

 University of Groningen

Weighted deductive parsing and Knuth's algorithm
Nederhof, MJ

Published in:
Computational Linguistics

DOI:
10.1162/089120103321337467

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Nederhof, MJ. (2003). Weighted deductive parsing and Knuth's algorithm. Computational Linguistics, 29(1),
135-143. https://doi.org/10.1162/089120103321337467

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 22-08-2022

https://doi.org/10.1162/089120103321337467
https://research.rug.nl/en/publications/5cfe8cd9-36c8-41ed-a17b-d50f81e16628
https://doi.org/10.1162/089120103321337467

c© 2003 Association for Computational Linguistics

Squibs and Discussions
Weighted Deductive Parsing and Knuth’s
Algorithm

Mark-Jan Nederhof∗
University of Groningen

We discuss weighted deductive parsing and consider the problem of finding the derivation with
the lowest weight. We show that Knuth’s generalization of Dijkstra’s algorithm for the shortest-
path problem offers a general method to solve this problem. Our approach is modular in the sense
that Knuth’s algorithm is formulated independently from the weighted deduction system.

1. Introduction

As for algorithms in general, there are significant advantages to specifying parsing
algorithms in a modular way (i.e., as the combination of subalgorithms). First, modular
specifications often allow simpler implementations. Secondly, if otherwise seemingly
distinct types of parser are described in a modular way, the common parts can often
be more readily identified, which helps to classify and analyze parsing algorithms.

In this article we discuss a modular design for weighted deductive parsing by
distinguishing between a weighted deduction system, on the one hand, which per-
tains to the choice of grammatical formalism and parsing strategy, and the algorithm
that finds the derivation with the lowest weight, on the other. The latter is Dijkstra’s
algorithm for the shortest-path problem (Dijkstra 1959) as generalized by Knuth (1977)
for a problem on grammars. It has been argued by, for example, Backhouse (2001),
that this algorithm can be used to solve a wide range of problems on context-free
grammars. A brief presentation of a very similar algorithm for weighted deductive
parsing has been given before by Eisner (2000, Figure 3.5e).

Our presentation contrasts with that of Klein and Manning (2001), who offer an in-
divisible specification for a small collection of parsing strategies for weighted context-
free grammars only, referring to a generalization of Dijkstra’s algorithm to hypergraphs
by Gallo et al. (1993). This article also addresses the efficiency of Knuth’s algorithm
for weighted deductive parsing, relative to the more commonly used algorithm by
Viterbi.

2. Weighted Deductive Parsing

The use of deduction systems for specifying parsers has been proposed by Shieber,
Schabes, and Pereira (1995) and Sikkel (1997). As already remarked by Goodman
(1999), deduction systems can also be extended to manipulate weights.1 Here we de-

∗ Faculty of Arts, Humanities Computing, University of Groningen, P.O. Box 716, NL-9700 AS
Groningen, The Netherlands. E-mail: markjan@let.rug.nl. Secondary affiliation is the German Research
Center for Artificial Intelligence (DFKI).

1 Weighted deduction is closely related to probabilistic logic, although the problem considered in this
article (viz., finding derivations with lowest weights) is different from typical problems in probabilistic
logic. For example, Frisch and Haddawy (1994) propose inference rules that manipulate logical
formulas attached to intervals of probabilities, and the objective of deduction is to determine intervals
that are as narrow as possible.

136

Computational Linguistics Volume 29, Number 1

Initializer:
y : [B → • γ, j, j]

{
(y : B → γ) ∈ P
0 ≤ j ≤ n

Scanner:
x1 : [A → α • aβ, i, j]

x1 : [A → αa • β, i, j + 1]

(y1 : A → αaβ) ∈ P
0 ≤ i ≤ j < n
aj+1 = a

Completer:

x1 : [A → α • Bβ, i, j]
x2 : [B → γ •, j, k]

x1 + x2 : [A → αB • β, i, k]

(y1 : A → αBβ) ∈ P
(y2 : B → γ) ∈ P
0 ≤ i ≤ j ≤ k ≤ n

Goal items: [S → γ •, 0, n] for any (y : S → γ) ∈ P, where S is the start symbol

Figure 1
Weighted deduction system for bottom-up parsing.

