

Weighted composition operators between weighted Bergman spaces

Elke Wolf

Abstract. We study the boundedness of weighted composition operators acting between weighted Bergman spaces.

Operadores de composición ponderados entre espacios de Bergman con pesos

Resumen. Se estudia la acotación de los operadores de composición ponderados entre espacios de Bergman con pesos.

1 Introduction

We consider strictly positive bounded continuous functions (*weights*) v and w on the open unit disk D in the complex plane. Moreover let H(D) denote the space of all holomorphic functions on D and let ϕ be an analytic self map of D as well as $\psi: D \to \mathbb{C}$ be analytic. Such maps induce a linear weighted composition operator $\psi C_{\phi}(f) = \psi(f \circ \phi)$. We are interested in weighted composition operators acting on weighted Bergman spaces

$$A_w^p := \left\{ f \in H(D); \quad \|f\|_{w,p} = \left(\int_D |f(z)|^p w(z) \, \mathrm{d}A(z) \right)^{\frac{1}{p}} < \infty \right\}, \qquad 1 \le p < \infty,$$

where dA(z) is the area measure on *D* normalized so that area of *D* is 1. Thus A_1^2 denotes the usual Bergman space. An introduction to the concept of Bergman spaces is given in [7] and [8]. Composition operators and weighted composition operators have been studied on various spaces of holomorphic functions, see e.g. [10, 9, 1, 2, 3, 4, 12]. For more general information on composition operators we refer to the monographs [5] and [11]. In this article we want to charaterize boundedness of composition operators acting between weighted Bergman spaces.

2 Preliminaries

For $a, z \in D$ let $\sigma_a(z)$ be the Möbius transformation of D which interchanges 0 and a, that is

$$\sigma_a(z) = \frac{a-z}{1-\overline{a}z}.$$

Presentado por / Submitted by José Bonet Solves.

Recibido / Received: 24 de noviembre de 2008. Aceptado / Accepted: 14 de Enero de 2009.

Palabras clave / Keywords: Weighted Bergman space, composition operator.

Mathematics Subject Classifications: 47B33, 47B38.

^{© 2009} Real Academia de Ciencias, España.

E. Wolf

Furthermore we use the fact that

$$-\sigma'_{a}(z) = \frac{1-|a|^2}{(1-\overline{a}z)^2}, \qquad z \in D.$$

Moreover let $K_a(z) = \frac{1}{(1-\overline{a}z)^2}$ denote the Bergman kernel and $k_a(z) = -\sigma'_a(z) = \frac{1-|a|^2}{(1-\overline{a}z)^2} = (1-|a|^2) K_a(z)$ the normalized Bergman kernel in A_1^2 so that $||k_a||_{1,2} = 1$. For an analytic self map ϕ of D and weights v, w on D we define the weighted (ϕ, v) -Berezin transform of w as follows

$$[B_{\phi,v}(w)](a) = \int_D |\sigma'_a(\phi(z))|^2 \frac{w(z)}{v(\phi(z))} \, \mathrm{d}A(z).$$

In order to find results on composition operators acting on weighted Bergman spaces we need the Carleson measure. To use this we collect some facts. Let μ be a positive Borel measure on D. Then μ is called a Carleson measure on the Bergman space if there is a constant C > 0 such that, for any $f \in A_1^2$

$$\int_{D} |f(z)|^2 \,\mathrm{d}\mu(z) \le C \|f\|_{1,2}^2$$

For an arc I in the unit circle ∂D let S(I) be the Carleson square defined by

$$S(I) = \left\{ z \in D; \quad 1 - |I| \le |z| < 1, \quad \frac{z}{|z|} \in I \right\}.$$

The following result is well-known. In its present form it is taken from [6] (see there Theorem A).

Theorem 1 ([6, Theorem A]) Let μ be a positive Borel measure on D. Then the following statements are equivalent.

