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ABSTRACT

Peer reviewing is a standard process for assessing the quality
of submissions at academic conferences and journals. A very
important task in this process is the assignment of reviewers
to papers. However, achieving an appropriate assignment
is not easy, because all reviewers should have similar load
and the subjects of the assigned papers should be consistent
with the reviewers’ expertise. In this paper, we propose a
generalized framework for fair reviewer assignment. We first
extract the domain knowledge from the reviewers’ published
papers and model this knowledge as a set of topics. Then,
we perform a group assignment of reviewers to papers, which
is a generalization of the classic Reviewer Assignment Prob-
lem (RAP), considering the relevance of the papers to topics
as weights. We study a special case of the problem, where
reviewers are to be found for just one paper (Journal As-
signment Problem) and propose an exact algorithm which
is fast in practice, as opposed to brute-force solutions. For
the general case of having to assign multiple papers, which
is too hard to be solved exactly, we propose a greedy algo-
rithm that achieves a 1/2-approximation ratio compared to
the exact solution. This is a great improvement compared to
the 1/3-approximation solution proposed in previous work
for the simpler coverage-based reviewer assignment problem,
where there are no weights on topics. We theoretically prove
the approximation bound of our solution and experimentally
show that it is superior to the current state-of-the-art.

Keywords

Paper Reviewer Assignment; Group Coverage; Stage Deep-
ening Greedy

1. INTRODUCTION
Peer reviewing is a widely accepted process for assessing

submitted papers to academic venues. One of the most chal-
lenging tasks in this process is to perform the assignment
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of reviewers to papers in a way that would maximize the
quality of reviews. This problem is known as the Reviewer
Assignment Problem (RAP) [4, 6, 7, 10, 14, 15, 18, 19, 21,
23, 29]. In order to improve the quality of the assignment,
existing conference management systems (e.g., Conference
Management Toolkit1 and EasyChair2) ask reviewers to bid
on their preferred papers; the assignment is then conducted
based on the bids, as a classic matching problem [20]. Still,
there are well-known drawbacks of this approach. For exam-
ple, reviewers could be too lazy to go through the complete
list of paper titles and abstracts. Alternatively, the reviewer
assignment can be performed automatically, based on simi-
larity models between the papers and the reviewers.
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Figure 1: Drawbacks of previous RAP definitions

1.1 Previous Work
RAP was first regarded as a retrieval problem by Dumais

and Nielsen [10]. The retrieval-based RAPs [4, 10, 19, 23]
attempt to retrieve qualified reviewers for each paper based
on their similarity to the paper, where similarity is measured
using topic discovery models [10, 18, 21, 23], Bayesian proba-
bilistic matrix factorization and linear regression [6], interval
fuzzy ontologies [29], root mean square error of bids [7], or
vector space models [4]. This category of approaches pro-
duce imbalanced assignments, where some reviewers may
receive too many papers to review. An example is given
in Figure 1(a), where reviewer r1, whose research interest
is mainly in spatial databases, receives 3 related papers to
review but another reviewer (r2) receives no paper by this
assignment. Another line of work [6, 7, 14, 18, 21, 27, 29]
regard RAP as an assignment problem subject to a max-
imum workload per reviewer and the number of required
reviews per paper. These assignment-based RAPs aim at

1http://cmt.research.microsoft.com/cmt/
2http://www.easychair.org/



finding the best assignment (i.e., an assignment objective is
optimized) subject to the aforementioned constraints. The
quality of each assignment pair is individually considered;
however, it may turn out that an interdisciplinary paper is
reviewed by a group of reviewers with too narrow expertise.
For instance, assuming that each paper is supposed to be
assigned to 2 reviewers in Figure 1(b), the review quality
of p may improve if one of the reviewers (e.g., r1 or r2) is
replaced by r3.

The drawback of assigning reviewers independently was
first stated in [15], where papers and reviewers are modeled
as term vectors and the expertise of a reviewer group on
a term is the sum of term values of the reviewers in the
group. The assignment objective is to minimize the differ-
ence between the papers and their assigned groups for each
term in their vectors. A hill-climbing algorithm is proposed
in [15] to find a local optimal value for this problem, with-
out a quality guarantee; in addition, [15] does not consider
how to automatically construct reviewer groups. Recently,
Long et al. [22] formulated and solved RAP as a Set-coverage
Group-based Reviewer Assignment Problem (SGRAP). The
intuition is that the quality of the reviews on a paper should
be measured based on the entire group of reviewers assigned
to it. In other words, a paper is well-reviewed only if the
assigned reviewers have the expertise to cover every single
topic of the paper. Long et al. [22] transform the exper-
tise of reviewers and the content of papers into sets of top-
ics and assess the quality of assigning a group of review-
ers {ri, · · · , rj} to paper p by the set coverage ratio, i.e.,
|Tri ∪ · · · ∪ Trj ∩ Tp|/|Tp|, where Tri is the set of topics in
the expertise of ri and Tp is the set of p’s topics. This assess-
ment well considers every topic of a paper in the assignment
process. However, all topics of a paper are assumed to have
identical importance, which is not always true in the real
world. For instance, a paper could be related to many top-
ics, but only one of them is the main subject of the paper.
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Figure 2: Weighted-coverage GRAP

1.2 Contributions
In this work, we revise the quality measure for a group of

reviewers assigned to a paper from set coverage to weighted
coverage. We model the expertise of reviewers and the con-
tent of papers as T -dimensional topic vectors (instead of
topic sets). The quality of an assignment pair is estimated
by considering the T -dimensional vectors of reviewers and
the paper. In Figure 2, for example, the best group to re-
view paper p1 is {r1, r2} because the topic vectors of these
two reviewers, when taken together, best match the topic
vector of p1 (i.e., high relevance to DB and DM, lower rele-

vance to IR). Our weighted coverage (to be defined in detail
in Section 2) well addresses the topic equilibrium problem
mentioned above, where the topics are no longer viewed as
equally important. Based on the above, we define and solve
RAP as a Weighted-coverage Group-based Reviewer Assign-
ment Problem (WGRAP). Our contributions are as follows.

Introduction and generality of WGRAP. We intro-
duce WGRAP as an appropriate definition of RAP that con-
siders (i) the load balancing of reviewers to papers and (ii)
the coverage of the topics of the assigned papers by the re-
viewers’ expertise, proportionally to the importance of the
paper topics. We show that all previous RAP definitions
(retrieval-based RAP, assignment-based RAP, SGRAP) are
special cases of WGRAP.

Journal Reviewer Assignment (JRA). As a case of
WGRAP, we first study the problem of assigning a single
journal paper p to a set of δp reviewers, chosen from a pool
R of candidates. We propose an exact Branch-and-Bound
Algorithm (BBA), which finds the best reviewer group based
on a well-designed execution order. BBA finds the result
much faster compared to a brute force method that examines
all reviewer combinations, an integer linear programming
approach, and a commercial constraint programming solver.

An approximation algorithm for WGRAP. The gen-
eral WGRAP, where multiple papers are to be assigned to
multiple reviewers, is an NP-hard problem; it is a general-
ization of SGRAP, the hardness of which was shown in Long
et al. [22]. Since finding the exact solution for WGRAP is
too expensive, we propose a polynomial-time approximation
algorithm. Compared to the greedy algorithm of [22], which
has 1/3 approximation ratio, our algorithm improves the
approximation ratio significantly (to at least 1/2) and it is
applicable to both WGRAP and SGRAP. The main idea of
our approach is to divide the assignment into stages, such
that exactly one reviewer is assigned to each paper at each
stage (solved in PTIME as a linear assignment problem).
More importantly, our approximation guarantee holds for
any submodular objective function (we investigate the ap-
plicability of alternative objective functions in Appendix B).

Stochastic refinement of a WGRAP solution. We
propose a stochastic process for refining the assignment com-
puted by our approximation algorithm. In a nutshell, our
approach first builds a probability model that captures the
suitability of reviewers to be assigned to papers. Then, it
iteratively attempts to swap assignment pairs, following the
probability model, until the process converges to a solution
that cannot be further improved.

Experimental evaluation. We conduct an experimen-
tal evaluation using real data from DBLP. Our results show
our approximation algorithm paired with the stochastic re-
finement postprocessing finds an assignment of much better
quality compared to previous work, within reasonable time.

The rest of this paper is organized as follows. Section 2
provides the necessary definitions, formulates WGRAP, and
analyzes its relationship to previous RAP definitions. Sec-
tion 3 includes our solution to JRA. In Section 4, we study
the general case of WGRAP, by reviewing the greedy algo-
rithm of [22], proposing our solution, analyzing its approxi-
mation ratio, and presenting our stochastic refinement pro-
cess. Our experiments are presented in Section 5. Finally,
Section 6 concludes with a discussion about future work.



2. PRELIMINARIES AND DEFINITIONS
In this section, we first define fundamental concepts, in-

cluding topics, reviewer groups, and weighted coverage. Sub-
sequently, we give the formal definition of our WGRAP and
discuss how we can specialize WGRAP into three RAP def-
initions studied before.

2.1 Topic Coverage and Assignment Quality
As introduced in Section 1, we assume that there are T re-

search topics (i.e., subjects) and that the expertise of review-
ers and the content of papers are modeled as T -dimensional
topic vectors, denoted as −→ri = (−→ri [1], · · · ,−→ri [T ]) (for re-
viewer ri) and −→pj = (−→pj [1], · · · ,−→pj [T ]) (for paper pj), re-
spectively. For instance, −→ri [1] refers to the relevance (i.e.,
expertise) of reviewer ri to the first topic, while −→pj [1] is the
relevance of paper pj to the first topic. For simplicity, we
sometimes refer to−→ri [t] (resp. −→pj [t]) as the weight of reviewer
ri (resp. paper pj) on topic t. Given the publications record
of ri and the abstract of pj ,

−→ri and −→pj can be extracted by
topic modeling, e.g., Latent Dirichlet Allocation (LDA) [5].
Even though topic extraction is not the main focus of our
work, it remains an important component of our framework.
Thus, we will discuss its details in Section 2.4.

