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a b s t r a c t

The structure and properties of public transportation networks have great implications for
urban planning, public policies and infectious disease control. We contribute a complex
weighted network analysis of travel routes on the Singapore rail and bus transportation
systems. We study the two networks using both topological and dynamical analyses. Our
results provide additional evidence that a dynamical study adds to the information gained
by traditional topological analysis, providing a richer view of complex weighted networks.
For example, while initial topologicalmeasures showed that the rail network is almost fully
connected, dynamical measures highlighted hub nodes that experience disproportionately
large traffic. The dynamical assortativity of the bus networks also differed from its
topological counterpart. In addition, inspection of the weighted eigenvector centralities
highlighted a significant difference in traffic flows for both networks during weekdays and
weekends, suggesting the importance of adding a temporal perspectivemissing frommany
previous studies.

Crown Copyright© 2010 Published by Elsevier B.V. All rights reserved.

1. Introduction

Because the structure of a network often affects its function [1], deciphering the topology and dynamics of the underlying
networks is a prerequisite to a full understanding of connected, interacting systems. For the past half century, research on
networked structures has focussed primarily on Erdös and Rényi (ER) random graphs, the canonical description of complex
networks. However, ER random networks are theoretical constructs and may only represent a small subset of real-world
systems.

The problem of real-world network analysis is that of complexity. Interesting real-world networks can consist ofmillions
of nodes connected by a complicated set of edges, making them difficult to unravel. Fortunately, advances in complex
network theory, measurement techniques and computational power have greatly improved our ability to analyze such
structures. In the past few years, we have made fascinating discoveries on the nature of a diverse set of complex systems
from the neural network of the nematode Elegans [2] to the World Wide Web (WWW) [3].

In this paper, we contribute a complex network analysis of passenger travel routes on the rail and bus public transport
systems in the island nation of Singapore. The bus network studied in this work is among the largest studied to date,
with more than 4130 nodes. Moreover, the Singapore Land Transport Authority uses an integrated distance-based fare
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Fig. 1. The Singapore public transportation system, comprising the RTS and BUS systems.

system, which captures data bothwhen commuters board and alight busses through the use of smart card readers. Alighting
information on bus networks is usually unavailable or based on estimation in other urban transport information systems
(e.g. London, Paris and New York). As a result, the public transport data captured through the Singapore public transport
ticketing system is one of the most comprehensive in the world.

We compare its characteristics to previously studied transportation systems such as the Boston subway [4], the
Indian railway [5], Chinese railway [6], the world-wide airport network [7] and the public transportation system in [8].
In addition to a topological study, we also investigate the dynamical properties of the networks by incorporating the
magnitude of interactions [9–14]. We find that the Singaporean transport systems share several similar (but not identical)
dynamical features with the world-wide air transportation network [10] and the German and Indian railway networks [15].
Furthermore, we extend previous analysis into the temporal domain by considering the differences in properties over
weekdays and the weekend.

In the next section, we will set the stage by describing the Singapore Public Transportation system and the dataset
provided by the Land Transport Authority. In Section 3, we report on the degree, strength, clustering, assortativity and
eigenvector centrality characteristics of the transportation networks. In brief, our study highlights the importance of
studying both the topological and dynamical properties of networks. For example, from a topological perspective, the
Singapore rail network appears similar to a highly connected ER random graph (indicating travel between almost all
districts in Singapore). However, a dynamical analysis reveals a more complex scale-free system in which certain regions
enjoy substantially greater traffic. Furthermore, an eigenvector analysis (in Section 3.5) shows that the traffic can differ
significantly depending on the day of the week, suggesting the importance of temporal effects. We believe that our results
will have an impact on future modelling and simulation studies, for example in epidemiology, where static (rather than
dynamic) networks are the norm. We elaborate upon these aspects as well as avenues for future work in Section 4, which
concludes our paper.

2. Case study: the public transportation system in Singapore

Singapore is an island nation at the southern tip of the Malay Peninsula in South East Asia. Home to approximately 4.86
million people but with a land area of only 710.2 km2, Singapore is the third densest country in the world [16]. Singapore
has experienced tremendous economic growth since its independence in 1965; the International Monetary Fund now ranks
Singapore as the fifth wealthiest country in the world in terms of Gross Domestic Product per capita [17]. Part of its rapid
economic progress can be attributed to an efficient transportation system.

