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ABSTRACT In the Dempster-Shafer evidence theory, how to effectively measure the degree of conflict
between two bodies of evidence is still an open question. To solve this problem, we propose a weighted
conflict evidence combination method based on Hellinger distance and the belief entropy. This method
uses the probability transformation function to deal with the multi-subset focal elements firstly. Next, the
Hellinger distance is introduced to measure the degree of conflict among the evidence. Moreover, improved
belief entropy is also employed to quantify the uncertainty of the basic belief assignments. Further, Hellinger
distance and the improved belief entropy are combined to construct the weight coefficient concerning
evidence, and finally, the Dempster combination rule is used for fusion. The final fusion results of proposed
method on fault diagnosis experiment and target recognition experiment are 0.9018 and 0.9895 respectively,
apparently higher than that of other methods, revealing the advantages of the proposed method.

INDEX TERMS Dempster-Shafer evidence theory, conflict evidence, Hellinger distance, belief entropy,
evidence fusion.

I. INTRODUCTION

MULTI-SENSOR information fusion technology can
effectively avoid the limitation of single sensor

decision-making by processing and fusing the information
obtained by multiple sensors. However, due to external rea-
sons or the sensor itself, the data gathered from multi-sensors
could be unreliable or even incorrect, leading to making
wrong decision [1]. To solve this problem, experts and schol-
ars have successively proposed some classic theories, such
as fuzzy set theory proposed by Zadeh in 1965 [2], evi-
dence theory proposed by Dempster in 1967 [3], developed
evidence theory proposed by Shafer in 1976 [4], the rough
set theory proposed by Pawlak in 1982 [5], and so on. For
several decade years, these theories have been successfully
applied in many scientific and engineering fields [6]–[9]. It
is noteworthy that these theories are non-isolated, moreover,
highly complementary in some aspects. Some scholars have
combined these theories, for example, combining fuzzy sets
with evidence theory [10], [11] and combining evidence
theory with rough sets [12], [13], to analyse and deal with
problems, and have achieved good results.

Dempster-Shafer evidence theory, as a powerful tool for
multi-sensor information fusion technology, was first pro-
posed by Dempster [3] and popularised by his student Shafer
[4]. Dempster-Shafer evidence theory has the advantage of
expressing "uncertain" and "unknown", so it can deal with
uncertain and imprecise information flexibly. At present, it
has been widely used in many fields, such as fault diagnosis
[14]–[17], target tracking [18]–[20], multiple attribute deci-
sion making [21]–[24], image processing [25], [26], medical
diagnosis [27]–[29], risk analysis [30]–[34], and so on.

A. RELATED WORK
With the development of Dempster-Shafer evidence theory,
some scholars have found that using classical Dempster-
Shafer evidence theory to fuse highly conflicting evidence
may lead to counter-intuitive combination results. Many
experts and scholars have analysed the reason caused by
counter-intuitive results of conflict evidence fusion and pro-
posed some improved methods [35]–[52]. These improve-
ment methods are mainly divided into two categories.

The first is to modify the classical Dempster combination
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rule [35]–[37]. The scholars who hold this view think that
the main reason for the counter-intuitive result is that some
innate defects of the Dempster combination rule. The tradi-
tional improvement methods are firstly to reallocate corre-
spondence between the conflict information and the subset,
and then, the proportion of the conflict information in the
subset is reallocated after subset with conflict receiving to
be determined. However, most of the modified combination
rules cannot keep the excellent characteristics of the con-
ventional Dempster combination rule such as commutative,
associative, and so on.

The second is to pre-process the bodies of evidence with-
out changing the Dempster combination rule. Currently, the
most commonly used preprocessing method is to weight the
bodies of evidence before fusion. Murphy averages the n
bodies of evidence and then used the Dempster combination
rule to fuse it n-1 times [38]. Still, it does not take into
account the relationship between the bodies of evidence and
the importance of the evidence. Similar as Murphy average
fusion method, Deng et al. introduced Jousselme evidence
distance to solve the weight coefficient of fusion bodies of
evidence [39], this method considered not only the mutual
exclusion of focus elements but also some conflict informa-
tion between inclusive focus elements. Yuan et al. introduced
Jousselme evidence distance and Deng entropy to construct
the weight coefficient bodies of evidence [40]. Chen et al.
designed a novel weighted method by combining evidence
distance and uncertainnty of evidence [41]. Liu et al. defined
a new probability distance and conflict coefficient related to
bodies of evidence, and then used it to design the weight of
bodies of evidence [42].

The key of weighted averaging the bodies of evidence
to be fused is how to determine the weight coefficient of
the bodies of evidence. Research has found that the weight
coefficient can be obtained from the conflict of the evidence
and the uncertainty of the evidence. From the perspective
of effectively measuring the conflict between two bodies of
evidence, many experts and scholars have proposed some
methods. For example, Jousselme et al. defined a new dis-
tance to measure the conflict between two bodies of evidence
[43]. Liu defined pignistic probability distance to measure
the degree of conflict between two bodies of evidence [44].
Zhang et al. used the improved cosine similarity to measure
the degree of conflict between two bodies of evidence [45].
Ma and An used fuzzy nearness and correlation coefficient
to measure the degree of conflict between two bodies of
evidence [46]. Xiao used the Belief Jensen-Shannon (BJS)
divergence to measure the degree of conflict between two
bodies of evidence [1], and so on. From the perspective of
how to effectively quantify the uncertainty of the evidence,
experts and scholars have also proposed some corresponding
measurement methods. For example, Deng defined a new
uncertainty measure Deng entropy based on Shannon entropy
in the framework of evidence theory [47]. Zhou et al. pro-
posed an improved belief entropy based on the scale of frame
of discernment [48]. Tang et al. improved on Deng entropy

and defined weighted belief entropy [49]. Pan and Deng
defined a new uncertainty measure based on the plausibility
function and the belief function [50]. Qin et al. defined a
new uncertainty measure based on the number of elements
in the frame of discernment and the conflict of basic belief
assignments (BBAs) [51], and so on.

Also, some scholars preprocess the bodies of evidence
from different perspectives. For example, Jing and Tang
proposed the methods based on base basic probability as-
signment (bBPA) by averaging bBPA and basic probability
assignment (BPA), to achieve the purpose of pre-processing
the bodies of evidence before fusion [52].

B. CONTRIBUTIONS
From the two aspects of measuring the conflict the bodies
of evidence and quantifying the uncertainty of the evidence,
we discussed the weighted conflict evidence combination
method based on Hellinger distance and the belief entropy.
Our main contributions are summarised as follows:
• The Hellinger distance is introduced into the framework

of Dempster-Shafer evidence theory, and the Hellinger dis-
tance is used to measure the degree of conflict between two
bodies of evidence.
• A new belief entropy is defined in the framework of

Dempster-Shafer evidence theory, which is used to quantify
the uncertainty of the evidence.
• We propose a multi-sensor data fusion algorithm based

on Hellinger distance and the belief entropy.
Numerical examples show that the proposed method can

effectively measure the degree of conflict between two bodies
of evidence and quantify the uncertainty of the evidence.
Experimental results related to fault diagnosis and target
recognition show that the proposed method has the same
supporting element as other methods, moreover, by using
the Dempster combination rule fusion, the final basic belief
assignment related to the supporting element of proposed
methods is higher than that of other methods, thus it is
conducive to decision-making.

The remaining chapters of the paper are arranged as fol-
lows. Section II introduces some relevant basic theoretical
knowledge. Section III introduces the Hellinger distance and
analyses some properties of the Hellinger distance. Section
IV introduces some methods of quantifying the uncertainty of
the evidence and gives the improved method of this paper and
compares the improved methods of this paper with previous
methods. Section V introduces the algorithm flow proposed
in this paper in detail. Section VI based on two numerical
examples, the effectiveness of the method proposed in this
paper is verified. Finally, Section VII is the conclusion of this
paper.

II. PRELIMINARIES
A. DEMPSTER-SHAFER EVIDENCE THEORY
In Dempster-Shafer evidence theory [3], [4], the frame of
discernment (FOD) Θ = {θ1, θ2, · · · , θN} is a collection
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of N mutually exclusive elements. The set consisting of all
subsets of Θ is denoted as 2Θ.

Definition 1: Let Θ be the frame of discernment. If the
function m : 2Θ → [0, 1] satisfies m({φ}) = 0 and∑

m({A}) = 1 for ∀{A} ⊆ Θ, then m is called the basic
belief assignment (BBA) on Θ. If m({A}) isn’t zero, then
{A} is called the focal element which contains one or more
hypotheses, m({A}) assigns the basic belief assignment of
proposition {A}, and {φ} is denotes the empty set of Θ.