The topic vector of a reviewer −→r can be viewed as the
confidence of the reviewer over different topics. Intuitively,
if topic t of a paper p is well covered by an assigned re-
viewer r (i.e., −→r [t] ≥ −→p [t]), then it is safe to assume that
r is fully confident to review p on topic t. Specifically,
we can measure how well a reviewer r covers topic t by
min{−→r [t],−→p [t]}. This quantity, also encapsulates the rel-
ative importance (i.e., weight) of t’s coverage compared to
other topics. For example, if a topic t′ is more relevant to
paper p than t is (i.e., −→p [t′] > −→p [t]), then the coverage of
reviewer r on t′ should be more important than the coverage
of r on t. Thereby, the quality of assigning r to review p can
be calculated by the weighted coverage of the two vectors as
follows.

Definition 1 (Weighted coverage score c(−→r ,−→p )).
The quality of assigning −→r to review −→p is the summation
of the coverage weights over different topics.

c(−→r ,−→p ) =

∑T

t=1 min{−→r [t],−→p [t]}
∑T

t=1
−→p [t]

(1)

The denominator
∑T

t=1
−→p [t] normalizes c(−→r ,−→p ) to take

values from 0 to 1.3 As an example, Figure 3(a) shows the
quality of assigning r to review p, calculated based on the
coverage weights over three topics. Besides Definition 1,
we study alternative scoring functions for the quality of a
reviewer-paper assignment in Appendix B.

We now discuss how we measure the quality of assigning
a group of reviewers g = {ri, · · · , rj} to a specific paper p.
3The normalization is not necessary if we already have∑T

t=1
−→p [t] = 1 for each paper p, i.e., the relevance of each

paper to the topics is already a normalized vector. Besides,
we can also assume that the reviewer vectors are normal-
ized, i.e.,

∑T

t=1
−→r [t] = 1 for each reviewer r. Otherwise, we

might allow one reviewer r1 to dominate another reviewer r2
with respect to expertise (i.e., r1’s expertise in each topic is
greater than the corresponding expertise of r2), which means
that r1 could be considered more qualified than r2 in gen-
eral. Regardless the situation, we keep the denominator in
Eq. 1 to make the definition of weighted coverage general.
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Figure 3: Weighted coverage and group topic vector

Given the topic vectors of the group (i.e., {−→ri , · · · ,−→rj }), the
expertise of the reviewer group −→g is a vector which stores for
every topic t the maximum expertise of any reviewer in the
group in t. The rationale is that the reviewer who is the most
expert in t will have the highest confidence in reviewing the
aspects of the paper related to t and her opinion will most
probably dominate the opinions on these aspects from other
reviewers in the group. Formally,

Definition 2 (Expertise of a reviewer group).
Given g = {ri, · · · , rj}, −→g = (max

r∈g

−→r [1], · · · ,max
r∈g

−→r [T ]).

As an example, Figure 3(b) shows a reviewer group g =
{r1, r2}. The expertise of g is −→g = (−→r1 [1],−→r1 [2],−→r2 [3]). The
quality of assigning group g to review a paper p can now
also be conveniently calculated using Equation 1; i.e., as
c(−→g ,−→p ), after computing −→g .

2.2 Weighted-coverage Group-based Reviewer
Assignment Problem (WGRAP)

Without loss of generality, we assume that there are P
papers (i.e., P = {p1, · · · , pP }) and R reviewers (i.e., R =
{r1, · · · , rR}), where each paper should be reviewed by δp
reviewers (group size constraint) and each reviewer should
be given at most δr papers (reviewer workload). In addition,
we assume that there are enough reviewers for the given
papers, i.e., R · δr ≥ P · δp.

The goal of our Weighted-coverage Group-based Reviewer
Assignment Problem (WGRAP) is to find the best assign-
ment A ⊆ P×R such that the objective (i.e., the summation
of the weighted coverage scores per topic) is maximized sub-
ject to the workload constraints. For the ease of discussion,
we use A[x] to denote the assignment pair(s) of x. For in-
stance, if A = {(r1, p1), (r2, p1)}, then A[r1] = {(r1, p1)} and
A[p1] = A. WGRAP is formally defined as follows:

Definition 3 (WGRAP). Given a set of papers P and
a set of reviewers R, WGRAP finds an assignment A ⊆
P× R, such that

max
∑

p∈P

c(−→g ,−→p )

where g = {r|(r, p) ∈ A[p]}
s.t. |A[r]| ≤ δr ∀r ∈ R

(reviewer workload)

|A[p]| = δp ∀p ∈ P

(group size constraint)

In WGRAP, the assignment quality of each paper is calcu-
lated by the weighted-coverage of the assigned reviewers (cf.
Definition 1); i.e., we want the assigned group of reviewers



per paper to cover as much as possible every single topic of
the paper. The quality of an assignment A is measured by
the objective function of Definition 3, i.e.,

∑
p∈P

c(−→g ,−→p ),

where g = {r|(r, p) ∈ A[p]}. We sometimes refer to this
quality measure as the coverage score of assignment A, sim-
ply denoted by c(A). Table 1 summarizes the frequently
used notations in this paper.

Symbol Description Symbol Description

p paper r reviewer
g reviewer group T set of topics
P set of papers R set of reviewers
A assignment O optimal assignment
δp group size constraint δr reviewer workload

Table 1: Notations

2.3 Relationship to other RAPs
In this section, we briefly introduce three popular types

of RAPs and discuss their relationship to our WGRAP.

Retrieval-based RAP (RRAP). This type of RAP is
first proposed by Dumais and Nielsen [10]. Their model
firstly suggests the top-δr most relevant papers to each re-
viewer and then each reviewer picks δr/2 papers (out of δr)
to review. As discussed in Section 1, RRAP may end up in
imbalanced assignments, where some paper may be assigned
to no reviewers. This is due to the lack of the group size
constraint (i.e., the number of reviewers of a paper, δp) in
RRAP. The formal definition of RRAP is shown as follows.

Definition 4 (RRAP). Given P and R, RRAP finds
an assignment A ⊆ P× R such that

max
∑

p∈P

∑

r∈A[p]

c(−→r ,−→p )

s.t. |A[r]| = δr ∀r ∈ R

WGRAP can be reduced to RRAP by two steps, (1) re-
moving the group size constraint and (2) revising the objec-
tive function, i.e., making

∑
r∈A[p] c(

−→r ,−→p ) equal to c(−→g ,−→p ).
For the second step, we can simply extend the topic vectors
from T dimensions to R · T dimensions such that: (i) the
original topic vectors of papers are repeated R times, (ii) for
the i-th reviewer, the i-th T dimensions include its original
topic vector and the others are 0. This reduction can be
done in polynomial time.

Assignment-based RAP (ARAP). The second type of
RAP addresses the workload problem: every paper is re-
viewed by a certain amount of reviewers [18]. The formal
definition of ARAP is as follows.

Definition 5 (ARAP). Given P and R, ARAP finds
an assignment A ⊆ P× R such that

max
∑

p∈P

∑

r∈A[p]

c(−→r ,−→p )

s.t. |A[r]| ≤ δr ∀r ∈ R

|A[p]| = δp ∀p ∈ P

Since ARAP already considers reviewer size constraint,
WGRAP can be reduced to ARAP by simply revising the
objective function (similarly to the reduction to RRAP).

Set-coverage GRAP (SGRAP). We omit the formal
definition of SGRAP [22], since it is identical to our WGRAP

except for how the coverage function c(−→g ,−→p ) is defined for
a group of reviewers assigned to a paper. WGRAP can
easily be reduced to SGRAP if we transform each topic set
T into a binary T -dimensional topic vector. The i-th value
of a topic vector (e.g., −→p [i]) is set to 1 if the i-th topic
exists in the topic set (e.g., Tp). Otherwise, it is set to
0. This conversion makes the coverage functions of SGRAP
and WGRAP become identical, i.e.,

c(Tg,Tp) =
|Tg ∩ Tp|

|Tp|
=

∑T

t=1 min{−→g [t],−→p [t]}
∑T

t=1
−→p [t]

= c(−→g ,−→p )

where −→g [t],−→p [t] ∈ {0, 1}. Thus, SGRAP is a special case of
WGRAP (where all scores are integral); this means that our
solutions for WGRAP can be applied to SGRAP as well.

Summary. To the best of our knowledge, WGRAP is
the first RAP formulation that assesses the reviewer as-
signment quality by a group-based objective function un-
der weighted coverage of topics. Our evaluation approach
well addresses certain drawbacks of previous approaches, in-
cluding the load balancing problem (using the group size
constraint), the diversity of reviewer groups (using a group-
based objective function), and the topic equilibrium problem
(using weighted-coverage).

RRAP ARAP SGRAP WGRAP

Constraint
Group size X

√ √ √

Objective
Group-based X X

√ √

Obj. function Weight Weight Set Weight

Table 2: Comparison of different RAPs

2.4 Topic Vector Extraction
We now briefly introduce how we can extract the topic

vectors (i.e., −→p and −→r ) from the corresponding papers and
reviewers. A näıve method is to collect the vectors manu-
ally; e.g., collecting paper topics from keywords specified by
the authors or asking the reviewers to declare their expertise
by some check boxes. However, such information is not al-
ways available. As an example, in a journal review process,
the expertise of potential reviewers is typically not declared
by them in advance, or the pool of potential reviewers is
dynamic. A more reasonable approach would be to extract
the topic vectors of potential reviewers automatically from
their publication records.

