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Weighted Conditional Random Fields for Supervised
Interpatient Heartbeat Classification

Gaël de Lannoy*, Damien François, Jean Delbeke, and Michel Verleysen

Abstract—This paper proposes a method for the automatic clas-
sification of heartbeats in an ECG signal. Since this task has specific
characteristics such as time dependences between observations and
a strong class unbalance, a specific classifier is proposed and evalu-
ated on real ECG signals from the MIT arrhythmia database. This
classifier is a weighted variant of the conditional random fields clas-
sifier. Experiments show that the proposed method outperforms
previously reported heartbeat classification methods, especially for
the pathological heartbeats.

Index Terms—Classification, conditional random fields (CRFs),
electrocardiogram (ECG), physiobank, unbalance.

I. INTRODUCTION

THE analysis of ECG signals provides critical information
on the cardiac function of patients. Cardiac disease con-

ditions can be diagnosed by identifying abnormal heartbeats in
the ECG signal. In such applications as clinical monitoring or
pharmaceutical phase-one studies, long-term recordings of the
ECG signal are required to this end. These long-term recordings
are typically obtained using the popular Holter recorders. Holter
ambulatory systems record at least 24 h of heart activity, result-
ing in data that contain thousands of heartbeats. The analysis
is usually performed offline by cardiologists, whose diagnosis
may rely on just a few transient patterns. Because of the high
number of beats to evaluate, this task is very time consuming
and reliable visual inspection is difficult. Computer-aided clas-
sification of pathological beats is, therefore, of great importance
to help physicians perform correct diagnosis.

Nevertheless, the task is not trivial because heartbeat data
share two specific characteristics: 1) a strong class unbalance
(the vast majority of the heartbeats are normal healthy beats
while just a small number of beats are pathological) and 2)
time dependences between observations (the beats are extracted
from ECG time series). The most challenging characteristic is
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the class unbalance. In such situations, standard automatic clas-
sifiers generally perform poorly because they are designed to
generalize from training data and to output the simplest hypoth-
esis that best fits the data, based on Occam’s razor. As a result,
the classifier tends to treat the pathological beats as noise and
the learning process often leads to a dummy classifier always
predicting the healthy class. Cost-sensitive classifiers such as the
weighted support vector machine (wSVM) classifier [1] or the
weighted linear discriminant analysis (wLDA) classifier [2]–[4]
have, therefore, been proposed in the field of heartbeat classifi-
cation to overcome the class unbalance.

Nevertheless, the second characteristic is left untreated in
previous works. Heartbeat data contain sequential observations
since there is a time dependence between subsequent heartbeats.
Clearly, if a given beat is a healthy beat, there are more chances
that the subsequent beat will also be a healthy one. To the oppo-
site, if a pathological beat has occurred, there are more chances
that another pathological beat will also occur in the future. In
this study, a classifier which is both robust to the class unbalance
and able to integrate the time dependences between observations
is proposed. This classifier is a weighted variant of the condi-
tional random fields (CRFs) classifier. The performances of the
proposed model are validated on real ECG signals from the MIT
arrhythmia database.

The rest of this paper is structured as follows. Section II
tries to stress best practice rules for constructing reliable heart-
beat classification systems. Section III provides a theoretical
background over the methods used and proposed in this paper.
Section IV details the construction of the experimental dataset.
Section V holds the methodology followed by the experiments
and Section VI shows the results. Eventually, Section VII draws
some conclusions.

II. HEARTBEAT CLASSIFICATION

In this section, the guidelines defined by the American Asso-
ciation for Medical Instrumentation (AAMI) and the interpatient
classification paradigm for constructing reliable ECG classifi-
cation algorithms are presented. Next, the state of the art in
heartbeat classification following these two recommendations
is detailed.

