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ABSTRACT Industry 4.0 utilizes the Internet of Things (IoT) to rise the efficiency in manufacturing and

automation where wireless sensor networks (WSNs) are crucial technologies for communication layer of

IoT. WSNs include hundreds of small sized sensor nodes that have the abilities of wireless transmission and

environmental sensing. Wireless transmission is prone to various attacks such as data manipulation since

data communication is achieved through transfer of radio packets. A countermeasure of this issue is link

monitoring by deploying secure points that can physically capture and inspect radio packets. Graph theory

plays a critical role to solve various problems inWSNs. Finding minimumVertex Cover (VC) is an important

NP-Hard graph theoretic problem in which the minimum set of nodes (vertices) is aimed to select in such

a way that each link should be incident to at least one node from this set. VC is a significant structure for

WSNs where it perfectly fits for link monitoring when nodes in VC are set as secure points (monitors). Since

sensor nodes are generally battery-powered and have limited transmission range, energy-efficient multi-hop

communication to the sink node is of utmost importance. In weighted connected VC (WCVC) structure,

subgraph induced by monitor nodes are connected where monitors are chosen according to their weights.

When weights of nodes are assigned as reciprocal of their energies, an energy-efficient virtual backbone can

be formed. We propose a novel metaheuristic WCVC algorithm for link monitoring and backbone formation

in WSNs modeled as undirected graphs. Our proposed algorithm integrates a genetic search with a greedy

heuristic to improve WCVC solution quality and decrease the search time. To evaluate the efficiencies of

greedy heuristics, we adopt three different heuristics for WCVC problem. We implement our algorithm

with its counterparts and reveal that the algorithm is favorable in terms of solution quality and resource

consumption.

INDEX TERMS Internet of Things, wireless sensor networks, link monitoring, vertex cover, metaheuristic

algorithm.

I. INTRODUCTION

New manufacturing, automation and production process

requirements brought by Industry 4.0 will boost the develop-

ment of Internet of Things (IoT) which is envisioned as a net-

work of billions of connected smart objects to increase safety,

efficiency and intelligence [1]–[3]. Application, communi-

cation and physical layers are IoT architecture layers from

top to bottom. Smart plants, factories and supply chain are

some well-known examples located in the application layer.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaolong Li .

Mobile phones, computing terminals and data centers are

some example devices belonging to the physical layer. Wire-

less sensor networks (WSNs) are indispensable networking

technologies used in the communication layer of IoT [4].

WSNs are composed of tiny sensor motes (sensor nodes)

which are embedded in the environment to sense various

events and transmit the sensed data through wireless trans-

mission making them applicable in a broad spectrum areas

such as habitat monitoring, outer space exploration, tar-

get tracking, miner safety, healthcare and military surveil-

lance [5]–[18]. Generally, motes are geographically dispersed

in a sensing area to accomplish these applications and they are
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programmed to operate in an autonomous way. A specialized

sink node plays the central data collector role of the network

where it achieves a gateway operation between ordinary sen-

sor nodes and users interested in sensed data. Although, star

topology and its similar variants are known as deployment

alternatives to achieve data transmission through single-hop

communication between the sink and ordinary nodes, they

have many defects. For example, in many real world sce-

narios, the maximum transmission range of motes can be

limited to transmit the sensed data, obstacles may be present

to interfere the wireless communication, energy conserva-

tion techniques can be applied to reduce the transmission

power to prolong the network lifetime. When at least one of

these cases is present, engineering multi-hop communication

where the sensed data is relayed through intermediate nodes,

is of paramount importance.

Wireless communication is known prone to various attacks

such as spoofing, jamming and eavesdropping due to its

inherent properties [19]–[22]. As an example, a successful

transmission between a sender and receiver node can be

physically overheard by other nodes in transmission range

of sender node. In this way, an adversary node can collect

various packets to learn the behaviour pattern of other legit-

imate nodes and may inject fake packets to misinform the

nodes in network. To detect and prevent these attacks, coun-

termeasures should be taken before WSN starts to operate.

Monitoring network traffic through secure points is one of the

most common methods to overcome this type of attacks [23].

When every data transmission is inspected by monitor nodes,

secure points in another words, adversely generated packets

may be detected and precautions can be taken. Although,

this countermeasure is a very effective strategy to detect and

prevent this type of misbehavior, monitor nodes can be costly

in terms of many parameters such as deployment time and

extra hardware cost, thus minimizing the number of these

nodes is of very important.

WSNs can be modeled with an undirected graph (UG)

G(V ,E) in which V and E represent the set of nodes and

communication links (edges), respectively. Vertex cover (VC)

is one of the important graph theoretic structures which can

be used in various domains such as race condition detection

in parallel systems, camera deployment in traffic supervision,

phylogenetic tree construction and finally, the link monitor-

ing in WSNs [23], [24]. A VC set consists of nodes where

for each edge (i,j) in E at least one of i and j is in VC.