In this work, we first use the Author-Topic Model (ATM)
of [25] to extract the topic set T and the topic vector of
reviewers {−→r1 , · · · ,−→rR} based on their publication records.
The topic vector of papers {−→p1, · · · ,−→pP } is estimated by
Expectation-Maximization (EM) [30] based on T. For com-
pleteness, we show the details of our adapted ATM in Ap-
pendix A.

3. JOURNAL REVIEWER ASSIGNMENT
In this section, we study a special case of WGRAP, where

only a single paper has to be reviewed (i.e., P = {p}). This
case finds practical application in the scenario of Journal
Reviewer Assignment (JRA), where the editor is looking for
δp qualified reviewers for a single submission. Thus, we can
ignore the reviewer workload δr, since each assigned reviewer
assesses the given paper just once. Formally, Definition 3 is
reduced to JRA as follows:



Definition 6 (JRA). Given a journal paper p and a
set of reviewers R, the journal reviewer assignment finds an
assignment A ⊆ {p} × R such that

max c(−→g ,−→p )

where g = {r|(r, p) ∈ A[p]}
s.t. |A[p]| = δp

The best reviewer group is one of the δp-combinations out
of R reviewers and there are CR

δp
such combinations. The

following lemma proves the NP-hardness of JRA.

Lemma 1. JRA is an NP-hard problem.

Proof. We will show that another NP-hard problem, i.e.,
the maximum coverage problem [11], can be reduced to an
instance of JRA in polynomial time. Given a collection of
sets S = {s1, s2, ...}, where each set si is a subset of a domain
set D = {e1, · · · , en}, and a number k, the maximum cover-
age problem finds a subset S

′ ⊆ S of sets such that |S′| = k
and the number of covered elements from D, i.e., | ∪si∈S′ si|,
is maximized. A special case of JRA is that the target paper
p is only relevant to n topics and each topic has the same
importance, i.e., −→p [t] ∈ {0, 1/n} and

∑
1≤t≤T

−→p [t] = 1. We

transform each subset si ∈ S to a T -dimensional vector −→si ,
where −→si [e] = 1/n if element e is in si, otherwise

−→si [e] = 0.
We also set k = δp (i.e., the group size constraint). All
these transformations take O(|S|n) time. The problem now
becomes to find a subset S

′ ⊆ S of k collections such that
c(−→g ,−→p ), where g = {si|si ∈ S

′} is maximized. This prob-
lem is equivalent to the maximum coverage problem as every
newly covered (missing) topic of S′ increases (decreases) by
exactly 1/n of the total coverage score.

Even though JRA is NP-hard (it considers CR
δp

reviewer

combinations), we can still solve it within acceptable time if
R and δp are not very large. For example, in practice δp = 3
and R is in the order of a few hundreds. To the best of
our knowledge, Brute Force Search (BFS) (i.e., enumerating
every possible reviewer group) and Integer Linear Program-
ming (ILP) [24] can be used to compute JRA exactly. How-
ever, these two solutions do not scale well. BFS is very sensi-
tive to R and δp, because it examines every possible reviewer
group and ILP suffers from floating-point precision issues,
when there are too many constrained functions and variables
(these are proportional to R and δp). We develop a novel al-
gorithm, Branch-and-Bound Algorithm (BBA), which finds
the best reviewer group based on a well-designed execution
order. A promising result is that BBA finds the exact so-
lution almost in real time in practical cases. For example,
BBA finds the best set of 5 reviewers out of 200 candidates
within 2.2 seconds on a commodity machine while BFS and
ILP take 5.1 hours and 45.6 minutes, respectively, to solve
the same problem.

BBA operates on the search space of JRA (cf. Figure 4),
that can be viewed as a tree structure. Each non-root node
represents a reviewer ri and it has up to R − 1 children
nodes (i.e., all reviewers except ri). The depth of the tree is
determined by the group size constraint δp; the nodes along
a path from the root to a leaf indicate one possible reviewer
group. For instance, path root → r1 → r3 indicates reviewer
group {r1, r3}.

To search for the best reviewer group, we apply the classic
backtracking paradigm which partitions the search process

stage 2

stage 1 r1

r2 r3 r1 r2r1 r3

root

   

 

   

r3r2

δp

visited nodes running group

infeasible feasible
searched and 
backtracked

Figure 4: Search space of JRA

into δp stages. When the search moves from stage s to stage
s+1, a feasible reviewer (see Definition 7) is inserted into the
running reviewer group g. The feasibility condition ensures
that every group combination is only examined at most once
in the entire search process. When search reaches the last
stage (i.e., stage δp), the coverage score of g is calculated
and the best-so-far result is updated, if applicable. Search
backtracks to the previous stage if there are no more feasible
reviewers at the current stage.

Definition 7 (Feasibility of reviewer). Given a
running group g and the visited information, a reviewer r is
feasible only if r is not yet visited along the execution path
(i.e., along the first stage to the running stage).

In Figure 4, when examining the branches under r2 (at
stage 1), r1 (at stage 2) is infeasible since r1 has been visited
at stage 1 already. In other words, every possible reviewer
group containing r1 has been considered as soon as r1 has
been selected at stage 1, therefore r1 should be omitted from
the subsequent processes. As another example, r3 is still
feasible since the visited information of the branches under
r1 has been reset when it backtracks to stage 1.

t1 t2 t3
−→p 0.35 0.45 0.2
−→r1 0.15 0.75 0.1
−→r2 0.75 0.15 0.1
−→r3 0.1 0.35 0.55

(a) Topic vectors

SL1 SL2 SL3

0.75(r2) 0.75(r1) 0.55(r3)
0.15(r1) 0.35(r3) 0.1(r1)
0.1(r3) 0.15(r2) 0.1(r2)

(b) T -sorted lists, SLi

r1

r2 r3 r3

root

r1 r2r1

r2 r3

gain(g,r2)=0.6
gain(g,r1)=0.7 gain(g,r3)=0.65

visited nodes running group
g={}

(c) Picking r1 at stage 1

r1

r2 r3 r3

root

r1 r2r1

r2 r3
gain(g,r3)=0.1

visited nodes running group

bsf={r1,r2}

gain(g,r2)=0.2

g={r1}

(d) Early termination at stage 2

Figure 5: Searching for the best reviewer group

To efficiently locate the best reviewer group, we need
to prioritize the traversal order (branching) and terminate
search branches that cannot lead to a better solution as
early as possible (bounding). Given the reviewer vectors
{−→r1 , · · · ,−→rR}, we prepare T sorted lists where the t-th sorted
list SLt keeps the t-th values of the reviewer vectors in an
descending order. An example of three reviewers and their
corresponding sorted lists is shown in Figure 5(a) and 5(b),
respectively.



In the following, we show how to prioritize and bound
the search process by accessing the T sorted lists back-and-
forth. At each stage s, we construct a set of T running
cursors, Πs = {πs

1, · · · , πs
T } and every cursor always points

at a feasible reviewer. Initially, every cursor (e.g., π1
i ) points

at the beginning of the corresponding sorted list (e.g., SLi).

Branching. Intuitively, a reviewer r is a good candidate
for the running group g if adding r into g has large marginal
gain, which is defined as follows:

Definition 8 (Marginal gain, gain(g, r, p)). Given
a running reviewer group g and a reviewer candidate r, the
marginal gain of adding r into g is calculated by

gain(g, r, p) = c(
−−−−→
g ∪ {r},−→p )− c(−→g ,−→p ) (2)

We use the running cursors to locate the best yet feasible
reviewer to be considered in the branching process. More
specifically, we add r into g only if r has the maximum
marginal gain among the reviewers pointed by the cursors
at current stage s. After having added r into g, we move
forward every affected cursor (i.e., pointing to r) to the next
feasible reviewer and continue to the next stage. The initial
positions of the next stage cursors Πs+1 are cloned from Πs

since every reviewer group is necessarily examined once (cf.
the feasibility condition in Definition 7). In our running
example, r1 is the first picked reviewer since its marginal
gain (i.e., gain(g, r1, p) = c(−→r1 ,−→p ) = 0.7) is the maximum
among all three cursors (see Figure 5(c)). r1 is marked as
visited at stage 1 and we move forward the affected cursor
(i.e., π1

2) to the next feasible reviewer (i.e., 0.35(r3)).

Bounding. We use the running cursors to estimate the
upper bound of the running group g as follows:

UB(g,Πs) = c(
−→
ub,−→p ) (3)

where
−→
ub[i] = max (−→g [ti], π

s
i ), ∀1≤i≤T . Equation 3 is the

upper bound of g since the cursors always move forward
so that every cursor always point to the best yet feasible
reviewer. If the upper bound of g is no longer promising
(i.e., smaller than the score of the best reviewer group found
so far), then we backtrack to the previous stage and reset
the visited information at the current stage.

In our running example (cf. Figure 5(d)), assume that
we already have examined a reviewer group bsf = {r1, r2}
(e.g., c(

−→
bsf,−→p ) = 0.9) and bsf is our best result so far.

The running cursors at stage 2 point to 0.1(r3), 0.35(r3),
and 0.55(r3), respectively. Before examining another fea-
sible reviewer (e.g., r3) at stage 2, we estimate the upper

bound of g by Equation 3 where
−→
ub = {0.15, 0.75, 0.55} and

UB(g,Π2) = 0.8. Since the upper bound of the running
group g(={r1}) is not better than the best-so-far result, we
backtrack to stage 1 and reset the visited information at
stage 2 (e.g., changing the dashed line of r2 back to solid
line at stage 2).