(i) There is a constant $C_1 > 0$ such that for any $f \in A_1^2$

$$\int_D |f(z)|^2 \,\mathrm{d}\mu(z) \le C_1 \|f\|_{1,2}^2.$$

(ii) There is a constant $C_2 > 0$ such that, for any arc $I \in \partial D$,

$$\mu(S(I)) \le C_2 |I|^2.$$

(iii) There is a constant $C_3 > 0$ such that, for every $a \in D$,

$$\int_D |\sigma_a'(z)|^2 \,\mathrm{d}\mu(z) \le C_3.$$

In the sequel we consider the following weights. Let ν be a holomorphic function on D, non-vanishing, strictly positive on [0, 1] and satisfying $\lim_{r \to 1} \nu(r) = 0$. Then we define the weight v as follows $v(z) = \nu(|z|^2)$ for every $z \in D$.

Next, we give some illustrating examples of weights of this type:

- (i) Consider $\nu(z) = (1-z)^{\alpha}$, $\alpha \ge 1$. Then the corresponding weight is the so-called standard weight $v(z) = (1-|z|^2)^{\alpha}$.
- (ii) Select $\nu(z) = e^{-\frac{1}{(1-z)^{\alpha}}}$, $\alpha \ge 1$. Then we obtain the weight $v(z) = e^{-\frac{1}{(1-|z|^2)^{\alpha}}}$.
- (iii) Choose $\nu(z) = \sin(1-z)$ and the corresponding weight is given by $v(z) = \sin(1-|z|^2)$.

For a fixed point $a \in D$ we introduce a function $v_a(z) := \nu(\overline{a}z)$ for every $z \in D$. Since ν is holomorphic on D, so is the function v_a .

Weighted composition operators between weighted Bergman spaces

Boundedness 3

We first need the following auxiliary result. The following lemma is well-known for standard weights (see [7] or [8]) but to the best of our knowledge not known for the weights described above.

Lemma 1 Let v be a radial weight as defined in the previous section (i.e. $v(z) := \nu(|z|^2)$ for every $z \in D$) such that $\sup_{a \in D} \sup_{z \in D} \frac{v(z)|v_a(\sigma_a(z))|}{v(\sigma_a(z))} \leq C < \infty$. Then

$$|f(z)| \le \frac{C^{\frac{1}{p}}}{v(0)^{\frac{1}{p}}(1-|z|^2)^{\frac{2}{p}}v(z)^{\frac{1}{p}}} ||f||_{v,p}$$

for all $z \in D$, $f \in A_{v,p}$.

PROOF. Let $\alpha \in D$ be an arbitrary point. Consider the map

$$T_{\alpha}: A_v^p \to A_v^p, \qquad T_{\alpha}(f(z)) = f(\sigma_{\alpha}(z))\sigma_{\alpha}'(z)^{\frac{2}{p}}v_{\alpha}(\sigma_{\alpha}(z))^{\frac{1}{p}}.$$

Then a change of variables yields

$$\begin{aligned} |T_{\alpha}f||_{v,p}^{p} &= \int_{D} v(z) |f(\sigma_{\alpha}(z))|^{p} |\sigma_{\alpha}'(z)|^{2} |v_{\alpha}(\sigma_{\alpha}(z))| \,\mathrm{d}A(z) \\ &= \int_{D} \frac{v(z)|v_{\alpha}(\sigma_{\alpha}(z))|}{v(\sigma_{\alpha}(z))} |f(\sigma_{\alpha}(z))|^{p} |\sigma_{\alpha}'(z)|^{2} v(\sigma_{\alpha}(z)) \,\mathrm{d}A(z) \\ &\leq \sup_{z \in D} \frac{v(z)|v_{\alpha}(\sigma_{\alpha}(z))|}{v(\sigma_{\alpha}(z))} \int_{D} |f(\sigma_{\alpha}(z))|^{p} |\sigma_{\alpha}'(z)|^{2} v(\sigma_{\alpha}(z)) \,\mathrm{d}A(z) \\ &\leq C \int_{D} v(t) |f(t)|^{p} \,\mathrm{d}A(t) = C ||f||_{v,p}^{p}. \end{aligned}$$