In another words, at least one endpoint of each edge is a node

in VC set. In this manner, the nodes in VC set can be assigned

as monitor nodes. For a given UG, finding the minimum

cardinality VC set is an NP-Hard problem. If each node pair

in VC is connected through path of only nodes in VC set, then

we call this structure as connected VC (CVC). CVC provides

a virtual backbone of monitor nodes where the collected data

by monitor nodes can be routed to the sink node through

CVC backbone. Obviously, same with VC problem, finding

minimum CVC for a given graph is NP-Hard. Since sensor

nodes are generally battery powered, energy conservation is

very important where the transmission is the most energy

consuming factor [25]. So that, maximizing the energies

of CVC set is crucial to prolong the lifetime of backbone.

To accomplish this issue, weighted CVC (WCVC) can be

used in which weight of each node is assigned as reciprocal

of its energy. The objective of minimum WCVC problem is

to find a connected VC set having minimum total weight.

WCVC provides both link monitoring and energy-efficient

backbone formation operations for WSNs, so it is a crucial

structure. In this article, to address these challenges, we pro-

pose WCVC algorithms for link monitoring in WSNs. Our

contributions are listed as follows:

• As the main contribution of this article, we propose a

novel hybrid genetic WCVC algorithm for link moni-

toring in WSNs modeled as UG. Our novel approach

combines a greedy heuristic with a genetic search to

decrease the weights of WCVC solutions and to reduce

the time needed to search new solutions.

• We adapt three different greedy heuristics to solve

WCVC problem. After extensive experiments, we find

the best heuristic and use it as the selection criteria of

our metaheuristic algorithm.

• We implement the proposed algorithm with its counter-

parts and find that our proposed algorithm outperforms

its competitors in terms of WCVC weight and monitor

count. We also reveal that our proposed algorithm finds

optimum results in small size instances while consuming

far less time than the brute force algorithm. These find-

ings show us that our algorithm is favorable in terms of

WCVC quality and resource consumption.

The rest of this article is organized as follows. In Section II,

we provide a detailed survey of the related studies. Prob-

lem formulation is given in Section III. Proposed metaheuris-

tic algorithm along with the adopted greedy heuristics are

elaborated in Section IV. Section V presents extensive exper-

imental evaluations. Conclusions are drawn in VI.

Before ending this section, finally, we summarize the nota-

tions used throughout the paper in Table 1 to clarify and ease

the reading.

TABLE 1. The list of notations used in this article.

II. RELATED WORK

In this section, we investigate studies related to vertex cover

and its varieties. In [26], isolation algorithm that is a heuristic
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method aiming to solve minimum VC problem has been pro-

posed. Measurements taken on widely used datasets revealed

that the proposed algorithm performs well when the graph

size is small. A VC algorithm has been given in [27] that is

based on two-stage exchange and edge weighting methods.

The first method aims to find two nodes to exchange and

the second method targets to decrease edge weights. By com-

bining these two methods, a local search approach has been

proposed and tested on widely used datasets. Caskurlu et al.

proposed a partial VC formulation considered for risk man-

agement and proved that the tackled problem is NP-hard [28].

In [29], a local search solver has been designed to enhance

best-picking strategy and it has been shown that although

this method has high complexity, it can be powerful to solve

problems. Hong et al. studied VC problem with various

constraints on hypergraphs and proposed a primal-dual algo-

rithm [30]. Cheung et al. proposed another study targeting the

same problem on hypergraphs [31]. Amulti stagemetaheuris-

tic approach in which a degree-based initialization method

and snowdrift game is used that aims to solve VC problem

has been designed in [32]. For other similar studies, we refer

the readers to [33], [34]. The algorithms mentioned so far do

not provide both weighted and connected VC whereas the

proposed algorithm in this article aims to construct WCVC

structure.

Xu et al. designed a WVC solver based on a primal-dual

algorithm [35]. Through performance evaluations, they

showed that their proposed solver is efficient. In [36], a list-

heuristic algorithm to solve WVC has been proposed. The

dual formulation of WVC and its usage has been studied

in [37]. Cai et al. designed two algorithms which improve

search process to solve WVC [38]. This algorithm has been

evaluated for map labeling and tested on massive graphs.

In [39], k-weighted VC problem has been studied in which

the weight of VC is bounded by k . Islam et. al has been

investigated vertex and edge weighted VC problem in which

a chemical reaction optimization approach has been pro-

posed to tackle this problem [40]. The algorithm has been

compared with other metaheuristic methods such as genetic

algorithm and tabu search. In [41], authors proposed a WVC

algorithm running on graphs whose maximum degrees are 3.