Definition 2: The belief function Bel :2Θ→ [0, 1] and the
plausibility function Pl :2Θ→[0, 1], for ∀{A}, {B}⊆ Θ are

Bel({A}) =
∑
B⊆A

m({B}) (1)

Pl({A}) =
∑

B
⋂
A6=φ

m({B}) (2)

where Bel({A}) represents the degree of support for proposi-
tion {A} to be true, Pl({A}) represents the degree of support
for proposition {A} not to be refused.

Definition 3: Let m1 and m2 be the two BBAs on the
same frame of discernment Θ, and use m1⊕2 to represent the
new evidence after m1 and m2 combination. The Dempster
combination rule is defined as

m1⊕2({A}) =

{
0 , {A} = {∅}∑

B∩C=A

m1({B})m2({C})

1−k , {A} 6= {∅}
(3)

where k =
∑

B
⋂
C=φ

m1({B})m2({C}) is called the conflict

coefficient, which is used to measure the degree of conflict
between two BBAs.

B. SOME METHODS OF CONFLICT MEASUREMENT
In Dempster-Shafer evidence theory, the conflict coefficient
is used to measure the degree of conflict between BBAs,
while the effectiveness of the conflict coefficient is not always
guaranteed in some cases. We use Example 1 to demonstrate
it.

Example 1: Assuming that the frame of discernment is
Θ = {θ1, θ2, θ3}, the results collected by two independent
sensors are converted into BBAs as shown below.

m1 : m1({θ1}) = m1({θ2}) = m1({θ3}) = 1/3
m2 : m2({θ1}) = m2({θ2}) = m2({θ3}) = 1/3

Using the conflict coefficient to measure the conflict be-
tween the evidence m1 and evidence m2 in Example 1, we
get k = 2/3. However, the conflict between two identical belief
functions may not equal to 0, leading to somewhat counter-
intuitive results [53]. Therefore, experts and scholars have
proposed many effective methods to measure the conflict
between BBAs. The following is a brief introduction to some
classical methods.

1) Jousselme Evidence Distance
Jousselme et al. regarded each group of BBAs as a set

of vectors and proposed a conflict expression method that
measures the distance between evidence in vector space [43].

Definition 4: Let m1 and m2 be the two BBAs on the same
frame of discernment Θ, the Jousselme evidence distance
between m1 and m2 is expressed as

dJ(m1,m2) =

√
1

2
(−→m1 −−→m2)TD(−→m1 −−→m2) (4)

where −→m1,
−→m2 is the two BBAs in the vector space; D

is an 2|Θ| × 2|Θ| matrix whose elements are D(A,B) =
|A
⋂
B|

|A
⋃
B| , A,B ∈ 2Θ; |A| is the cardinality of subset {A}.

2) Liu Conflict Measurement Method
Liu defined the pignistic probability distance and com-

bined the conflict coefficient and the pignistic probability
distance into a two-tuple to judge the degree of conflict in
BBAs [44].

Definition 5: Let m be a BBA on the frame of discernment
Θ, and its related pignistic probability function BetPm :
Θ→ [0, 1] is defined as

BetPm ({θi}) =
∑

A⊆Θ,θi∈A

1

|A|
m({A})

1−m({∅})
,m({∅}) 6= 1

(5)
Definition 6: Let m1 and m2 be the two BBAs on the same

frame of discernment Θ, the pignistic probability distance
between m1 and m2 is defined as

difBetPm2
m1 = max

A⊆Θ
(|BetPm1({A})− BetPm2({A})|)

(6)
Definition 7: Let m1 and m2 be the two BBAs on the

same frame of discernment Θ, and set a binary metric as
cf(m1,m2) = 〈k, difBetP 〉, if k > ε, difBetP > ε, then
m1 and m2 are defined as conflict. Where ε ∈ [0, 1] is the
threshold of conflict tolerance.

Example 2: Assuming that the frame of discernment is
Θ = {θ1, θ2, · · · , θ10}, the results collected by two inde-
pendent sensors are transformed into BBAs as shown below.

case 1 :

{
m1 ({θ1}) = 1
m2 ({θ2}) = 1

case 2 :

{
m1 ({θ1}) = m1 ({θ2}) = 1/2
m2 ({θ3}) = m2 ({θ4}) = 1/2

case 3 :

{
m1 ({θ1}) = m1 ({θ2}) = m1 ({θ3}) = 1/3
m2 ({θ4}) = m2 ({θ5}) = m2 ({θ6}) = 1/3

case 4 :


m1 ({θ1}) = m1 ({θ2}) = m1 ({θ3}) = 1/4,
m1 ({θ4}) = 1/4
m2 ({θ5}) = m2 ({θ6}) = m2 ({θ7}) = 1/4,
m2 ({θ8}) = 1/4

case 5 :


m1 ({θ1}) = m1 ({θ2}) = m1 ({θ3}) = 1/5,
m1 ({θ4}) = m1 ({θ5}) = 1/5
m2 ({θ6}) = m2 ({θ7}) = m2 ({θ8}) = 1/5,
m2 ({θ9}) = m2 ({θ10}) = 1/5
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TABLE 1. Conflicting measurement results in case 1-5.

Distance case 1 case 2 case 3 case 4 case 5

dJ (m1,m2) 1 0.707 0.577 0.500 0.447

difBetPm2
m1 1 0.500 0.333 0.250 0.200

Table 1 shows the results of solving the above five cases
using Jousselme evidence distance and pignistic probability
distance. We find that the BBAs in cases 1-5 in Example 2
are all evidence of complete conflict. In this extreme case,
the degree of conflict between m1 and m2 should reach
the maximum value 1. However, the values of dJ(m1,m2)
and difBet Pm2

m1
used to measure conflict between BBAs are

getting lower and lower. This means that Jousselme evidence
distance and pignistic probability distance are not effective
in measuring the degree of conflict between completely con-
flicting evidence.

Example 3: Assuming that the frame of discernment is
Θ = {θ1, θ2, θ3}, the results collected by three independent
sensors are transformed into BBAs as shown below.

m1 :m1 ({θ1}) = 0.5,m1 ({θ2}) = 0.3,m1 ({θ3}) = 0.1

m1({Θ}) = 0.1

m2 :m2 ({θ1}) = 0.8,m2 ({θ2}) = 0.1,m2 ({θ3}) = 0.1

m3 :m3 ({θ1}) = 0.3,m3 ({θ2}) = 0.5,m3({Θ}) = 0.2

Next, we use Jousselme evidence distance and pignistic
probability distance to calculate the conflict between m1 and
m2 and the conflict between m1 and m3 in Example 3.
dJ(m1,m2) = 0.2582, dJ(m1,m3) = 0.2160

difBetPm2
m1

= 0.2667, difBetPm3
m1

= 0.2333

We find that evidence m1 and evidence m2 support propo-
sition {θ1}, and evidence m3 supports proposition {θ2}.
Therefore, the conflict between evidence m1 and evidence
m2 is lower than the conflict between evidence m1 and evi-
dence m3. However, the measurements based on Jousselme
evidence distance and pignistic probability distance believe
that the degree of conflict between evidencem1 and evidence
m2 is greater than that of between evidence m1 and evidence
m3, which is unreasonable.

3) Zhang et al. Similarity Measurement Method
Zhang et al. defined a new conflict measurement method

by combining the pignistic probability function and the co-
sine (cos) correlation coefficient and used 1− cos to indicate
the degree of conflict between evidence [45].

Definition 8: Let m1 and m2 be the two BBAs on the same
frame of discernment Θ, the cosine of the angle between m1

and m2 is expressed as

cos (m1,m2) =
〈PignisticVector m1, PignisticVector m2〉
‖PignisticVector m1‖ · ‖ PignisticVector m2‖

(7)

where PignisticV ectorm1 is the pignistic probability trans-
formation of the evidence vector m1.

Example 4: Assuming that the frame of discernment is
Θ = {θ1, θ2, θ3}, the results collected by two independent
sensors are transformed into BBAs as shown below.

m1 : m1({θ1}) = 0.6,m1({θ2}) = 0.1,m1({Θ}) = 0.3
m2 : m2({θ1}) = 0.7,m2({θ2}) = 0.2,m2({θ3}) = 0.1

We use the improved cosine correlation coefficient pro-
posed by Zhang et al. to calculate the degree of conflict
between evidencem1 and evidencem2 in Example 4, and we
get cos(m1,m2) = 1. However, evidence m1 and evidence
m2 are not the same two bodies of evidence, so the similarity
between them is not 1, so the improved cosine correlation
coefficient has certain limitations.

4) Ma & An Conflict Measurement Method

Ma & An proposed a new conflict measurement method
which designs a probability transformation function using
the belief function Bel and the plausibility function Pl to
transform the basic belief assignment [46].

Definition 9: Let m be a BBA on the frame of discernment
Θ = {θ1, θ2, · · · , θn}, the basic belief assignment function
in evidence m is transformed by the following equation

P ({θi}) = Bel ({θi}) +
BEL·Bel({θi})+(1−BEL)·Pl({θi})∑

θj∈Θ

BEL·Bel({θj})+(1−BEL)·Pl({θj})) (1−BEL)

(8)
where BEL =

∑
Bel({θi}).

