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Abstract

Let σ be a Békollé weight function and ν be a weight function. In this paper, we

characterize the boundedness and compactness of weighted composition operators

acting from Bergman-type spaces Ap(σ ) to Bloch-type spaces Bν and Bν ,0,

considerably extending some results in the literature.
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1 Introduction and preliminaries

LetD denote the open unit disk in the complex planeC,H(D) the space of all holomorphic

functions on D, and S(D) the class of all holomorphic self-maps of D. Let ψ ∈ H(D) and

ϕ ∈ S(D), the weighted composition operator Wψ ,ϕ is a linear operator on H(D) defined

by

Wψ ,ϕ(f )(z) = ψ(z)f
(
ϕ(z)

)
, z ∈D

for f ∈ H(D). It is of interest to provide function-theoretic characterizations when sym-

bols ϕ and ψ induce a bounded or compact weighted composition operator between

different function spaces. Recently, numerous authors have studied the boundedness and

compactness of weighted composition operators on spaces of analytic functions on var-

ious domains (see, for example, [–] and the related references therein) as well as of

some related operators involving composition ones on these spaces [–]. A joint fea-

ture for the majority of these papers is that they study the operators from or to Bloch-type

or Bergman-type spaces. Paper [] is one of the older papers that studied composition

operators (case ψ(z) ≡ ) on Bloch-type spaces and served as a motivation to several au-

thors.

A continuous function ν : D → (,∞) is called weight. If ν(z) = ν(|z|), z ∈ D, the weight

is called radial. If a weight ν is such that lim|z|→– ν(z) = , we will call it a standard weight.

Weight ν(r), r = |z|, is called normal if there exist positive numbers η and τ ,  < η < τ , and
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δ ∈ [, ) such that

ν(r)

( – r)η
is decreasing on [δ, ) and lim

r→

ν(r)

( – r)η
= ;

ν(r)

( – r)τ
is increasing on [δ, ) and lim

r→–

ν(r)

( – r)τ
= +∞.

The classical weights να(r) = ( – r)α , α > –, are obviously normal.

Let dA(z) = dxdy/π = r dr dθ/π stand for the normalized area measure in D. As usual, a

measurable function g on D is called Lebesgue integrable if

∫

D

∣∣g(z)
∣∣dA(z) < ∞,

and it is written g ∈ L(D). If g ∈ L(D) is nonnegative, we will write g ∈ L+(D).

For  < p < ∞ and σ a nonnegative Lebesgue integrable function on D, we denote by

Ap(σ ) the Bergman-type space consisting of all functions f ∈ H(D) such that

‖f ‖
p

Ap(σ ) =

∫

D

∣∣f (z)
∣∣pσ (z)dA(z) < ∞.

For σ (z) = ( – |z|)α , α > –, the space becomes the (standard) weighted Bergman space

A
p
α(D) = A

p
α .

The weights considered here are the so-called Békollé weights [], which are Bergman

spaces analogues of the Muckenhoupt classes used in harmonic analysis. For p >  and

α > –, let dAα(z) = (α +)(– |z|)α dA(z), Bp (α) be the class consisting of σ ∈ L+(D) with

the property that there exists a constant C >  such that

(∫

S(θ ,h)

σ (z)dAα(z)

)(∫

S(θ ,h)

σ
–
p′
p (z)dAα(z)

) p
p′

≤ C
[
Aα

(
S(θ ,h)

)]p

for any Carleson square

S(θ ,h) =
{
z = reiφ :  – h < r < , |θ – φ| < h/

}
, θ ∈ [, π ],h ∈ (, ),

where /p + /p′
 = . It is not difficult to see that all normal weights are the Békollé

weights.

It is well known [] that the following inclusions hold:

Bp (α) ⊂ Bp (α) if –  < α < α

and

Bp (α)⊂ Bq (α) if  < p < q.

A function σ ∈ L+(D) belongs to class Cp , p > , if there is a constant C >  such that

(∫

Dλ(r)

σ (z)dA(z)

)(∫

Dλ(r)

σ
–
p′
p (z)dA(z)

) p
p′

≤ C
[
A

(
Dλ(r)

)]p
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for every disk Dλ(r) = {z ∈ D : |z – λ| < r( – |λ|)}. Here r ∈ (, ) is fixed, but the class

Cp is actually independent of r ∈ (, ). Moreover, Bp (α) ⊂ Cp for every α > – and the

inclusion is strict. For more about the classes Bp (α) and Cp and the properties satisfied

by the weights in these classes, we refer to [] and [] and the references therein.

Throughout this paper constants are denoted by C, they are positive and not necessarily

the same at each occurrence. The notation A � B means that A ≤ CB for some C > 

independent of the variables involved into these quantities. If A� B and B� A, then we

write A≍ B.