Pre-World War II, the human-powered trishaw was the main means of public transportation in Singapore. Today, the
land-based public transportation system in Singapore is comprised of two efficient, sophisticated networks: (1) the rail or
Rapid Transit System (RTS) and (2) the bus system (BUS), shown in Fig. 1. The RTS network in 2008 consisted of 93 stations
(grouped into three mass-rapid transit (MRT) lines and three light-rail (LRT) lines), connecting all major districts across the
island. The public BUS network is larger, with more than 4000 bus stops covering almost all populated regions. In 2007,
approximately 4.5 million trips were made on the RTS and BUS systems daily.

The main payment method employed by the Singapore public transportation system is a contact-less smart card system
called EZ-Link [18]. An individual taps his or her smart card once upon entry to the RTS station (or BUS) and oncemore upon
exit (or alighting). In the case of the RTS, individuals can change trains at intermediate hub stations without exiting the RTS
network. It is through the EZ-Link payment system that we are able to capture the traffic serviced by these transportation
networks. Our datasets that are provided by the Land Transport Authority of Singapore (LTA) list the daily in and out traffic
for each RTS station and bus stop to all other stations and stops. The data spans one week (Monday to Sunday) in January
2008, capturing 10.6 million RTS passenger rides and 19 million BUS passenger rides.
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(a) RTS daily weight difference. (b) BUS daily weight difference.

Fig. 2. Daily edge weight difference across days in a week for the Singapore Rapid Transit System (RTS) and Singapore bus (BUS) networks. Each cell

represents the mean squared difference (m.s.d.) in weights between two days in the week studied. Lighter cells represent a greater difference in m.s.d. We

can clearly see two clusters: one comprising the weekdays (Monday to Friday) and the other comprising the weekends (Saturday and Sunday).

2.1. Data preprocessing and graph generation

We transformed the list format data obtained from the LTA into seven daily graphs. Travel for each day was represented
as a weighted graph G with N nodes and M edges, an associated adjacency matrix A = [aij] and a weight matrix W = [wij]

representing the number of passengers travelling between locations i and j in a single day.

Due to the method of data capture, it is important to note that we are not studying the underlying physical structure
of the networks but of the movement of people between the different nodes. As such, when we say two nodes i and j are
connected, aij = 1, we mean that there is at least one passenger travelling between these two nodes during the week. Also,
the bus and rail networks are disconnected, since transfers from the RTS to the BUS network (and vice versa) are not present
in the datasets.

There was a significant difference between edge weights during weekdays and weekends on both the BUS and RTS
networks (see Fig. 2). To simplify our analysis, we combined the Monday to Friday graphs for the rail and bus networks
into weekday graphs by averaging the weights along each edge. We created the weekend networks in the same manner
(averaging the Saturday and Sunday graphs). In addition, we made the assumption that typical travel was bi-directional,
and hence each graph was made undirected (wij = wji) by averaging the in and out edge weights. Finally, we were left
with four networks: RTSD and RTSE representing passenger travel on the RTS system during the weekdays and weekend,
respectively, and, likewise, BUSD and BUSE for the BUS system.

3. Complex weighted network analysis of travel on the Singapore public transportation networks

In this section, we present a topological and dynamical analysis of the RTSD, RTSE , BUSD and BUSE networks. Table 1
shows all computed network statistics, from basic network properties such as the number of nodes and edges to the more
complex metrics such as clustering, assortativity and eigenvector centrality.

3.1. Basic properties and path length

The final RTS weekend and weekday networks both have 93 nodes and a similar number of edges,M = 3843 (RTSD) and
M = 3733 (RTSE). As expected, BUSD and BUSE are significantly larger, with 4134 and 4142 nodes respectively. Although the
weekend BUS network possessed more nodes, the weekday BUS network had almost 51 × 104 more edges (M = 213,103
(BUSD), compared to BUSE whereM = 180,109), suggesting less travel during the weekends but to more distinct locations.