Algorithm 1 shows a pseudocode of BBA for clarity. Search
is terminated when there is no feasible cursor at stage 1 (cf.
Line 5 of Algorithm 1). BBA fully exploits the sorted lists to
boost the brand-and-bound process by maintaining the run-
ning cursors properly. Even though BBA does not improve
the worst-case computational cost of JRA, its branching pri-
oritization (by the marginal gain estimation) and its early
termination (by the upper bound estimation) significantly

Algorithm 1 Branch-and-Bound Algorithm (BBA)

Input: paper p, reviewer set R, reviewer group size δp
Output: result bsf
Algorithm bba(p,R, δp)

1: construct T sorted lists
2: initialize the running cursor set for 1st stage, Π1

3: set running group g ← ∅ and best-so-far group bsf ← ∅
4: set running stage s← 1
5: while ∃π1

i
∈Π1π1

i 6= nil do

6: r ← argmaxr∈{πs
1
,··· ,πs

T
} gain(g, r, p) ⊲ by Eq. 2

7: estimate UB(g,Πs) ⊲ by Eq. 3

8: if r = ∅ or UB(g,Πs) ≤ c(
−→
bsf,−→p ) then ⊲ bounding

9: reset visited information at stage s
10: backtrack to previous stage (i.e., s← s− 1)
11: goto line 5

12: g ← g ∪ {r} and mark r as visited at stage s ⊲ branching
13: if |g| = δp then ⊲ a complete assignment is found

14: if c(−→g ,−→p ) > c(
−→
bsf,−→p ) then bsf ← g

15: g ← g\{r} ⊲ backtracking
16: else
17: for πs

i ∈ {π
s
1, · · · , π

s
T } do

18: move πs
i forward when πs

i is infeasible

19: set Πs+1 ← Πs

20: move to next stage (i.e., s← s+ 1)

21: return bsf

reduce the computational cost in practice. The space over-
head of BBA is mainly due to the sorted lists that consume
O(R · T ) space (i.e., negligible space for modern commodity
machines). Note that BBA can easily be adapted to re-
turn the top-k reviewer sets (i.e., by replacing bsf by a heap
structure that keeps the k best-so-far reviewer groups).

4. CONFERENCE REVIEWER

ASSIGNMENT
In this section, we study the general WGRAP (Defini-

tion 3), which applies in a scenario of Conference Reviewer
Assignment (CRA), where P received papers must be as-
signed to R program committee members. The objective is
to find an assignment A ⊆ P× R such that the assignment
maximizes the topic coverage scores subject to the reviewer
group and workload constraints. Compared to JRA, the
number of papers increases from 1 to P , therefore the search

space increases from CR
δp

to (CR
δp
)
P
. Such an increase makes

finding the exact solution infeasible even for small problems
(e.g., when R = 100 and P = 100). Thus we develop a
polynomial-time approximation algorithm for CRA.

4.1 Greedy Algorithm
We first investigate the application of the approximation

algorithm [22], which was proposed for SGRAP, to WGRAP.
This greedy algorithm finds a solution for SGRAP with 1/3
approximation ratio. The assignment A is constructed incre-
mentally; at each iteration, the algorithm picks the feasible
pair of reviewer and paper (r, p)best which has the largest
marginal gain when added to the current A among all fea-
sible pairs. The iterative process terminates only when all
papers are fully assigned, i.e., A[p] = δp, ∀p ∈ P. Formally:

(r, p)best = argmax
(r,p)∈F

gain(A[p], r, p),

where F = {(r, p) ∈ R× P | (r, p) /∈ A ∧ (4)

|A[r]| < δr ∧ |A[p]| < δp}



F indicates the set of feasible reviewer-paper pairs and A[p]
(used in the gain(·) function) represents the running group
of reviewers for p (i.e., reviewers already assigned to p).

The greedy algorithm needs P · δp iterations4 and each
iteration takes O(P ·R) time to locate a pair (i.e., evaluating
the gain score). We can easily reduce the cost of this step to
logarithmic time if we keep the feasible pairs into a heap that
organizes them in descending order of their marginal gains.
This can be done because the gain function is monotonically
decreasing with the size of A. Thus, the time complexity of
Greedy is O(Pδp log(PR)).

The greedy algorithm is shown to provide an assignment
with 1/3 approximation ratio for SGRAP [22]. Since SGRAP
is a special case of WGRAP (cf. Section 2.3), the greedy al-
gorithm finds at worst an 1/3-approximation solution for
WGRAP.5 The greedy algorithm simply splits the assign-
ment process into P · δp iterations and disregards how the
selections between iterations are correlated. In the next sec-
tion, we introduce a more sophisticated method that per-
forms only δp iterations and significantly increases the ap-
proximation ratio up to 1− 1/e.

4.2 Stage Deepening Greedy Algorithm
Our intuition is to reduce the number of iterations and

assign multiple pairs at each iteration. This way, we can
improve the quality of the resulting assignment because we
have higher flexibility in which pairs are added to A at each
iteration. One way to apply our idea is to find the best
reviewer group (i.e., δp reviewers) for any paper at each stage
(i.e., iteration), which reduces the number of iterations to
P (from P · δp). However, finding the best reviewer group
for a specific paper (i.e., the JRA problem) is already NP-
hard, therefore such a solution would not be a polynomial-
time solution. Thus, our goal is to partition the stages such
that (i) each stage requires polynomial time and (ii) the
approximation ratio is guaranteed. We first discuss how we
perform the assignment in δp stages and then analyze the
approximation ratio of our method in Section 4.3.

To satisfy condition (i), we construct a sub-problem which
assigns exactly one reviewer to every paper at each stage; in
this way, at each stage we solve a PTIME linear assignment
problem. To fulfil condition (ii), we confine the reviewer
workload at each stage, i.e., every reviewer is assigned at
most ⌈δr/δp⌉ papers at each stage. The necessity of this
confinement will be discussed in Section 4.3; the practical
benefit is that every reviewer enters into the tail stages of
the assignment process, as shown in the following example.
Consider a WGRAP with 3 reviewers and 3 papers with
topic vectors as in the tables below. Let δp = 2 and δr = 2.
If we greedily assign r1 to 2 papers (i.e., c(−→r1 ,−→p2) = 0.6 and
c(−→r1 ,−→p3) = 0.6) at the first stage, then no reviewer (other
than r1) can cover t3 at the second stage. On the other
hand, the overall assignment score will be improved if we
reserve one workload of r1 for the second stage.

t1 t2 t3
−→r1 0.1 0.5 0.4
−→r2 1 0 0
−→r3 0 1 0

t1 t2 t3
−→p1 0.6 0 0.4
−→p2 0.5 0.5 0
−→p3 0.5 0.5 0

4if there are not enough reviewers, it needs R · δr iterations.
5The proof in [22] is also applicable to WGRAP, as a greedy
algorithm for the problem of maximizing a submodular func-
tion (i.e., c(·)) over a 2-system (i.e., feasible set of assign-
ments) achieves a 1/3-factor approximation [12].

Definition 9 (Stage-WGRAP). Given the running
stage s and previous stage results A1, · · · ,As−1, Stage-
WGRAP finds an assignment As such that

max
∑

p∈P

c(−→g ,−→p )

where g = {r|(r, p) ∈ A1[p] ∪ · · · ∪ As[p]}
s.t. |As[r]| ≤ ⌈δr/δp⌉ ∀r ∈ R

(reviewer workload)

|As[p]| = 1 ∀p ∈ P

(group size constraint)

We denote the discussed sub-problem as Stage-WGRAP
and define it in Definition 9. When s = 1, this sub-problem
is clearly a linear assignment problem (cf. Definition 5),
since each group includes only a single reviewer at the first
stage.

Lemma 2. Stage-WGRAP can be computed incrementally
from stage 1 to s in polynomial time.

Proof. So far we know that A1 can be computed in poly-
nomial time. Given A1, the objective function at stage 2 can
be rewritten as:
∑

p∈P

c(−→g ,−→p ) =
∑

p∈P

c(
−−−−−−−−−→
A1[p] ∪ A2[p],

−→p )

=
∑

p∈P

c(
−−−→
A1[p],

−→p ) +
∑

p∈P

gain(A1[p],A2[p], p)

As c(
−−−→
A1[p],

−→p ) is fixed at stage 1 already, our objective is to
find A2 such that the marginal gain

∑
p∈P

gain(A1[p],A2[p], p)
of the assignment is maximized. This is obviously another
linear assignment problem. By simple induction, we can
compute Stage-WGRAP incrementally from stage 1 to s in
polynomial time, i.e.,

∑

p∈P

c(−→g ,−→p ) =
∑

p∈P

c(
−−−−−−−−−−−−−→
A1[p] ∪ · · · ∪ As[p],

−→p )

=
∑

p∈P

c(
−−−−−−−−−−−−−−−→
A1[p] ∪ · · · ∪ As−1[p],

−→p )

+
∑

p∈P

gain(A1[p] ∪ · · · ∪ As−1[p],As[p], p)

(5)

Figure 6 illustrates WGRAP and Stage-WGRAP. Algo-
rithm 2 is a pseudocode for our Stage Deepening Greedy
Algorithm (SDGA). At each stage, we can apply a classic
linear assignment algorithm (e.g., Hungarian algorithm [20],
Minimum-cost flow assignment [3]) to compute the assign-
ment in polynomial time. For instance, the Hungarian al-
gorithm takes O((max {P,R})3) to compute a linear assign-
ment; therefore, the time complexity of SDGA using the
Hungarian algorithm is O(δp(max {P,R})3) and the space
requirement is O((max {P,R})2). Both time and space com-
plexities are acceptable (for commodity machines) as P and
R are in the order of a few hundreds (or thousands) in aca-
demic conferences.
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Figure 6: WGRAP and Stage-WGRAP

Algorithm 2 Stage Deepening Greedy Algorithm

Input: paper set P, reviewer set R, workload constraint δr,
group size constraint δp
Output: assignment A

Algorithm SDGA(P,R, δr, δp)
1: for s← 1 to δp do
2: As ← Stage-WGRAP ({A1, · · · ,As−1},P,R) ⊲ by Eq. 5

3: return A1 ∪ · · · ∪ Aδp

4.3 Approximation Ratio of SDGA
In this section, we show that SDGA provides a solution

of WGRAP with an approximation ratio (1− 1/e) (when δr
is divisible by δp) and 1/2 (otherwise).