For functions in Ap(σ ), when the weight σ is in Cp , we have the following estimate,

which easily follows by using a standard procedure, namely, from the Cauchy inequality

applied to function f (k), the subharmonicity of |f |p, p > , the integral Hölder inequality

and the definition of class Cp .

Lemma  Let r ∈ (, ), σ ∈ L+(D)∩Cp , p > , p >  and k ∈N. Then there is a constant

C >  independent of z such that

∣∣f (k)(z)
∣∣ ≤ C

(
∫
Dz(r)

σ (ζ )dA(ζ ))–/p

( – |z|)k
‖f ‖Ap(σ )

for every f ∈ Ap(σ ).

The next lemma provides an asymptotic estimate for the norm of weighted Bergman

kernel (see []).

Lemma  Let r ∈ (, ) be fixed, p > , p >  and η > –. Assume that p ≥ p, σ ∈ L+(D) is

such that σ (z)/( – |z|)α belongs to Bp (α) and γ ≥ (η + )p/p – . Let

K
γ

λ (z) =


( – λ̄z)γ+
, λ ∈D

(the reproducing kernel of the weighted Bergman space A
p
γ ). Then

∥∥Kγ

λ

∥∥
Ap(σ )

≍
(
∫
Dλ(r)

σ dA)/p

( – |λ|)γ+
.

Lemma  Let r ∈ (, ) be fixed, p > , p >  and η > –. Assume that p ≥ p, σ ∈ L+(D) is

such that σ (z)/( – |z|)α belongs to Bp (α). Then

fλ(z) =
( – |λ|)(η+)p/p+

(
∫
Dλ(r)

σ dA)/p( – λ̄z)(η+)p/p+
()

is in Ap(σ ).Moreover,

sup
λ∈D

‖fλ‖Ap(σ ) ≍ , ()

and fλ converges to zero uniformly on compact subsets of D as |λ| → –.
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Proof Let γ = (η + )p/p – . Then by Lemma  we have

∣∣fλ(z)
∣∣ ≍

|K
γ+
λ (z)|

‖K
γ+
λ ‖Ap(σ )

,

from which () follows. By Lemma  with k =  and Lemma , we have that

 =
∣∣Kγ

λ ()
∣∣ ≤ C

(∫

D(/)

σ dA

)–/p∥∥Kγ

λ

∥∥
Ap(σ )

≍
(
∫
Dλ(r)

σ dA)/p

( – |λ|)γ+
.

Thus

( – |λ|)(η+)p/p

(
∫
Dλ(r)

σ dA)/p
=

( – |λ|)γ+

(
∫
Dλ(r)

σ dA)/p
� . ()

Using () in () it is easy to see that fλ converges to zero uniformly on compact subsets of

D, as |λ| → –. �

For a weight ν , the Bloch-type space Bν on D is the space of all holomorphic functions f

on D such that

sup
z∈D

ν(z)
∣∣f ′(z)

∣∣ < ∞.

The little Bloch-type space Bν, consists of all f ∈ Bν such that

lim
|z|→

ν(z)
∣∣f ′(z)

∣∣ = .

Both spaces Bν and Bν, are Banach spaces with the norm

‖f ‖Bν =
∣∣f ()

∣∣ + sup
z∈D

ν(z)
∣∣f ′(z)

∣∣,

and Bν, is a closed subspace of Bν .

Depending on theweight ν , various Bloch-type spaces are obtained. For ν(z) = (– |z|)α ,

α > , the spaces are reduced to the so-called α-Bloch, that is, the little α-Bloch space,

which is for α =  reduced to the classical Bloch space. The reader could see that pa-

pers [–, , –, , , –] consider concrete operators on or to various Bloch-type

spaces. Nowadays we know that if the image space is a Bloch-type, then usually it does not

affectmuchon the boundedness and compactness, sowewill here consider the spaceswith

as much as general weights.

The compactness of a closed subset L ⊂ Bν, can be characterized as follows.

Lemma  Let ν be a standard weight. A closed set L in Bν, is compact if and only if it is

bounded with respect to the norm ‖ · ‖Bν and satisfies

lim
|z|→

sup
f∈L

ν(z)
∣∣f ′(z)

∣∣ = .

This result for the case ν(z) =  – |z| was proved by Madigan and Matheson in []. By

a slight modification of their proof in the case, Lemma  is proved.
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Motivated by [], as well as by [], here we characterize the boundedness and compact-

ness of the weighted composition operators acting from the Bergman-type spaces Ap(σ )

to Bloch-type spaces Bν and Bν,. Our results extend some in [].

The following criterion for compactness follows by standard arguments which appeared

for the first time in [].

Lemma  Let σ ∈ L+(D) be such that σ (z)/( – |z|)α belongs to Bp (α), ν be a standard

weight and Wψ ,ϕ : Ap(σ ) → Bν be bounded. Then Wψ ,ϕ : Ap(σ ) → Bν is compact if and

only if for any bounded sequence (fn)n∈N in Ap(σ ) which converges to zero uniformly on

compact subsets of D, we have

lim
n→∞

‖Wψ ,ϕ fn‖Bν = .