A. AAMI Standards

Several features characterizing the heartbeats and several
classification models have been investigated previously in the
literature for computer-aided heartbeat classification. However,
as first detailed by [2], very few reported works follow the stan-
dards defined by the AAMI, which makes it very difficult to
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assess the relative merits of the methods and of the proposed
extracted features [5]. The AAMI defines the four clinically
relevant heartbeat classes.

1) N-class includes beats originating in the sinus node: nor-
mal beats, bundle branch block beat types, atrial, and nodal
escape beats.

2) S-class includes supraventricular ectopic beats: (aberrant)
atrial, nodal, and supraventricular premature beats.

3) V-class includes ventricular ectopic beats: premature ven-
tricular contraction and ventricular ectopic beats.

4) F-class includes beats that result from fusing normal and
ventricular ectopic beats.

For a given classification algorithm, the AAMI outlines the
necessity to use a performance metric which reveals the classi-
fication performances for each of these four classes.

B. Interpatient Paradigm

Supervised classifiers learn their parameters from labeled
data, called the training set. Most of the previously reported
heartbeat classification methods require beats from a new tested
patient in the training set which is used to learn the parameters
of the classifier. This is referred to as “intrapatient” classifi-
cation [1]. This means that each time a new patient arrives,
an expert has to manually label a portion of the beats from
the patient’s ECG signal, train the classifier, and then obtain a
prediction on the rest of the beats. By contrast, “interpatient”
classification consists in classifying the beats of a new tested
patient according to a training set previously built and labeled
from other patients. This is a much harder task of generalization.

The results that can be achieved with intrapatient methods
are naturally better than when interpatient classification is per-
formed, because the classifier is trained using data from the
patient itself. Nevertheless, the patient labeled beats are usually
not timely available in real clinical situations. Furthermore, be-
cause pathological beats can be very rare, there is no guarantee
that the few training beats that would be labeled for this patient
would contain representatives for each class; and the classifier
could possibly fail in predicting something it has not learned.

Despite these major drawbacks, the large majority of pre-
viously reported work focuses on intrapatient classification. A
comprehensive review of intrapatient classification methods can
be found in [6] and in [7] for recent results.

C. State of the Art

For the reasons detailed in the previous section, this paper
focuses on interpatient classification of heartbeats following the
AAMI guidelines. The first study to establish a reliable interpa-
tient classification methodology is [2], where a wLDA model is
trained to classify the beats in the four classes defined by the
standards of the AAMI [5]. This algorithm was later improved
using the same classifier and other features first in [4] and later
by the same authors in [3]. The common point between these
algorithms is the use of the wLDA classifier, which has three
strong limitations. First, it is a linear classifier which will fail to
detect nonlinear decision functions. Second, the linear discrimi-
nant analysis (LDA) classifier is based on a Gaussian assumption

over class distributions which is not always validated. Finally,
the estimation of its parameters becomes difficult in the case
of strongly correlated features because of the singularity of the
covariance matrix.

For this reason, more powerful classifiers such as support
vector machines (SVMs) have also been considered. In [8], hi-
erarchical SVMs are used but the reported algorithm does not
improve the results of [2]. Later, de Lannoy et al. [1] proposed
an algorithm based on an SVM classifier optimizing a weighted
cost function. This algorithm increased the performances of [2]
for the pathological classes. Recently, Doquire et al. [9] investi-
gated the use of feature selection techniques with the mutual in-
formation (MI) criterion and further improved the results of [1].

In summary, as far as interpatient classification is concerned,
two kinds of classifiers have previously been considered: 1) the
wSVM classifier and 2) the wLDA classifier. Both algorithms
assume independent observations, and lack the use of time de-
pendences between heartbeats. In this paper, a new classifier that
is able to use the time dependences is proposed. This classifier
is presented in the next section.

III. THEORETICAL BACKGROUND

In this section, the CRFs classifier for sequential data is first
presented. Next, the advantages offered by the L1 regularization
of its objective function are detailed. Finally, a weighted variant
of this classifier that is robust to the class unbalance is proposed.