4.3.1 Integral cases: δr/δp is an integer

Optimal assignment, O. We first introduce some nota-
tions that are used throughout this section. For anyWGRAP,
we denote by O its optimal assignment. In the following, we
show how we can split O into δp isolated sets, {O1, · · · ,Oδp},
such that O = O1 ∪ · · · ∪Oδp , Oi ∩Oj = ∅, ∀1 ≤ i < j ≤ δp,
and for every stage s,

|Os[r]| ≤ ⌈δr/δp⌉, ∀r ∈ R, and |Os[p]| = 1, ∀p ∈ P (6)

This partitioning can be done in O(|O|2) time in a nested
loops fashion. First, we arbitrarily divide the reviewer-
paper pairs in O into disjoint sets O1, · · · ,Oδp . Then, the
outer loop scans every assignment pair from O1, · · · ,Oδp ;
if the current pair (e.g., in Os) violates the constraints of
Equation 6, an inner loop is run to the partitions (e.g.,
Os+1, · · · ,Oδp ,O1, · · · ,Os−1) to swap the pair with one that
is valid.

Stage marginal gain and assignment gap. For the ease
of our discussion, we use c(O) to denote the coverage score
(i.e., quality) of an assignment O, i.e., c(O) =

∑
p∈P

c(−→g ,−→p )

where g = {r|(r, p) ∈ O[p]} and we use O1···s to denote the
union set of O1 ∪ · · · ∪Os.

We define the stage marginal gain of the SDGA assign-
ment at the running stage s as

∆(A, s) = c(A1···s)− c(A1···s−1) (7)

and the assignment gap (i.e., the difference) between the
optimal score and the running SDGA score (from stage 1 to
s− 1) as

gap(O,A, s) = c(O)− c(A1···s−1) (8)

To show the approximation ratio, we first show that the
marginal gain of SDGA at stage s is always larger than
the 1/δp-assignment gap. This is a commonly used step
in showing the approximation ratio of maximum coverage
problems [11].

Lemma 3. ∆(A, s) ≥ gap(O,A, s)/δp

Proof. As the coverage score is always positive, we begin
with the fact that the coverage score becomes higher when
we have a larger assignment, i.e.,

c(O) ≤c(A1···s−1 ∪O)

gap(O,A, s) ≤c(A1···s−1 ∪O1···δp)− c(A1···s−1)

=c(A1···s−1 ∪O1)− c(A1···s−1)+

c(A1···s−1 ∪O1···2)− c(A1···s−1 ∪O1)+

· · ·+
c(A1···s−1 ∪O1···δp)− c(A1···s−1 ∪O1···δp−1)

where each term c(A1···s−1∪O1···i)−c(A1···s−1∪O1···i−1) in-
dicates the marginal gain of adding Oi into the set A1···s−1∪
O1···i−1. Accordingly, there must exist an Oi such that the
marginal gain is larger than gap(O,A, s)/δp, i.e.,

c(A1···s−1 ∪O1···i)− c(A1···s−1 ∪O1···i−1) ≥ gap(O,A, s)/δp

Since c(·) is a submodular function6, c(A1···s−1 ∪ Oi) −
c(A1···s−1) ≥ c(A1···s−1∪O1···i)−c(A1···s−1∪O1···i−1). Thus,

c(A1···s−1 ∪Oi)− c(A1···s−1) ≥ gap(O,A, s)/δp

What remains is to show that c(A1···s−1∪As) ≥ c(A1···s−1∪
Oi). This inequality is true since (i) we always find the op-
timal assignment at each stage independently and (ii) the
stages are equally partitioned (i.e., workload=δr/δp) so that
As and Oi always share the same sets of reviewers and pa-
pers.

Theorem 1. SDGA is a (1 − 1/e)-approximation algo-
rithm for WGRAP if δr is divisible by δp.

Proof.

c(O)− c(A1···δp)

=c(O)− c(A1···δp−1)−∆(A, δp) (by Eq. 7)

=gap(O,A, δp)−∆(A, δp) (by Eq. 8)

≤gap(O,A, δp)(1− 1/δp) (by Lemma 3)

≤gap(O,A, δp − 1)(1− 1/δp)
2 (Eq.7, 8 and Lemma 3)

≤ · · ·
≤(1− 1/δp)

δpc(O) (after δp iterations)

≤(1/e)c(O)

∴ c(A1···δp) ≥ (1− 1/e)c(O)

4.3.2 General cases: δr/δp is a real number

O cannot be split into equal sets {O1, · · · ,Oδp} if δr is
not divisible by δp. As SDGA computes the approximate
assignment stage by stage, for the first δp − 1 stages, the
claim of Lemma 3 is satisfied. Thereby, we can derive the

6For the sake of readability, this is shown in Appendix B.



following inequality from the proof of Theorem 1, by simply
ignoring the contribution at the last stage:

c(O)− c(A1···δp) ≤ (1− 1/δp)
δp−1c(O)

Thus, the approximation ratio is at least 1− (1− 1/δp)
δp−1.

We conclude the approximation ratio of SDGA in Theo-
rem 2.

Theorem 2. SDGA is a 1/2-approximation algorithm
for WGRAP.

Proof. Trivial. 1 − (1 − 1/δp)
δp−1 is monotonically in-

creasing to δp. When δp ∈ I and δp ≥ 2, the smallest value
of this function is 1/2.
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Figure 7: The effect of δp

As the approximation ratio of both integral (i.e., 1− (1−
1/δp)

δp) and general cases (i.e., 1 − (1 − 1/δp)
δp−1) is sen-

sitive to δp, we plot the ratio according to the value of δp
in Figure 7 for clarity. In general cases, the approximation
ratio increases to 5/9 for δp = 3 (e.g., a typical setting in
major database conferences) and to 0.5904 for δp = 5 (e.g.,
a setting used in some IR conferences).

Supporting Conflicts of Interest (COIs). Our approx-
imation algorithm can also seamlessly support COIs with the
same approximation guarantee. The reason is that for any
pair (r, p), which is a COI, the pair must not appear any
stage of Oi and Ai. Thus, Oi and Ai still share the same
workload of reviewers and papers.

4.4 Stochastic Refinement
The approximate result A of SDGA can be further im-

proved by postprocessing. Local search [17] is a widely used
postprocessing technique for approximation algorithms. In
our context, local search attempts to swap two or multiple
assignment pairs such that the assignment quality (i.e., cov-
erage score) gets improved. The search terminates when the
improvement becomes not obvious (i.e., convergence) or the
search time exceeds a pre-defined threshold.

However, a simple application of local search is not ex-
pected to be effective for WGRAP since the search space
is huge, i.e., O((CR

δp
)P ), even for small data instances. In

such a huge space, local search is not likely to find a good
result by only considering local information, e.g., greedily
swapping two pairs (or a short chain of pairs) to improve
the coverage score. In this section, we propose an effective
refinement method, which swaps pairs based on a stochastic
process.

Assume that the probability P(r|p) of the assignment pair
(r, p) to be in the optimal assignment O can be estimated

r1p1 r3 g1

r2p2 r4 g2

r1p3 r2 g3

(a) P-based removal

r1p1 g1

r2p2 g2

r2p3 g3

(b) Available slots

r1p1 r3 g1

r2p2 r1 g2

r2p3 r4 g3

(c) stage-WGRAP

Figure 8: An illustration of stochastic refinement

(how to estimate this will be discussed shortly). Our idea is
to try the replacement of some pairs from A according to this
probability. More specifically, we attempt to remove pairs
(r, p) by a stochastic process (i.e., (r, p) has high chance to
be removed when P(r|p) is low) and then add back pairs for
papers with less reviewers than δp. In order to make this
process systematic, we only remove one reviewer from each
paper; this way, the result can be completed by a linear as-
signment (i.e., similarly to the process at the last stage of
SDGA). The basic idea of the stochastic refinement is illus-
trated in Figure 8. In our approach, we iteratively apply
stochastic refinement on the result of SDGA, until the pro-
cess converges: if the assignment result does not improve in
the last ω refinement rounds, then we assume that further
refinement is not likely to improve the quality, therefore we
terminate the process.

What remains is to estimate the probability P(r|p) of
reviewer r correctly being assigned to paper p. A simple
approach would be to consider the probabilities of all re-
viewers identical, i.e., P(r|p) = 1/R. This uniformity as-
sumption simply disregards the expertise of a reviewer to
a paper. Thus, we consider a more data oriented approach
which estimates the probability based on the coverage score
of reviewers for each paper. The estimation can be done in
O(PR).
Assume that for each paper p, we have the coverage score

of all reviewers (Definition 1). A reviewer r is more likely
assigned to a paper p in O if c(−→r ,−→p ) is high. However, if
r has high coverage score for many papers, then we should
lower r’s probability to be assigned to each of those papers.7

Accordingly, we define the probability of reviewer r to be
correctly assigned to paper p as follows:

P(r|p) ∝ c(−→r ,−→p )/
∑

p′∈P

c(−→r ,−→p ′), (9)

where the numerator indicates how good (r, p) is and the de-
nominator penalizes reviewers that have high coverage scores
in many papers.

Equation 9 models the probability used by our stochas-
tic refinement process to remove assignment pairs from A.
After running several refinement iterations, the effect of the
probabilities degrades dramatically since the process may
get stuck in a local maximum. Thereby, we slightly modify
Equation 9 to reflect this by an exponential decay function
as follows:

P(r|p) ∝ max{1/R, e−λI · c(−→r ,−→p )/
∑

p′∈P

c(−→r ,−→p ′)} (10)

7This shares the same intuition as the TF-IDF model in IR.



where I indicates the number of refinement iterations run
so far. We use 1/R as a constant so that every reviewer
has a chance to be involved into the refinement process. We
summarize our stochastic refinement process in Algorithm 3.