Definition 10: Let m1 and m2 be the two BBAs on the
same frame of discernment Θ, the degree of conflict between
m1 and m2 is expressed as

DisSim(m1,m2) = 1− R(m1,m2) + CoC(m1,m2)

1 +R(m1,m2)× CoC(m1,m2)
(9)

where R(m1,m2) =

n∑
k=1

(P1({θk})∧P2({θk}))
n∑
k=1

(P1({θk})∨P2({θk}))
represents the

fuzzy nearness between m1 and m2; and

CoC (m1,m2) =


P1(θP1

max)+P2(θP2
max)

2 , if θP1
max = θP2

max

P1

(
θ
P1
min

)
+P2

(
θ
P2
min

)
2 , if θP1

max 6= θP2
max

,

represents the correlation coefficient between m1 and m2,
and θP1

max = argmaxP1(θ), θP1
min = argminP1(θ).

5) Xiao Conflict Measurement Method Based on Divergence

Xiao introduced Jensen-Shannon divergence into Dempster-
Shafer evidence theory and defined a new conflict measure-
ment method called Belief Jensen-Shannon (BJS) divergence
[1].
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Definition 11: Let m1 and m2 be the two BBAs on the
same frame of discernment Θ, the BJS divergence between
m1 and m2 is expressed as

BJS(m1,m2) =
1

2
[S(m1,

m1 +m2

2
)+S(m2,

m1 +m2

2
)]

(10)
where S(m1,m2) =

∑
im1({Ai}) log2(m1({Ai})

m2({Ai}) ), and∑
imj({Ai}) = 1(i = 1, 2, · · · , N ; j = 1, 2).
Example 5: Assuming the frame of discernment Θ =
{θ1, θ2, · · · , θ7}, the results collected by three independent
sensors are transformed into BBAs as shown below.
m1 : m1({θ1, θ2}) = 0.6,m1({θ6, θ7}) = 0.4
m2 : m2({θ4, θ5}) = 0.6,m2({θ6, θ7}) = 0.4
m3 : m3({θ1, θ2, θ3}) = 1
From Example 5, we find that the degree of conflict

between evidence m1 and m3 is lower than the degree
of conflict between evidence m2 and m3. Using the BJS
divergence to measure the conflict between m1 and m3, m2

and m3 in Example 5, we can obtain BJS(m1,m3) =
BJS(m2,m3) = 1. The results show that BJS divergence
can not effectively represent the conflicts between evidence
with multi-subset focal elements.

III. HELLINGER DISTANCE MEASURE
A. THE PROPOSED METHOD OF CONFLICT
MEASUREMENT
Inspired by the idea of probability transformation function
proposed by Ma & An [46], we combine Hellinger distance
and Dempster-Shafer evidence theory to characterise the
degree of conflict between BBAs. The definition of Hellinger
distance is as follows.

Definition 12: Let m1 and m2 be the two BBAs on the
same frame of discernment Θ, the Hellinger distance between
m1 and m2 is expressed as

dH (m1,m2) =

∥∥∥√m1 ({θi})−
√
m2 ({θi})

∥∥∥
2√

2
(11)

The Hellinger distance satisfies the following properties.
(1) Boundedness 0 6 dH(m1,m2) 6 1.
(2) Symmetry dH(m1,m2) = dH(m2,m1).
(3) Definiteness dH(m1,m2) = 0⇔ m1 = m2.
(4) Triangle inequality dH(m1,m2)+dH(m2,m3) ≥

dH(m1,m3).
These properties of Hellinger distance can be proved in the

appendix.

B. VERIFY THE PERFORMANCE OF THE PROPOSED
METHOD
In Example 1, we combine the probability transformation
function and Hellinger distance to get dH(m1,m2) = 0.

In Example 2, we combine the probability transformation
function and Hellinger distance to measure the degree of
conflict between BBAs too, and the results are shown in Table
2. Compared with dJ and difBetP , the proposed method

TABLE 2. Solving Example 2 using Hellinger distance.

Distance case 1 case 2 case 3 case 4 case 5

dH (m1,m2) 1 1 1 1 1

can effectively measure the degree of conflict between com-
pletely conflicting BBAs.

In Example 3, we combine the probability transforma-
tion function and the Hellinger distance to measure the
conflict between evidence m1 and evidence m2 and the
conflict between evidence m1 and evidence m3. We get
dH(m1,m2) = 0.2132, dH(m1,m3) = 0.2443, and this
result satisfies dH(m1,m2) < dH(m1,m3). Therefore, the
propposed method is more reasonable than the Jousselme
evidence distance and the pignistic probability distance.

In Example 4, we combine the probability transformation
function and Hellinger distance to measure the degree of
conflict between evidence m1 and evidence m2, we get
dH(m1,m2) = 0.1204. This result shows that the proposed
method is more reasonable than the improved cosine correla-
tion coefficient method.

In the case of multi-subset focal elements, as described
in Example 5. We combine the probability transformation
function and Hellinger distance to get dH(m1,m3) = 0.6063
and dH(m2,m3) = 1. This result means dH(m1,m3) ≤
dH(m2,m3). So, it may effectively handle the problem that
BJS divergence cannot effectively measure the conflict be-
tween non-single subset propositions.

Example 6: Assuming the frame of discernment Θ =
{θ1, θ2},the results collected by three independent sensors
are converted into BBAs as shown below.

m1 : m1({θ1}) = 0.90,m1({θ2}) = 0.10
m2 : m2({θ1}) = 0.80,m2({θ2}) = 0.20
m3 : m3({θ1}) = 0.30,m3({θ2}) = 0.70

Calculating Hellinger distance such as dH(m1,m2),
dH(m2,m3), and dH(m1,m3), we can obtain

dH(m1,m2) =

√
(
√

0.90−
√

0.80)2+(
√

0.10−
√

0.20)2
√

2
= 0.1003

dH(m2,m3) =

√
(
√

0.80−
√

0.30)2+(
√

0.20−
√

0.70)2
√

2
= 0.3687

dH(m1,m3) =

√
(
√

0.90−
√

0.30)2+(
√

0.10−
√

0.70)2
√

2
= 0.4646

Therefore, we can get the following inequality
dH(m1,m2)+dH(m2,m3)=0.4690>dH(m1,m3)=0.4646.

Example 7: Assuming the frame of discernment Θ =
{θ1, θ2}, the results collected by two independent sensors are
converted into BBAs as shown below.

case 1 :

{
m1 ({θ1}) = a,m1 ({θ2}) = 1− a
m2 ({θ1}) = 0.5,m2 ({θ2}) = 0.5

case 2 :

{
m1 ({θ1}) = a,m1 ({θ2}) = 1− a
m2 ({θ1}) = 0.9999,m2 ({θ2}) = 0.0001

Supposing a varying from 0 to 1, the Hellinger distance
between evidence m1 and evidence m2 are shown in Fig. 1.
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FIGURE 1. The changing trend of Hellinger distance as the parameter
changes.

Case 1: As a increases, the Hellinger distance between m1

and m2 tends to decrease first and then increase. The conflict
between m1 and m2 achieves the minimum at a = 0.5.

Case 2: As a increases, the Hellinger distance between m1

and m2 is always decreasing. The conflict between m1 and
m2 achieves the minimum at a = 0.9999.

Next, we use Example 8 to show the changes of the degree
of conflict between BBAs with the number of elements in the
proposition changing.

Example 8: Assuming the frame of discernment Θ =
{θ1, θ2, · · · , θ20}, and the results collected by two indepen-
dent sensors are converted into BBAs as
m1 : m1({Ai}) = 0.8,m1({θ2, θ3, θ4}) = 0.05

m1({θ7}) = 0.05,m1({Θ}) = 0.1

m2 : m2({θ1, θ2, θ3, θ4, θ5}) = 1

The elements in proposition {Ai} is gradually increasing
in order, namely {Ai} = {θ1, θ2, · · · , θi}(i=1, 2, · · · , 20).

Given two BBAs, we can conclude that with the number
of elements in proposition {Ai} increasing, the conflicting
between the two BBAs decreases firstly and then increases.

Fig. 2 shows the trend of conflicts between BBAs as the
number of elements in proposition {Ai} increases. In Fig. 2,
we compare the introduced Hellinger distance dH with some
of the evidence conflict measurement methods introduced
earlier(k, dJ , difBetP, 1−cos,DisSim,BJS).

In Fig. 2, we can find that dJ , difBetP, 1−cos, and
Hellinger distance dH have the same trend, they all decrease
first and then increase, moreover, when the elements in the
proposition {Ai} is {θ1, θ2, θ3, θ4, θ5}, the conflict between
BBAs is the smallest. DisSim has a strange rise, which is a
bit unreasonable; k and BJS cannot measure the degree of
conflict between BBAs in Example 8.