All four networks feature similar small average path lengths (path length being theminimum number of edges traversed
to get from one node to another), ⟨l⟩ ≈ 1.1 (RTS) and ⟨l⟩ ≈ 2.5 respectively (BUS). These path lengths are similar to
those found for the transportation routes for cities in Poland [8]. The RTS and BUS networks also feature small diameters
(maximumpath length of a network) d = 2 (both RTSD and RTSE) and d = 4 (BUSD) and d = 5 (BUSE). For the RTS network, a
small average path length of a single hop means that there is travel between almost all rail stations of Singapore, regardless
of geographical distance. Moreover, we observed that the distance travelled using buses was mostly short, with 95% of all
rides being below 10 km (as shown in the cumulative probability distribution of the distances travelled between pairs of
nodes plotted in Fig. 4). In contrast, more than 50% of all rides on the RTS system were above 10 km.
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Table 1

Statistical properties of the RTS and BUS weekday and weekend networks.

Property RTSD RTSE BUSD BUSE

Number of nodes, N 93 93 4131 4139

Number of edges, M 3843 3733 213103 180109

Average shortest path, ⟨l⟩ 1.101 1.127 2.5403 2.5762

Diameter, d 2 2 4 5

Average weight, ⟨w⟩ 206.354 176.456 6.434 6.462

Weight range (0.1, 4292.9) (0.25, 4019.25) (0.1, 2583) (0.25, 3124)

Average degree, ⟨k⟩ 82.6452 80.2796 103.172 87.03

Degree range (35,92) (29, 92) (1, 1073) (1, 1048)

Average strength, ⟨s⟩ 17054.2 14165.8 663.803 562.393

Strength range (18.20, 65451.3) (84.25, 59899) (0.2, 64236.1) (0.25, 56121)

Assortativity, r −0.0875 −0.0775 0.054997 0.0146622

Average clustering, C 0.9341 0.9216 0.562047 0.533689

Average weighted clustering, Cw 0.9785 0.9716 0.655622 0.636493

Average centrality, X 0.103 0.103 0.0104 0.0102

Average weighted centrality, Xw 0.0745 0.0735 0.00284 0.00303

(a) RTS weight distribution. (b) BUS weight distribution.

Fig. 3. Distribution of passenger travel (weights) on the RTS and BUS weekday and weekend networks, along with power-law fits.

Fig. 4. Cumulative distribution of distances travelled on both the RTS and BUS networks. We observed the distances travelled on buses to be shorter.

Turning our attention to the number of rides (weight) along each edge, we observed that the traffic between rail stations
varied greatly: w ∈ (0.1, 4293) for RTSD and w ∈ (0.25, 4020) for RTSE . Similarly large ranges are present in the BUS
networks, where w ∈ (0.1, 2583) for BUSD and w ∈ (0.25, 3124) for BUSE . The weight distributions for the RTS and BUS
networks shown in Fig. 3(a) and (b) appear to follow a power-law distribution p(w) ∼ w−γ , where γ ≈ 1.6 for RTS and
γ ≈ 2.5 for BUS, indicating the presence of travel routeswith very high traffic,wij > 2000 rides per day. The natural question
to follow is whether weights are distributed independently across the edges or whether some nodes enjoy ‘‘prominence’’ in
the network, which we address in the next section.
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(a) RTSD (weekday). (b) BUSD (weekday).

Fig. 5. Degree and strength distributions for the RTS and BUS weekday networks.

3.2. Degree and strength distribution

The degree of a node is a measure of its connectivity, and its strength can be viewed as an indication of its centrality [14,

10]. For a given node i, its degree, ki =
∑N

j aij, is the number of nodes it is linked to. We can average this over all nodes to
give the graph’s average degree:

⟨k⟩ =
1

N

N−

i

ki =
1

N

N−

i

N−

j

aij. (1)

Subsequently, a node’s strength is simply the sum of the weights on the edges incident upon it, si =
∑N

j aijwij, and the
graph’s average strength is given by

⟨s⟩ =
1

N

N−

i

si =
1

N

N−

i

N−

j

aijwij. (2)

Both the RTS weekday and weekend networks possess high average degrees, ⟨k⟩ = 82.65 (RTSD) and ⟨k⟩ = 80.28,
(RTSE), indicating high connectivity among the rail stations. The degree distribution for RTSD (see Fig. 5(a) showed that p(k)
increases exponentially with k, and a majority of nodes (80%) possess high degree ki > 80, indicating that a majority of
RTS nodes exist in a highly connected cluster (RTSE has a similar distribution). That said, the strength distributions (filled
markers) revealed that although many nodes share similarly high degree, the traffic handled by each rail station differed
significantly. In fact, the strengths of stations appear scale-free (indicating the existence of hub nodes with very high traffic)
and follow a power-law distribution p(s) ∼ s−γ with γ ≈ 1 for both RTSD and RTSE .