Li et al. proposed an algorithm to solveWVC based on reduc-

tion rules, configuration checking and self-adaptive node

removal [42]. The authors evaluated the proposed algorithm

on massive graphs and real-world instances. Although the

algorithms given in this paragraph produce weighted VC,

they do not aim to output CVC, thus they can not be used

for backbone formation.

In [43], authors designed approximation algorithms for

CVC problem on 4-regular problems where this version of

CVC problem is in NP-hard same with the original CVC

problem. Krithika et al. studied the parameterized complex-

ity cases of CVC [44]. Johnson et al. concerned the CVC

problem for some special cases of graphs [45]. A two stage

algorithm has been given in [46] where a greedy algorithm

is used in construction stage and a configuration checking

method is used in local search stage. In [47], CVC problem

on k-regular problems for constant k values where k ≥ 4 is

studied. The algorithms listed in this paragraph construct

CVC but they do not use node weights,thus they do not target

to construct energy-efficient backbones.

Fan et al. proposed a polynomial-time approximation

scheme to solveWCVC problem onUDGs such that the input

graph is c-local [48]. Despite dealing with the WCVC prob-

lem, the underlying networkmodel of this study is completely

different from our paper. Besides, UDG modeled WSNs may

lack modeling simple realistic problems such as the link

construction between nodes when obstacles are present in the

network [53]. Hence we study UG which is more realistic

model in this manner. We also left WCVC studies having

different constraints (such as every path consisting of k ver-

tices has one monitor node) [49], [50] that are out of our

scope.

A similar and very interesting problem is p-self-protection

in WSNs [51], [52]. This problem is finding the minimum

set of safe nodes for protecting other nodes in WSN. The

p-self-protection problem resembles our target problem in

this study (WCVC problem), but it is directly related to

dominating set problem. As a simple example, the network

given in Figure 1 is a 1-self-protectedWSNbut not a VC since

edges (2,3), (2,4), (3,6), (4,5) and (5,6) are not covered by any

monitor node.

FIGURE 1. p-self-protection example (node 1 is monitor).

A table which categorizes all the reviewed works discussed

in this section along their main distinctive features such as

target problem, network model and algorithm type is given

in Table 2.

III. PROBLEM FORMULATION

Wemodel WSN as a node weighted UGG(V ,E,w) in which

V represents the set of nodes, E is the set of edges and

w : V → R+ is a weight function. A sample network

model is given in Figure 2. In this model, each node’s unique

id is written inside it, each node’s weight is written near it

and node 0 is assigned as the sink node. Solid lines show

undirected links. There is a channel between node x and

node y if and only if there exists a link from node y to node x.

We assume that the nodes are not mobile to preserve the net-

work structure at least during the execution of the algorithm.
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TABLE 2. Summary of the related work.

FIGURE 2. An example network.

In another words, we assume that the neighborhoods of nodes

(the input communication graph) do not change when the

proposed algorithm is executing. This is a fair assumption

which is widely used [54] to provide consistent operation by

preventing a change in the input graph during the execution

of the algorithm.

Our proposed algorithm in this article is executed by the

sink node. To provide central execution in the sink node,

the global network graph should be constructed. Many meth-

ods can be applied to accomplish the global construction

of the graph in the sink node. For example a distributed

spanning tree rooted at the sink node can be constructed,

then weight and neighbor list of each node can be transmitted

through this spanning tree to the sink node. We assume a sim-

ilar method is applied before the execution of our proposed

approach.

For a given node weighted UG G(V ,E,w : V → R+), let

Vm ∈ V is the set of monitor nodes, VC in another words,

where Vm = {v| ∀(i, j) ∈ E : (i ∈ Vm) ∨ (j ∈ Vm)}.

Also let Gm(Vm,Em,wm) be the monitor induced subgraph.

Minimum WCVC problem is to find Vm such that Gm is

connected and wm is minimized.

In this article, we use N (v) for neighbor set of node v

where N (v) = {u | (u, v) ∈ E}. We also call N (v) as the

open neighborhood of node v. Closed neighborhood of node

v includes open neighborhood and node v itself defined as

N [v] = {N (v) ∪ {v}}. We use BLACK, GRAY and WHITE

colors to classify nodes in the graph. A BLACK node is a

monitor node, a GRAY node is not a monitor node but have

at least one monitor neighbor and a WHITE node is not a

monitor and does not have any BLACK neighbor. To clarify

colors, a sample coloring operation is shown in Figure 2.

node 5 is BLACK, its neighbors (Nodes 3, 4, 6 and 9) are

GRAY and the other nodes (Nodes 0, 1, 2, 7, 8 and 10) are

WHITE.

IV. PROPOSED ALGORITHMS

In this section, we first define three greedy heuristics to tackle

with the problem and to determine which selection strategy

produces WCDS having less weight. Secondly, we give the

detailed description of the proposed HGA. Lastly, we present

an example application of the proposed HGA on an

illustration.

