bound for the inner norm || TCD of ||qu Eew
can be obtained as:

)

cD (y)

(T8 AF) 2 o) = - b(Ay)x)f (A(y)x)dy

L9 (Eisw)

0 || (b(x) = b(AY)xX))f (AY)X) L2 Esw) dy

Ik
I

< I C|D(g) ” (b (X) ka)f (A (y)X) ”LqZ(Ek;w) dy (3.1)
[Hn
+ j (’Ty'? 1(BAW)X) = bragyis)f AE)0) oo dy
h

+ _[ » |Q || (bs, = bagys)f AW 2 @Ewdy = h + b + E.

H"

While targeting I;, we first compute [|(b(x) — b(A(¥)x))f (AY)x)lr2E.w). The condition s > gory/(rw — 1)
implies that there exist 1 < r < r,, such that s = g,r'. Therefore, by the Holder inequality and the reverse
Holder condition, we have

1/s 1/rq

E[ w(x)'dx

) (A(y)x) | o

< [Be[Vow (B (b () = bg,)f (AW)) s gy -

I(b () = bp)f AWl Egw =

(3.2)
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Next, using the condition 1/s = 1/q + 1/q;, we can have
I(b() = bp)f (AW)) =@y < 1) = bp @y If (AW)) Iy - (3.3)
In second factor, on the right side of inequality (3.3), a change of variables along with Proposition 2.4 yields

1/

If (AY)) sy = | det A7 () [/ f If GO 17 dx

A(y)Bx

< |det A1 (y) [/ |B(0, 2IA () D[V (3.4)
1/q1

: q1 dx
wBO, 240D | zkfmw) If 00w (x)

< (|det A1 () [IAW) 12BN w (1A 1) IB) 4 I o a ) 1w -

Similarly, the other factor on the right hand of inequality (3.3), in view of Proposition 2.4, gives
Ib(:) = bp ey < 1BilV9IBlcxros gam;w)- (3.5
Inequalities (3.2)—(3.5) together yield

w (Bk)l/qz

I(b() = b)f AW lEaw < Iblleior@imw IF L gagisaw (| det A1) 1A () DM WiAQ) [Boa

Hence, we obtain the following estimate for I:

D)l _ 1 w (By)!/ %
det A1 (y)[|A () Q)8 — =2
i DR R T TR

L < [bllearot gamw) I lees 14 g 1Bsw) AY -

Next, we fix to estimate L, which is given by

b= |¢1|Jy(|)(;)| 1(B(4(¥)) - bragn)f (A(Y)) I g dy-
H" "

Since s = g,1’, therefore, we infer from (3.2) that
I(BAW)) = blagyis)f AW Ir2Eew < IBsw B2 (bAY)) = biagys)f AW s @y.  (3-6)
Applying the change of variables formula, Proposition 2.4 and Hélder’s inequality, we have

I(BAW).) = biagys)f AW )@y

1/s
= |det A ()] f (b () - bagys,)f 00 dx
A(y)Bx
1/s
1
< |det A1 () [ |AGIBS| ————— I(b(x) — b £ 00 Pw (x)dx
Y Y A () 1BY ( Ry 3.7)
IIA) Bk
< |det A1 ()5 B[S A () 125w (JA ()|Bo) Y
1/q 1/q;
x j |b(x) = bjag)p 17w (x)dx I If (00 [ 9w (x)dx
[lIA(y) |l Bk A (y)lI Bk

< |det A1) M5 [Be A0 IRYSw (LA W) 1Br) 9 If ot 1 ) 1wy 1D lcaros @imsw) -



504 —— Amna Ajaib and Amjad Hussain DE GRUYTER

By virtue of (3.6) and (3.7), the expression for I, assumes the following form:

1D (y)l _ s wW(B)Ye
b < [Blcirosarr, j (| det A W) AWM — 2K o a0 -
AT w (A )BT A0

Now, the estimation of L, given by

[}
L= I | Iy(l)Q/)l If AW)) e &) 1P — blaw)isldy,
. h
H

requires the bounds for |If (A (¥)-)li2 &, and |bg, — bjag)s, - First, we consider ||f (A (y)-)ll1%E,w)- In view of
the condition s = g,r’, we use the Hélder inequality and the reverse Holder condition to obtain

1/q2 1/s 1/rq>
VAo <| [Faoorwod|  <| [ raomor | | [wers 68
By By By
< By [M3w (B)Y%2If (A()) s gy -
Furthermore, the condition 1/s = 1/q + 1/¢q; and inequality (3.4) help us to write
If CAY)) s o = 1BV (AW)) o gy (3.9)

< |Be[Vs (| det AT () IIA ) 1) w (A (y) | B) M Ifllze a g)iBw) -
We combine inequalities (3.8) and (3.9) to substitute the result in the expression for 5, which now becomes

EXS I e W(B(O, 20
det Al A Q)'/4q
g deet A I B

L <

H"

Il w14 @y 1B, w) 1P B = Bragyis1dy.