The BUS system has a topology different from that of the RTS network. Relative to the size of the network, N ≈ 4100, the
degrees of the bus stops are small, with ⟨k⟩ = 103 (BUSD) and ⟨k⟩ = 87 (BUSE). The weekday degree distributions for BUSD
(Fig. 5(b)) appear exponentially distributed, p(k) ∼ αβk, where β ≈ −0.01. The exponential distribution of the degrees
suggest that network’s connectivity evolved randomly, possibly due to the many factors that affect urban development, as
suggested by Sienkiewicz and Holyst [8].

On the other hand, the strengths of the BUS nodes follow a power-law distribution (at least for s < 20,000), with
exponents γ ≈ 2. Similar to the RTS networks, there exist high-traffic hub BUS nodes. Therefore, although connections
between pairs of nodes may be random, the magnitudes (or concentrations) of the travel routes are not. Instead, if we take
the perspective that weights are multi-edges [12], then the edges (or travel routes) appear to emerge out of a preferential
attachment process. In other words, an individual is more likely to travel to a station that other people are travelling to.

The strength spectrums (obtained by averaging the strength s(i) over all nodes with a given degree) for both the RTS and
BUS networks (Fig. 6) illustrate a positive relationship between the degree and the strength of nodes. In fact, the strengths
grow exponentially with degree for both the rail and bus transportation systems. This observation fits with the intuition
that the more connected a station is, the more traffic it handles, but also implies that the traffic grows much faster than the
number of connections (Fig. 6).
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(a) RTS. (b) BUS.

Fig. 6. Strength (as a function of degree) of the RTS and BUS networks.

(a) RTSD (weekday). (b) BUSD (weekday).

Fig. 7. Clustering spectrum for the RTS and BUS networks.

3.3. Topological and dynamical clustering

The clustering coefficient is a measure of cohesiveness around a given node i, and it is defined by the equation

Ci =
2Ei

ki(ki − 1)
=

2

ki(ki − 1)

−

j,h

ai,jai,haj,h, (3)

where Ei is the number of edges between node i’s neighbors and ki(ki−1)/2 is a normalization factor equal to themaximum
number of possible edges among the neighbors. Because of this normalization, Ci is in the interval [0, 1], where 0 and 1
indicate that none or all of node i’s neighbors are linked, respectively. Averaging Ci over all the nodes in the network gives

the average clustering coefficient ⟨C⟩ =

∑N
i Ci

N
, a convenient summary statistic for cohesiveness.

The range of clustering coefficients Ci for both RTSD and RTSE are similarly high and narrow, Ci ∈ (0.90, 1) (RTSD)
and Ci ∈ (0.87, 1) (RTSE), indicating that the network is highly clustered, as expected, given the degree distributions
previously discussed. The average clustering coefficients ⟨C⟩ for the weekend and weekday RTS networks are 0.934 and
0.921, respectively, slightly higher than the value from an equivalent ER random graph, ⟨C⟩ER = 0.857, given by

⟨C⟩ER =
(⟨k2⟩ − ⟨k⟩)2

N⟨k⟩3
. (4)
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Compared to previous studies, the RTS networks are significantly more cohesive than the Indian railway (⟨C⟩IR = 0.69) [5],
the public transportation networks in Poland (0.68 < ⟨C⟩P < 0.85) [8], the location network of Portland (⟨C⟩PL = 0.0584)
[19] and the Chinese railway (⟨C⟩CR = 0.835) [6].

From Table 1, we can see that the average clustering coefficients for the BUS networks are smaller than for the RTS
networks with ⟨C = 0.56⟩ (BUSD) and ⟨C = 0.53⟩ (BUSD). That said, the clustering values are approximately 30 times larger
than for an ER random graph of the same size (0.017 for weekdays and 0.013 for the weekend). Together with their small
average path lengths (see Section 3.1), this high clustering coefficient indicates that the BUS networks are small-world.

