
Weighted Dynamic Pushdown Networks

Alexander Wenner

Institut für Informatik, Fachbereich Mathematik und Informatik
Westfälische Wilhelms-Universität Münster

alexander.wenner@uni-muenster.de

Abstract. We develop a generic framework for the analysis of programs
with recursive procedures and dynamic process creation. To this end
we combine the approach of weighted pushdown systems (WPDS) with
the model of dynamic pushdown networks (DPN). The resulting model,
weighted dynamic pushdown networks (WDPN), describes processes run-
ning in parallel, each of them being able to perform pushdown actions,
that may spawn new processes as a side effect. As with WPDS, tran-
sitions are labelled by weights to carry additional information. Starting
from techniques for WPDS and DPN, we derive a method to determine
meet-over-all-paths values for the paths between regular sets of configu-
rations of a WDPN. Using this method we are able to solve basic dataflow
analysis problems in a parallel context.

1 Introduction

The interest in writing parallel programs has increased in recent years. How-
ever parallel programming is notoriously difficult and error-prone. Thus static
analysis of parallel programs has become more and more important. The goal
of this paper is to present a generic framework for the analysis of parallel pro-
grams, especially in the presence of recursive procedures and dynamic process
creation. We base our framework on DPN [1] and WPDS [2]. DPN precisely
model procedures and process creation and have been studied for reachability
analyses. Since the analysis of recursive procedures and synchronisation is un-
decidable [3], DPNs do not model synchronisation between processes. However,
through the addition of weights we will be able to analyse some interaction be-
tween processes. WPDS extend pushdown systems (PDS) by labelling transitions
with weights and solving the generalised pushdown predecessor (GPP) problem,
which is the meet-over-all-paths solution for paths from a starting configuration
into a regular set of target configurations. The weights can be used to formulate
a wide range of analysis problems. The GPP problem formulation allows for a
specific query represented by a regular constraint on the shape of the call-stack,
in contrast to standard dataflow techniques, where typically all information at
the topmost program point is merged.

The main advantage of our framework is, that we extend this ability to for-
mulate a query depending on a regular constraint on the shape of the call-stack
to queries depending on a regular constraint on the shape of the entire network.

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 590–609, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Weighted Dynamic Pushdown Networks 591

main:

1: call init_worker

2: write a

3: use a

4: return

init_worker:

5: spawn worker

6: return

worker:

7: write a

8: return

Fig. 1. Example program

Consider the pseudo program in Figure 1. It calls a procedure to initialise a
worker process, that calculates a value which is then stored in the variable a.
In parallel the main process uses the variable to store a value it needs in a fol-
lowing step. The program obviously contains a data race, since the worker can
overwrite the value of a before the main process reads it. Our framework is now
able to refine the analysis of such a data race by distinguishing the situation
where the main process reaches the use and the worker process has completed
his computation from the situation where the worker process has completed no
or only some steps.

Up to this point our framework can solve the bitvector problems for DPNs
formulated in [1], which is able to handle the same refinement described above.
The automata based approach in [1] however requires multiple computations of
predecessor sets, whereas our method only needs one step. The shortest path
analysis from [2] is an example for an analysis with an infinite domain, which
can not be formulated using the automata based techniques from [1], but can be
easily handled by our framework. In [4] a different approach to generalize WPDS
to parallel programs is presented, by introducing a context bound. This approach
can handle more powerful analyses than our framework, but the introduction of
a context bound leads to an underapproximation, whereas our approach handles
unbounded context switches precisely.

A main result is, that our framework can handle all KILL/GEN analyses
precisely in a uniform way. To the best of our knowledge no more general class
of analyses is known, for which precise analysis for some class of parallel program
is possible. In [5,6,7] KILL/GEN analyses have been considered for pcall type
parallelism, which can not be used to accurately model the process creation of a
DPN [1], which is the basis of our framework. In [8] KILL/GEN analyses were
extended to a model similar to DPN, which can handle dynamic process creation.
However in this approach all dataflow information reaching a program point is
merged, regardless of the state of the rest of the network. As described above,
our framework allows for a more distinct query, depending on the state of the
whole network.