2 Boundedness and compactness ofWψ ,ϕ : Ap(σ )→ Bν (Bν,0)

In this section we formulate and prove the main results in this paper.

Theorem  Let r ∈ (, ) be fixed, p > , p > , α > –, ν be a weight, ψ ∈ H(D) and ϕ ∈

S(D). Assume that p ≥ p and σ ∈ L+(D) is such that σ (z)/( – |z|)α belongs to Bp (α).

Then Wψ ,ϕ : Ap(σ )→ Bν is bounded if and only if the following conditions are satisfied:

(i) M = supz∈D ν(z)|ψ ′(z)|(
∫
Dϕ(z)(r)

σ dA)–/p < ∞;

(ii) M = supz∈D
ν(z)|ψ(z)ϕ′(z)|

–|ϕ(z)|
(
∫
Dϕ(z)(r)

σ dA)–/p <∞.

Moreover, if Wψ ,ϕ : Ap(σ )→ Bν is bounded, then

‖Wψ ,ϕ‖Ap(σ )→Bν /C ≍M +M. ()

Proof First suppose that conditions (i) and (ii) hold. Then by Lemma  we have

ν(z)
∣∣(Wψ ,ϕ f )

′(z)
∣∣ ≤ ν(z)

∣∣ψ ′(z)
∣∣∣∣f

(
ϕ(z)

)∣∣ + ν(z)
∣∣ψ(z)ϕ′(z)

∣∣∣∣f ′
(
ϕ(z)

)∣∣

�

(
ν(z)

∣∣ψ ′(z)
∣∣
(∫

Dϕ(z)(r)

σ dA

)–/p

+
ν(z)|ψ(z)ϕ′(z)|

 – |ϕ(z)|

(∫

Dϕ(z)(r)

σ dA

)–/p)
‖f ‖Ap(σ ). ()

Furthermore,

∣∣Wψ ,ϕ(f )()
∣∣ =

∣∣ψ()
∣∣∣∣f

(
ϕ()

)∣∣�
∣∣ψ()

∣∣
(∫

Dϕ()(r)

σ dA

)–/p

‖f ‖Ap(σ ). ()

Using (i), (ii), () and (), we see that

‖Wψ ,ϕ f ‖Bν =
∣∣ψ()

∣∣∣∣f
(
ϕ()

)∣∣ + sup
z∈D

ν(z)
∣∣(Wψ ,ϕ f )

′(z)
∣∣

�

(∣∣ψ()
∣∣
(∫

Dϕ()(r)

σ dA

)–/p

+M +M

)
‖f ‖Ap(σ ).

So, we have thatWψ ,ϕ : Ap(σ )→ Bν is bounded and

‖Wψ ,ϕ‖Ap(σ )→Bν /C �M +M. ()
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Conversely, suppose that Wψ ,ϕ : Ap(σ ) → Bν is bounded. Then, by taking f (z) ≡  ∈

Ap(σ ), we have that

sup
z∈D

ν(z)
∣∣ψ ′(z)

∣∣ =
∥∥Wψ ,ϕ()

∥∥
Bν

� ‖Wψ ,ϕ‖Ap(σ )→Bν . ()

By taking f (z) = z ∈ Ap(σ ), using the boundedness of ϕ and asymptotic estimate (), we

easily get

sup
z∈D

ν(z)
∣∣ψ(z)ϕ′(z)

∣∣� ‖Wψ ,ϕ‖Ap(σ )→Bν . ()

Let λ = ϕ(ζ ), ζ ∈D, and gλ(z) = τλ(z)fλ(z), where fλ is defined in () and τλ is defined as

τλ(z) =  –
 – |λ|

 – λ̄z
. ()

Then τλ ∈ H∞ as

sup
z∈D

∣∣τλ(z)
∣∣ ≤ sup

z∈D

(
 +

 – |λ|

 – |λ||z|

)
≤ .

Thus gλ ∈ Ap(σ ) and supz∈D ‖gλ‖Ap(σ ) � . Moreover,

τλ(λ) = , τ ′
λ(z) = –λ̄

 – |λ|

( – λ̄z)
and τ ′

λ(λ) =
–λ̄

 – |λ|
. ()

We also have

fλ(λ) =

(∫

Dλ(r)

σ dA

)–/p

, ()

f ′
λ(z) = λ̄

(
(η + )

p

p
+ 

)
( – |λ|)(η+)p/p+

(
∫
Dλ(r)

σ dA)/p( – λ̄z)(η+)p/p+
()

and

f ′
λ(λ) = λ̄

(
(η + )

p

p
+ 

)
(
∫
Dλ(r)

σ dA)–/p

 – |λ|
. ()

Therefore gλ(λ) =  and, from () and (), we have

g ′
λ(λ) = τ ′

λ(λ)fλ(λ) + τλ(λ)f
′
λ(λ) = –λ̄

(
∫
Dλ(r)

σ dA)–/p

 – |λ|
.