While Ci measures only topological cohesiveness, the weighted clustering coefficient Cw
i takes into account the weights

of edges,

Cw
i =

1

si(ki − 1)

−

j,h

wi,j + wi,h

2
ai,jai,haj,h, (5)

with the average weighted clustering coefficient given by ⟨Cw⟩ =

∑N
i Cw

i

N
. In the case where the weights are completely

uncorrelated, Cw = C and Cw(k) = C(k) [10]. However, weights in real-world networks are often correlated, leading to two
possible situations.

1. ⟨Cw⟩ > ⟨C⟩: in this case, closed triangles are more likely formed by edges with larger weights, i.e., clustering is formed
by edges with larger weights.

2. ⟨Cw⟩ < ⟨C⟩: closed triangles are more likely formed by edges with smaller weights and, as such, clustering is formed by
edges with low weights.

In Barrat’s study of weighted networks [10], it was found that the world-wide airport network (WAN) featured the
first case where ⟨Cw⟩ > ⟨C⟩, indicating a rich-club phenomenon [20], whereas a scientific collaboration network [21] was
found to have ⟨Cw⟩ ≈ ⟨C⟩. We observed that the weighted clustering coefficient of both RTSD (⟨Cw⟩ = 0.98) and RTSE
(⟨Cw⟩ = 0.97) are only slightly higher than their topological analogs, implying that the weights on the RTS network are
uncorrelated.

The BUS networks, however, have weighted clustering coefficients ⟨Cw⟩ = 0.66 for BUSD and ⟨Cw⟩ = 0.63 for BUSE ,
approximately 16% higher than their topological measures. As ⟨Cw⟩ > ⟨C⟩, we can conclude that closed triangles are more
likely formed by edges with larger weights. The BUS networks also appear to have similar average weighted clustering
coefficients to those found for the German railway (⟨Cw⟩GR = 0.75) and the Indian railway (⟨Cw⟩IR = 0.69) [15].

For a better understanding of network cohesiveness, we can average Ci and Cw
i over all nodes with a certain degree k

to yield the clustering spectrum C(k) = 1
Np(k)

∑
i/ki=k Ci and weighted clustering spectrum Cw(k) = 1

Np(k)

∑
i/ki=k C

w
i . Both

C(k) and Cw(k) appear to be independent of k; the clustering spectrums for the RTS networks (Fig. 7(a)) are fairly constant,
with a narrow range ((0.87, 1) as compared to (0.2, 0.8) for inter-municipal traffic in Sardinia [14]).

In contrast, the clustering spectrums C(k) and Cw(k) for the BUS networks (Fig. 7(b)) follow the scaling law C(k) ∼ k−β

for 44 < k < 500, implying that the majority of the nodes have a moderately hierarchical connectivity [22]. We also
observed that nodes with high degree k have lower clustering coefficients than one would expect given the power-law
fits. We found these high-degree nodes to be interchanges with buses going to different parts of Singapore. If we consider
the BUS network to have a hierarchical star-like topology [22,8], it would be reasonable that the neighbors of interchanges
would be less connected than lower-degree local neighborhood bus stops.

Comparing the weighted and topological clustering spectrums, we see that Cw(k) > C(k) up to k < 500, indicating that,
for this degree regime, clustering is formed by edges with higher weights. In fact, we observed that Cw(k)/C(k) increased
with k, suggesting that the more connected a bus stop, the more closed triangles were formed with high traffic routes, until
a transition point at k ≈ 500. From this point onwards, the trend dissipates, and no clear relationship between Cw(k) and
C(k) is observed. A possible explanation for this discrepancy is that the interchanges also function as RTS stations, and travel
between other geographically distant interchanges is more likely on the faster rail system.

3.4. Degree–degree correlations

In this subsection, we examine another important topological characteristic of a network: the degree–degree correlation
between connected nodes. We say that a given network is assortative if the high-degree nodes have a tendency to connect
to other high-degree nodes. For disassortative networks, low-degree nodes tend to connect to high-degree nodes.