fine such a weighted deduction system for parsing as consisting of a finite set of
inference rules of the form:

x1 : I1
x2 : I2

...
xm : Im

f (x1, x2, . . . , xm) : I0

c1
...

cp

where m ≥ 0 and p ≥ 0, and I0, I1, . . . , Im are items, of which I0 is the consequent
and I1, . . . , Im are the antecedents, and c1, . . . , cp is a list of side conditions linking
the inference rule to the grammar and the input string.2 We assign unique variables
x1, . . . , xm to each of the antecedents, and a weight function f , with x1, . . . , xm as argu-
ments, to the consequent. This allows us to assign a weight to each occurrence of an
(instantiated) item that we derive by an inference rule, by means of a function on the
weights of the (instantiated) antecedents of that rule.

A weighted deduction system furthermore contains a set of goal items; like the
inference rules, this set is parameterized by the grammar and the input. The objective
of weighted deductive parsing is to find the derivation of a goal item with the lowest
weight. In this article we assume that, for a given grammar and input string, each
inference rule can be instantiated in a finite number of ways, which ensures that this
problem can be solved under the constraints on the weight functions to be discussed
in Sections 4 and 5.

Our examples will be restricted to context-free parsing and include the deduction
system for weighted bottom-up parsing in Figure 1 and that for weighted top-down
parsing in Figure 2. The latter is very close to an extension of Earley’s algorithm
described by Lyon (1974). The side conditions refer to an input string w = a1 · · · an and
to a weighted context-free grammar with a set of productions P, each of which has the
form (y: A → α), where y is a non-negative real-valued weight, A is a nonterminal,

2 Note that we have no need for (explicit) axioms, since we allow inference rules to have zero
antecedents.

137

Nederhof Weighted Deductive Parsing

Starter:
y : [S → • γ, 0, 0]

{
(y : S → γ) ∈ P, where S is the start symbol

Predictor:
x1 : [A → α • Bβ, i, j]

y2 : [B → • γ, j, j]

(y1 : A → αBβ) ∈ P
(y2 : B → γ) ∈ P
0 ≤ i ≤ j ≤ n

Scanner, completer and set of goal items are as in Figure 1.

Figure 2
Weighted deduction system for top-down parsing.

Starter:
(y, y) : [S → • γ, 0, 0]

{
(y : S → γ) ∈ P, where S is the start symbol

Scanner:
(z1, x1) : [A → α • aβ, i, j]

(z1, x1) : [A → αa • β, i, j + 1]

(y1 : A → αaβ) ∈ P
0 ≤ i ≤ j < n
aj+1 = a

Predictor:
(z1, x1) : [A → α • Bβ, i, j]
(z1 + y2, y2) : [B → • γ, j, j]

(y1 : A → αBβ) ∈ P
(y2 : B → γ) ∈ P
0 ≤ i ≤ j ≤ n

Completer:

(z1, x1) : [A → α • Bβ, i, j]
(z2, x2) : [B → γ •, j, k]

(z1 + x2, x1 + x2) : [A → αB • β, i, k]

(y1 : A → αBβ) ∈ P
(y2 : B → γ) ∈ P
0 ≤ i ≤ j ≤ k ≤ n

Set of goal items is as in Figure 1.

Figure 3
Alternative weighted deduction system for top-down parsing.

and α is a list of zero or more terminals or nonterminals. We assume the weight
of a grammar derivation is given by the sum of the weights of the occurrences of
productions therein.

Weights may be atomic entities, as in the deduction systems discussed above,
where they are real-valued, but they may also be composed entities. For example,
Figure 3 presents an alternative form of weighted top-down parsing using pairs of
values, following Stolcke (1995). The first value is the forward weight, that is, the sum
of weights of all productions that were encountered in the lowest-weighted derivation
in the deduction system of an item [A → α • β, i, j]. The second is the inner weight;
that is, it considers the weight only of the current production A → αβ plus the weights
of productions in lowest-weighted grammar derivations for nonterminals in α. These
inner weights are the same values as the weights in Figures 1 and 2. In fact, if we omit
the forward weights, we obtain the deduction system in Figure 2.