A. GREEDY HEURISTICS

To deal with the WCVC problem on UG modeled WSNs,

we first define greedy heuristics. The design of our heuris-

tics are based on the ideas to solve weighted connected
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FIGURE 3. WCDS Heuristic Example.

dominating set (WCDS) problem given in [53]. In each

heuristic, all nodes are initially WHITE. When a node v

is selected, it is colored BLACK and its WHITE neighbors

are colored GRAY. When no WHITE node is left, the algo-

rithm terminates. The heuristics differentiate each other with

their node selection policy. The greedy degree (GD) heuris-

tic chooses node having the maximum WHITE neighbor

count: argmaxv{v ∈ V | N (v,WHITE)}. The greedy

weight (GW) heuristic selects the node having the minimum

weight: argminv{v ∈ V | w(v)}. The last heuristic, greedy

ratio (GR), chooses the node having the minimum value

calculated as: argminv{v ∈ V | w(v)/
∑

u∈N (v,WHITE) w(u)}.

Although the heuristics given in [53] construct WCDS,

they can not guarantee to form WCVC, since two GRAY

nodes can be neighbors at the end of the algorithm, so they

are incapable to solve the target problem of this article. If at

least one edge exists that is incident to two GRAY nodes at

the end of the algorithm, then BLACKnodes do not constitute

a WCVC. In another words, if there is an edge between two

GRAY nodes, this edge is not covered. An example situation

where the heuristics given in [53] fail to construct is depicted

in Figure 3. In this figure nodes 1, 2 and 3 are selected to

construct a WCDS but edges (0,6), (0,7), (5,6), (7,8) and

(8,9) are not covered so WCVC can not be constructed.

To overcome this problem, our proposed heuristics choose

additional GRAYnodes having the smallest weight until there

is no uncovered edge. In thismanner, all edgeswill be covered

by selected monitor nodes at the end of the algorithm and

WCVC is constructed.

Example operations of WCVC heuristics are given in

Figure 4 where execution of GD, GW and GR on sample

topology are illustrated in Figures 4a, 4b and 4c, respec-

tively. GD heuristic first chooses node 4 among all nodes

(initially all nodes are WHITE) because its degree is 5 that

is greater than all other nodes’ degrees. After node 4 is

selected, all neighbors of node 4 (nodes 0, 1, 2, 3 and 5) are

colored GRAY and all edges incident to node 4 are covered.

At the second step, node 5 having the maximum WHITE

neighbor count among GRAY nodes is colored BLACK and

its white neighbor, node 6, is colored GRAY. After that,

node 6 is chosen, it is colored BLACK and its WHITE

neighbors (nodes 7, 8 and 10) are colored GRAY. Following

this step, node 10 is colored BLACK and node 9 is colored

GRAY. From now on, there is no WHITE node left in the

network, so GRAY node having the smallest weight (node 9)

is chosen. Afterwards, nodes 0, 1, 2 and 8 are chosen in

sequence.

GWheuristic first selects node 9 because it has the smallest

weight among all nodes. It is colored BLACK and itsWHITE

neighbors (nodes 8 and 10) are coloredGRAY.AmongGRAY

nodes (nodes 8 and 10), since node 10’s weight is smaller than

node 8, node 10 is colored BLACK and node 6 is colored

GRAY. Following this, nodes 6, 5, 3, 2, 1, 0 and 8 are colored

BLACK, sequentially.

When GR heuristic is applied on the example topology,

node 6 is chosen at the first step, because its ratio equals to

FIGURE 4. Example WCVC solutions produced after executing greedy heuristics (Initially all nodes are WHITE).
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20/(20+50+80+90+100)=0.06 that is the minimum among

others. In this manner, node 6 is colored BLACK and its

WHITE neighbors (nodes 5, 7, 8 and 10) are colored GRAY.

At the second step, node 5 which has the smallest ratio

among other GRAY nodes is chosen and its WHITE neighbor

(node 4) is colored GRAY. Following this, nodes 3, 2, 1, 0,

8 and 9 are chosen sequentially. Among greedy heuristics

implemented in this example, GR has the best performance.

To measure and evaluate the effectiveness of the heuristics in

a broad and accurate manner, we implement these heuristics

on a dataset including various graphs having different node

counts and degrees in Section V. From extensive evaluations,

we reveal that GR generally produces WCVCs having less

weight than the other heuristics. Hence, we use GR as the

greedy heuristic in our proposed HGA described in the fol-

lowing section.

B. DESCRIPTION OF THE PROPOSED ALGORITHM

We propose a hybrid steady state genetic algorithm for min-

imum WCVC problem. The proposed algorithm combines

genetic approach and greedy heuristic to provide a feasible

solution.