Now put $g(z) = T_{\alpha}(f(z))$. By the mean-value property we obtain

$$v(0) |g(0)|^p \le \int_D v(z) |g(z)|^p dA(z) = ||g||_{v,p}^p \le C ||f||_{v,p}^p.$$

Hence

$$v(0) |g(0)|^{p} = v(0) |f(\alpha)|^{p} (1 - |\alpha|^{2})^{2} v(\alpha) \le C ||f||_{v,p}^{p}.$$

Thus $|f(\alpha)| \leq C^{\frac{1}{p}} \frac{\|f\|_{v,p}}{v(0)^{\frac{1}{p}}(1-|\alpha|^2)^{\frac{2}{p}}v(\alpha)^{\frac{1}{p}}}$. Since α was arbitrary, the claim follows.

Thus, we can give the following sufficient condition for the boundedness of an operator $\psi C_{\phi} : A_v^p \to A_w^p$.

Proposition 1 Let w be a weight and v be a weight as in Lemma 1. If

$$\sup_{z \in D} \frac{|\psi(z)| w(z)^{\frac{1}{p}}}{(1 - |\phi(z)|^2)^{\frac{2}{p}} v(\phi(z))^{\frac{1}{p}}} < \infty,$$

then the operator $\psi C_{\phi} \colon A^p_v \to A^p_w$ is bounded.

PROOF. Applying Lemma 1 we get for every $f \in A_v^2$

$$\begin{split} \|\psi C_{\phi}f\|_{w,p}^{p} &= \int_{D} |\psi(z)|^{p} |f(\phi(z))|^{p} w(z) \,\mathrm{d}A(z) \\ &\leq \int_{D} \frac{|\psi(z)|^{p} C}{v(0) (1 - |\phi(z)|^{2})^{2} v(\phi(z))} w(z) \,\|f\|_{v,p}^{p} \,\mathrm{d}A(z) \\ &\leq \sup_{z \in D} \frac{|\psi(z)|^{p} C}{v(0) (1 - |\phi(z)|^{2})^{2} v(\phi(z))} w(z) \,\|f\|_{v,p}^{p}, \end{split}$$

E. Wolf

and the claim follows.

Next, we turn our attention to weights v of the form v = |u|, where u is a holomorphic function on D without any zeros on D. The proof of the following theorem was inspired by the proof of [6, Theorem 1].

Theorem 2 Let u be an analytic function on D without any zeros on D. Put $v(z) = |u(z)|, z \in D$. Moreover let w be an arbitrary weight on D and ϕ be an analytic self-map of D. Furthermore let ψ be analytic on D. Then the weighted composition operator

$$\psi C_{\phi} \colon A_v^2 \to A_w^2, \quad f \to \psi(f \circ \phi)$$

is bounded if and only if the weighted Berezin transform $B_{\phi,v}(|\psi|^2 w) \in L^{\infty}(D)$.

PROOF. Our proof uses a reformulation of the Carleson measure condition. By definition, $\psi C_{\phi} \colon A_v^2 \to A_w^2$ is bounded if and only if there is C > 0 such that for every $f \in A_v^2$:

$$\int_{D} |f(\phi(z))|^2 |\psi(z)|^2 w(z) \, \mathrm{d}A(z) \le C \int_{D} |f(z)|^2 v(z) \, \mathrm{d}A(z) \tag{1}$$

Since $f \in A_v^2$ if and only if $g = u^{\frac{1}{2}} f \in A_1^2$ (which means $f = \frac{g}{u^{1/2}}$), (1) is equivalent to the following condition: There is a constant C > 0 such that for every $g \in A_1^2$

$$\int_{D} \frac{|g(\phi(z))|^2}{v(\phi(z))} |\psi(z)|^2 w(z) \, \mathrm{d}A(z) \le C \int_{D} |g(z)|^2 \, \mathrm{d}A(z).$$
(2)