Since forward weights pertain to larger parts of grammar derivations than the
inner weights, they may be better suited to direct the search for the lowest-weighted
complete grammar derivation. We assume a pair (z1, x1) is smaller than (z2, x2) if and

138

Computational Linguistics Volume 29, Number 1

only if z1 < z2 or z1 = z2 ∧ x1 < x2. (Tendeau [1997] has shown the general idea can
also be applied to left-corner parsing.)

In order to link (weighted) deduction systems to literature to be discussed in
Section 3, we point out that a deduction system having a grammar G in a certain
formalism F and input string w in the side conditions can be seen as a construction c of
a context-free grammar c(G, w) out of grammar G and input w. The set of productions
of c(G, w) is obtained by instantiating the inference rules in all possible ways using
productions from G and input positions pertaining to w. The consequent of such
an instantiated inference rule then acts as the left-hand side of a production, and
the (possibly empty) list of antecedents acts as its right-hand side. In the case of
a weighted deduction system, the productions are associated with weight functions
computing the weight of the left-hand side from the weights of the right-hand side
nonterminals.

For example, if the input is w = a1a2a3, and if there are two productions in the
weighted context-free grammar G of the form (y1: A → C B D), (y2: B → E) ∈ P,
then from the completer in Figure 1 we may obtain, among others, a production
[A → C B • D, 0, 2] → [A → C • B D, 0, 1] [B → E •, 1, 2], with associated weight function
f (x1, x2) = x1 + x2, which states that if the production is used in a derivation, then the
weights of the two subderivations should be added. The number of productions in
c(G, w) is determined by the number of ways we can instantiate inference rules, which
in the case of Figure 1 is O(|G|2 · n3), where |G| is the size of G in terms of the total
number of occurrences of terminals and nonterminals in productions.

If we assume, without loss of generality, that there is only one goal item, then this
goal item becomes the start symbol of c(G, w).3 Since there are no terminals in c(G, w),
either the grammar generates the language {ε}, containing only the empty string ε, or
it generates the empty language; in the latter case, this indicates that w is not in the
language generated by G.

Note that for all three examples above, the derivation with the lowest weight
allowed by c(G, w) encodes the derivation with the lowest weight allowed by G for
w. Together with the dynamic programming algorithm to be discussed in the next
section that finds the derivation with the lowest weight on the basis of c(G, w), we
obtain a modular approach to describing weighted parsers: One part of the description
specifies how to construct grammar c(G, w) out of grammar G and input w, and the
second part specifies the dynamic programming algorithm to investigate c(G, w).

Such a modular way of describing parsers in the unweighted case has already
been fully developed in work by Lang (1974) and Billot and Lang (1989). Instead
of a deduction system, they use a pushdown transducer to express a parsing strat-
egy such as top-down parsing, left-corner parsing or LR parsing. Such a pushdown
transducer can in the context of their work be regarded as specifying a context-free
grammar c(G, w), given a context-free grammar G and an input string w. The second
part of the description of the parser is a dynamic programming algorithm for actually
constructing c(G, w) in polynomial time in the length of w.

This modular approach to describing parsing algorithms is also applicable to for-
malisms F other than context-free grammars. For example, it was shown by Vijay-
Shanker and Weir (1993) that tree-adjoining parsing can be realized by constructing a
context-free grammar c(G, w) out of a tree-adjoining grammar G and an input string
w. This can straightforwardly be generalized to weighted (in particular, stochastic)
tree-adjoining grammars (Schabes 1992).

3 If there is more than one goal item, then a new symbol needs to be introduced as the start symbol.

139

Nederhof Weighted Deductive Parsing

It was shown by Boullier (2000) that F may furthermore be the formalism of range
concatenation grammars. Since the class of range concatenation grammars generates
exactly PTIME, this demonstrates the generality of the approach.4

Instead of string input, one may also consider input consisting of a finite au-
tomaton, along the lines of Bar-Hillel, Perles, and Shamir (1964); this can be trivially
extended to the weighted case. That we restrict ourselves to string input in this article
is motivated by presentational considerations.