The detailed description of proposed algorithm is given in

Algorithm 1. The algorithm starts by detecting cut vertices

whose removal breaks the input topology into one or more

components (Line 2). These critical nodeswill definitely be in

WCVC solution at the end of the algorithm to connect graph

components. So that, we define them at the beginning of the

algorithm. For cut vertex detection procedure, we use Tarjan’s

depth-first search based algorithm by taking node weighted

graphG as the input [55]. After detecting cut vertices, we gen-

erate initial population having size members (Line 3). The

first member of the topology is the solution produced by GR

heuristic. The rest of the chromosomemembers are generated

randomly. We represent the chromosomes with a bit vector of

size equals to n (node count in graph). An example chromo-

some structure is given in Figure 5 with a bit vector of the

length n where each value of 1 indicates monitors. Following

that, the main loop of the algorithm that will be iterated

for input Imax times begins (Line 4). Afterwards, a new

FIGURE 5. Chromosome representation.

Algorithm 1 Proposed HGA

input : prc – probability of crossover

prs – probability of selection

prm – probability of mutation

pri – probability of minimization

pre – probability of repair

size – population size

Imax – maximum iteration

G(V ,E,w) – node weighted graph

output: weight – weight of the best member

1 begin

2 C := DetectCutVertices(G)

3 P := GeneratePopulation(size)

4 while Imax > 0 do

5 prt :=GenerateFloatNumber(0, 1)

6 if prt < prc then

7 parent1 := SelectParent(prs)

8 parent2 := SelectParent(prs)

9 child := Crossover(parent1,

parent2)

10 child := Mutate(child, prm)

11 end

12 else

13 child := GenerateChromosome()

14 end

15 child := RepairChromosome(pre,

child)

16 child := MinimizeChromosome(C,

pri, child)

17 if child /∈ P then

18 Add(child)

19 RemoveChromosome(P [size-1])

20 end

21 Imax := Imax-1

22 end

23 return Weight(P[0])

24 end

chromosome is generated either by genetic operations or by

generating randomly (Lines 5-14) with respect to probability

of crossover input (prc). If the genetic operations are selected

(if control in Line 6 is true), a new child is constructed by

first selecting two parents by applying binary tournament

with respect to prs (Lines 7-8). A child chromosome is gen-

erated by applying a fitness based crossover operation on

selected parents (Line 9) and this chromosome is mutated

with respect to probability of mutation (prm). Fitness value

of a chromosome equals to reciprocal of total monitor weight.

If random chromosome generation is selected (else control in

Line 12 is true), a random chromosome is generated. After

child chromosome is constructed, repair and minimize oper-

ations given in Algorithms 2 and 4 are applied sequentially

(Lines 15 and 16). These operations will be described in detail
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Algorithm 2 RepairChromosome Algorithm

input : G(V ,E,w) – node weighted graph

pre – probability of repair

chr – chromosome

output: chr – repaired chromosome

1 begin

2 if CheckWCVC(G, chr) = true then

3 return chr

4 end

5 while CheckWCVC(G, chr) = true do

6 monitors

:=GetMonitorVertices(chr)

7 prt :=GenerateFloatNumber(0, 1)

8 if prt > pre then

9 v := ChooseRandomVertex(G \

monitors)

10 end

11 else

12 v := GetBestVertex(G \ monitors)

13 end

14 chr := SetNodeToMonitor(G, chr, v)

15 end

16 return chr

17 end

in following paragraphs. When newly generated individual

reaches its final form, we check the population whether it

includes this chromosome (Line 17). If the new individual

does not exist in the population, we add it to the popu-

lation (Line 18) and remove the worst (having the lowest

fitness value) chromosome member of the population. Imax
is decremented (Line 21) and described operations (Lines

between 4-22) are again executed until Imax equals to 0. The

weight of the best member of the population is returned at the

end of the algorithm (Line 23).

Repair operation given in Algorithm 2 starts by check-

ing the chromosome that whether monitor nodes cover all

edges to constitute a WCVC (Line 2). If this control is true

then chromosome is immediately returned without any extra

operation (Line 3). If the monitor nodes in input chromo-

some do not constitute a WCVC, monitor node selection

procedures are applied (Lines 5-15). First, monitor nodes are

extracted from the input chromosome (Line 6). Afterwards,

a new monitor node is added whether by random choos-

ing from non monitor nodes (Lines 8-10) or selecting the

non monitor node having the lowest ratio by applying GR

heuristic (Lines 11-13). Following monitor node selection,

it is added to chromosome and its status is changed in graph

(Line 14). As given in Algorithm 3, node’s corresponding bit

in the chromosome is set to 1, its color is set to BLACK,

its WHITE neighbors’ color is set to GRAY and its uncov-

ered edges are turned to covered status. Repair operation in

Algorithm 2 ends when monitor nodes construct a WCVC.