Algorithm 3 Stochastic Refinement Algorithm

Input: assignment A (from SDGA), papers P, reviewers R,
workload δr, group size δp
Output: refined assignment A

Algorithm SRA(A,P,R, δp, δr)
1: for all p ∈ P do
2: for all r ∈ R do computes c(−→r ,−→p )

3: while c(A) does not converge do
4: for all (r, p) ∈ A do
5: computes P(r|p) by Eq. 10

6: for all p ∈ P do
7: removes a reviewer r from A[p] based on 1− P(r|p)

8: As ← Stage-WGRAP (A,P,R)
9: A← A

⋃

As

10: return A

5. EXPERIMENTS

Data Mining Databases Theory

Venues SIGKDD’08,’09
ICDM’08,’09
SDM’08,’09
CIKM’08,’09

SIGMOD’08,’09
VLDB’08,’09
ICDE’08,’09
PODS’08,’09

STOC’08,’09
FOCS’08,’09
SODA’08,’09

#Papers 545, 648 617, 513 281, 226
Reviewers SIGKDD’08,’09 SIGMOD’08,’09 STOC’08,’09
#Reviewers 203, 145 105, 90 228, 222

Table 3: Data used in the evaluation

To evaluate our methods, we conducted experiments using
academic publications in three research areas (Data Mining,
Databases and Theory) over two years (2008 and 2009). We
obtained the data from [26], since in this dataset the paper
abstracts are available.8 As set of reviewers, we take the
program committee list from one venue of the correspond-
ing area (e.g., the PC of SIGMOD 2008 is used to simu-
late the reviewers of the Databases area for year 2008). To
extract the topic vectors of reviewers (cf. Section 2.4 and
Appendix A), we collect the abstracts of their publication
records from 2000 to 2009. We set the number of topics
T to 30 (treated as a constant in this work). As we do not
have records about the submitted papers at a conference, we
simulate an artificial conference by taking the publications
from 3 to 4 similar venues of the same year as the submitted
papers (e.g., the submissions for Databases in 2008 are all
considered to be all published papers in 2008 in SIGMOD,
VLDB, ICDE, and PODS). The number of submitted pa-
pers and the set of reviewers for each area and year are
summarized in Table 3.

All methods were implemented in C++, complied using
VC2010, and the experiments were performed on a ma-
chine equipped with Intel Core 4-Cores (8-Threads) i7-2600
3.4GHz and 3.17GB main memory. The machine was run-
ning Windows 7 Enterprise 32bit.

8Abstracts are used in the process of extracting the topic
vectors. See Section 2.4 and Appendix A for details.

5.1 Journal Reviewer Assignment
We first evaluate the efficiency of our Branch-and-Bound

Algorithm (BBA) for JRA. We compare BBA with two com-
petitors, Brute Force Search (BFS) and Integer Linear Pro-
gramming (ILP). We use lp solve [2] to solve ILP which is a
C++ library based on the revised simplex method. In this
section, we only evaluate the effect of δp (i.e., reviewer group
size) and R (i.e., number of reviewer candidates) since the
search space is only sensitive to the depth (i.e., δp) and the
fan-out (i.e., R) of the tree. By default, the pool of candidate
reviewers R includes all authors who published at least 3 pa-
pers in any of the three areas in 2005-2009 (a total of 1002
authors). In each experiment, we vary a single parameter,
while setting the others to specific values. To evaluate the
effect of R, we randomly select R reviewers candidates from
the default pool R. We report the average response time of
all methods on 20 papers (i.e., p is randomly selected from
the three areas).
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Figure 9: Scalability evaluation of JRA

Figure 9(a) shows the response time of the methods as
a function of group size δp, after setting R to 200. ILP
and BBA are less sensitive to δp due to the effectiveness of
the branching techniques (i.e., executing promising branches
first). BFS cannot finish within 24 hours and ILP takes 2.4
hours to compute the result when δp = 6, while BBA only
takes 7.7 seconds to locate the optimal reviewer group. BBA
is at least two orders of magnitude faster than ILP and BF.

Figure 9(b) shows the response time of the methods as a
function of reviewer size R, after setting δp to 3. All methods
are less sensitive to R than δp. Again, our method (BBA)
is less sensitive to R than the other two methods due to the
effect of branching and bounding. When R = 500, BBA
is 1,252 and 6,661 times faster than BFS and ILP, respec-
tively. For R=1,000 (not shown in Figure 9(b)), BBA is
just 2.1 times slower (0.64 s) than BBA for R = 500 (0.3 s)
while BFS and ILP are 33.9 and 3.4 times slower than their
respective runs for R = 500. For completeness, we put two
additional scalability experiments (i.e., changing the default
value of R to 300 and of δp to 4) in Appendix C.

As JRA can be viewed as a general constraint program-
ming problem [9], we also attempted to solve JRA by a
commercial CP solver, IBM ILOG CPLEX Optimizer 12.6
(CPLEX) [8]. For a small problem instance (with R = 30
and δp = 3), CPLEX takes 14.35 s to find the optimal assign-
ment and uses 90 ms to return the first feasible assignment
group. Our method (BBA) takes only 4 ms to return the op-
timal assignment. To our understanding, typical constraint
programming techniques are not favorable to the group as-
signment problem due to the lack of a tight upper bound
(cf. Equation 3).



5.2 Conference Reviewer Assignment
In the next set of experiments, we simulate the assign-

ment process of two conferences (in the Databases and Data
Mining areas of 2008)9, for which the statistics (e.g., R and
P ) can be found in Table 3. We compare our proposed tech-
niques, SDGA, and SDGA with stochastic refinement (de-
noted by SDGA-SRA), to other competitors, including Sta-
ble Matching (SM) [13] (i.e., a widely accepted approach in
resource allocation problems), ILP (i.e., the objective is not
a group coverage function), Greedy [22], and Best Reviewer
Group Greedy (BRGG) (i.e., at each iteration, we find the
best pair of group and paper (g, p) instead of best reviewer
and paper (r, p), a method discussed in the beginning of Sec-
tion 4.2). Regarding SM and ILP, they do not consider the
quality of each assignment group at its entirety so that an
interdisciplinary paper may be reviewed by a group of re-
viewers with too narrow expertise. Still, we include them in
the experiments, for the sake of completeness. For SDGA-
SRA, we set the convergence threshold ω = 10. We also
set the reviewer workload δr to the minimum possible value
(i.e., δr = ⌈P · δp/R⌉). This setting is commonly used in the
real world as the program chair would like to minimize the
workload of each reviewer and make the assignment as bal-
anced as possible. Moreover, this setting makes the problem
more challenging as every reviewer must be involved in the
assignment process.

SM ILP BRGG Greedy SDGA SDGA-SRA

DB (δ = 3) 0.1 7.6 11.6 0.1 5.9 46.3
DB (δ = 5) 0.1 8.7 15.5 0.2 9.5 48.8
DM (δ = 3) 0.1 16.0 30.2 0.3 5.5 44.3
DM (δ = 5) 0.1 17.3 21.4 0.3 9.1 47.7

Table 4: Response time (s) of approximate methods

Even though the response time is not the main focus when
evaluating approximation algorithms, it remains a signifi-
cant performance factor in practice. We report the response
time of all tested methods in Table 4. As expected, SDGA
and SDGA-SRA are more costly than Greedy, due to the
fact that these methods examine a larger part of the search
space. Still, the response time, e.g., 5.9 s (SDGA) and 46.3 s
(SDGA-SRA), is reasonable as the assignment is only com-
puted once for a conference.

Optimality ratio. A reasonable approach to evaluate the
quality of each assignment A is to compute its approximation
ratio c(A)/c(O) to the optimal assignmentO. However, com-
puting O may take very long time even for small instances,
due to the hardness of the problem. Instead, we compute
the optimality ratio c(A)/c(AI) of A to an ideal assignment
AI. To compute AI, for each paper, we greedily assign to
each paper the best set of δp reviewers, disregarding their
workloads. AI may violate the constraint that each reviewer
is assigned to at most δr, therefore, in general, c(AI) > c(O).
Hence, c(A)/c(AI) is a lower bound of c(A)/c(O).

Figure 10 shows the optimality ratio of the methods as a
function of reviewer group size δp. Although SDGA outper-
forms the simple methods SM, ILP and BRGG by a visible
margin, SDGA performs similarly to Greedy. This is not

9As the results for different areas are similar, we moved
the simulation for Data Mining/Database areas of 2009 and
Theory area for 2008/2009 to Appendix C.
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Figure 10: Optimality ratio

surprising, as Greedy is shown to provide good results in
many NP-hard problems in practice. Still, in the majority
of our tests (one exception can be found in Databases when
δp = 5), the optimality ratio of SDGA is better than that
of Greedy due to the stage deepening technique. Given its
stronger approximation guarantee and the better practical
performance, we recommend SDGA as the best approach
for WGRAP. In addition, after applying our stochastic re-
finement (SDGA-SRA), the optimality ratio becomes very
close to 1, consistently outperforming the ratio of Greedy
(from 0.39% for δp = 5 on Data Mining to 1.91% for δp = 3
on Databases). A substantial amount of papers get better
coverage scores; for example, 389 (out of 617) papers, for
δp = 3 on Databases.