3. Knuth’s Algorithm

The algorithm by Dijkstra (1959) effectively finds the shortest path from a distin-
guished source node in a weighted, directed graph to a distinguished target node.
The underlying idea of the algorithm is that it suffices to investigate only the shortest
paths from the source node to other nodes, since longer paths can never be extended
to become shorter paths (weights of edges are assumed to be non-negative).

Knuth (1977) generalizes this algorithm to the problem of finding lowest-weighted
derivations allowed by a context-free grammar with weight functions, similar to those
we have seen in the previous section. (The restrictions Knuth imposes on the weight
functions will be discussed in the next section.) Again, the underlying idea of the
algorithm is that it suffices to investigate only the lowest-weighted derivations of
nonterminals.

The algorithm by Knuth is presented in Figure 4. We have taken the liberty of
making some small changes to Knuth’s formulation. The largest difference between
Knuth’s formulation and ours is that we have assumed that the context-free grammar
with weight functions on which the algorithm is applied has the form c(G, w), obtained
by instantiating the inference rules of a weighted deduction system for given grammar
G and input w. Note, however, that c(G, w) is not fully constructed before applying
Knuth’s algorithm, and the algorithm accesses only as much of it as is needed in its
search for the lowest-weighted goal item.

In the algorithm, the set D contains items I for which the lowest overall weight
has been found; this weight is given by µ(I). The set E contains items I0 that can be
derived in one step from items in D, but for which the lowest weight ν(I0) found thus
far may still exceed the lowest overall weight for I0. In each iteration, it is established
that the lowest weight ν(I) for an item I in E is the lowest overall weight for I, which
justifies transferring I to D. The algorithm can be extended to output the derivation
corresponding to the goal item with the lowest weight; this is fairly trivial and will
not be discussed here.

A few remarks about the implementation of Knuth’s algorithm are in order. First,
instead of constructing E and ν anew at step 2 for each iteration, it may be more
efficient to construct them only once and revise them every time a new item I is added
to D. This revision consists in removing I from E and combining it with existing items
in D, as antecedents of inference rules, in order to find new items to be added to
E and/or to update ν to assign lower values to items in E. Typically, E would be
organized as a priority queue.

Second, practical implementations would maintain appropriate tables for indexing
the items in such a way that when a new item I is added to D, the lists of existing items
in D together with which it matches the lists of antecedents of inference rules can be

4 One may even consider formalisms F that generate languages beyond PTIME, but such applications of
the approach would not necessarily be of practical value.

140

Computational Linguistics Volume 29, Number 1

1. Let D be the empty set ∅.

2. Determine the set E and the function ν as follows:

• E is the set of items I0 /∈ D such that there is at least one
inference rule from the deduction system that can be
instantiated to a production of the form I0 → I1 · · · Im, for some
m ≥ 0, with weight function f , where I1, . . . , Im ∈ D.

• For each such I0 ∈ E, let ν(I0) be the minimal weight
f (µ(I1), . . . ,µ(Im)) for all such instantiated inference rules.

3. If E is empty, then report failure and halt.

4. Choose an item I ∈ E such that ν(I) is minimal.

5. Add I to D, and let µ(I) = ν(I).

6. If I is a goal item, then output µ(I) and halt.

7. Repeat from step 2.

Figure 4
Knuth’s generalization of Dijkstra’s algorithm. Implicit are a weighted deduction system, a
grammar G and an input w. For conditions on correctness, see Section 4.

efficiently found. Since techniques for such kinds of indexing are well-established in
the computer science literature, no further discussion is warranted here.

4. Conditions on the Weight Functions

A sufficient condition for Knuth’s algorithm to correctly compute the derivations with
the lowest weights is that the weight functions f are all superior, which means that they
are monotone nondecreasing in each variable and that f (x1, . . . , xm) ≥ max(x1, . . . , xm)
for all possible values of x1, . . . , xm. For this case, Knuth (1977) provides a short and
elegant proof of correctness. Note that the weight functions in Figure 1 are all superior,
so that correctness is guaranteed.