Approach. Analogous to WPDS we extend DPN to WDPN by annotating weights
to transitions and study the GPP problem. Even though a WPDS is then simply a
WDPN with one process, adapting the approach to solve the GPP problem from
WPDS to WDPN is problematic. In general a path of a DPN is an interleaving of
the transitions of arbitrary many parallel processes. Results from [1] show, that
the set of paths connecting two regular sets of configurations can not be described



592 A. Wenner

in a way, where standard techniques like abstract interpretation [9] can be applied
to compute the abstraction in the weight domain.

We avoid these problems by introducing a branching semantics for DPN sim-
ilar to the tree semantics in [10]. Transitions of newly spawned processes are
no longer mixed with the transitions of the creating process, but contained in
their own branch. This results in executions which are tree shaped for single
processes and form hedges, which contain a tree for each process, for configura-
tions with multiple processes. The set of hedges connecting two regular sets of
configurations can be described by a constraint system, adapting the approach
for WPDS.

We introduce a weight domain to abstract these trees, and study the analogous
branching GPP (BGPP) problem, which is the meet-over-all-hedges solution, for
these branching WDPN (BWDPN). The solution of the BGPP problem can be
obtained by abstract interpretation of the constraint system. We show, that if
the weight domain of a WDPN and the extended weight domain of a BWDPN,
based on the same DPN, are related, the solution for the GPP problem of the
WDPN can be derived from the solution of the corresponding BGPP problem
of the BWDPN.

We demonstrate how this framework of WDPN and BWDPN can be used to
solve shortest path problems, bitvector analyses and the more general KILL/GEN
analyses for programs with recursive procedures and dynamic thread creation.

Outline. The remainder of the paper is organised as follows: Section 2 presents
the intuitive extension of WPDS to DPN called WDPN and defines the GPP.
Section 3 introduces BWDPN. We formulate the BGPP problem and present
the relation to the GPP problem. Section 4 presents applications and Section 5
introduces the approach to solve the BGPP problem for BWDPN.

2 Weighted Dynamic Pushdown Networks

A DPN [1] is a model for parallel programs with multiple processes and dynamic
process creation. Each process is modeled as a PDS, where the rules are extended
to allow creation of new processes. Formally a DPN is a tuple M = (P, Γ,Δ),
where P is a finite set of control states and Γ is a finite set of stack symbols,
with P ∩ Γ = ∅. Δ is a finite set of transition rules of the form:

pγ ↪→ c with p ∈ P, γ ∈ Γ, c ∈ (PΓ ∗)∗PΓ ∗.

The right side of a rule consists of the new control state and stacktop of the
original process in the rightmost position and the control states and stacks of all
processes spawned by this rule to the left. Configurations of a DPN are words
from Conf = (PΓ ∗)∗. The empty configuration is written as ε. For the rest of
the paper we fix a DPN M = (P, Γ,Δ) and two regular sets C1, C2 ⊆ Conf.

Example 1. The program in Figure 1 leads to a DPN with rules r1 = pγ1 ↪→
pγ5γ2, r2 = pγ5 ↪→ pγ7pγ6, r3 = pγ6 ↪→ p, r4 = pγ2 ↪→ pγ3, r5 = pγ3 ↪→ pγ4



Weighted Dynamic Pushdown Networks 593

and r6 = pγ7 ↪→ pγ8, where a stack symbol γi represents the control location at
the beginning of line i of the program. The set of starting configurations for the
analyses of our program described in the introduction would be C1 = {pγ1} and
the target sets would either be C2 = {pγ8pγ3} if the spawned process makes all
steps or C′

2 = {pγ7pγ3} if it makes no steps.

Interleaving Semantics. An execution of the DPN M is represented by a path.
A path is defined as a sequence of rules:

ρ = r1 . . . rn with ri ∈ Δ.