A. CRFs

Let us define a P -dimensional observation sequence x′
t =

[xp
t ]Pp=1 ∈ R

P and the associated labels yt ∈ {1, 2, . . . ,K}
where K is the number of classes and 1 ≤ t ≤ T is the time
index with T being the total number of sampled observations
in the sequence. CRFs are a form of discriminative model first
proposed by [10] that relies on the first-order Markov assump-
tion over labels. The probability distribution defined by CRFs
is

p(y|x) =
∏T

t=1 ψ(yt−1 , yt , x)
∑

y
∏T

t=1 ψ(yt−1 , yt , x)
(1)

where
∑

y is the sum over all possible y sequences and x is the
whole observation sequence. In the original CRF model [10],
ψ(yt−1 , yt , x) is chosen as a parametric logistic function

ψ(yt−1 , yt , x)

= exp

⎛

⎝
∑

kj

χkj fkj (yt−1 , yt , x) +
∑

kp

ωkpgkp(yt , x)

⎞

⎠ (2)

where 1 ≤ k ≤ K and 1 ≤ j ≤ K are indexes ranging over
the number of labels, 1 ≤ p ≤ P is an index over the number
of features, χ = {χ11 , χ12 , . . . , χkj , . . . , χK K } are transition
weights and ω = {ω11 , ω12 , . . . , ωkp , . . . , ωK P } are emission
weights. The fkj are called transition feature functions and the
gkp are called emission feature functions.



DE LANNOY et al.: WEIGHTED CONDITIONAL RANDOM FIELDS FOR SUPERVISED INTERPATIENT HEARTBEAT CLASSIFICATION 243

CRFs are typically trained by maximizing the conditional log
likelihood L(χ, ω)

max
χ,ω

L(χ, ω) (3)

= max
χ,ω

log(p(y|x)) (4)

= max
χ,ω

T∑

t=1

∑

kj

χkj fkj (yt−1 , yt , x)

+
T∑

t=1

∑

kp

ωkpgkp(yt , x) − log(Z(x)). (5)

The likelihood function in (3) cannot be maximized in closed
form, so numerical optimization is used. Since it is a convex
function, quasi-Newton methods or conjugate gradient opti-
mization methods using only first-order derivatives are directly
applicable [11].

We now detail the computation of the normalizer log(Z(x))
since it will later be implied in the embedding of the class un-
balance within the CRF model. The computation of log(Z(x))
requires a summation over all possible label sequences and
the number of possible sequences grows exponentially with
the sequence length. Nevertheless, the forward–backward al-
gorithm originally used in hidden Markov models (HMMs)
can be used to reduce the computational cost from O(KT )
to O(TK2) [11]. Let us define the forward variable αt(k) =
p(x1 , x2 , . . . , xt , yt = k), the probability of the partial obser-
vation sequence {x1 , . . . , xt} until time t and state k at time t,
which is solved recursively (see [12] for details). In CRFs, the
regularizer term is computed in a similar way to p(x) in HMMs
as

Z(x) =
K∑

k=1

αT (k). (6)

B. L1 Regularization

In recent years, there has been a growing interest in the L1-
norm regularization, which is equivalent to a Laplacian prior on
parameters [13]. This type of regularization enforces sparsity
in the parameters and yields models that are more easily inter-
preted [14]. In particular, the L1-regularized logistic regression
model has proven to be very efficient [15]. CRFs can actually be
cast as a multiclass logistic regression model with extra param-
eters for the first-order Markov dependences between labels.
For this reason, the L1 regularization of the CRF model yields
the same benefits and has been investigated with success [13].
Sparsity is especially useful in sequence models having two sets
of parameters: transition parameters and emission parameters.
The L1 penalty indeed achieves feature selection by encourag-
ing sparsity in the emission parameters and in addition leads to
a sparse transition matrix. Hence, if the L1-norm regularization
is not used, nonexisting transitions between states may not be
strictly set to zero by the learning process and then induce errors
during inference.