Superiority ratio. Next we investigate the assignment
quality of each paper by a superiority ratio metric. Given
two approximate result AX and AY , the ratio of X over Y
is calculated as

ratio(X,Y ) = | {p ∈ P|c(−−−→AX [p],−→p ) ≥ c(
−−−→
AY [p],−→p )} | / P,

where the numerator indicates the number of papers, which
get better or equal coverage score in AX than AY . The
superiority ratio is an important quality factor, as it shows
how many papers will get an assignment of better quality
by the approximate solutions.
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Figure 11: Superiority ratio of SDGA-SRA

Figure 11 demonstrates the superiority ratio of SDGA-
SRA over the three competitors, as a function of the re-
viewer group size δp. SDGA is omitted since SDGA-SRA is
derived from SDGA. Each bar indicates the superiority ratio
of SDGA-SRA over a competitor; the dark grey portion indi-
cates the ratio of tie cases. For instance, almost every paper
gets by SDGA-SRA a better or equal quality to SM and ILP,
and at least 89.4% of the papers gets better or equal qual-
ity to Greedy. This result reveals that the stage execution



paradigm of SDGA and the stochastic process (SRA) help in
finding a better reviewer group for each paper. SDGA-SRA
is not better than BRGG since a portion of papers gets very
good reviewer groups at the early stages of BRGG. However,
this strategy harms the latter stage assignments, leading to
a low coverage ratio (cf. Figure 10).

0 10 20 30 40 50
Time (sec)

95%

96%

97%

98%

99%

100%

O
p

ti
m

a
lit

y
 r

a
ti

o

SDGA-SGA SDGA-LS

(a) Databases

0 10 20 30 40 50
Time (sec)

95%

96%

97%

98%

99%

100%

O
p

ti
m

a
lit

y
 r

a
ti

o

SDGA-SGA SDGA-LS

(b) Data Mining

Figure 12: Optimality ratio to stochastic refinement
executions

Effectiveness of stochastic refinement. Next, we
demonstrate the effect of our stochastic refinement process.
We compare it with a standard, Local Search (LS) refine-
ment approach. Our stochastic refinement can improve the
optimality ratio by 1.4% and 1.2% in databases and data
mining, respectively, after 20 seconds; while local search
does not improve the overall quality since it gets stuck in
a local maximum.

Summary. Our fully optimized approximate solution,
SDGA-SRA, outperforms other methods by a wide mar-
gin considering different performance factors. More impor-
tantly, SDGA-SRA finds a solution with at least 1 − 1/e
approximation ratio (for integral cases) and 1/2 ratio (for
general cases), which is the best ratio achieved to the best
of our knowledge. More comparisons, discussions, and case
studies can be found in Appendix C. All paper assign-
ment results are available via our project homepage (http:
//degroup.cis.umac.mo/reviewerassignment/).

6. CONCLUSION
In this paper, we formulated the automatic reviewer as-

signment to papers as a Weighted-coverage Group-based
Reviewer Assignment Problem (WGRAP). Our formulation
does not have the drawbacks of previous work. First, it
balances the review load. Second, it uses a quality metric
based on the coverage of the paper topics by the reviewers’
expertise, giving weight to the topics according to their rel-
evance to the papers. We studied the special case of Journal
Reviewer Assignment and proposed an efficient algorithm
that finds an exact solution for it. For the general WGRAP,
we proposed a polynomial-time approximation algorithm,
which improves the approximation ratio of previous work
from 1/3 to 1/2. Finally, we proposed a stochastic refine-
ment process that further improves the quality of the so-
lution found by our algorithm. Our experimental results
show that our algorithm paired with the stochastic refine-
ment postprocessing achieves much better results compared
to previous approaches and also runs within reasonable time.
In the future, we plan to study alternative RAP formula-
tions, e.g., where the quality of the assignment depends on

both reviewer relevance to the paper topics and reviewer
preferences based on available bids.
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APPENDIX

A. TOPIC DISCOVERY
Topic modeling is a widely accepted method in Text Min-

ing [5, 16, 25, 28, 30]. The objective is to extract a set
of relevant and representative topics from a set of articles.
Recent work [18, 19, 23] on the reviewer assignment prob-
lem adopt topic modeling for the extraction of topic vectors
for reviewers and papers. As the topics can also be defined
manually, the quality of topic extraction is orthogonal and
independent to the development and necessity of WGRAP
and any new findings on topic extraction are readily appli-
cable and beneficial to WGRAP.

In this work, we apply the Author-Topic Model (ATM) [25]
to extract the topic vectors of reviewers based on their pub-
lication records. Figure 13 illustrates the adapted ATM for
our problem, where each variable is represented by a node
(solid nodes for observed variables and hollow nodes for un-
known variables to be estimated) and their dependencies
are indicated by the arrows. The number of times each vari-
able is replicated is indicated by the right-bottom number of
each box. In our figure, there are R reviewers and the total
number of their publications is D (i.e., {d1, · · · , dD}). ATM
assumes that every word of a document can be generated
independently using the following iterative procedures.

1. Generate −→ri ∼ Dir(α), i ∈ {1, . . . , R}, where Dir(α) is
the Dirichlet distribution for parameter α.

2. Generate
−→
ti ∼ Dir(β), i ∈ {1, . . . , T}.

3. Generate each word w in a publication d as follows.

(a) Generate a reviewer ri based on p(r|d), where p(r|d)
is a uniform distribution over reviewers who are the
authors of d.

(b) Generate a topic tj based on p(t|−→ri )
(c) Generate a word wk based on p(w|−→tj )

Our goal is to estimate the topic vector of reviewers {−→r1 ,
· · · ,−→rR} and the topic set {−→t1 , · · · ,−→tT } such that the gen-
erated documents are as similar as possible to the observed
variables D (i.e., the generative probability is maximized).
The estimation can be done by Gibbs Sampling, as suggested
in [25].

Given the topic set, we can easily derive the topic vector−→p of each submitted paper by Expectation Maximization
(EM) [30] as follows.

−→p = argmax
−→p

Wp∏

i=1

T∑

j=1

p(wi|tj)−→p [tj ], (11)

r

α 

d t w

β r t
R T

Wd
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Figure 13: Author-Topic Model

where Wp indicates the set of words in p and p(wi|tj) is
estimated by ATM.

B. SUBMODULARITY AND ALTERNATIVE

SCORING FUNCTIONS
According to the proofs of Lemma 3 and Theorem 1, the

approximation ratio of SDGA still holds even when the ob-
jective function c(A) =

∑
p∈P

c(−→g ,−→p ) (where g = {r|(r, p) ∈
A[p]}) is replaced by alternative submodular functions. In
this section, we first prove the submodularity of c(A) subject
to two conditions of the scoring function c(−→r ,−→p ). We then
study 3 additional scoring functions and discuss their effect
to WGRAP.

Proof of submodularity. c(A) is submodular while (C.1)
c(−→r ,−→p ) is a summation of topic scores, i.e. the contribu-
tion of different topics is independently counted, and (C.2)
c(−→r ,−→p ) is monotonically increasing function w.r.t. −→r , i.e.,
the assignment quality does not decrease when the expertise
of a reviewer r (or a reviewer group g) increases. Obviously,
our default scoring function (cf. Definition 1) fulfills these
two conditions. A formal proof follows.

Lemma 4. The objective function c(A) is submodular if
(C.1) c(−→r ,−→p ) is a summation of topic scores and (C.2)
c(−→r ,−→p ) is a monotonically increasing function w.r.t. −→r .

Proof. c(A) is submodular iff, ∀(r, p), (r′, p′) ∈ R× P,

c(A ∪ {(r, p)})− c(A) ≥

c(A ∪ {(r′, p′)} ∪ {(r, p)})− c(A ∪ {(r′, p′)})

If p 6= p′, the marginal gains of (r, p) and (r′, p′) are inde-
pendent. In other words, the gain of assigning (r, p) is not
affected by whether we have assigned (r′, p′), i.e.:

c(A ∪ {(r, p)})− c(A) =

c(A ∪ {(r′, p′)} ∪ {(r, p)})− c(A ∪ {(r′, p′)})

If p = p′, assignment pairs (r, p) and (r′, p′) refer to the same
paper. In this case, r and r′ belong to the same reviewer
group g. According to the first condition (C.1), each topic
t independently contributes to c(−→r ,−→p ). For the ease of our
discussion, we use f(−→r [t],−→p [t]) to denote the contribution
at topic t.

When −→r [t] ≥ −→r ′[t],

f(
−−−−→
g ∪ {r}[t],−→p [t])− f(−→g [t],−→p [t]) by Def. 2

=f(
−−−−−−→
g ∪ {r, r′}[t],−→p [t])− f(−→g [t],−→p [t]) by C.2

≥f(
−−−−−−→
g ∪ {r, r′}[t],−→p [t])− f(

−−−−−→
g ∪ {r′}[t],−→p [t]) (12)



When −→r [t] < −→r ′[t],

f(
−−−−−−→
g ∪ {r, r′}[t],−→p [t])− f(

−−−−−→
g ∪ {r′}[t],−→p [t]) by Def. 2

=f(
−−−−−−→
g ∪ {r, r′}[t],−→p [t])− f(

−−−−−−→
g ∪ {r, r′}[t],−→p [t]) = 0 (13)

Thereby,

f(
−−−−→
g ∪ {r}[t],−→p [t])− f(−→g [t],−→p [t]) by C.2 and Eq. 13

≥f(
−−−−−−→
g ∪ {r, r′}[t],−→p [t])− f(

−−−−−→
g ∪ {r′}[t],−→p [t]) (14)

Thus, we now prove the marginal gain of assigning (r, p)
may decrease if we have assigned (r′, p′) first, i.e.:

c(A ∪ {(r, p)})− c(A) ∵ g reviews p

=

T
∑

t=1

f(
−−−−→
g ∪ {r}[t],−→p [t])− f(−→g [t],−→p [t])

by Eq. 12 and 14

≥
T

∑

t=1

f(
−−−−−−→
g ∪ {r, r′}[t],−→p [t])− f(

−−−−−→
g ∪ {r′}[t],−→p [t])

=c(A ∪ {(r′, p′)} ∪ {(r, p)})− c(A ∪ {(r′, p′)})

Alternative scoring functions. We study three alterna-
tive scoring functions, namely the reviewer coverage score,
the paper coverage score, and the dot-product score. The
reviewer (paper) coverage score employs a winner-takes-all
strategy where the reviewer (paper) contributes to topic t if
and only if r[t] ≥ p[t] (i.e., r is qualified to review p at topic
t). The score computed by this strategy is based on only
the reviewer expertise (paper contents). The dot-product
score is widely used in many vector based similarity com-
putations. All of these three functions are submodular, i.e.,
the satisfy the conditions of Lemma 4.