In the case of the top-down strategy from Figure 2, however, the weight functions
are not all superior, since we have constant weight functions for the predictor, which
may yield weights that are less than their arguments. It is not difficult, however, to
show that Knuth’s algorithm still correctly computes the derivations with the lowest
weights, given that we have already established the correctness for the bottom-up
case.

First, note that items of the form [B → • γ, j, j], which are introduced by the
initializer in the bottom-up case, can be introduced by the starter or the predictor in
the top-down case; in the top-down case, these items are generally introduced later
than in the bottom-up case. Second, note that such items can contribute to finding a
goal item only if from [B → • γ, j, j] we succeed in deriving an item [B → γ •, j, k] that is
either such that B = S, j = 0, and k = n, or such that there is an item [A → α • Bβ, i, j].
In either case, the item [B → • γ, j, j] can be introduced by the starter or predictor
so that [B → γ •, j, k] will be available to the algorithm if and when it is needed to
determine the derivation with the lowest weight for [S → γ •, 0, n] or [A → αB • β, i, k],
respectively, which will then have a weight greater than or equal to that of [B → • γ, j, j].

141

Nederhof Weighted Deductive Parsing

For the alternative top-down strategy from Figure 3, the proof of correctness is
similar, but now the proof depends for a large part on the additional forward weights,
the first values in the pairs (z, x); note that the second values are the inner weights
(i.e., the weights we already considered in Figures 1 and 2). An important observation
is that if there are two derivations for the same item with weights (z1, x1) and (z2, x2),
respectively, such that z1 < z2 and x1 > x2, then there must be a third derivation of that
item with weight (z1, x2). This shows that no relevant inner weights are overlooked
because of the ordering we imposed on pairs (z, x).

Since Figures 1 through 3 are merely examples to illustrate the possibilities of
deduction systems and Knuth’s algorithm, we do not provide full proofs of correctness.

5. Viterbi’s Algorithm

This section places Knuth’s algorithm in the context of a more commonly used alter-
native. This algorithm is applicable on a weighted deduction system if a simple partial
order on items exists that is such that the antecedents of an inference rule are always
strictly smaller than the consequent. When this is the case, we may treat items from
small to large to compute their lowest weights. There are no constraints on the weight
functions other than that they should be monotone nondecreasing.

The algorithm by Viterbi (1967) may be the earliest that operates according to this
principle. The partial order is based on the linear order given by a string of input
symbols. In this article we will let the term “Viterbi’s algorithm” refer to the general
type of algorithm to search for the derivation with the lowest weight given a deduction
system, a grammar, an input string, and a partial order on items consistent with the
inference rules in the sense given above.5

Another example of an algorithm that can be seen as an instance of Viterbi’s algo-
rithm was presented by Jelinek, Lafferty, and Mercer (1992). This algorithm is essen-
tially CYK parsing (Aho and Ullman 1972) extended to handle weights (in particular,
probabilities). The partial order on items is based on the sizes of their spans (i.e., the
number of input symbols that the items cover). Weights of items with smaller spans
are computed before the weights of those with larger spans. In cases in which a simple
a priori order on items is not available but derivations are guaranteed to be acyclic,
one may first determine a topological sorting of the complete set of derivable items
and then compute the weights based on that order, following Martelli and Montanari
(1978).

A special situation arises when a deduction system is such that inference rules
allow cyclic dependencies within certain subsets of items, but dependencies between
these subsets represent a partial order. One may then combine the two algorithms:
Knuth’s (or Dijkstra’s) algorithm is used within each subset and Viterbi’s algorithm
is used to relate items in distinct subsets. This is exemplified by Bouloutas, Hart, and
Schwartz (1991).