In 2002, Newman introduced a summary statistic for assortativity, r , defined as the Pearson correlation coefficient of
the degrees at either ends of an edge [23]. The assortativity of a network r lies in the range [−1, 1], where −1 indicates a
completely disassortative network and 1 indicates a completely assortative network. An ER random graph has assortativity
0. Examples of assortative networks with r > 0 [23] include the network of film actors [2] and scientific co-authorships
[24,25]. The WWW [3], neural network of Elegans [2] and freshwater food web at Little Rock Lake in Wisconsin [26] are
disassortative networks, with r < 0 [23].

For both RTSD and RTSE , we observed a slightly negative topological assortativity, r , of −0.088 and −0.078, respectively,
similar in magnitude to that of the Indian railway network [5], the WWW [3,23], and several of the city transportation
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(a) RTSD (weekday). (b) BUSD (weekday).

Fig. 8. Degree similarity spectrum for the RTS and BUS networks.

networks in Poland [8]. On the other hand, the assortativity of BUSD and BUSE is 0.015 and 0.06, respectively, indicating
slightly assortative networks. That said, an assortativity of close to zero for all four networks implies that the tendencies
are mild and the networks are largely egalitarian; nodes appear to connect without preference (at least from a topological
perspective).

A closer examination of the four travel route networks can be performed using another measure, the average nearest-

neighbors degree,

knn,i =
1

ki

N−

j=1

ai,jkj, (6)

which indicates if a node i’s neighbors have a similar degree to that node i. Aswith the clustering coefficients, we can average
knn,i for nodes of a given degree to give the similarity spectrum knn(k) = 1

Np(k)

∑
i/ki=k knn,i. If we observe knn(k) to increase

with k, the network is assortative. If knn(k) decreases with k, the network is disassortative.

The weighted average nearest-neighbors degree is defined by

kw
nn,i =

1

si

N−

j=1

ai,jwi,jkj, (7)

and it measures the affinity of nodes to connect to high-degree or low-degree neighbors depending on the edgeweights. The
weighted similarity spectrum kw

nn(k) = 1
Np(k)

∑
i/ki=k k

w
nn,i also indicates the assortativity of the network, but takes into the

account the effect of weighted edges. If kw
nn,i ≈ knn,i, then the edge weights are uncorrelated with the degree of i’s neighbors.

However, if kw
nn,i > knn,i, then heavily weighted edges connect to neighbors with larger degree, with the opposite occurring

when kw
nn,i < knn,i. In their 2007 study of the inter-municipal traffic of Sardinia [14], Montis et al. found that kw

nn,i > knn,i,
indicating that large municipalities exchanged a large number of commuters. Similar assortative behavior was found in the
world-wide air transportation network and the network of scientific co-authorships [10].

Returning to the RTS networks, although a negative r indicated that the network was slightly disassortative, recall that
the degree distributions in Section 3.2 showed that the RTS networks are highly connected clusters. In fact, the weekday
similarity spectrumplotted in Fig. 8(a) (theweekend spectrum is similar) illustrate that the average nearest-neighbor degree
is fairly constant, i.e., regardless of the degree of a givennode, its neighbors have an a similar degree knn(k) ≈ ⟨k⟩. This implies
that the low-degree nodes connect primarily to the nodes in the main cluster, rather than other lower-degree nodes. The
weighted similarity spectrum, kw

nn, is similar to its topological counterpart (Fig. 8), with kw
nn/knn ≈ 1 for both weekday and

weekend networks, signifying that the traffic is uncorrelated with the degree of an RTS station’s neighbors.

For the BUS networks, Fig. 8(b) shows that the similarity spectrums of the unweighted networks are slightly assortative.
However, theweighted degree similarity spectrums kw

nn(k) of the networks appear disassortative. Also, since kw
nn(k) > knn(k),

at least up till k ≈ 500, heavilyweighted edges connect to neighborswith larger degree, indicating a larger flowof passengers
per edge to more well-connected locations. The ratio between the weighted and unweighted degree similarities show that,
unlike the clustering spectrums, kw

nn(k)/knn(k) decreases over k until k ≈ 500, after which the relationship between kw
nn(k)

and knn(k) becomes less clear.
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(a) RTSD . (b) BUSD .