The optimization of the L1-regularized CRF log likelihood
is

max
w

L(w) − λ ‖w‖1 . (7)

where λ is a regularization constant, L() is the log-likelihood
function as in (3) and w = {χ, ω} is the set of all model param-
eters. It is more convenient in practice to minimize the negative
regularized log likelihood defined as

min
w

f(w) = min
w

−L(w) + λ ‖w‖1 . (8)

The drawback is that the objective function f(w) in (8) is
no longer continuously differentiable for wi = 0. Nevertheless,
subgradients can be used to extricate the task of dealing with the
nondifferentiable gradients [16]. The subgradient at a point of
nondifferentiability is defined as the interval by the derivatives
at the limit of each side of that point [17]. At a local minimizer
w̃ of (8), we have the following optimality conditions:

{∇iL(w̃) + λsign(w̃i) = 0, |w̃i | > 0

−λ ≤ ∇iL(w̃) ≤ λ, w̃i = 0
(9)

with ∇iL(w) = ∂L(w )
∂wi

. The second optimality condition comes
from the nondifferentiability of the absolute value function when
its argument is zero. In this case, the subgradient is used. From
these conditions, the gradient for each wi computed during the
optimization process is

∇if(w) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇iL(w) + λsign(wi), |wi | > 0

∇iL(w) + λ, wi = 0,∇iL(w) < −λ

∇iL(w) − λ, wi = 0,∇iL(w) > λ

0, wi = 0,−λ ≤ ∇iL(w) ≤ λ.

(10)

C. Weighted CRFs (wCRFs)

In this section, the general framework for building unbalance
embedded classifiers is presented. Next, we show how the spe-
cific case of the CRF classifier can be cast under this framework.
Consider the general framework of classification models whose
optimization takes the following form:

min
w

T∑

t=1

L(yt , f(xt, w)) + λ ‖w‖ . (11)

where w are the parameters of the model, L(yt , f(xt)) is a
loss function measuring the discrepancy between the true label
vector yt and the model output f(xt) for each training instance
t, and the right-hand side of the sum is a regularization term.
Traditional classification algorithms choose an approximation
of the accuracy (the overall classification rate) as loss function.
For example, in SVMs, the loss function is the hinge loss and
the regularizer is the L2 norm of w. However, in unbalanced
applications, the accuracy is not a suitable metric since the small
class has less effect on accuracy than the majority class [18].
For example, with an unbalance of 99 to 1, a classifier that
classifies everything in the majority class will be 99% accurate,
but it will be completely useless as classifier. Even worse, in
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many applications, the minority class is of prime importance
(e.g., in medical diagnosis, false negatives can have dramatic
consequences while false positives are of course undesired but
still not life threatening) but the class will be completely ignored
by such a classifier.

The idea in unbalanced-embedded approaches is to design
cost-enabled classifiers that include distinct class misclassifi-
cation costs in their objective function. More cost can then be
given to errors in small classes to unbias the classifier. Any
model that can be cast as an optimization in the form of (11)
can be modified to integrate distinct class error costs as follows.
First, the sum over all observations in (11) is reorganized into
two nested sums over the classes and over the observations in
each class

min
w

K∑

k=1

∑

{t|yt =k}
L(yt , f(xt, w)) + λ ‖w‖ . (12)

Next, K cost parameters ck are added to weight the terms asso-
ciated with each class by a factor ck

min
w

K∑

k=1

ck

∑

{t|yt =k}
L(yt , f(xt, w)) + λ ‖w‖ . (13)

The wSVM classifier previously proposed for heartbeat classi-
fication in [1] can simply be cast in this form by choosing the
hinge loss as loss function and the L2 norm as regularizer.