Now, it turns to bound |bg, — bjay)s,|- For this purpose, we split the integral as follows:
L < I |bp, = bjagyis ¥ (v)dy + J |be, = byag)is /¥ )dy = b1 + by,
1A(p)I<1 IA(I=1

where, for the convenience’s sake, we used the following notation:

\\1/q2
= PO qetat i poy/n 2 EC 20

v
v 17 w (AW (B @

WFller 14 @ 1Bsw) -

Further decomposition of integral for I5; results in:

o j
=) I ¥ (y)3 Y |byig, = byisig | + |byig, = bagys| pdy.

120 pgag)i<a =1
The first term inside the curly brackets can be approximated using Proposition 2.4, that is,
1
|27 By|
2

1
Ibyig, — byig| < j b) = bysgldy < s j Ib(y) - by g, I (y)dy
2By

1 !
1 1/q

_in

1

< m [b(y) = bying, [Tw (y)dy I w(y)dy

Z_iHB)( 2—i+lBk

1

q

j Ib() - bty iw )dy | < DBlcrror gima -

zfiHBk

_ w@BY 1
T w(@By | w By
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Similarly, for the second term inside the curly brackets in the expression of L;, we have
|byip, = Bragise! < 1bllearos gimw) -

Therefore, we finish the estimation of I5; by writing

Bi< Wlaiosary Y | PO+ Ddy < Wloiosar | P 0)log

2 dy
& | AW
277 <A (y)lI<27 1A()I<1

In a similar fashion, the integral I, gives us

¥ (¥)1bg, = bjag)s|dy
1A I1=1

JE%)

(o]

j
> I Y(y)4 ) |byig, = bying | + |bayivig, = bja)| dy

=0 Sicla < =

< IBlliron i) f ¥ (y)log 21A () Idy.
IA() =1

A combination of expressions for I, I,, I5; and I3, gives

(o)
”Ttg,Af"LqZ(Ek;w) < Ibllearo? gam;w ! |y(|)(;)| (|det AT WA ) ||Q)1/ql
h

H"

w (B(0, 29))!/a
w(IA)IIBi)Y o

1 , log(2]|A d
{Og ek og (2| (y)ll)} y

x (1+ | detA(y)["7 1A () I99) WFllos 1 ) 1B w)

Keeping in view the definition of the Herz space, factors containing the index k in the expression of
¥ (y) are important. Therefore, to proceed further and to avoid repetition of unimportant factors relative to
the Herz space, we have to modify and rename the expression for ¥. Hence, in the remaining of this paper
we shall use the following notation:

ICD()/)I
h

P(y) =

(| det AT ) [IAWID (A + |det A (y) [ |A(y) IIQ/q)maX{IOg , log 2|A (J/)II}-

1AW’
Then,

w (B)V4

P A BT U 1A &

IT5 af Lo Bew) < IBlleitor gimw) J
H"

Finally, we take into consideration the definition of Herz space and employ the Minkowski inequality
to have

0o 1/p
b P, mh
1T AF i gy ={ Y wB)Tl T@,Afnfqzwk;w)}
k=-c0

(3.10)

” ” ..( ){( W(Bk)az/Q+1/qz | " p 1/p
b CMO9 (H";w) _[ Y y E —————|f LA(JAY) 1B w) d)'
w(||A BV @
. k=—00 (" ()/)" k)

Comparing inequality (3.10) with inequality (3.9) in [25], we found that the term inside the curly brackets
is same in both these inequalities, the only difference lies in the integrands outside the curly brackets
along with a constant multiple ||bllcyo4 ¢in,w) Outside the integral. Therefore, inequality (3.10) can be written
as:
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oo oo | \W (Bysj)

I3, af 2y < Bl > vyl $ [[we
@,af g 27 @imsw) = 1Pllcaro? i w) IOEEDY
21*1<||A(y)||g21 (3.11)

. 1/p
J(w (Bk+j)jal/o i
X W B )™ A f L . dy,
2 (w(BM) ' (Bt

I=—00

where the condition a;/Q + 1/q; = a2/Q + 1/q; is utilized in obtaining the last inequality.
Under the stated condition that a; < 0 and [ < j, we use Proposition 2.3 to have