Algorithm 3 SetNodeToMonitor Algorithm

input : G(V ,E,w) – node weighted graph

chr – chromosome

v – vertex id

output: chr – chromosome

1 begin

2 chr [v] := 1

3 Color(v) := BLACK

4 Color(N(v, WHITE)) := GRAY

5 Cover(UncoveredEdges(v))

6 return chr

7 end

Algorithm 4MinimizeChromosome Algorithm

input : G(V ,E,w) – node weighted graph

C – cut vertices

pri – probability of minimization

chr – chromosome

output: chr – minimized chromosome

1 begin

2 R :=FindRedundant(G, C, chr)

3 while SizeOf(R) 6= 0 do

4 prt :=GenerateFloatNumber(0, 1)

5 if prt < pri then

6 v := GetWorstVertex(R)

7 end

8 else

9 v := GetRandomVertex(R)

10 end

11 Color(v) := GRAY

12 chr [v] := 0

13 UncoverEdges(v)

14 foreach u ∈ (N(v, WHITE)\ monitors) do

15 SetNodeToMonitor(u)

16 end

17 R := FindRedundant(G, C, chr)

18 end

19 return chr

20 end

At the end of this algorithm, the chromosome is returned

(Line 23).

Minimize algorithm given in Algorithm 4 begins by find-

ing redundant monitor nodes (Line 2). This operation will be

described in detail in following paragraph. After redundant

nodes are found, they are removed from the chromosome

(Lines 3-18). A redundant monitor node is selected from

the set of redundant nodes (R) either by choosing the worst

member (Lines 5-7) or by random selection (Lines 8-10)

with respect to minimization probability (pri). Following

redundant monitor node selection, its color is set to GRAY,

its corresponding bit is set to 0, its edges are uncovered
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(Lines 11-13). Also its WHITE neighbors are assigned as

monitors to the uncovered edges of the redundant monitor

by Algorithm 3 (Lines 14-16). At the last step of the main

loop, redundant nodes are again identified (Line 17). When

the loop terminates, the minimized chromosome is returned

(Line 19).

Algorithm 5 FindRedundant Algorithm

input : G(V ,E,w) – node weighted graph

C – cut vertices

chr – chromosome

output: R – set of redundant vertices

1 begin

2 BC :=DetectBlackCutVertices(G,chr)

3 monitors :=GetMonitorVertices(chr)

4 foreach v ∈ monitors do

5 if Weight(N(v, GRAY)) < Weight(v)

∧ v /∈ BC ∧ v /∈ C then

6 R := R ∪ v

7 end

8 end

9 return R

10 end

To minimize the chromosome, redundant nodes should be

identified as aforementioned in previous paragraph. Find-

ing the set of redundant monitors algorithm is given in

Algorithm 5. First, cut vertices in monitor nodes induced sub-

graph are identified (Line 2). In another words, cut vertices

are identified on the subgraph only consisting of monitor

nodes (BLACK nodes) with their incident edges. We call this

special set of cut vertices as black cut vertices (BC). Follow-

ing this, monitors are extracted from the input chromosome

(Line 3). A monitor node v is added to the set of redundant

vertices (R), if node v’s weight is greater than the total weight

of its nonmonitor neighbors’ (neighbors havingGRAYcolor)

and node v is not in both sets of BC and C (Lines 5 and 6).

At the end of the algorithm, the list of redundant nodes are

returned (Line 9).

The computational complexity of the Algorithm 5 equals

to O(n+m)=O(m) (considering the network is connected)

that is equal to the complexity of detecting black cut vertices

algorithm in which depth-first search (DFS) based approach

is used. The computational complexity of the Algorithm 3

is dominated by Lines 4 and 5 which are equal to O(n).

Algorithm 4 takes O(n)×O(m)=O(nm) time consider-

ing the loop between Lines 3-18 iterates for O(n) and

Lines 14-17 take O(m) time. The computational complexity

of Algorithm 2 is O(m2) since Lines 5-15 iterate for O(m)

times and Line 12 executes for O(m). Generating the initial

population in Line 3 of Algorithm 1 finishes in O(size× nm)

times since size number of chromosomes are generated and

repaired. The loop between Lines 4-22 in Algorithm 1 exe-

cutes for Imax times. Repairing each individual in Line 15

finishes in O(Imax × nm). The uniqueness control in Line 17

of Algorithm 1 takes O(Imax × size × n) times. So the

total computational complexity of the proposed algorithm is

O((Imax+size)mn+Imax size n ). In following section, we will

illustrate the operation of the proposed algorithm on a sample

topology.

C. AN EXAMPLE OPERATION

In this section, we present an example operation of the pro-

posed HGA on a topology which has 10 nodes 14 edges as

given in Figure 6.