In cases in which both Knuth’s algorithm and Viterbi’s algorithm are applicable,
the main difference between the two is that Knuth’s algorithm may halt as soon as
the lowest weight for a goal item is found, and no items with larger weights than that
goal item need to be treated, whereas Viterbi’s algorithm treats all derivable items. This
suggests that Knuth’s algorithm may be more efficient than Viterbi’s. The worst-case
time complexity of Knuth’s algorithm, however, involves an additional factor because

5 Note that some authors let the term “Viterbi algorithm” refer to any algorithm that computes the
“Viterbi parse,” that is, the parse with the lowest weight or highest probability.

142

Computational Linguistics Volume 29, Number 1

of the maintenance of the priority queue. Following Cormen, Leiserson, and Rivest
(1990), this factor is O(log(‖c(G, w)‖)), where ‖c(G, w)‖ is the number of nonterminals
in c(G, w), which is an upper bound on the number of elements on the priority queue
at any given time. Furthermore, there are observations by, for example, Chitrao and
Grishman (1990), Tjong Kim Sang (1998, Sections 3.1 and 3.4), and van Noord et al.
(1999, Section 3.9), that suggest that the apparent advantage of Knuth’s algorithm does
not necessarily lead to significantly lower time costs in practice.

In particular, consider deduction systems with items associated with spans like, for
example, that in Figure 1, in which the span of the consequent of an inference rule is
the concatenation of the spans of the antecedents. If weights of individual productions
in G differ only slightly, as is often the case in practice, then different derivations for an
item have only slightly different weights, and the lowest such weight for a certain item
is roughly proportional to the size of its span. This suggests that Knuth’s algorithm
treats most items with smaller spans before any item with a larger span is treated, and
since goal items typically have the maximal span, covering the complete input, there
are few derivable items at all that are not treated before any goal item is found.

6. Conclusions

We have shown how a general weighted parser can be specified in two parts, the
first being a weighted deduction system, and the second being Knuth’s algorithm (or
possibly Viterbi’s algorithm, where applicable). Such modular specifications have clear
theoretical and practical advantages over indivisible specifications. For example, we
may identify common aspects of otherwise seemingly distinct types of parser. Further-
more, modular specifications allow simpler implementations. We have also identified
close connections between our approach to specifying weighted parsers and well-
established theory of grammars and parsing. How the efficiency of Knuth’s algorithm
relates to that of Viterbi’s algorithm in a practical setting is still to be investigated.

Acknowledgments
The author is supported by the Royal
Netherlands Academy of Arts and Sciences.
I am grateful to Gertjan van Noord, Giorgio
Satta, Khalil Sima’an, Frederic Tendeau, and
the anonymous referees for valuable
comments.

References
Aho, Alfred V. and Jeffrey D. Ullman. 1972.

Parsing, volume 1 of The Theory of Parsing,
Translation and Compiling. Prentice-Hall,
Englewood Cliffs, New Jersey.

Backhouse, Roland. 2001. Fusion on
languages. In 10th European Symposium on
Programming, volume 2028 of Lecture Notes
in Computer Science, pages 107–121.
Springer-Verlag, Berlin, April.

Bar-Hillel, Y., M. Perles, and E. Shamir.
1964. On formal properties of simple
phrase structure grammars. In
Y. Bar-Hillel, editor, Language and
Information: Selected Essays on Their Theory
and Application. Addison-Wesley, Reading,
Massachusetts, pages 116–150.

Billot, Sylvie and Bernard Lang. 1989. The
structure of shared forests in ambiguous
parsing. In 27th Annual Meeting of the
Association for Computational Linguistics,
Proceedings of the Conference,
pages 143–151, Vancouver, British
Columbia, Canada, June.

Boullier, Pierre. 2000. Range concatenation
grammars. In Proceedings of the Sixth
International Workshop on Parsing
Technologies, pages 53–64, Trento, Italy,
February.

Bouloutas, A., G. W. Hart, and M. Schwartz.
1991. Two extensions of the Viterbi
algorithm. IEEE Transactions on Information
Theory, 37(2):430–436.

Chitrao, Mahesh V. and Ralph Grishman.
1990. Statistical parsing of messages. In
Speech and Natural Language Proceedings,
pages 263–266, Hidden Valley,
Pennsylvania, June.