Using this fact we obtain

‖Wψ ,ϕ‖Ap(σ )→Bν � ‖Wψ ,ϕgϕ(ζ )‖Bν

≥ ν(ζ )
∣∣ψ ′(ζ )gϕ(ζ )

(
ϕ(ζ )

)
+ψ(ζ )ϕ′(ζ )g ′

ϕ(ζ )

(
ϕ(ζ )

)∣∣

≥ ν(ζ )
∣∣ψ(ζ )ϕ′(ζ )

∣∣∣∣ϕ(ζ )
∣∣
(
∫
Dϕ(ζ )(r)

σ dA)–/p

 – |ϕ(ζ )|
. ()
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Thus, for a fixed δ ∈ (, ), we obtain

sup
|ϕ(ζ )|>δ

ν(ζ )
∣∣ψ(ζ )ϕ′(ζ )

∣∣
(
∫
Dϕ(ζ )(r)

σ dA)–/p

 – |ϕ(ζ )|
� ‖Wψ ,ϕ‖Ap(σ )→Bν . ()

By using () and (), we have that

sup
|ϕ(ζ )|≤δ

ν(ζ )
∣∣ψ(ζ )ϕ′(ζ )

∣∣
(
∫
Dϕ(ζ )(r)

σ dA)–/p

 – |ϕ(ζ )|

= sup
|ϕ(ζ )|≤δ

ν(ζ )|ψ(ζ )ϕ′(ζ )|

( – |ϕ(ζ )|)(η+)p/p+
( – |ϕ(ζ )|)(η+)p/p

(
∫
ϕ(ζ )(r)

σ dA)/p

�


( – δ)(η+)p/p+
‖Wψ ,ϕ‖Ap(σ )→Bν . ()

Hence from () and () we have

sup
ζ∈D

ν(ζ )
∣∣ψ(ζ )ϕ′(ζ )

∣∣
(
∫
Dϕ(ζ )(r)

σ dA)–/p

 – |ϕ(ζ )|
� ‖Wψ ,ϕ‖Ap(σ )→Bν . ()

Let λ = ϕ(ζ ), ζ ∈ D, and fλ be defined in (). Recall that supλ∈D ‖fλ‖Ap(σ ) � . Hence, by

() and () we get

‖Wψ ,ϕ‖Ap(σ )→Bν � ‖Wψ ,ϕ fϕ(ζ )‖Bν ≥
∣∣ψ ′(ζ )fϕ(ζ )

(
ϕ(ζ )

)
+ψ(ζ )ϕ′(ζ )f ′

ϕ(ζ )

(
ϕ(ζ )

)∣∣

≥ ν(ζ )
∣∣ψ ′(ζ )

∣∣
(∫

Dϕ(ζ )(r)

σ dA

)–/p

–

(
(η + )

p

p
+ 

)
ν(ζ )|ψ(ζ )||ϕ′(ζ )|

 – |ϕ(ζ )|

∣∣ϕ(ζ )
∣∣
(∫

Dϕ(ζ )(r)

σ dA

)–/p

,

from which, along with the boundedness of ϕ, it follows that

ν(ζ )
∣∣ψ ′(ζ )

∣∣
(∫

Dϕ(ζ )(r)

σ dA

)–/p

≤ ‖Wψ ,ϕ‖Ap(σ )→Bν +C
ν(ζ )|ψ(ζ )||ϕ′(ζ )|

 – |ϕ(ζ )|

(∫

Dϕ(ζ )(r)

σ dA

)–/p

. ()

Taking the supremum over ζ ∈D in () and using (), we get

sup
ζ∈D

ν(ζ )
∣∣ψ ′(ζ )

∣∣
(∫

Dϕ(ζ )(r)

σ dA

)–/p

� ‖Wψ ,ϕ‖Ap(σ )→Bν . ()

From () and () we have

M +M � ‖Wψ ,ϕ‖Ap(σ )→Bν /C. ()

Finally, from () and (), () holds. �
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Theorem  Let r ∈ (, ) be fixed, p > , p > , α > –, ν be a standard weight, ψ ∈ H(D)

and ϕ ∈ S(D). Assume that p ≥ p, σ ∈ L+(D) is such that σ (z)/( – |z|)α belongs to Bp (α)

and Wψ ,ϕ : Ap(σ ) → Bν is bounded. Then Wψ ,ϕ : Ap(σ ) → Bν is compact if and only if the

following conditions are satisfied:

(i) lim|ϕ(z)|→ ν(z)|ψ
′(z)|(

∫
Dϕ(z)(r)

σ dA)–/p = ;

(ii) lim|ϕ(z)|→
ν(z)|ψ(z)ϕ′(z)|

–|ϕ(z)|
(
∫
Dϕ(z)(r)

σ dA)–/p = .