IV. UNCERTAINTY MEASUREMENT
A. UNCERTAINTY MEASUREMENT METHODS IN
DEMPSTER–SHAFER EVIDENCE THEORY
In this part, we introduce some typical uncertainty measure-
ment methods in Dempster-Shafer evidence theory. Among
them, the specific expression equation related to those meth-
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FIGURE 2. Trends of conflict between BBAs.

ods are shown in Table 3, where |A| is the cardinality of the
subset {A}.

B. THE NEW BELIEF ENTROPY
We define a new belief entropy here to tackle shortcomings
related to above uncertain measures.

Definition 13: Letm be a BBA on the frame of discernment
Θ, the new belief entropy of m is expressed as

Ex(m) = −
∑
A⊆Θ

m({A}) log2(
m({A})
2|A| − 1

· e
|A|−1

2|X|−1 ) (12)

where |X|= |A
⋃
B|, B =B1

⋃
B2

⋃
· · ·
⋃
Bi
⋃
· · ·
⋃
Bs

(i= 1, 2, · · · , s;Bi ⊆Θ;Bi 6=A;m({Bi}) 6= 0). |X| is the
cardinality of {X}. Supposing {A} composed by single sub-
set proposition, the belief entropy degenerates into Shannon
entropy, i.e.

Ex(m) = −
∑
A⊆Θ

m({A}) log2(
m({A})
2|A| − 1

· e
|A|−1

2|X|−1 )

= −
∑
A⊆Θ

m({A}) log2(m({A}))
(13)

When the support of some propositions is 0, due to the
property of the log function, calculations cannot be per-
formed at this time. Therefore, we use 1 × 10−12 instead of
0 for m({A}) in Eq.(12).

C. NUMERICAL EXAMPLES
In this section, we use several examples to verify the perfor-
mance of the new belief entropy defined in this paper and
compare them with the uncertainty measurement methods
proposed by other scholars.

Example 9: Assuming the frame of discernment Θ =
{θ1, θ2, · · · , θ10}, the results collected by one sensor are
converted into BBA as shown below.
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TABLE 3. Uncertain measurement methods in Dempster-Shafer evidence theory.

Method Equation

Deng’s method [47] Ed(m) = −
∑

A⊆Θm({A}) log2
m({A})
2|A|−1

Zhou et al.’s method [48] EId(m) = −
∑

A⊆Θm({A}) log2

(
m({A})
2|A|−1

e(|A|−1)/|Θ|
)

Tang et al.’s method [49] EWd(m) = −
∑

A⊆Θ
|A|
|Θ|m({A}) log2

m({A})
2|A|−1

Pan & Deng’s method [50] Hbel(m) = −
∑

A⊆2Θ
Bel({A})+Pl({A})

2
log2

Bel({A})+Pl({A})
2(2|A|−1)

Qin et al.’s method [51] Q(m) =
∑

A⊆Θ
|A|
|Θ|m({A}) log2 |A|+

∑
A⊆Θm({A}) log2

1
m({A})

Höhle’s method [54] CH(m) = −
∑

A⊆Θm({A}) log2 Bel({A})
Yager’s method [55] EY (m) = −

∑
A⊆Θm({A}) log2 Pl({A})

Dubois & Prade’s method [56] U(m) =
∑

A⊆Θm({A}) log2 |A|
Klir & Ramer’s method [57] D(m) = −

∑
A⊆Θm({A}) log2

∑
B⊆Θm({B}) |A∩B||B|

Klir & Parviz’s method [58] S(m) = −
∑

A⊆Θm({A}) log2

∑
B⊆Θm({B}) |A∩B||A|

Chen et al.’s method [59] Ei(m) = −
∑

A⊆Θm({A}) log2
m({A})
2|A|−1

|A|
|Θ|
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FIGURE 3. Use belief entropy and other uncertainty measures to quantify the
uncertainty of the evidence in Example 9.

m : m({Ai}) = 0.9,m({Θ}) = 0.1

The elements in proposition {Ai} is gradually increasing
in order, namely {Ai} = {θ1, θ2, · · · , θi}(i=1, 2, · · · , 10).

We use the improved belief entropy defined in this paper
and the uncertainty measure methods listed in Table 3 to
quantify the uncertainty of the BBA in Example 9, and the
results are shown in Fig. 3.

From Fig. 3, we find that the Höhle’s method [54], Yager’s
method [55], Klir & Ramer’s method [57], Klir & Parviz’s
method [58] cannot effectively quantify the uncertainty of
the BBA. With the increase of the elements in the proposi-
tion {Ai}, uncertainty measure defined by Deng’s method
[47], Zhou et al.’s method [48], Tang et al.’s method [49],
Dubois & Prade’s method [56], Chen et al.’s method [59]
and the belief entropy defined in this paper is monotonically
increasing. Although the uncertainty measures defined by
Pan & Deng’s method [50], Qin et al.’s method [51] are also

increasing, when the element in proposition {Ai} becomes
{θ1, θ2, · · · , θ10}, their results will decrease compared to the
previous result. The proposition {θ1, θ2, · · · , θ10}means that
the information is completely unknown. At this time, the
uncertainty of BBA should be the largest, so the uncertainty
measure defined by Pan & Deng’s method [50], Qin et al.’s
method [51] is not unreasonable.

Example 10: Let m1 and m2 be the two BBAs on the same
frame of discernment Θ = {θ1, θ2, θ3, θ4}, the distributions
of m1 and m2 are shown below.

m1 :

m1 ({θ1, θ2}) = 0.4,m1 ({θ3, θ4}) = 0.6,m1 ({φ}) = 0

m1 ({θ1}) = m1 ({θ2}) = m1 ({θ3}) = m1 ({θ4}) = 0

m1 ({θ1, θ3}) = m1 ({θ1, θ4}) = m1 ({θ2, θ3}) = 0

m1 ({θ2, θ4}) = m1 ({θ1, θ2, θ3}) = m1 ({θ1, θ2, θ4}) = 0

m1 ({θ1, θ3, θ4}) = m1 ({θ2, θ3, θ4}) = m1({Θ}) = 0

m2 :

m2 ({θ1, θ2}) = 0.4,m2 ({θ2, θ3}) = 0.6,m2 ({φ}) = 0

m2 ({θ1}) = m2 ({θ2}) = m2 ({θ3}) = m2 ({θ4}) = 0

m2 ({θ1, θ3}) = m2 ({θ1, θ4}) = m2 ({θ2, θ4}) = 0

m2 ({θ3, θ4}) = m2 ({θ1, θ2, θ3}) = m2 ({θ1, θ2, θ4}) = 0

m2 ({θ1, θ3, θ4}) = m2 ({θ2, θ3, θ4}) = m2({Θ}) = 0

We use Deng’s method [47], Zhou et al.’s method [48],
Tang et al.’s method [49], Pan & Deng’s method [50], Qin
et al.’s method [51], Dubois & Prade’s method [56], Chen et
al.’s method [59] and the belief entropy defined in this paper
to quantify the uncertainty ofm1 andm2 in Example 10. The
results are shown in Table 4 below.

We can find that evidence m1 assigns basic belief as-
signments to propositions {θ1, θ2} and {θ3, θ4}, moreover,
we also find evidence m1 contains four elements; Similar
as evidence m1, we can find evidence m2 contains three
elements. Since evidence m1 contains more elements than
that of evidence m2, the uncertainty of which should be
greater than that of evidence m2.
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FIGURE 4. The calculation steps of the proposed algorithm.

TABLE 4. Use different methods to quantify the uncertainty of the evidence in
Example 10.

Method m1 m2

Deng’s method [47] 2.5559 2.5559

Zhou et al.’s method [48] 2.1952 2.1952

Tang et al.’s method [49] 1.2780 1.2780

Pan & Deng’s method [50] 3.5559 3.5559

Qin et al.’s method [51] 1.4710 1.4710

Dubois & Prade’s method [56] 1 1

Chen et al.’s method [59] 3.5559 3.5559

The proposed method 2.4597 2.3498

From the results in Table 4, we find that Deng’s method
[47], Zhou et al.’s method [48], Tang et al.’s method [49],
Pan & Deng’s method [50], Qin et al.’s method [51], Dubois
& Prade’s method [56], Chen et al.’s method [59] can not

distinguish the uncertainty of evidence m1 and evidence m2,
which is inconsistent with our previous analysis. The result
of the proposed method is: Ex(m1) = 2.4597, Ex(m2) =
2.3498, satisfy Ex(m1) > Ex(m2).

V. A MULTI-SENSOR INFORMATION FUSION
ALGORITHM
Inspired by ideas of Murphy’s simple average method [38]
and Deng’s weighted average method [39], we combine
Hellinger distance and belief entropy to propose weighted
conflict evidence fusion method described in Fig. 4.

The specific steps of weighted conflict evidence fusion
method based on Hellinger distance and belief entropy are
as follows.