Cormen, Thomas H., Charles E. Leiserson,
and Ronald L. Rivest. 1990. Introduction to
Algorithms. MIT Press, Cambridge.

Dijkstra, E. W. 1959. A note on two

143

Nederhof Weighted Deductive Parsing

problems in connexion with graphs.
Numerische Mathematik, 1:269–271.

Eisner, Jason. 2000. Bilexical grammars and
their cubic-time parsing algorithms. In
H. Bunt and A. Nijholt, editors, Advances
in Probabilistic and Other Parsing
Technologies. Kluwer Academic Publishers,
Dordrecht, The Netherlands, pages 29–61.

Frisch, Alan M. and Peter Haddawy. 1994.
Anytime deduction for probabilistic logic.
Artificial Intelligence, 69:93–122.

Gallo, Giorgio, Giustino Longo, Stefano
Pallottino, and Sang Nguyen. 1993.
Directed hypergraphs and applications.
Discrete Applied Mathematics, 42:177–201.

Goodman, Joshua. 1999. Semiring parsing.
Computational Linguistics, 25(4):573–605.

Jelinek, F., J. D. Lafferty, and R. L. Mercer.
1992. Basic methods of probabilistic
context free grammars. In P. Laface and
R. De Mori, editors, Speech Recognition and
Understanding—Recent Advances, Trends and
Applications. Springer-Verlag, Berlin,
pages 345–360.

Klein, Dan and Christopher D. Manning.
2001. Parsing and hypergraphs. In
Proceedings of the Seventh International
Workshop on Parsing Technologies,
pages 123–134, Beijing, October.

Knuth, Donald E. 1977. A generalization of
Dijkstra’s algorithm. Information Processing
Letters, 6(1):1–5.

Lang, Bernard. 1974. Deterministic
techniques for efficient non-deterministic
parsers. In Automata, Languages and
Programming, 2nd Colloquium, volume 14
of Lecture Notes in Computer Science,
pages 255–269, Saarbrücken.
Springer-Verlag, Berlin.

Lyon, Gordon. 1974. Syntax-directed
least-errors analysis for context-free
languages: A practical approach.
Communications of the ACM, 17(1):3–14.

Martelli, Alberto and Ugo Montanari. 1978.

Optimizing decision trees through
heuristically guided search.
Communications of the ACM,
21(12):1025–1039.

Schabes, Yves. 1992. Stochastic lexicalized
tree-adjoining grammars. In Proceedings of
the 15th International Conference on
Computational Linguistics, volume 2,
pages 426–432, Nantes, August.

Shieber, Stuart M., Yves Schabes, and
Fernando C. N. Pereira. 1995. Principles
and implementation of deductive parsing.
Journal of Logic Programming, 24:3–36.

Sikkel, Klaas. 1997. Parsing Schemata.
Springer-Verlag, Berlin.

Stolcke, Andreas. 1995. An efficient
probabilistic context-free parsing
algorithm that computes prefix
probabilities. Computational Linguistics,
21(2):167–201.

Tendeau, Frédéric. 1997. Analyse syntaxique et
sémantique avec évaluation d’attributs dans un
demi-anneau. Ph.D. thesis, University of
Orléans.

Tjong Kim Sang, Erik F. 1998. Machine
Learning of Phonotactics. Ph.D. thesis,
University of Groningen.

van Noord, Gertjan, Gosse Bouma, Rob
Koeling, and Mark-Jan Nederhof. 1999.
Robust grammatical analysis for spoken
dialogue systems. Natural Language
Engineering, 5(1):45–93.

Vijay-Shanker, K. and David J. Weir. 1993.
The use of shared forests in tree adjoining
grammar parsing. In Sixth Conference of the
European Chapter of the Association for
Computational Linguistics, Proceedings of the
Conference, pages 384–393, Utrecht, The
Netherlands, April.

Viterbi, Andrew J. 1967. Error bounds for
convolutional codes and an
asymptotically optimum decoding
algorithm. IEEE Transactions on Information
Theory, IT-13(2):260–269.