Table 6 is a toy example with two reviewers and one pa-
per, demonstrating the effect of these scoring functions. The
reviewer coverage score cR prefers a reviewer with strong ex-
pertise on some specific topic(s) of the paper so that r1 is
preferred to r2 due to r1’s expertise at these topic(s). The
paper coverage score cP focuses on whether a topic in the
paper can be completely understood by the reviewer. Ac-
tually, we recommend to use the reviewer (paper) coverage
score only when we are very confident about the reviewers’
expertise information (paper topic distribution). The dot-
product score cD offers a fair evaluation based on both paper
contents and reviewer expertise. However, it may overesti-
mate the importance of some topic, e.g., topic t1 of r1 is 0.9,
which likely returns a large score, although the paper’s rel-
evance to t1 is 0.6 only. In this example, our default scoring
function (i.e., weighted coverage c), is the only method that
prefers r2 to r1. This result is more intuitive as r2 is more
similar to p than r1 is. It should be noted that the main
focus of this work is not to evaluate the appropriateness of
the scoring functions. Instead, we provide flexibility in the
choice of the objective function, as long as it is a submodular
function, in which case our theoretical results (Theorem 1)
hold.

name symbol function (numerator only)

weighted coverage
c

∑T
t=1 min{−→r [t],−→p [t]}(default)

reviewer coverage cR
∑T

t=1

{ −→r [t] if −→r [t] ≥ −→p [t]
0 otherwise

paper coverage cP
∑T

t=1

{ −→p [t] if −→r [t] ≥ −→p [t]
0 otherwise

dot-product cD
∑T

t=1
−→r [t] · −→p [t]

Table 5: Alternative scoring functions

t1 t2
−→p 0.6 0.4
−→r1 0.9 0.1
−→r2 0.5 0.5

−→r1
−→r2

cR(−→r ,−→p ) 0.9 0.5
cP (−→r ,−→p ) 0.6 0.4
cD(−→r ,−→p ) 0.58 0.5
c(−→r ,−→p ) 0.7 0.9

Table 6: An example using the 4 scoring functions

C. ADDITIONAL EXPERIMENTS

Additional scalability evaluation of JRA. Figures 14(a)
and 14(b) show the response time of the methods as a func-
tion of group size δp and number of reviewers R, respectively.
The overall trend is similar to the result in Section 5.1.
When δ = 6, BF cannot finish in 48 hours and ILP takes
18.9 hours to compute the result while BBA only takes 53.8
seconds. Figure 15 evaluates the effect of k (i.e., top-k re-
viewer groups) under the default setting. BBA returns the
best 1,000 reviewer groups within 2 seconds.
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Figure 14: Additional scalability evaluation of JRA

Lowest coverage score. The lowest coverage score,
minp∈P c(−→g ,−→p ), models the quality of the worst assignment
in a CRA approximate result. As Table 7 shows, SDGA-
SRA significantly outperforms the other methods with re-
spect to this metric, especially for low δp values. This is be-
cause the stage assignment of SDGA achieves a result closer
to the optimal, when there are only few stages.

Effect of the convergence threshold ω in SRA. The
convergence threshold ω is a parameter used to terminate
the stochastic refinement process. For larger ω values, the
execution time increases and we also expect the assignment
quality to increase. Figure 16 demonstrates the effect of ω
for δp = 3, where the line indicates the response time and
the bar represents the optimality ratio. Although the opti-
mality ratio increases with ω, the response time decreases
at a higher rate. We select ω = 10 as our default setting
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Figure 15: The effect of k on BBA

δp SM ILP BRGG Greedy SDGA-SRA

DB08
3 0.03 0.42 0.16 0.56 0.59
4 0.42 0.44 0.16 0.59 0.59
5 0.53 0.46 0.16 0.59 0.59

DM08
3 0.45 0.45 0.40 0.77 0.75
4 0.28 0.57 0.36 0.77 0.75
5 0.44 0.58 0.36 0.77 0.76

T08
3 0.20 0.49 0.25 0.69 0.76
4 0.59 0.49 0.48 0.79 0.79
5 0.47 0.59 0.45 0.79 0.79

DB09
3 0.51 0.56 0.32 0.71 0.77
4 0.33 0.56 0.26 0.78 0.78
5 0.53 0.61 0.33 0.78 0.78

DM09
3 0.42 0.59 0.41 0.81 0.84
4 0.36 0.62 0.30 0.86 0.86
5 0.67 0.63 0.34 0.86 0.86

T09
3 0.16 0.50 0.13 0.66 0.70
4 0.10 0.56 0.05 0.70 0.70
5 0.23 0.63 0.19 0.70 0.70

Table 7: Lowest coverage score in A

in this work as it offers good tradeoff between effectiveness
and efficiency.

Additional quality evaluation of CRA. Figures 17 and
18 show the optimality ratio and the superiority ratio for
the Theory area of 2008 and all three datasets for 2009.
The overall trends have no difference to the results observed
for the areas of Databases and Data Mining in 2008.

Case study (1). We take a closer look at the set of
reviewers assigned to paper “Kun Liu, Evimaria Terzi: To-
wards identity anonymization on graphs. SIGMOD 2008:
93-106”, in our Databases 2008 experiment. The result of
different approaches are shown in Figure 19, where a bar
indicates the coverage score for a specific topic and we only
report the 5 most related topics in terms of their probability
distribution (i.e., the probability of the remaining topics is
low). For clarity, we show the related topics and their key-
words in Table 8. Due to lack of space, we omit the result of
SM (it performs similarly to ILP). As shown in Table 8 and
Figure 19, the extracted topics (i.e., topic bars) accurately
capture the contents of the paper (in fact, they also match
the paper keywords provided by the authors, i.e., Anonymity,
Degree Sequence, and Dynamic Programming).

We now analyze the expertise of the selected reviewers.
Chris Clifton is an expert on data privacy, particularly with
respect to analysis of private data, so he has relatively high
weight on topic t2 compared to the other topics. As another
example, Philip Yu is an active scholar who has published at
least 856 papers (according to DBLP) and works on diverse
research topics. The majority of his research is related to
data mining, therefore he has relatively high weight on topic
t5. We add a note that the expertise of Philip Yu only reveals
that he offers strong support to review topic t5 but this
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Figure 16: The effect of ω (δp = 3)
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Figure 17: CRA experiments in Theory (2008)

does not mean that he is not qualified for t2 (since we treat
the qualification of every committee member identically by
normalization).

Regarding the assignment result, SDGA-SRA (i.e., our
proposed implementation of WGRAP) returns the best as-
signment according to the coverage of the paper’s topics.
Note that SDGA-SRA is the only method which can find an
expert (i.e., Philip Yu) to support topic t5. Accordingly, the
paper is expected to be reviewed in a more diverse way.

topic keywords

t1 algorithms, techniques, based, large, propose, efficient,...
t2 privacy, access, control, security, sensitive, secure,...
t3 stream, algorithm, approximation, online, string, traffic,...
t4 graph, xml, similarity, matching, approximate, variety,...
t5 clustering, stream, high, mining, classification, graph,...

Table 8: Topics and keywords (for Case study 1)

Case study (2). Table 9 and Figure 20 analyze the assign-
ment of another paper “Mirit Shalem, Ziv Bar-Yossef: The
Space Complexity of Processing XML Twig Queries Over In-
dexed Documents. ICDE 2008: 824-832”, having keywords
XML, computational complexity, indexing, query process-

ing. The coverage scores of all assignment results are rela-
tively high compared to Case study (1). Again, SDGA-SRA
is the only method that includes Christoph Koch, who has
strong background in XML query processing, in the group
of reviewers.

Note that our assignment results are computed solely based
on the paper abstracts. The assignment quality is expected
to be further improved if the topic extraction process uses
the article’s main text and the expertise on topics is self-
tuned by the reviewers.
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(a) Optimality ratio (T)
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(c) Optimality ratio (DB)
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(e) Optimality ratio (DM)
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Figure 18: CRA experiments in 2009 datasets

topic keywords

t1 algorithms, techniques, based, large, propose, efficient,...
t2 query, processing, model, relational, optimization,...
t3 xml, xquery, xpath, query, evaluation, tree, structure,...
t4 graph, xml, similarity, matching, approximate, variety,...
t5 stream, system, operators, plan, maintenance, processing,...

Table 9: Topics and keywords (for Case study 2)

Quality evaluation of scoring functions. Figures 21(a),
21(b), and 21(c) show the optimality ratio of 3 alternative
objective functions (cf. Table 5) on Databases area in 2008.
The overall trends have no difference to those observed when
using our default objective function (cf. Definition 1). Be-
sides evaluating alternative scoring functions, we attempt
to scale the expertise of the reviewers using their h-indices.
Specifically, we scale the vector of each reviewer by a number
in the range [1,2] as follows:

−→r = (1 +
hr − hmin

hmax − hmin

)−→r (15)

where hr denotes the h-index of reviewer r, while hmax and
hmin denote the minimum and maximum h-indices of all re-
viewers, respectively. Similar to other experiments, SDGA-
SRA performs well after the scaling (cf. Figure 21(d)).
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Figure 19: Case study 1
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Figure 20: Case study 2
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(a) Optimality ratio by cR
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(b) Optimality ratio by cP
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(c) Optimality ratio by cD
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(d) Optimality ratio by h-index

Figure 21: The effect of alternative scoring functions