Step 1: We use Eq.(8) to assign the reliability of non-mono-
set propositions in BBAs mi(i = 1, 2, · · · , n) and mj(j =
1, 2, · · · , n) into mono-set propositions, and get new BBAs
m
′

i and m
′

j .
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TABLE 5. Fusion results of BBAs in Example 11 using seven different methods.

Method m123A({θ1}) m123B({θ1}) m123A({θ2}) m123B({θ2}) m123A({θ3}) m123B({θ3})

Dempster rule 0 0 0.9574 0.9677 0.0426 0.0323

Yager’s method [35] 0.5700 0.5320 0.1478 0.1970 0.0775 0.0775

Murphy’s method [38] 0.5235 0.4674 0.4674 0.5235 0.0091 0.0091

Deng et al.’s method [39] 0.7264 0.6823 0.2502 0.2968 0.0234 0.0209

Liu et al.’s method [42] 0.8332 0.7958 0.1454 0.1829 0.0214 0.0213

Ma & An’s method [46] 0.8837 0.8513 0.0931 0.1159 0.0232 0.0327

The proposed method 0.9115 0.8941 0.0798 0.0972 0.0087 0.0087

Step 2: Calculate the distance dH(mi,mj) between the
transformed evidence m

′

i and m
′

j , and construct the dis-
tance measure matrix D = [dH(mi,mj)]n×n, as shown in
Eq.(14).

D =



0 · · · dH (m1,mj) · · · dH (m1,mn)
...

...
...

dH (mi,m1) · · · dH (mi,mj) · · · dH (mi,mn)
...

...
...

dH (mn,m1) · · · dH (mn,mj) · · · 0


(14)

Step 3: According to the distance between m
′

i and the
other BBA m

′

j , calculate the average distance dHi of m
′

i.

dHi =
1

n− 1

 n∑
j=1
j 6=i

dH (mi,mj)

 (15)

Step 4: The average distance dHi of m
′

i is processed and
normalised, and the obtained result is regarded as the support
degree Sup

′

i of mi described in Eq. (16) and Eq. (17).

Supi =
(

1−
√
dHi

)
e(−
√
dHi) (16)

Sup
′

i = Supi /
n∑
l=1

Supl (17)

Step 5: Calculate the belief entropy Ex(mi) of the ev-
idence mi using Eq. (12). The belief entropy Ex(mi) is
processed and normalised to avoid its zero situations, and the
obtained result is defined as the information volume IV

′

i of
mi described in Eq. (18) and Eq. (19).

IVi = eEx(mi) (18)

IV
′

i = IVi/
n∑
l=1

IVl (19)

Step 6: We use Eq.(17) and Eq.(19) to calculate the trust
degree Credi of mi.

Credi = Sup
′

i× IV
′

i (20)

Step 7: The weighting factor ωi of the evidence is obtained
by normalisation of trust degree Credi.

ωi = Credi/
n∑
l=1

Credl (21)

Step 8: We use ωi to weight the original evidence.

m
′′

i =

n∑
i=1

ωi ×mi(A) (22)

Step 9: According to the Dempster combination rule, the
revised evidence is fused n−1 times to obtain the final fusion
result.

Next, we introduce examples of robustness testing in Ma &
An [46] and compared the proposed method with Ma&An’s
method and methods proposed by other scholars.

Example 11: Assuming the frame of discernment Θ =
{θ1, θ2, θ3}, the four independent BBAs are shown below.

m1 : m1 (θ1) = 0,m1 (θ2) = 0.9,m1 (θ3) = 0.1
m2 : m2 (θ1) = 0.6,m2 (θ2) = 0.25,m2 (θ3) = 0.15
m3A : m3A (θ1) = 0.75,m3A (θ2) = 0.15,m3A (θ3) = 0.1
m3B : m3B (θ1) = 0.7,m3B (θ2) = 0.2,m3B (θ3) = 0.1

From the four BBAs in Example 11, it can be seen that
evidence m2,m3A,m3B all give the highest degree of trust
to the proposition {θ1}, while evidence m1 gives the highest
degree of trust to the proposition {θ2}. We find that the evi-
dence m1 and several other bodies of evidence have a large
conflict. Next, we verify the performance related to dealing
with conflicting evidence of the proposed method. Table
5 shows the final fusion results of different methods. The
fusion results of evidence m1,m2,m3A and m1,m2,m3B

are represented as m123A and m123B respectively.
The results in Table 5 show that the Dempster combination

rule supports proposition {θ2} due to the zero trust paradox,
which is contrary to common sense. Although both Yager’s
method [35] and Murphy’s method [38] support proposition
{θ1}, their final fusion result is not good. Deng et al.’s method
[39], Liu et al.’s method [42], Ma & An’s method [46] and
the proposed method all support proposition {θ1}. Compared
with the other combination methods, the proposed method
has the greatest support for proposition {θ1}, and the result
is the most concrete and robust. It can effectively weaken
the impact of conflicting evidence and is more conducive to
decision-making.
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VI. EXAMPLES ANALYSIS
Dempster-Shafer evidence theory is widely used in the fields
of fault diagnosis and target recognition. We take the me-
chanical fault diagnosis in [16] as an example and compare
the proposed method with other methods.

Example 12: Assuming the frame of discernment Θ =
{F1, F2, F3}. The fault data collected by the three sensors
S1, S2, S3 at different positions are transformed into three
BBAs after modelling, namely m1,m2,m3. At the same
time, two kinds of reliability related to the sensor are con-
sidered, one is the static reliability Rsi which is composed of
the evidence sufficiency index µi and the importance index
νi, can be expressed as Rsi = µi × νi, and the other is the
dynamic reliability Rdi based on Credi. We use the final
comprehensive reliabilityR = Rs×Rd as a weighting factor
to weight the original evidence. The parameters of the three
BBAs and the three sensors are as follows

m1 : m1 ({F1}) = 0.60,m1 ({F2}) = 0.10,
m1 ({F2, F3}) = 0.10,m1({Θ}) = 0.20

m2 : m2 ({F1}) = 0.05,m2 ({F2}) = 0.80,
m2 ({F2, F3}) = 0.05,m2({Θ}) = 0.10

m3 : m3 ({F1}) = 0.70,m3 ({F2}) = 0.10,
m3 ({F2, F3}) = 0.10,m3({Θ}) = 0.10

S1 : µ1 = 1, ν1 = 1
S2 : µ2 = 0.6, ν2 = 0.34
S3 : µ3 = 1, ν3 = 1

We give the detailed calculation process of the proposed
method below.

Step 1: The reliability of the multi-subset focal elements in
the evidence is processed by the probability transformation
function.

m
′

1 : m
′

1 ({F1}) = 0.8107,m
′

1 ({F2}) = 0.1606,

m
′

1 ({F3}) = 0.0287

m
′

2 : m
′

2 ({F1}) = 0.0607,m
′

2 ({F2}) = 0.9356,

m
′

2 ({F3}) = 0.0037

m
′

3 : m
′

3 ({F1}) = 0.8600,m
′

3 ({F2}) = 0.1311,

m
′

3 ({F3}) = 0.0089

Step 2: Construct the distance measure matrix D =
[dH(mi,mj)]n×n.

D =

 0 0.6166 0.0627
0.6166 0 0.6446
0.0627 0.6446 0


Step 3: Calculate the average distance dHi of the evidence.

dH1 = 0.3397
dH2 = 0.6306
dH3 = 0.3536

Step 4: Calculate the supporting degree Sup
′

i of the evi-
dence.

Sup
′

1 = 0.4237
Sup

′

2 = 0.1694
Sup

′

3 = 0.4069

Step 5: Calculate the information volume IV
′

i of the evi-
dence.

IV
′

1 = 0.4856
IV
′

2 = 0.2060
IV
′

3 = 0.3085

Step 6: Calculate the confidence Credi of the evidence.

Cred1 = 0.2057
Cred2 = 0.0349
Cred3 = 0.1255

Step 7: Calculate the weighting factor ωi of the evidence.

ω1 = 0.6080
ω2 = 0.0210
ω3 = 0.3710

Step 8: The weighted average of the original evidence.

m ({F1}) = 0.6255,m ({F2}) = 0.1147,
m ({F2, F3}) = 0.1608,m({Θ}) = 0.0990

Step 9: Fuse two times using Dempster combination rule.
Table 6 shows the fusion results of the seven methods.

Dempster combination fusion rule considers the proposition
{F2} to be the most likely, while the other six fusion methods
support the proposition {F1}. The final fusion result of the
proposed method supports 0.9018 for the proposition {F1},
indicating that this method can effectively deal with the fu-
sion of conflict evidence. Fig. 5 shows histograms comparing
the final fusion results based on different methods.

To further verify the effectiveness of the proposed method,
we use the following example of target recognition and
demonstrate the characteristics of this method through com-
parative experiments with other methods.