We now show how to cast the CRF classifier in a form similar
to (11). Remember the objective function of the CRF model

max
χ,ω

T∑

t=1

∑

kj

χkj fkj (yt−1 , yt , x) +
T∑

t=1

∑

kp

ωkpgkp(yt , x)

− log(Z(x)) (14)

= min
χ,ω

−
T∑

t=1

(
∑

kj

χkj fkj (yt−1 , yt , x) +
∑

kp

ωkpgkp(yt , x)

)

+ log(Z(x)). (15)

The difficulty to cast (15) in a form similar to (11) lies in
writing the regularizer term log(Z(x)) as a sum over obser-
vations. It can actually be achieved by using the scaling trick
used for the computation of the forward variable. In practical
implementations, the values of the forward αk (t) variable head
exponentially to zero. For sufficiently large T (i.e., ten or more),
the dynamic range of α will exceed the precision range of any
machine. Hence, the only reasonable way of performing the
computation is either to work in the log domain or to incorpo-
rate a scaling procedure [12]. In the scaling procedure, at each
time step, the forward variables are normalized to sum to one as
follows:

zt =
K∑

k=1

αt(k) (16)

α̂t(k) =
αt(k)

zt
. (17)

The only drawback is that we cannot merely sum up the
α̂T (k) terms for computing Z(x) since these are already scaled.
Nevertheless, in the context of HMMs, [12] has shown that the
computation of log(Z(x)) can be rewritten as a product over
observations thanks to the scaling factors zt

log(Z(x)) = −
T∑

t=1

log(zt). (18)

see [12] for mathematical details.
It is thus only feasible to compute the logarithm of Z(x) but

not Z(x) since it would be out of the dynamic range of the
machine anyway. Substituting (18) into (15) yields the desired
formulation

min
χ,ω

T∑

t=1

(
∑

kj

χkj fkj (yt−1 , yt , x)

+
∑

kp

ωkpgkp(yt , x) − log(zt)

)

. (19)

The wCRF objective function then becomes

min
χ,ω

K∑

k=1

ck

∑

{t|y=k}

(
∑

kj

χkj fkj (yt−1 , yt , x)

+
∑

kp

ωkpgkp(yt , x) − log(zt)

)

. (20)

IV. EXPERIMENTAL DATASET

In this section, several experiments concerning the supervised
classification of heartbeats are conducted. The database used in
the experiments is first presented together with the features that
are extracted from the heartbeat time series. Next, the method-
ology followed by the experiments is described. Finally, the
results are presented.

A. ECG Database and Preprocessing

Data from the MIT–BIH arrhythmia database [19] are used
in the experiments. The database contains 48 half-hour long
ambulatory recordings obtained from 48 patients, for a total
of approximately 110 000 heartbeats manually labeled into 15
distinct types. Following the AAMI recommendations, the four
recordings with paced beats are rejected, and the paced beats in
other recordings are also rejected.

The interpatient dataset configuration defined in [2], which
has since been used in each interpatient classification sys-
tems [4], [8], is used in this paper. The 44 available recordings
are divided in two independent datasets of 22 recordings each
with approximately the same ratio of heartbeat classes. The first
dataset is the training set, and is used to build the model. The
second dataset is the test set, and is used to obtain an independent
measure of the performances of the classifier.

The sampled ECG signals are first filtered to remove un-
wanted artifacts using the filtering procedure proposed in [2].
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TABLE I
DISTRIBUTION OF HEARTBEAT CLASSES IN THE TWO INDEPENDENT DATASETS

Two median filters are designed for this purpose. The first me-
dian filter is of 200-ms width and removes the QRS complexes
and the P waves. The resulting signal is then processed with a
second median filter of 600-ms width to remove the T waves.
The signal resulting from the second filter operation contains
the baseline wanderings and can be subtracted from the original
signal. Powerline artifacts are then removed from the baseline
corrected signal with a 60-Hz band-stop filter.