In the first step, we first generate two random chro-

mosomes as [0110000000] and [0000001110]. Representa-

tions of the generated chromosomes on the graph are given

in Figures 6a and 6b. In the first graph shown in Figure 6a,

nodes 1 and 2 are monitors and 5 out of 14 edges are cov-

ered. Similarly, nodes 6, 7 and 8 are monitors in Figure 6b

and 6 out of 14 edges are covered. These chromosomes are

parents used in crossover operation to generate a new child

given in Figure 6c. Since we use a fitness based probabilistic

crossover, the outputs of this operation may vary. We accom-

plish our crossover operation by copying each parent’s 1 bit

to the child in this example. Following crossover, a muta-

tion operation is applied on the child chromosome where

node 9 changes its color from WHITE to BLACK as given

in Figure 6d. After the child is constructed and the mutation

is applied, no WHITE node is left in the graph. However

edges (3,4), (3,5) and (4,5) are uncovered. So, we repair the

topology by firstly selecting node 4 due to its lower ratio than

the other candidates (nodes 3 and 5). After node 4 is colored

BLACK, only edges (3,5) is left uncovered. At the second

step of the repair operation, node 5 is colored BLACK to

cover the last uncovered edge. When the repair operation is

finished, 8 out of 10 nodes constitute a WCVC in Figure 6e.

After than, we make a minimization operation on the given

graph. Since the edges of BLACK nodes 6 and 9 are covered

by others, they are not cut vertices and also not black cut

vertices (nodes 5 and 8 are cut vertices, nodes 2, 4, 5 and

8 are black cut vertices), these nodes are redundant. So they

are colored GRAY and removed from the set of monitors.

Finally, monitors are assigned as nodes 2, 4, 5, 7, and 8

in Figure 6f.

V. PERFORMANCE EVALUATIONS

We implement the proposed algorithm in Java to test its

performance against varying parameters. To compare the pro-

posed HGA, three greedy algorithms with a brute force (BF)

algorithm is implemented. BF algorithm checks all possible

power set of nodes (2n) and outputs the WCVC solution

having the smallest weight. The algorithms are tested on

dataset used in [53], [56]. This dataset is randomly gener-

ated to test graph theoretic problems on WSNs [53]. It is

composed of the communication graphs having undirected

edges and weighted vertices where the weight of each vertex

is set as reciprocal of its energy. The dataset is divided into

small, moderate (medium) and large scale WSN topologies

regarding node counts in the communication graphs.
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FIGURE 6. An example operation.

Node counts are 10, 15, 20 and 25 in small scale; 50, 100,

150 and 200 in moderate scale; 250, 500, 750 and 1000 in

large scale WSN topologies. Besides, edge counts are var-

ied to construct WSN topologies with different connectivity

properties. Edges counts are defined as e × n for each

topology where n is node count and e ∈ {2, 4, 6, 8}. Since

BF is an exponential time algorithm, its execution time is

unacceptably long for medium and large scale topologies.

In this manner, we did not execute BF algorithm in these

topologies.

We set the parameters of the proposed HGA according

to the extensive experimental evaluations given in recent

studies [53], [56], [57]. In this manner, the population size

(size), the maximum iteration count (Imax), crossover prob-

ability (prc), selection probability (prs), mutation probability

(pri), repair probability (pre) and minimization probability

(pri) are given as 100, 200, 0.9, 0.9, 0.8, 0.005, 0.7 and 0.6,

respectively. Simulation related items such as implemented

algorithms, parameters and dataset properties are summa-

rized in Table 3.

As aforementioned, minimizing the total weight of the

WCVC is of utmost importance to construct energy-

efficient monitoring infrastructure. In this manner, we mea-

sure the total weight of the WCVCs produced by the

implemented algorithms against varying node count and

average connectivity. Total weight values of the algorithms

in small, medium and large scale topologies are given

TABLE 3. Simulation parameters.

in Figures 7a, 7b and 7c, respectively. As node count

increases, the weights ofWCVCs produced by the algorithms

increase linearly. GW has the worst performance among all

algorithms regardless of the topology type. Although GD

performsmuch better thanGW, it has the secondworst perfor-

mance. GR produces the best WCVCs among implemented

greedy approaches running on graphs having various node

counts. For small scale topologies, the performances of the

proposed HGA and BF are the same. This means that our

proposed algorithm finds the optimum solution for given

small scale topologies. Moreover, its time consumption is

far more better than BF as we will discuss in following

paragraphs. For medium and large scale topologies, again the

proposed HGA outperforms the other algorithms in terms of
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FIGURE 7. Total weight values against node count.

FIGURE 8. Total weight values against connectivity.

FIGURE 9. Monitor count values against node count.