Let $d\nu_{v,w,\psi}(z) = |\psi(z)|^2 \frac{w(z)}{v(\phi(z))} dA(z)$ and let $\mu_{v,w,\psi} = \nu_{v,w,\psi} \circ \phi^{-1}$ be the pull-back measure induced by ϕ . If we change variable $s = \phi(z)$, then we get

$$\int_{D} |g(\phi(z))|^2 |\psi(z)|^2 \frac{w(z)}{v(\phi(z))} \,\mathrm{d}A(z) = \int_{D} |g(\phi(z))|^2 \,\mathrm{d}\nu_{v,w,\psi}(z) = \int_{D} |g(s)|^2 \,\mathrm{d}\mu_{v,w,\psi}(s).$$

Thus, (1) is equivalent to $\int_D |g(s)|^2 d\mu_{v,w,\psi}(s) \le C \int_D |g(s)|^2 dA(s)$. By Theorem 1 this holds if and only if

$$\sup_{a\in D} \int_D |\sigma'_a(s)|^2 \,\mathrm{d}\mu_{v,w,\psi}(s) < \infty.$$

Changing the variable back to z, we get

$$\sup_{a\in D} \int_D |\sigma_a'(\phi(z))|^2 |\psi(z)|^2 \frac{w(z)}{v(\phi(z))} \,\mathrm{d}A(z) < \infty,$$

and the claim follows.

References

- BONET, J., DOMAŃSKI, P. AND LINDSTRÖM, M., (1999). Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, *Canad. Math. Bull.*, 42, 2, 139–148.
- [2] BONET, J., DOMAŃSKI, P. AND LINDSTRÖM, M., (1998). Composition operators between weighted Banach spaces of analytic functions, J. Austral. Math. Soc. (Series A), 64, 101–118.
- [3] BONET, J., FRIZ, M. AND JORDÁ, E., (2005). Composition operators between weighted inductive limits of spaces of holomorphic functions, *Publ. Math.*, 67, 3–4, 333–348.
- [4] CONTRERAS, M. D. AND HERNÁNDEZ-DÍAZ, A. G., (2000). Weighted composition operators in weighted Banach spaces of analytic functions, J. Austral. Math. Soc. (Series A), 69, 41–60.

- [5] COWEN, C. AND MACCLUER, B., (1995). Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton.
- [6] ČUČKOVIĆ, Z. AND ZHAO, R., (2004). Weighted composition operators on the Bergman space, J. London Math. Soc., 70, 2, 499–511.
- [7] DUREN, P. AND SCHUSTER, A., (2004). *Bergman spaces*, Mathematical Surveys and Monographs **100**, American Mathematical Society, Providence, RI.
- [8] HEDENMALM, H., KORENBLUM, B. AND ZHU, K., (2000). *Theory of Bergman spaces*, Graduate Texts in Mathematics, **199**, Springer-Verlag, New York.
- [9] KRIETE, T. AND MACCLUER, B., (1992). Composition operators on large weighted Bergman spaces, *Indiana Univ. Math. J.*, 41, 3, 755–788.
- [10] MACCLUER, B., OHNO, S. AND ZHAO, R., (2001). Topological structure of the space of composition operators on H^{∞} , *Integral equations Operator Theory*, **40**, 4, 481–494.
- [11] SHAPIRO, J. H., (1993). Composition Operators and Classical Function Theory, Springer.
- [12] SHARMA, A. K., SHARMA, S. D., (2006). Weighted composition operators between Bergman-type spaces, *Commun. Korean Math. Soc.*, **21**, 3, 465–474.

Elke Wolf

Mathematical Institute, University of Paderborn, D-33095 Paderborn, Germany. lichte@math.uni-paderborn.de