Proof First suppose that conditions (i) and (ii) hold. Then by Lemma  it is sufficient to

show that if (fn)n∈N is a bounded sequence in Ap(σ ) that converges to zero uniformly on

compact subsets of D, then ‖Wψ ,ϕ fn‖Bν →  as n → ∞. Let (fn)n∈N ⊂ Ap(σ ) be such a

sequence. By conditions (i) and (ii), we have that for any ε > , there is δ ∈ (, ) such that

ν(z)
∣∣ψ ′(z)

∣∣
(∫

Dϕ(z)(r)

σ dA

)–/p

< ε ()

and

ν(z)|ψ(z)ϕ′(z)|

 – |ϕ(z)|

(∫

Dϕ(z)(r)

σ dA

)–/p

< ε, ()

whenever δ < |ϕ(z)| < .

Let K = {z ∈ D : |z| ≤ δ}. Clearly, K is a compact subset of D. We have

‖Wψ ,ϕ fn‖Bν =
∣∣ψ()

∣∣∣∣fn
(
ϕ()

)∣∣ + sup
ζ∈D

ν(ζ )
∣∣(Wψ ,ϕ fn)

′(ζ )
∣∣

≤
∣∣ψ()

∣∣∣∣fn
(
ϕ()

)∣∣ + sup
ζ∈D

ν(ζ )
∣∣ψ ′(ζ )

∣∣∣∣fn
(
ϕ(ζ )

)∣∣

+ sup
ζ∈D

ν(ζ )
∣∣ψ(ζ )ϕ′(ζ )

∣∣∣∣f ′
n

(
ϕ(ζ )

)∣∣

≤
∣∣ψ()

∣∣∣∣fn
(
ϕ()

)∣∣ + sup
{ζ∈D:ϕ(ζ )∈K}

ν(ζ )
∣∣ψ ′(ζ )

∣∣∣∣fn
(
ϕ(ζ )

)∣∣

+ sup
{ζ∈D:δ<|ϕ(ζ )|<}

ν(ζ )
∣∣ψ ′(ζ )

∣∣∣∣fn
(
ϕ(ζ )

)∣∣

+ sup
{ζ∈D:ϕ(ζ )∈K}

ν(ζ )
∣∣ψ(ζ )ϕ′(ζ )

∣∣∣∣f ′
n

(
ϕ(ζ )

)∣∣

+ sup
{ζ∈D:δ<|ϕ(ζ )|<}

ν(ζ )
∣∣ψ(ζ )ϕ′(ζ )

∣∣∣∣f ′
n

(
ϕ(ζ )

)∣∣

≤
∣∣ψ()

∣∣∣∣fn
(
ϕ()

)∣∣ + ‖ψ‖Bν sup
z∈K

∣∣fn(z)
∣∣ +N sup

z∈K

∣∣f ′
n(z)

∣∣

+C sup
{ζ∈D:δ<|ϕ(ζ )|<}

ν(ζ )
∣∣ψ ′(ζ )

∣∣
(∫

Dϕ(ζ )(r)

σ dA

)–/p

‖fn‖Ap(σ )

+C sup
{ζ∈D:δ<|ϕ(ζ )|<}

ν(ζ )|ψ(ζ )ϕ′(ζ )|

 – |ϕ(ζ )|

(∫

Dϕ(ζ )(r)

σ dA

)–/p

‖fn‖Ap(σ ), ()

where we have used the fact that ψ ∈ Bν and N = supζ∈D ν(ζ )|ψ(ζ )ϕ′(ζ )| < ∞.

Using () and () along with facts that

∣∣fn
(
ϕ()

)∣∣ < ε, sup
z∈K

∣∣fn(z)
∣∣ < ε and sup

z∈K

∣∣f ′
n(z)

∣∣ < ε
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for some N ∈ N and for all n ≥ N, in (), we have ‖Wψ ,ϕ fn‖Bν < Cε for n ≥ N. Since

ε >  is arbitrary, we have that ‖Wψ ,ϕ fn‖Bν →  as n → ∞. Hence Wψ ,ϕ : Ap(σ ) → Bν is

compact.

Conversely, suppose that Wψ ,ϕ : Ap(σ ) → Bν is compact. Let (ζn)n∈N be a sequence in

D such that |ϕ(ζn)| →  as n → ∞. If such a sequence does not exist, then (i) and (ii)

are vacuously satisfied. Let gn(z) = τϕ(ζn)(z)fϕ(ζn)(z), where fλ is defined in () and τλ is de-

fined in (). Then as in Theorem , ‖τϕ(ζn)‖Ap(σ ) �  and by Lemma , ‖fϕ(ζn)‖Ap(σ ) � 

and (fϕ(ζn))n∈N converges to zero uniformly on compact subsets of D as n → ∞. Thus

‖gn‖Ap(σ ) �  and (gn)n∈N converges to zero uniformly on compact subsets of D as n → ∞.