Example 13: There are five different sensors to be used for
recognition an air target, the recognition framework can be
described as Θ = {A : Civil aircraft, B : Bomber, C :
Helicopter}, and the information obtained by the five sen-
sors are converted into BBAs as shown below.

m1 : m1({A}) = 0.41,m1({B}) = 0.29,m1({C}) = 0.3
m2 : m2({A}) = 0,m2({B}) = 0.9,m2({C}) = 0.1
m3 : m3({A}) = 0.58,m3({B}) = 0.07,

m3({A,C}) = 0.35
m4 : m4({A}) = 0.55,m4({B}) = 0.1,

m4({A,C}) = 0.35
m5 : m5({A}) = 0.6,m5({B}) = 0.1,

m5({A,C}) = 0.3

We give the detailed calculation process of the proposed
method below.

Step 1: The reliability of the multi-subset focal elements in
the evidence is processed by the probability transformation
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TABLE 6. Fusion results of BBAs in Example 12 using seven different methods.

Method m({F1}) m({F2}) m({F2, F3}) m({Θ}) Target

Dempster rule 0.4519 0.5048 0.0336 0.0096 {F2}
Murphy’s method [38] 0.5376 0.4280 0.0279 0.0065 {F1}

Fan and Zou’s method [16] 0.8119 0.1096 0.0526 0.0259 {F1}
Chen et al.’s method [41] 0.8899 0.0785 0.0243 0.0073 {F1}
Yuan et al.’s method [40] 0.8948 0.0739 0.0241 0.0072 {F1}

Xiao’s method [1] 0.8978 0.0688 0.0254 0.0080 {F1}
The proposed method 0.9018 0.0654 0.0250 0.0078 {F1}

{F1} {F2} {F2,F3} {F1,F2,F3}
0.0

0.2

0.4

0.6

0.8

1.0

BB
A  Dempster rule

 Murphy s method [38]
 Fan s method [16]
 Chen s method [41]
 Yuan s method [40]
 Xiao s method [1]
 The proposed method

(a) The final fusion result of different methods

0.4519

0.5376

0.8119

0.8899 0.8948 0.8978 0.9018

{F1}
0.0

0.2

0.4

0.6

0.8

1.0

BB
A

 Dempster rule
 Murphy s method[38]
 Fan s method[16]
 Chen s method[41]
 Yuan s method[40]
 Xiao s method[1]
 The proposed method

(b) The final fusion result of different methods on {F1}

FIGURE 5. Comparison of the final fusion results of different fusion methods in Example 12.

function.

m
′

1 : m
′

1({A}) = 0.41,m
′

1({B}) = 0.29,m
′

1({C}) = 0.3

m
′

2 : m
′

2({A}) = 0,m
′

2({B}) = 0.9,m
′

2({C}) = 0.1

m
′

3 : m
′

3({A}) = 0.8547,m
′

3({B}) = 0.0974,

m
′

3({C}) = 0.0479

m
′

4 : m
′

4({A}) = 0.8130,m
′

4({B}) = 0.1391,

m
′

4({C}) = 0.0479

m
′

5 : m
′

5({A}) = 0.8352,m
′

5({B}) = 0.1341,

m
′

5({C}) = 0.0307

Step 2: Construct the distance measure matrix D =
[dH(mi,mj)]n×n.

D =


0 0.5621 0.3465 0.3193 0.3488

0.5621 0 0.7967 0.7596 0.7728
0.3465 0.7967 0 0.0460 0.0497
0.3193 0.7596 0.0460 0 0.0324
0.3488 0.7728 0.0497 0.0324 0


Step 3: Calculate the average distance dHi of the evidence.

dH1 = 0.3942
dH2 = 0.7228
dH3 = 0.3097
dH4 = 0.2893
dH5 = 0.3009

Step 4: Calculate the supporting degree Sup
′

i of the evi-
dence.

Sup
′

1 = 0.1896
Sup

′

2 = 0.0611
Sup

′

3 = 0.2427
Sup

′

4 = 0.2577
Sup

′

5 = 0.2490

Step 5: Calculate the information volume IV
′

i of the evi-
dence.

IV
′

1 = 0.2016
IV
′

2 = 0.0673
IV
′

3 = 0.2391
IV
′

4 = 0.2596
IV
′

5 = 0.2325

Step 6: Calculate the confidence Credi of the evidence.

Cred1 = 0.0382
Cred2 = 0.0041
Cred3 = 0.0580
Cred4 = 0.0669
Cred5 = 0.0579

Step 7: Calculate the weighting factor ωi of the evidence.

ω1 = 0.1697
ω2 = 0.0182
ω3 = 0.2577
ω4 = 0.2972
ω5 = 0.2572

Step 8: The weighted average of the original evidence.

VOLUME 4, 2016 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3044605, IEEE Access

J. Li et al.: Weighted Conflict Evidence Combination Method Based on Hellinger Distance and the Belief Entropy

TABLE 7. Fusion results of BBAs in Example 13 using seven different methods.

Method m({A}) m({B}) m({C}) m({A,C}) Target

Dempster rule 0 0.1422 0.8578 0 {C}
Murphy’s method [38] 0.9620 0.0210 0.0138 0.0032 {A}

Deng et al.’s method [39] 0.9820 0.0039 0.0107 0.0034 {A}
Zhang et al.’s method [45] 0.9820 0.0034 0.0115 0.0032 {A}
Wang et al.’s method [14] 0.9886 0.0004 0.0091 0.0032 {A}

Xiao’s method [1] 0.9894 0.0002 0.0061 0.0043 {A}
The proposed method 0.9895 0.0002 0.0061 0.0042 {A}

{A} {B} {C} {A,C}
0.0

0.2

0.4

0.6

0.8

1.0

BB
A

 Dempster rule
 Murphy s method[38]
 Deng s method[39]
 Zhang s method[45] 
 Wang s method[14]
 Xiao s method[1]
 The proposed method

(a) The final fusion result of different methods

0

0.962

0.982 0.982

0.9886 0.9894 0.9895

{A}0.950

0.975

1.000

BB
A

 Dempster rule
 Murphy s method[38]
 Deng s method[39]
 Zhang s method[45] 
 Wang s method[14]
 Xiao s method[1]
 The proposed method

(b) The final fusion result of different methods on {A}

FIGURE 6. Comparison of BBA results obtained by different fusion methods in target recognition.

m ({A}) = 0.5368,m ({B}) = 0.1391,
m ({C}) = 0.0527,m({A,C}) = 0.2714

Step 9: Fuse four times using Dempster combination rule.
The final results are shown in Table 7 and Fig. 6.

The data in Example 13 show that the evidence m2 sup-
ports target {B}, while the other four bodies of evidence
all supported target {A}. It shows that the evidence m2 is
a abnormal evidence, which has an apparent conflict with
the other four bodies of evidence. Table 7 shows that the
Dempster combination rule will have a zero-trust paradox.
The final combined results of several other methods all
supported target {A}. The final fusion result related to the
target {A} of the proposed method is 0.9895, which is higher
than that of other methods.

VII. CONCLUSION
From the perspective of how to effectively measure the
conflict between two bodies of evidence and quantify the un-
certainty of the evidence itself, we define a weighted conflict
evidence combination method based on Hellinger distance
and the belief entropy. We use the Hellinger distance and
the belief entropy to construct the weight coefficient of the
evidence, and then use this coefficient to weight the original
evidence, furthermore, use the Dempster combination rule to
fuse the weighted evidence.

Finally, the proposed method is verified through fault di-
agnosis and target recognition cases. The examples show that
proposed method reduces the weight of unreliable evidence

to weaken its unfavourable influence on the fusion, which can
effectively avoid the counter-intuitive result of the Dempster
combination rule in the case of high-conflict evidence fusing.

In the next work, we are going to study how to construct
the basic belief assignment in Dempster-Shafer evidence
theory and combine it with conflict evidence fusion.

APPENDIX
Proof of the Hellinger distance property:

Let m1 and m2 be the two BBAs on the same
frame of discernment Θ, the two BBAs m1 and m2

are shown as m1({θ1}),m1({θ2}), · · · ,m1({θn}) and
m2({θ1}),m2({θ2}), · · · ,m2({θn}), respectively. It can be
found that m1 and m2 satisfy 0 6 m({θi}) 6 1 and∑
im({θi}) = 1.