Fig. 9. Topological and dynamical centrality distribution of the RTS and BUS networks.

3.5. Eigenvector centrality

In Section 3.2, we described the degree and strength of a node as indications of its centrality or importance in a network.
Degree and strength are the simplest measures of centrality and they make the assumption that the importance of node
derives solely from the quantity of edges incident upon in (and the weights of those edges in the case of strength centrality).
There exist othermeasures of node centrality such as betweenness and closeness, which are based onnetworkpaths. However,
these measures are defined only for simple graphs without weighted edges.

In this study, we use the eigenvector centrality measure [27], which forms the foundation for the PageRank algorithm
used by Google [28]. The basic concept underlying eigenvector centrality is that the ‘‘quality’’ of an edge should matter, i.e.,
an edge to a highly central node should matter more than an edge to a node with low centrality. As such, a node’s centrality
should depend on the centrality of its neighbors. If we let xi be the centrality score for node i, then we can formalize this
concept as follows:

xi =
1

λ

N−

j=1

ai,jxj, (8)

where λ is a constant value. Written in vector-matrix notation,

λx = A · x, (9)

and hence x is an eigenvector of the adjacency matrix A with eigenvalue λ. Using the Perron–Frobenius theorem, we can
show that λ is the largest eigenvalue and x is the associated eigenvector [29]. If we normalize x, the eigenvector centrality
of a node varies in the range (0, 1), with larger values indicating higher centrality. We can easily extend this concept to
weighted networks by noting that weights should affect the importance of edges,

xw
i =

1

λ

N−

j=1

ai,jwi,jxj, (10)

and following the same arguments as before. We denote the average centrality of a network as X and the average weighted
centrality as Xw .

The topological and dynamical centrality distributions for the RTS networks are plotted in Fig. 9(a). The topological
centralities in both RTSD and RTSE are relatively low, with xi ∈ (0.04, 0.11), with distributions that skew left. We observed
that more than 50% of nodes have similar centrality scores; this is unsurprising, since the RTS network is almost fully
connected. From a topological perspective, most nodes appear nearly equal in terms of importance. However, a dynamical
perspective tells a different story; the distribution of xw also differs significantly from the topological case, featuring a right
skew with many nodes of little importance and a few hub nodes with high centrality. This result is compatible with our
understanding of the RTS networks thus far: the traffic between nodes is scale-free.

The eigenvector centrality spectrums X(k) and Xw(k) are plotted in Fig. 10(a). It is clear that the topological eigenvector
centralities appear quite constant, but the weighted centralities appear to increase linearly with degree k on the semi-log
scale. Also, other than nodes with the largest degrees (≈90), the weighted centralities are lower than their topological
analogs. This can be explained by the fact that the number of passengers to a given node grows at a faster rate than the
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(a) RTSD (weekday). (b) BUSD (weekday).

Fig. 10. Centrality spectrum for the RTS and BUS networks.

number of connections it has. Hence, we would expect that, when accounting for edge weights, the centrality scores of the
lower-degree nodes will be reduced.

Comparing the weekday and weekend eigenvector centralities of RTS stations, we can see how the importance of a given
node changes over the week. Both the weekday and weekend topological centralities appear to follow a linear relationship
(see Fig. 11). A similar linear correlation is observed for the weighted centralities, with the exception of two outliers: both
outliers are within the central business district, which experience very high traffic during the weekdays but significantly
lower traffic during the weekends, when many of the offices are closed. The station with the highest overall centrality
services the main shopping district in Singapore, and it experiences high traffic during the entire week. In fact, we observed
that the strength or centrality of a station is correlated with the amount of occupied shopping floorspace (Fig. 11(c)).

Both the weekday and weekend BUS networks have a low average centrality ⟨x⟩ ≈ 0.01, with a relatively small range
(0, 0.08). The weighted average centrality scores are a magnitude lower, with ⟨x⟩ ≈ 0.003, but with a wider range
xw
i ∈ (0, 0.69). Fig. 9(b) shows the topological andweighted eigenvector centrality distribution for the nodes in theweekday
andweekendBUSnetworks.We see that both distributions are heavily right skewed, but theweighted centrality distribution
displays several very highly central nodes (xw

i > 0.40). The node with the highest centrality is an interchange in the West

of Singapore, attached to the last station1 of the RTS line servicing that region. From the map in Fig. 1, it can be seen that
there was a lack of RTS stations in that region as of 2008, making bus the primary mode of public transport. Interestingly,
the stations that trail behind it in terms of centrality are not remarkable in terms of degree or strength. Their high centrality
is due to their strong connection to the most central node, as they carry passengers from the interchange to surrounding
areas (Fig. 12).