The location of R spikes and the associated beat types are
provided with the database. These R locations serve as beat
identifiers and the heartbeats are recognized in the signals ac-
cordingly. The MIT–BIH heartbeat labels are then grouped in
the four classes defined by the AAMI recommendations (see
Section II-A). Table I shows the number of beats in each class
and their frequencies in the two datasets. The class unbalance
is obvious. Beats having a R–R interval smaller than 150 ms or
higher than 2 s most probably involve segmentation errors and
are discarded.

B. Feature Extraction

A large variety of popular feature groups previously proposed
for heartbeat classification are extracted from the heartbeat time
series. The feature groups involved in this study are R–R in-
tervals (used in almost all previous works), segmentation in-
tervals [2], [20], morphological features [2], [7], Hermite basis
function (HBF) expansion coefficients [8], [21], [22], and higher
order statistics [8], [23]. We also introduce two additional fea-
tures groups corresponding to the normalized R–R intervals and
the normalized segmentation intervals. Each group is populated
with the following individual features.

1) Segmentation intervals (24 features): ECG characteristic
points, corresponding to the onset and ending of P, QRS,
and T waves, are annotated in each beat using the unsuper-
vised algorithm in [24]. A large variety of 24 features are
then computed from the annotated characteristic points.

a) QRS wave: Boolean flag indicating whether both Q
and S points have been annotated, area, maximum,
minimum, positive area, negative area, standard de-
viation, skewness, kurtosis, length, QR length, and
RS length.

b) P wave: Boolean flag indicating whether its onset
and ending have been annotated, area, maximum,
minimum, and length.

c) T wave: Boolean flag indicating whether its onset
and ending have been annotated, area, maximum,
minimum, length, QT length, and ST length.

When the characteristic points needed to compute a feature
failed to be detected in the heartbeat segmentation step,
the feature value is set to the patient’s mean feature value.

2) R–R intervals (eight features): this group consists of four
features built from the original R spike segmentations pro-
vided with the MIT–BIH database: the previous R–R in-
terval, the next R–R interval, the average R–R interval in
a window of ten surrounding R spikes, and the patient’s
mean R–R interval. The same four features are also com-
puted using the R spikes detected by the segmentation
algorithm.

3) Morphological features (19 features): ten values are mea-
sured by uniformly sampling the ECG amplitude in a win-
dow defined by the onset and ending of the QRS complex,
and nine other features in a window defined by the QRS
ending and the T-wave ending. As the ECG signals are
already sampled, linear interpolation is used to estimate
the intermediate values of the ECG amplitude. Here again,
when the onset or ending points needed to compute a fea-
ture were not detected, the feature value is set to patient’s
mean feature value.

4) HBF coefficients (20 features): the parameters for the HBF
expansion coefficients are chosen as in [8]: the order of the
Hermite polynomial is set to 20 and the width parameter
σ is estimated so as to minimize the reconstruction error
for each beat.

5) High-order statistics (30 features): The second-, third-,
and fourth-order cumulant functions are computed. The
parameters as defined in [22] are used: the lag parameters
range from−250 to 250 ms centered on the R spike and ten
equally spaced sample points of each cumulant function
are used as features, for a total of 30 features.

6) Normalized R–R intervals (six features): these features
correspond to the same features as in the R–R interval
group except that they are normalized by their mean value
for each patient. These features are, thus, independent
from the mean normal behavior of the heart of patients,
which can naturally be very different between individuals,
possibly misleading the classifier. The normalization is
obviously not applied to the R–R feature corresponding to
patient’s mean itself, for a total of six features.

7) Normalized segmentation intervals (21 features): this
group contains the same features as in the segmentation
group, except that they are normalized by their mean value
for each patient. The normalization is obviously not ap-
plied to Boolean segmentation features. Here again, the
objective is to make each feature independent from the
mean behavior of the heart of a patient, because it can
naturally be very different between individuals.