Proof.(1)
d2
H (m1,m2) = 1

2

∑
i

(∣∣∣√m1 ({θi})−
√
m2 ({θi})

∣∣∣)2

= 1
2

∑
i

∣∣∣√m1 ({θi})−
√
m2 ({θi})

∣∣∣ ∣∣∣√m1 ({θi})−
√
m2 ({θi})

∣∣∣
≤ 1

2

∑
i

∣∣∣√m1 ({θi})−
√
m2 ({θi})

∣∣∣ ∣∣∣√m1 ({θi}) +
√
m2 ({θi})

∣∣∣
= 1

2

∑
i
|m1 ({θi})−m2 ({θi})|

Since mi has properties such as 0 6 m({θi}) 6
1 and

∑
im({θi}) = 1, it can be deduced that

0 6
∑
i (|m1 ({θi})−m2 ({θi})|) 6 2, thus leading to

d2
H(m1,m2) ≤ 1. Also, the numerator and denominator

in the Eq.(11) are non-negative numbers, so we get that
0 6 dH(m1,m2) 6 1.
Prrof.(2)
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dH (m1,m2) =

∥∥∥√m1({θi})−
√
m2({θi})

∥∥∥
2√

2

=

∥∥∥√m2({θi})−
√
m1({θi})

∥∥∥
2√

2
= dH (m2,m1)

Proof.(3)
dH (m1,m2) = dH (m1,m1)

=

∥∥∥√m1({θi})−
√
m1({θi})

∥∥∥
2√

2
= 0

and,

dH (m1,m2) = 0⇒

∥∥∥√m1 ({θi})−
√
m2 ({θi})

∥∥∥
2√

2
= 0

⇒
∥∥∥√m1 ({θi})−

√
m2 ({θi})

∥∥∥
2

= 0

⇒ m1 = m2

Proof.(4)
dH(m1,m2) + dH(m2,m3)

= [ 1
2

∑
i |
√
m1({θi})−

√
m2({θi})|2]

1
2

+[ 1
2

∑
i |
√
m2({θi})−

√
m3({θi})|2]

1
2

Using Minkowski inequality,

[
∑n
i=1(ai + bi)

P ]
1
P ≤ [

∑n
i=1(ai)

P ]
1
P + [

∑n
i=1(bi)

P ]
1
P

Where P ≥ 1, ai > 0, bi > 0.
We get,
dH(m1,m2) + dH(m2,m3)

= [ 1
2

∑
i |
√
m1({θi})−

√
m2({θi})|2]

1
2

+[ 1
2

∑
i |
√
m2({θi})−

√
m3({θi})|2]

1
2

= 1√
2
{[
∑
i |
√
m1({θi})−

√
m2({θi})|2]

1
2

+[
∑
i |
√
m2({θi})−

√
m3({θi})|2]

1
2 }

≥ 1√
2
[
∑
i(|
√
m1({θi})−

√
m2({θi})|

+|
√
m2({θi})−

√
m3({θi})|)2]

1
2

Moreover, since
|
√
m1({θi})−

√
m2({θi})|+|

√
m2({θi})−

√
m3({θi})| ≥

|
√
m1({θi})−

√
m3({θi})|

Then we obtain that
dH(m1,m2) + dH(m2,m3) ≥ 1√

2
[
∑
i |
√
m1({θi}) −√

m3({θi})|2]
1
2 = dH(m1,m3)

REFERENCES
[1] F. Xiao, "Multi-sensor data fusion based on the belief divergence measure

of evidences and the belief entropy," Inf. Fusion, vol. 46, pp. 23-32, Mar.
2019.

[2] L. A. Zadeh, "Fuzzy sets," Inf. Control, vol. 8, no. 3, pp. 338-353, Jun.
1965.

[3] A. P. Dempster, "Upper and lower probabilities induced by a multivalued
mapping," Ann. Math. Stat., vol. 38, no. 2, pp. 325-339, 1967.

[4] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ, USA:
Princeton Univ. Press, 1976.

[5] Z. Pawlak, "Rough sets," Int. J. Comput. Inf. Sci., vol. 11, no. 5, pp. 341-
356, Oct. 1982.

[6] L. Fei and Y. Deng, "Multi-criteria decision making in pythagorean fuzzy
environment," Appl. Intell., vol. 50, no. 2, pp. 537-561, Feb. 2020.

[7] T. Denoeux, "Calibrated model-based evidential clustering using boot-
strapping," Inf. Sci., vol. 528, pp. 17-45, Aug. 2020.

[8] F. Xiao, Z. Cao, and A. Jolfaei, "A novel conflict measurement in decision
making and its application in fault diagnosis," IEEE Trans. Fuzzy Syst.,
2020. DOI:10.1109/TFUZZ.2020.3002431.

[9] X. Zhao and B. Hu, "Three-way decisions with decision-theoretic rough
sets in multiset-valued information tables," Inf. Sci., vol. 507, pp. 684-699,
Jan. 2020.

[10] M. Yazdi and S. Kabir, "Fuzzy evidence theory and Bayesian networks for
process systems risk analysis," Hum. Ecol. Risk Assess. An Int. J., vol. 26,
no. 1, pp. 57-86, Jan. 2020.

[11] Y. Song, X. Wang, J. Zhu, and L. Lei, "Sensor dynamic reliability evalu-
ation based on evidence theory and intuitionistic fuzzy sets," Appl. Intell.,
vol. 48, no. 11, pp. 3950-3962, Nov. 2018.

[12] J. Lu, D. Li, Y. Zhai, and H. Bai, "Belief and plausibility functions of type-
2 fuzzy rough sets," Int. J. Approx. Reasoning, vol. 105, pp. 194-216, Feb.
2019.

[13] X. Xu, D. Zhang, Y. Bai, L. Chang, and J. Li, "Evidence reasoning rule-
based classifier with uncertainty quantification," Inf. Sci., vol. 516, pp.
192-204, Apr. 2020.

[14] Y. Wang, F. Liu, and A. Zhu, "Bearing fault diagnosis based on a hybrid
classifier ensemble approach and the improved Dempster-Shafer theory,"
Sensors, vol. 19, no. 9, p. 2097, May. 2019.

[15] H. Zhang and Y. Deng, "Weighted belief function of sensor data fusion in
engine fault diagnosis," Soft Comput., vol. 24, no. 3, pp. 2329-2339, Feb.
2020.

[16] X. Fan and M. Zuo, "Fault diagnosis of machines based on D-S evidence
theory. Part 1: D-S evidence theory and its improvement," Pattern Recog-
nit. Lett., vol. 27, no. 5, pp. 366-376, Apr. 2006.

[17] Y. Lin, Y. Li, X. Yin, and Z. Dou, "Multisensor fault diagnosis modeling
based on the evidence theory," IEEE Trans. Rel., vol. 67, no. 2, pp. 513-
521, Jun. 2018.

[18] D. Gruyer, S. Demmel, V. Magnier, and R. Belaroussi, "Multi-hypotheses
tracking using the Dempster-Shafer theory, application to ambiguous road
context," Inf. Fusion, vol. 29, pp. 40-56, May. 2016.

[19] G. Dong and G. Kuang, "Target recognition via information aggregation
through Dempster-Shafer’s evidence theory," IEEE Geosci. Remote Sens.
Lett., vol. 12, no. 6, pp. 1247-1251, Jun. 2015.

[20] T. Fei, D. Kraus, and A. Zoubir, "Contributions to automatic target recog-
nition systems for underwater mine classification," IEEE Trans. Geosci.
Remote Sens., vol. 53, no. 1, pp. 505-518, Jan. 2015.

[21] L. Fei, J. Xia, Y. Feng, and L. Liu, "An ELECTRE-based multiple criteria
decision making method for supplier selection using Dempster-Shafer
theory," IEEE Access, vol. 7, pp. 84701-84716, 2019.

[22] W. Ma, W. Liu, X. Luo, K. McAreavey, Y. Jiang, and J. Ma, "A Dempster-
Shafer theory and uninorm-based framework of reasoning and multiat-
tribute decision-making for surveillance system," Int. J. Intell. Syst., vol.
34, no. 11, pp. 3077-3104, Nov. 2019.

[23] P. Liu and X. Zhang, "Approach to multi-attributes decision making with
intuitionistic linguistic information based on Dempster-Shafer evidence
theory," IEEE Access, vol. 6, pp. 52969-52981, 2018.

[24] Z. He and W. Jiang, "An evidential dynamical model to predict the inter-
ference effect of categorization on decision making results," Knowledge-
Based Syst., vol. 150, pp. 139-149, Jun. 2018.

[25] C. Lian, S. Ruan, T. Denoeux, H. Li, and P. Vera, "Joint tumor segmen-
tation in PET-CT images using co-clustering and fusion based on belief
functions," IEEE Trans. Image Process., vol. 28, no. 2, pp. 755-766, Feb.
2019.

[26] N. D. Kalka, J. Zuo, N. A. Schmid, and B. Cukic, "Estimating and fusing
quality factors for iris biometric images," IEEE Trans. Syst., Man, Cybern.
A, Syst., Humans, vol. 40, no. 3, pp. 509-524, May. 2010.

[27] Z. Li, G. Wen, and N. Xie, "An approach to fuzzy soft sets in decision
making based on grey relational analysis and Dempster-Shafer theory of
evidence: An application in medical diagnosis," Artif. Intell. Med., vol. 64,
no. 3, pp. 161-171, Jul. 2015.