The BUSD eigenvector centrality spectrums X(k) and Xw(k) are plotted in Fig. 10(b). The log–log plots clearly show that
the eigenvector spectrum appears to increase linearly with k while the weighted eigenvector spectrum remains mostly
constant, increasing slightly at large values of k. This constancy is unexpected, as nodes with low degree tend to also have
low strength, as seen in Fig. 6(b), and would be expected to have low eigenvector centrality. A possible explanation is that
nodes with low degree are connected mainly to nodes with high traffic (and thus, high importance), thus evening out the
weighted centrality spectrum. This is supported by the disassortiveness of the weighted assortativity spectrum for low-
degree nodes (see Fig. 8(b)).

4. Conclusions and future work

The desire to understand the nature of complex networks has formed the basis for a fascinating research field covering the
span of many sciences. In this paper, we have analyzed the travel routes of the rail (RTS) and bus (BUS) public transportation
systems in Singapore from a complex weighted networks perspective.

Our analysis shows that the dynamical properties of a networkmay differ significantly from its topological properties. In
particular, the RTS network is topologically uninteresting; it is almost fully connected, and thus displays high clustering,with
a small spectrum and almost neutral assortativity. From a dynamical (weighted) perspective, however, we observed that the
traffic flows on the RTS network follow a power-law distribution, i.e., the network possesses hub nodes that experience very

1 An extension line of 3.8 km with two stations opened for revenue service on 28 February 2009. The extension line links the residential and industrial

areas of that region to the last station of the existing RTS line, making it possible for commuters to have direct access to the RTS system.
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(a) Topological centrality, Xi . (b) Dynamical centrality, Xw
i .

(c) Shopping floor space plotted against centrality.

Fig. 11. Weekday and weekend centrality comparisons for the Singapore Rapid Transit System (RTS) networks.

Fig. 12. The Singapore BUS network plotted geographically, with node sizes scaled by weekday weighted eigenvector centrality. The larger the nodes, the

larger the centrality score.

high traffic. Moreover, although the topological centralities of the RTS nodes are equal during weekdays and weekends, we
observe that the weighted centralities can differ significantly, particularly for nodes within the central business district.
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The BUS weekday and weekend networks yielded their own interesting features. Unlike the RTS networks, which
appeared to have strengths that decay exponentially, the strengths of the bus stops decay according to a power law,
p(k) ∼ k−γ , indicating the presence of high-traffic hub nodes. The BUS network also appears to possess topological
hierarchy, with a clustering spectrum that decays with degree k according to a power law, C(k) ∼ k−β . The weighted
degree similarity spectrum adds to the picture, illustrating a slightly disassortative behavior.

Complexweighted analysis is a powerful tool for understanding a large complex system, and there are avenues for future
work. A key limitation to this analysis was that we were only able to obtain data for a single week. It would be interesting
to conduct a larger-scale study in which fluctuations across weeks or even years could be analyzed. Moreover, if more fine-
scale data could be obtained, perhaps on an hourly basis, we could derive and compare the in and out statistics separately
for the networks. This would give us important insights into the travel routes that occur in a single day.

Although we have restricted our study to the transportation domain, it would not be difficult to apply our analyses to
other classes of network. In particular, this study illustrates the importance of temporal dynamics; the weekday–weekend
networks illustrate pronounced differences (for example, in node centrality and weight distribution). Other real-world
networks (e.g. gene networks, neural networks and the WWW) also experience changes in properties over time, and
descriptions of real-world networks would be incomplete without taking these temporal changes into consideration. Given
more data, future work would focus on quantifying these changes, for example, by examining trajectories on a phase-space
plot and deriving appropriate models. Such analyses would provide richer information for complex network modelling and
simulation, which is essential in a variety of research areas.
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