Since Wψ ,ϕ : Ap(σ ) → Bν is compact, we have that ‖Wψ ,ϕgn‖Bν →  as n → ∞. On the

other hand, from () we have

‖Wψ ,ϕgn‖Bν ≥
ν(z)|ψ(ζn)ϕ

′(ζn)||ϕ(ζn)|

 – |ϕ′(ζn)|

(∫

Dϕ(ζn)(r)

σ dA

)–/p

.

Using these two facts we have that

lim
|ϕ(ζn)|→

ν(z)|ψ(ζn)ϕ
′(ζn)|

 – |ϕ′(ζn)|

(∫

Dϕ(ζn)(r)

σ dA

)–/p

= , ()

from which (i) follows.

Let fλ be defined in (). Then supn∈N ‖fϕ(ζn)‖Ap(σ ) �  and fϕ(ζn) converges to zero uni-

formly on compact subsets of D as n→ ∞. SinceWψ ,ϕ : Ap(σ )→ Bν is compact, we have

that

lim
n→∞

‖Wψ ,ϕ fϕ(ζn)‖Bν = . ()

From (), we have

ν(ζn)
∣∣ψ ′(ζn)

∣∣
(∫

Dϕ(ζn)(r)

σ dA

)–/p

≤ ‖Wψ ,ϕ fϕ(ζn)‖Ap(σ )→Bν +C
ν(ζn)|ψ(ζn)||ϕ

′(ζn)|

 – |ϕ(ζn)|

(∫

Dϕ(ζn)(r)

σ dA

)–/p

,

which along with () and () implies that

lim
|ϕ(ζn)|→

ν(ζn)
∣∣ψ ′(ζn)

∣∣
(∫

Dϕ(ζn)(r)

σ dA

)–/p

= ,

from which (ii) follows. �

Next we characterize the boundedness and compactness ofWψ ,ϕ : Ap(σ )→ Bν,.

Lemma  Let r ∈ (, ) be fixed, p > , p > , α > –, ν be a standard weight, ψ ∈ H(D)

and ϕ ∈ S(D).Assume that p ≥ p, σ ∈ L+(D) is such that σ (z)/( – |z|)α belongs to Bp (α).

Then

lim
|z|→

ν(z)
∣∣ψ ′(z)

∣∣
(∫

Dϕ(z)(r)

σ dA

)–/p

=  ()
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if and only if ψ ∈ Bν, and

lim
|ϕ(z)|→

ν(z)
∣∣ψ ′(z)

∣∣
(∫

Dϕ(z)(r)

σ dA

)–/p

= . ()

Proof Suppose that () holds. Then, since σ ∈ L(D), we have

ν(z)
∣∣ψ ′(z)

∣∣� ν(z)
∣∣ψ ′(z)

∣∣
(∫

Dϕ(z)(r)

σ dA

)–/p

→ 

as |z| → . Hence ψ ∈ Bν,. On the other hand, since |ϕ(z)| →  implies |z| → , ()

automatically holds.

Conversely, suppose that ψ ∈ Bν, and () hold. By (), for every ε > , there exists

δ ∈ (, ) such that

ν(z)
∣∣ψ ′(z)

∣∣
(∫

Dϕ(z)(r)

σ dA

)–/p

< ε, ()

when δ < |ϕ(z)| < .

On the other hand, since ψ ∈ Bν,, there exists γ ∈ (, ) such that

ν(z)
∣∣ψ ′(z)

∣∣ ≤ ε
(
 – δ

)(η+)p/p,

whenever γ < |z| < .

Thus if γ < |z| <  and δ < |ϕ(z)| < , we have that () holds, while if γ < |z| <  and

|ϕ(z)| ≤ δ, then from () we have

ν(z)
∣∣ψ ′(z)

∣∣
(∫

Dϕ(z)(r)

σ dA

)–/p

=
ν(z)|ψ ′(z)|

( – |ϕ(z)|)(η+)p/p
( – |ϕ(z)|)(η+)p/p

(
∫
Dϕ(z)(r)

σ dA)–/p

�
ν(z)|ψ ′(z)|

( – δ)(η+)p/p
< ε. ()

Combining () and (), we easily obtain that () holds. �

The following lemma is proved similarly. Hence we omit the proof.

Lemma  Let r ∈ (, ) be fixed, p > , p > , α > –, ν be a standard weight, ψ ∈ H(D)

and ϕ ∈ S(D).Assume that p ≥ p, σ ∈ L+(D) is such that σ (z)/( – |z|)α belongs to Bp (α).