[28] Q. Zhou, H. Mo, and Y. Deng, "A new divergence measure of pythagorean
fuzzy sets based on belief function and its application in medical diagno-
sis," Mathematics, vol. 8, no. 1, p. 142, Jan. 2020.

[29] F. Xiao, "A hybrid fuzzy soft sets decision making method in medical
diagnosis," IEEE Access, vol. 6, pp. 25300-25312, 2018.

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3044605, IEEE Access

J. Li et al.: Weighted Conflict Evidence Combination Method Based on Hellinger Distance and the Belief Entropy

[30] Y. Pan, L. Zhang, X. Wu, and M. J. Skibniewski, "Multi-classifier infor-
mation fusion in risk analysis," Inf. Fusion, vol. 60, pp. 121-136, Aug.
2020.

[31] Y. Han and Y. Deng, "A hybrid intelligent model for assessment of
critical success factors in high-risk emergency system," J. Ambient Intell.
Humaniz. Comput., vol. 9, no. 6, pp. 1933-1953, Nov. 2018.

[32] H. Seiti and A. Hafezalkotob, "Developing pessimistic-optimistic risk-
based methods for multi-sensor fusion: An interval-valued evidence theory
approach," Appl. Soft. Comput., vol. 72, pp. 609-623, Nov. 2018.

[33] X. Zhang, S. Mahadevan, and X. Deng, "Reliability analysis with linguistic
data: An evidential network approach," Rel. Eng. Syst. Saf., vol. 162, pp.
111-121, Jun. 2017.

[34] D. Wu and Y. Tang, "An improved failure mode and effects analysis
method based on uncertainty measure in the evidence theory," Qual.
Reliab. Eng. Int., vol. 36, no. 5, pp. 1786-1807, Jul. 2020.

[35] R. R. Yager, "On the Dempster-Shafer framework and new combination
rules," Inf. Sci., vol. 41, no. 2, pp. 93-137, Mar. 1987.

[36] P. Smets, "The combination of evidence in the transferable belief model,"
IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 5, pp. 447-458, May.
1990.

[37] D. Dubois and H. Prade, "Representation and combination of uncertainty
with belief functions and possibility measures," Comput. Intell., vol. 4, no.
3, pp. 244-264, Sep. 1988.

[38] C. K. Murphy, "Combining belief functions when evidence conflicts,"
Decis. Support Syst., vol. 29, no. 1, pp. 1-9, Jul. 2000.

[39] Y. Deng, W. Shi, Z. Zhu, and Q. Liu, "Combining belief functions based
on distance of evidence," Decis. Support Syst., vol. 38, no. 3, pp. 489-493,
Dec. 2004.

[40] K. Yuan, F. Xiao, L. Fei, B. Kang, and Y. Deng, "Modeling sensor
reliability in fault diagnosis based on evidence theory," Sensors, vol. 16,
no. 1, p. 113, Jan. 2016.

[41] L. Chen, L. Diao, and J. Sang, "Weighted evidence combination rule
based on evidence distance and uncertainty measure: an application in fault
diagnosis," Math. Probl. Eng., vol. 2018, Jan. 2018. Art. no. 5858272.

[42] Z. Liu, J. Dezert, Q. Pan, and G. Mercier, "Combination of sources of
evidence with different discounting factors based on a new dissimilarity
measure," Decis. Support Syst., vol. 52, no. 1, pp. 133-141, Dec. 2011.

[43] A. L. Jousselme, D. Grenier, and éloi Bossé, "A new distance between two
bodies of evidence," Inf. Fusion, vol. 2, no. 2, pp. 91-101, Jun. 2001.

[44] W. Liu, "Analyzing the degree of conflict among belief functions," Artif.
Intell., vol. 170, no. 11, pp. 909-924, Aug. 2006.

[45] Z. Zhang, T. Liu, D. Chen, and W. Zhang, "Novel algorithm for identifying
and fusing conflicting data in wireless sensor networks," Sensors, vol. 14,
no. 6, pp. 9562-9581, Jun. 2014.

[46] M. Ma and J. An, "Combination of evidence with different weighting
factors: a novel probabilistic-based dissimilarity measure approach," J.
Sensors, vol. 2015, no. 2, pp. 1-9, Mar. 2015.

[47] Y. Deng, "Deng entropy," Chaos, Solitons Fractals, vol. 91, pp. 549-553,
Oct. 2016.

[48] D. Zhou, Y. Tang, and W. Jiang, "An improved belief entropy and its
application in decision-making," Complexity, vol. 2017, Mar. 2017, Art.
no. 4359195.

[49] Y. Tang, D. Zhou, S. Xu, and Z. He, "A weighted belief entropy-based
uncertainty measure for multi-sensor data fusion," Sensors, vol. 17, no. 4,
p. 928, Apr. 2017.

[50] L. Pan and Y. Deng, "A new belief entropy to measure uncertainty of
basic probability assignments based on belief function and plausibility
function," Entropy, vol. 20, no. 11, p. 842, Nov. 2018.

[51] M. Qin, Y. Tang, and J. Wen, "An improved total uncertainty measure in
the evidence theory and its application in decision making," Entropy, vol.
22, no. 4, p. 487, Apr. 2020.

[52] M. Jing and Y. Tang, "A new base basic probability assignment approach
for conflict data fusion in the evidence theory," Appl. Intell., pp. 1-13, Sep.
2020. DOI: 10.1007/s10489-020-01876-0

[53] A. L. Jousselme and P. Maupin, "Distances in evidence theory: Compre-
hensive survey and generalizations," Int. J. Approx. Reasoning, vol. 53, no.
2, pp. 118-145, Feb. 2012.

[54] U. Höhle, "Entropy with respect to plausibility measures," in Proc. IEEE
12th Int. Symp. Multiple Valued logic, Paris, France, 1982, pp. 167-169.

[55] R. R. Yager, "Entropy and specificity in a mathematical theory of evi-
dence," Int. J. Gen. Syst., vol. 9, no. 4, pp. 249-260, Jan. 1983.

[56] D. Dubois and H. Prade, "A note on measures of specificity for fuzzy sets,"
Int. J. Gen. Syst., vol. 10, no. 4, pp. 279-283, Feb. 1985.

[57] G. J. Klir and A. Ramer, "Uncertainty in the Dempster-Shafer theory: a
critical re-examination," Int. J. Gen. Syst., vol. 18, no. 2, pp. 155-166,
1990.

[58] G. J. Klir and B. Parviz, "A note on the measure of discord," In Proc. 8th
Conf. Uncert. Artif. Intell., Stanford, CA, USA, Jul. 1992, pp. 138-141.

[59] L. Chen, L. Diao, and J. Sang, "A novel weighted evidence combina-
tion rule based on improved entropy function with a diagnosis appli-
cation," Int. J. Distrib. Sens. Netw., vol. 15, no. 1, Jan. 2019, Art. no.
1550147718823990.

JUNWEI LI received the M.S. and Ph.D. degrees
in control science and engineering from North-
western Polytechnical University Xi’an, China, in
2009 and 2013 respectively. Now, he is an As-
sociate Professor with the School of Computer
and Information Engineering, Henan University,
Kaifeng, Henan, China. His research interests in-
clude information fusion, pattern recognition.

BAOLIN XIE is currently pursuing the M.S. de-
gree with the School of Computer and Information
Engineering, Henan University, Kaifeng, Henan,
China. He is currently a student member of the Lab
of Intelligent Technology and Systems of Henan
University and his research interests include infor-
mation fusion and data classification.

YONG JIN received B.S. in Electrical Engineer-
ing from Tongji University, Shanghai, China, in
1994, and the Ph.D. degree in Information and
Communication Engineering from Northwestern
Polytechnical University, Xi’an, China, in 2010.
Since 2015, he was as an Professor with the School
of Computer and Information Engineering, Henan
University, Kaifeng, Henan, China. Also, he has
served as a peer-reviewer for various IEEE re-
search journals since 2010. His research interests

include array signal processing and statistical signal processing.

ZHENTAO HU received the M.S. in application
mathematics from Henan University, China, in
2006, and the Ph.D. degree in control science
and engineering from Northwestern Polytechnical
University Xi’an, China, in 2010. Now, he is an
Associate Professor with the School of Computer
and Information Engineering, Henan University,
Kaifeng, Henan, China. His research interests in-
clude target tracking, nonlinear estimation and
particle filtering.

14 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3044605, IEEE Access

J. Li et al.: Weighted Conflict Evidence Combination Method Based on Hellinger Distance and the Belief Entropy

LIN ZHOU received the M.S. in application math-
ematics from Henan University, China, in 2005,
and the Ph.D. degree in control theory and con-
trol engineering from Northwestern Polytechnical
University Xi’an, China, in 2013. Now, she is an
Associate Professor with the School of Computer
and Information Engineering, Henan University,
Kaifeng, Henan, China. Her research interests in-
clude information fusion, sensor management.

VOLUME 4, 2016 15