Several studies have shown that using the information from
both leads can increase the classification performances [2], [4];
all features are, therefore, computed independently on both leads
(except the four R–R intervals and the three normalized refer-
ence R–R intervals computed from the original segmentations
since they are common to both leads), for a total of 249 individ-
ual features.
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TABLE II
TOP TEN FEATURES AS RANKED BY THE MI CRITERION

TABLE III
PERFORMANCES OF THE WLDA, WSVM, WCRF, AND WCRF + L1 MODELS

ON THE TEST SET

V. METHODOLOGY

The performances of the proposed wCRF classifier are com-
pared to the previously reported models: the wLDA and the
wSVM classifiers. The advantages offered by the L1-norm reg-
ularization of the wCRF classifier are also evaluated. As men-
tioned in Section III-B, it is expected that leaving the CRF model
unregularized will lead to unsatisfactory results. In this experi-
ment, the hyperparameters of the wSVM and of the wCRF+L1
classifiers are estimated by a “leave-one-patient-out” cross-
validation procedure on the training set. The balanced classi-
fication rate (BCR), estimated by the geometrical mean of the
class accuracies, is used as performance measure. The cost pa-
rameters are set to the inverse of the class priors in all the
experiments.

The filter approach with a MI ranking criterion proposed
in [9] is used to select the discriminative features. According
to recent results [3], [9], the number of discriminative features
is known to be typically much smaller than the number of fea-
tures in our dataset. Therefore, only the top ten ranked fea-
tures are considered in this experiment. The optimal number
of features between one and ten is chosen by the “leave-one-
patient-out” cross validation on the training set, as an additional
hyperparameter.

The final models are obtained by training the four models on
the complete training set with their selected hyperparameters,
including the selected feature subset. The final performances
are then evaluated on the test set—which has never been in-
volved in any computation before—as a fair measure of their
real generalization capabilities on unseen data.

VI. RESULTS

The classification results are presented in Table III. Table II
holds the top ten features, as ranked by the MI criterion, and
reveals which of these features were selected by each classi-
fier. In the heartbeat classification task, errors in the patholog-
ical classes (i.e., missing a cardiac disease) can have dramatic

consequences while errors in the normal class (i.e., incorrectly
diagnosing a cardiac disease) are of course undesired but still
not life threatening. The pathological classes are, therefore, of
uttermost importance.

The wLDA model, with the ranking feature selection,
achieves unsatisfactory results in this aspect with an accuracy
below 55% for two pathological classes. The loss in performance
with the LDA model can be explained by its strong assumptions
such as the Gaussianity and the homoscedascity of classes which
barely hold in this case. Also, when too many features start to be
included in the model, the estimation of its parameters becomes
unstable because of colinearity.

On the other hand, the nonlinear polynomial wSVM model
achieves a BCR of 82.45% with only five features. In particu-
lar, the wSVM model yields an accuracy over 80% for all the
pathological classes. The wCRF model obtains results slighly
below the wSVM model. However, when the L1 regularization
is added to the wCRF model, the best overall results are ob-
tained with a BCR of 85.39% and an accuracy of at least 85%
for each pathological class. These results confirm that the wCRF
model can benefit from the time dependences as long as a L1
regularization term is included.

VII. CONCLUSION

The AAMI guidelines and the interpatient classification
paradigm are two important aspects to consider for the design
of reliable automatic heartbeat classifiers and for the evaluation
of their relative merits. Previously reported classifiers for inter-
patient heartbeat classification are the wLDA and the wSVM
classifier. Nevertheless, these two classifiers are unable to use
the time dependences in the heartbeat dataset. In this paper, a
weighted variant of the CRF classifier called wCRF which is
able to integrate such time dependences between observations
is proposed.

Classification experiments are conducted on real Holter
recordings to compare the proposed wCRF classifier to pre-
viously reported interpatient classification algorithms. Results
show that the wCRF classifier with a L1 regularization term
achieves better results with a BCR of 85.39% and an accuracy
of at least 85% for each pathological classes. These results show
that the information contained in the time dependence in class
labels significantly increases the performances and that the L1
regularization is useful to improve the estimation of the param-
eters of the CRF model.
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