A\a/Q N\ (6-1)/(Qd)
(W(Bkﬂ)j ! < (IBk+1|j ! _ 26-Da(6-1/5, (.12)
W (Biy) |Bi+1

forany1< 6 <r,.
In view of Proposition 2.3, if a;/Q + 1/¢q; = 0, then

( w (B Jal/QJrl/ql ) {sz(al/QJrl/ql)’ if j <o,

1
w (Biy)) 2770@/Q+1a)6-1/5 | if j 5 0, (3-13)

and if &;/Q + 1/¢q; < 0, then

[ w(By) ]m/QH/ql ) {2iQ(a1/Q+1/q1)(6—1)/6’ if j<o,

. i (3.14)
W(Bk+]) 2]Q(011/Q+1/Q1), lf j> O,

forany1< 6 <r,.
Thus, for &;/Q + 1/¢; = 0, from inequalities (3.11)—(3.13), for any 1 < 6§ < r,,, we have

0
178 aflg22 gy < Wbllcsiosarrswy Y. f P () 1A )l o2
J=200 giigiagy) <2
. 1p
] [e'e]
X Z zal(]—l)(b‘—l)/& Z W(BkJrl)alp/Q"f"f‘h(Ek”;w) dy

I=—c0 k=-0c0

+ IBlitor gimwy Y. f P () 1A (y)|@+Q/ar@-D/e
j=1

27| Ay) <2

. 1/p

] 00

x ) 2m0D@VE N w (B ) PIOf | o Ay
I=-c0 k=-00

Replacing ¥ (y) with its value in the above inequality, we get

b .
[ T@,Af||1'(;’22'”(u4";w) < Ibllesros msw) |lf||1‘(;11'” W)

PO 1+ | det A () IaIA(I/) | det A ()0 AW log

24,
I 1AW

1A I<1

Q

j PO (1 4 | detart () /aga @)
Vln

IA)I=1

x |det A7 (y) /4| A (y)| ¥/ o~ @+ @/a) 6D/ 1og 2| A (y)I)dy -

This completes the proof of Theorem 3.1(i).
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Similarly, when a;/Q + 1/q; < 0, by using inequalities (3.11), (3.12) and (3.14), the second part of
Theorem 3.1 can be proved easily. Hence, we complete the proof of Theorem 3.1.

3.2 Proof of Theorem 3.2

Following the proof of Theorem 3.1, we write:
1T Al @y < i + o + I,

where Jj, ), and J; are similar to [}, L, and § in the previous theorem with w (-) replaced by v (-) = |-|§. Then,
by using the Holder inequality and change of variables, we obtain

1/q 1/q
2 ()] . .
h < e |b(x) - bp,|7v (x)dx fFAW)X)@v(x)dx | dy
H" Yih E, E
1/q
1/q . |D(y)| 1 1/q1 a 1
< v (B blicrros vy 2 [detA™ (y)] If @)v(At(y)z)dz dy.
i AW)E
Using Proposition 2.8, we get
1/q
1q|pll 2Wl -1 y) /@ 0 G (A
L < v (B bllcrror gmsvy a |detA™ ()| If )G (A (y), B/gr)v (x)dx dy
n |Y|h
H A(Y)Ex
1/q ) D (y)| 1 N1/ (AL
<v (B blicyror gm;v) [0 [det A (y)[M G (A (), B/a) Iflcaag)iggy AY-
H" Yih
Next, the expression for /, can be written as:
[P (y)|
kL= |y|)(; [ (b (A ()’)) - bllA(y)llBk)f (A (Y)')”LqZ(Ek;v) dy. (3.15)
H" h
Changing variables and using the condition q,/q + ¢>/q: = 1, we get
I(b(AW)X) = bBjagyz) F AY). )o@y
1/q2
q2
= f (5(A(¥)x) - Bups)f (A(y)x) | vodx
Ey
1/q2
q2
= |detA1 ()" GA& (), B/g2) j (b (x) = Brags)f (x) | vodx (3.16)
A(y)Ex
1/q 1/q:
<[detd? ()" 601, Bla)| [ 1b00 - bugsvodx | | [ Flevedx
[lIA (y) | Bk A(y)Ex

= |detA' () ["%= G(A (), B/a2)V IAWIBY9Bleitos 7w Lo a g sy -

It is easy to see that v (J|A()[1By) = A ¥)|?*Bv (By). Using properties (2.5) and (3.16), inequality (3.15) becomes:



508 —— Amna Ajaib and Amjad Hussain DE GRUYTER

D
PO gt at () 422 G (A2 (), B1@)G (A1), BIaD TA IRl a oy ) -

kL = V(Bk)l/q”b”cMo‘? H"v) Q
|Y|h

H"

It remains to estimate J;. A change of variables following the Holder inequality and Proposition 2.8 gives us

D
h o= J I (}é)l (B, = bragyis)f AWl @ dy
ot |Y|h

¢)
= _[ | |)/(|)Q/)| If (A2l Ev) 1B = bjag)isldy
H" h

D
< | 'ly(l’g"|detA-l(y)WzG(A-l(y),ﬁ/qz)v(||A<y)||Bk)1/q|m|m(A(y)Em|ka - Buagaldy.
n h
H

Next, if [A(y)|| < 1, then there exists an integer j > 0, such that
27 < JAW)I < 27,

Therefore,
2

j
bs, = byags < Y Ibyig, = byig | + |byig, = bags| < Iblciros gy 108 ek
i=1

Similarly, for [|[A(y)|l > 1, we have
[bg, — biag)is| < Ibllcaror @m;vy log 2l1A W) .