WCVC weight. Total weight values of the algorithms against

average network connectivity are given in Figures 8a, 8b and

8c. As network density increases, the weights of WCVCs

produced by the algorithms generally increase. The reason of

this increase is when the total edge count rises, more monitor

nodes may be needed to cover the newly added edges. Similar

with the measurements given in previous figures, the pro-

posed HGA has the best performance among the other algo-

rithms. For small scale graphs, again HGA and BF produce

same results. The performance order of the remaining algo-

rithms is GR, GD and GW. For medium size and large size

instances, this performance order does not change and our

algorithm outperforms other algorithms in terms of WCVC

weight.

Although minimizing weight is the first objective of

WCVC problem, solving the problemwith less monitor count

is also significant. With regarding this, monitor counts of

the algorithms with respect to varying network parameters

such as average connectivity and total node count are mea-

sured. Figures 9a, 9b and 9c show the monitor count values

against the node count for small, medium and large scale

topologies, respectively. Monitor counts produced by the
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FIGURE 10. Monitor count values against node connectivity.

algorithms increase linearly with respect to increasing node

count values. GW has the worst performance similar to the

previous measurements so far. GD performs better than GR

against increasing average connectivity values since GD aims

to assign monitor nodes according to their degrees which

produces less monitors. BF algorithm guarantees to find opti-

mum WCVC in terms of weight, but this does not mean that

BF algorithm minimizes the monitor count values. Although,

for small scale graph instances, the performances of GD,

BF and the proposed HGA are very close. Similarly, GD and

the proposed HGA perform nearly same for the medium

scale topologies. GD has the best results and the proposed

HGA performs better than the other remaining algorithms

in large scale instances. Monitor counts of the algorithms

against average connectivity values are given in Figures 10a,

10b and 10c. As aforementioned, when network connec-

tivity rises, counts of monitor nodes generally increase to

cover newly added edges. Same with the previous results,

GW has the worst and GR has the second worst performance

among implemented algorithms for all datasets. For small

scale instances when average connectivity value equals to 2,

the proposed HGA and GD perform nearly same. For small

scale instances, GD has the best results when average connec-

tivity value equals to 4 and 6, but our algorithm outperforms

GD when average connectivity value equals to 8. Our pro-

posed HGA again produces better results than GD onmedium

scale instances. GD algorithm has the best measurements

on large size graphs, on the other side the gap between our

proposed HGA and GD algorithm decreases for increasing

average connectivity. In other words, the increase rate of GD

is greater than that of HGA as graph density increases.

Time consumption of the algorithms on the sink node

can be an important metric if WSN executes a time critical

operation such as a military surveillance application. Consid-

ering this fact, we measure the wallclock time of the algo-

rithms against node count and average connectivity. Since

GD, GR and GW execute to find an only single solution

without improving it, their wallclock times are generally very

small compared to population based solutions [53]. So that

we compare BF and our proposed HGA against network size

and density. For node count equals to 10, average connectivity

FIGURE 11. Time values of algorithms.

values 6 and 8 are not applicable, since a graph having

10 nodes can havemaximum45 edges. Same situation is valid

for node count and edge count equal to 15 and 8, respectively.

For all node counts except 10, our proposed HGA is better

than the BF algorithm. Moreover, for all connectivity values,

when node count increases, wallclock times of our proposed

HGA grow much more slower than the BF algorithm.

VI. CONCLUSION

In this article, we propose a metaheuristic to solve minimum

WCVC problem to monitor links and form a virtual backbone

forWSNs which are vital technologies located at the commu-

nication layer of IoT. We adopt three heuristics, namely GD,

GW and GR to evaluate the effectiveness of different monitor

selection strategies. Our proposed HGA is a population based

metaheuristic that uses genetic search and GR heuristic to

increase solution quality. Our proposed algorithm prevents

the removal of cut vertices to decrease the execution time.

Measurements obtained from extensive experiments reveal

that the proposed HGA outperforms other greedy algorithms

in terms of total WCVC weights against varying node count

and average connectivity values. Besides, although the main

objective of our target problem is to minimize the weight of
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WCVC to provide energy efficiency, the results show that the

monitor counts produced by our algorithm is very promising

for most of the cases. Moreover, the execution time of our

algorithm is far more better than BF algorithm at the same

producing optimum solution for small size instances against

varying network sizes and densities. These findings show us

that our algorithm is favorable in terms of resource efficient

WCVC construction for WSNs.

In future, we plan to design distributed WCVC algorithms

for providing fully autonomous execution of sensor nodes.

In this algorithm each node should decide based on its energy

and its neighbors’ states. We also plan to model WSNs with

graph convolutional networks to implement deep learning

approaches. The capacitated version of the problem is open in

which each monitor listens at most k links where k is a prede-

fined parameter. This parameter will be based on the energies

of the monitor nodes to provide energy-efficient link mon-

itoring. Another potential research topic is self-stabilizing

WCVC construction in which the network stabilizes in finite

number of executions when transient faults are present.
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