Then

lim
|z|→

ν(z)|ψ(z)ϕ′(z)|

 – |ϕ(z)|

(∫

Dϕ(z)(r)

σ dA

)–/p

= 

if and only if

lim
|z|→

ν(z)
∣∣ψ(z)ϕ′(z)

∣∣ = 
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and

lim
|ϕ(z)|→

ν(z)|ψ(z)ϕ′(z)|

 – |ϕ(z)|

(∫

Dϕ(z)(r)

σ dA

)–/p

= .

Theorem  Let r ∈ (, ) be fixed, p > , p > , α > –, ν be a standard weight, ψ ∈ H(D)

and ϕ ∈ S(D). Assume that p ≥ p, σ ∈ L+(D) is radial and such that σ (z)/( – |z|)α be-

longs to Bp (α). Then Wψ ,ϕ : Ap(σ ) → Bν, is bounded if and only if Wψ ,ϕ : Ap(σ ) → Bν is

bounded, ψ ∈ Bν, and

lim
|z|→

ν(z)
∣∣ψ(z)ϕ′(z)

∣∣ = . ()

Proof First suppose that Wψ ,ϕ : Ap(σ ) → Bν, is bounded. Then it is obvious that Wψ ,ϕ :

Ap(σ ) → Bν is also bounded. By taking f (z) ≡  ∈ Ap(σ ), we have that ψ ∈ Bν,. By taking

f (z) = z ∈ Ap(σ ) and using the fact that ψ ∈ Bν,, we have that () holds.

Conversely, assume thatWψ ,ϕ : Ap(σ ) → Bν is bounded, ψ ∈ Bν, and () holds. Then,

for each polynomial p, we have that

ν(z)
∣∣(Wψ ,ϕp)

′(z)
∣∣ ≤ ν(z)

∣∣ψ ′(z)
∣∣∣∣p

(
ϕ(z)

)∣∣ + ν(z)
∣∣ψ(z)ϕ′(z)

∣∣∣∣p′
(
ϕ(z)

)∣∣,

from which, along with ψ ∈ Bν, and (), it follows that Wψ ,ϕp ∈ Bν,. Since the set of

all polynomials is dense in Ap(σ ), we have that for every f ∈ Ap(σ ), there is a sequence of

polynomials (pn)n∈N such that ‖f – pn‖Ap(σ ) →  as n → ∞. Hence, by the boundedness

ofWψ ,ϕ : Ap(σ )→ Bν , we have

‖Wψ ,ϕ f –Wψ ,ϕpn‖Bν ≤ ‖Wψ ,ϕ‖Ap(σ )→Bν ‖f – pn‖Ap(σ ) → 

as n → ∞. Since Bν, is a closed subspace of Bν , we have that Wψ ,ϕ(A
p(σ )) ⊆ Bν, and so

Wψ ,ϕ : Ap(σ )→ Bν, is bounded. �

Theorem  Let r ∈ (, ) be fixed, p > , p > , α > –, ν be a standard weight, ψ ∈ H(D)

and ϕ ∈ S(D).Assume that p ≥ p, σ ∈ L+(D) is radial and such that σ (z)/( – |z|)α belongs

to Bp (α) andWψ ,ϕ : Ap(σ )→ Bν, is bounded.ThenWψ ,ϕ : Ap(σ )→ Bν, is compact if and

only if the following conditions are satisfied:

(i) lim|z|→ ν(z)|ψ
′(z)|(

∫
Dϕ(z)(r)

σ dA)–/p = ;

(ii) lim|z|→
ν(z)|ψ(z)ϕ′(z)|

–|ϕ(z)|
(
∫
Dϕ(z)(r)

σ dA)–/p = .

Proof First suppose that Wψ ,ϕ : Ap(σ ) → Bν, is compact. By taking f (z) ≡  ∈ Ap(σ ), we

have that ψ ∈ Bν,. By taking f (z) = z ∈ Ap(σ ) and using the fact that ψ ∈ Bν,, we have

that () holds. Thus if ‖ϕ‖∞ < , then from () and the fact that ψ ∈ Bν, we have

lim
|z|→

ν(z)
∣∣ψ ′(z)

∣∣
(∫

Dϕ(z)(r)

σ dA

)–/p

= lim
|z|→

ν(z)|ψ ′(z)|

( – |ϕ(z)|)(η+)p/p
( – |ϕ(z)|)(η+)p/p

(
∫
Dϕ(z)(r)

σ dA)/p

≤ C lim
|z|→

ν(z)|ψ ′(z)|

( – ‖ϕ‖∞)(η+)p/p
= .
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From () and () we have

lim
|z|→

ν(z)|ψ(z)ϕ′(z)|

 – |ϕ(z)|

(∫

Dϕ(z)(r)

σ dA

)–/p

= lim
|z|→

ν(z)|ψ(z)ϕ′(z)|

( – |ϕ(z)|)(η+)p/p+
( – |ϕ(z)|)(η+)p/p

(
∫
Dϕ(z)(r)

σ dA)/p

≤ C lim
|z|→

ν(z)|ψ(z)ϕ′(z)|

( – ‖ϕ‖∞)(η+)p/p+
= .