Hence,

|d’()’)| |detA—1 (y) |l/Q1 G(Afl(y): ﬁ/ﬂb)

J5 < VBV blicaros wmv) 0
h

H"

2
x G A (), BIDIAY)I@Pra (log Tagame ¥ log 21A(y )"X{IIA(y)Ilzl}J”f Lo a ) Besv) A -

Thus, combining /;, J, and J5, we get

|(D()(;)| | detA! ) |l/th
Iyl7

x GA (), Bla) (1 + | det AT () [MIG (A7 (y), B/g) IAW)IQF)/)

b )
1T, allLo2Egv) < v (Bi)Y4Ibllcatos imy)
|}_Ifl

(3.17)

2
X (log W}/)HX{"A(‘VHKI} + log2|A (J’)"X“A(y)||>1}j”f||qu(A () Exsv) dy.

For the approximation of ||f (-)llzs(a )¢y, We consider the method used in [25]. Hence, the definition of
E; and (2.2) imply that
AW)E c {x: JATW)IP128T < Ixly < 1A 1129

Now, there exists an integer [ such that for any y € supp(®), we have

2 < AN < 2L (3.18)

Finally, the inequality [|[A1(y)[I”? < |A(y)| implies that there exists a non-negative integer m satisfying:

2m < A (y)|| < 2trmH, (3.19)

We infer from (3.18) and (3.19) that:
log;(IAW) A ()11/2) < m < logzIAW) A W) 1).



DE GRUYTER Weighted CBMO estimates for commutators of matrix Hausdorff operator =—— 509

Therefore,
A(y)Ek C {XI 21+k—1 < |X|h < 2k+1+m+1}.
Hence,
l+m+1
Lo a @) By < z IF Iz B0 - (3.20)
j=1

Incorporating inequality (3.20) into inequality (3.17), we obtain

l+m+1

1T allo @) < v BOYbllexror @y I 0W) Y Il Eemdy, (3.21)
et j=l
where
1D ()| RPN 2
0y) = |det A (y)['"|log ———x, + 10g 1AM IXya )=
|y|§l2 ||A(y)|| {IA) <1} {IA) =1}

x GA (), B/g) (1 + | det A1 (V) [V9G (A (y), B/ IAW)ICPIa).

Using the Minkowski inequality and the condition 1/q + a,/Q = a;/Q yields

p) 1/p
0 l+m+1
||T£,A||f(;‘22'”(w;v) < Blletorimny Y. | VBVl J 0) Y Ifla v dy
k=—co o j=1

1/p
l+m+1 00
< Ibllearot @iy J‘Q(Y) Z V(Bj)“l/Q{ Z (V(Bk+j)al/Q"f"qu(Ek,,,-;v))p} dy
Hn

j=1 k=-00
l+m+1
< Iblcitos arran Wl gy j 0w Y v(Byn/ody.
H" j=1
It is easy to see that
l+m+1 l+m+1
z v(Bj)®/Q = Z 2-ja(Q+P)/Q,
j=1 j=1
Next, for a; = 0,
l+m+1
Y 270@BQ = m 4+ 2 <1+ log(IA W IAY) ),
j=1
and for a; # O,
l+m+1 -1 Q+p)/Q .
< A~ ()| , if @ >0,
2-ja(@Q+B)/Q ~ -l (Q+P)/Q « =GA'Y), a4 (Q + B)/Q).
,Z, IAQ)IFs@BIe, if g <0, hal@r

Therefore,

I 0 A +log (1A WMINAW)IN)dy, if & =0,

178, Al gy < IBlcworaman I lgevr gy
j 00)GA W), a(Q+P)/Qdy,  if @ #0,
Hn

= KslIbllcanos @i Wl cor gansyy -

Thus, we complete the proof of Theorem 3.2.
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4 Conclusion

In this article, the authors obtained the boundedness of the commutator of the matrix Hausdorff operator on
the homogeneous weighted Herz space in the settings of the Heisenberg group. As an application, the
authors also investigated the particular case of Muckenhoupt A, weights, namely, the power weights. Some
potential directions for the future works include the boundedness of the same operator on homogeneous
weighted Herz-Morrey spaces and weighted Herz-type Hardy spaces defined on homogeneous groups.
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