Thus in this case conditions (i) and (ii) follow.

Now assume ‖ϕ‖∞ = . Let (zn)n∈N ⊂ D be a sequence such that limn→∞ |ϕ(zn)| = . By

the proof of Theorem , we have

lim
|ϕ(z)|→

ν(z)
∣∣ψ ′(z)

∣∣
(∫

Dϕ(z)(r)

σ dA

)–/p

=  ()

and

lim
|ϕ(z)|→

ν(z)|ψ(z)ϕ′(z)|

 – |ϕ(z)|

(∫

Dϕ(z)(r)

σ dA

)–/p

= . ()

Using () and the fact that ψ ∈ Bν,, by Lemma , we get (i). Using () and the fact that

lim|z|→ ν(z)|ψ(z)ϕ′(z)| = , by Lemma , we get (ii).

Conversely, by taking the supremum in () over all f ∈ Ap(σ ) such that ‖f ‖Ap(σ ) ≤  and

then letting |z| → , we obtain that

lim
|z|→

sup
‖f ‖Ap(σ )≤

ν(z)
∣∣(Wψ ,ϕ f )

′(z)
∣∣ = .

Thus, by Lemma , we obtain thatWψ ,ϕ : Ap(σ )→ Bν, is compact. �

Note that if σ is also a normal weight, then it is easy to see that for a fixed r ∈ (, ), the

following relationship holds:

σ
(
|ζ |

)
≍ σ

(
|z|

)
, ζ ∈Dz(r). ()

Thus from () we have

∫

Dϕ(z)(r)

σ dA≍ σ
(∣∣ϕ(z)

∣∣)( –
∣∣ϕ(z)

∣∣). ()

Using () and Theorems -, we obtain the following corollaries.

Corollary  Let p > , ν and σ be normal weights, ψ ∈ H(D) and ϕ ∈ S(D). Then Wψ ,ϕ :

Ap(σ )→ Bν is bounded if and only if the following conditions are satisfied:

(i) M̂ = supz∈D
ν(z)|ψ ′(z)|

σ (|ϕ(z)|)/p(–|ϕ(z)|)/p
< ∞;

(ii) M̂ = supz∈D
ν(z)|ψ(z)ϕ′(z)|

σ (|ϕ(z)|)/p(–|ϕ(z)|)+/p
< ∞.
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Moreover, if Wψ ,ϕ : Ap(σ )→ Bν is bounded, then

‖Wψ ,ϕ‖Ap(σ )→Bν /C ≍ M̂ + M̂.

Corollary  Let p > , ν and σ be normal weights, ψ ∈ H(D), ϕ ∈ S(D) and Wψ ,ϕ :

Ap(σ ) → Bν be bounded. Then Wψ ,ϕ : Ap(σ ) → Bν is compact if and only if the following

conditions are satisfied:

(i) lim|ϕ(z)|→
ν(z)|ψ ′(z)|

σ (|ϕ(z)|)/p(–|ϕ(z)|)/p
= ;

(ii) lim|ϕ(z)|→
ν(z)|ψ(z)ϕ′(z)|

σ (|ϕ(z)|)/p(–|ϕ(z)|)+/p
= .

Corollary  Let p > , ν and σ be normal weights, ψ ∈ H(D) and ϕ ∈ S(D). Then Wψ ,ϕ :

Ap(σ )→ Bν, is bounded if and only if Wψ ,ϕ : Ap(σ )→ Bν is bounded, ψ ∈ Bν, and

lim
|z|→

ν(z)
∣∣ψ(z)ϕ′(z)

∣∣ = .

Corollary  Let p > , ν and σ be normal weights, ψ ∈ H(D), ϕ ∈ S(D) and Wψ ,ϕ :

Ap(σ )→ Bν, be bounded. ThenWψ ,ϕ : Ap(σ )→ Bν, is compact if and only if the following

conditions are satisfied:

(i) lim|z|→
ν(z)|ψ ′(z)|

σ (|ϕ(z)|)/p(–|ϕ(z)|)/p
= ;

(ii) lim|z|→
ν(z)|ψ(z)ϕ′(z)|

σ (|ϕ(z)|)/p(–|ϕ(z)|)+/p
= .
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11. Stević, S: Norm of weighted composition operators from Bloch space to H∞
µ on the unit ball. Ars Comb. 88, 125-127

(2008)
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13. Stević, S: Weighted composition operators from weighted Bergman spaces to weighted-type spaces on the unit ball.

Appl. Math. Comput. 212, 499-504 (2009)
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21. Stević, S: On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball. J. Math. Anal.

Appl. 354, 426-434 (2009)
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