The empty path is denoted by ερ and Paths is the set of all paths. The execution
of a path is modeled by the labelled transition relation −→ ⊆ Conf×Paths×Conf,
similar to [1], with:

[empty] c
ερ−→ c [rule] upγv

rρ−→ c if r = pγ ↪→ c′, uc′v
ρ−→ c

Application of a rule replaces the control state and top symbol of one stack by
the new control state and stacktop specified by the rule and inserts the newly
created processes with their initial stacks, as defined by the rule, to the left. We
call this the interleaving semantics of the DPN, since the rules of all processes
are mixed up. We are interested in the set:

Paths(C1, C2) = {ρ ∈ Paths | ∃c1 ∈ C1, c2 ∈ C2 with c1
ρ−→ c2},

of connecting paths from C1 to C2.

Example 2. The sets of connecting paths in our example are Paths(C1, C2) =
{r1r2r6r3r4, r1r2r3r6r4, r1r2r3r4r6} and Paths(C1, C

′
2) = {r1r2r3r4}.

Weights. In order to abstract from the set of connecting paths to the aspects
which are relevant to the analysis, we assign a weight to each transition of the
DPN. The structure of the weight domain is captured by a complete idempotent
semiring, which supports the necessary operators � for concatenation of weights
along a path and ⊕ for combination of weights of different paths. A complete
idempotent semiring is a tuple S = (D,⊕,�, 0, 1), where D is a set of elements
with 0, 1 ∈ D and ⊕,� are binary operators on D with:

• (D,⊕) is a commutative monoid with neutral element 0 and ⊕ is idempotent
• (D,�) is a monoid with neutral element 1 and 0 annihilates �
• (D,
) is a complete lattice, where 
, with d1 
 d2 :⇔ d1 ⊕ d2 = d1

for d1, d2 ∈ D, is the partial order induced by ⊕, i.e. ⊕ is the meet
operator of the lattice (D,
) and 0 is the �-element

• � distributes over arbitrary ⊕, i.e.
⊕
D1 �

⊕
D2 =

⊕{d1 � d2 | di ∈ Di}
for D1, D2 ⊆ D

We fix a semiring S = (D,⊕,�, 0, 1). The weights are assigned to the transitions
of the DPN M using a weight function f : Δ → D. The function depends on the



594 A. Wenner

current analysis, since it describes how the transitions of the DPN are connected to
the analysed information represented by the semiring. We assume a given weight
function f for the rest of the paper. The tuple W = (M,S, f) is called a WDPN.
Given the WDPN we define an abstraction function α : Paths → D for paths:

[empty] α(ερ) = 1 [rule] α(rρ) = f(r) � α(ρ)

Overloading it for sets of paths with α(M) =
⊕{α(ρ) | ρ ∈M}, we can formu-

late the GPP problem for WDPN as computing:

δ(C1, C2) = α(Paths(C1, C2)).

3 Branching Weighted Dynamic Pushdown Networks

It follows from results in [1] that the set Paths(C1, C2) can not be characterised
as least solution of a constraint system which uses only operators to concatenate
or interleave paths. Therefore we can not compute the solution for the GPP
problem directly by an abstract interpretation [9] of such a constraint system.
To avoid this problem we consider an alternative interpretation of an execution
of a DPN in form of a tree or hedge, first introduced in [10]. We will later see,
that set of connecting hedges can be assembled from sets of partial trees, which
in turn can be characterised using a constraint system.

Branching Semantics. We recursively define the set Trees of execution trees,
where Hedges = Trees∗ is the set of execution hedges.

ετ ∈ Trees r(στ) ∈ Trees for r ∈ Δ,σ ∈ Hedges, τ ∈ Trees

The empty tree ετ consisting of a single leaf node, representing a finished execu-
tion, is a tree. r(στ) is a tree with a root node labelled with a rule r ∈ Δ, describ-
ing the first step of the execution, and an ordered list of subtrees στ ∈ Hedges,
representing the executions σ of spawned processes and the rest of the execution
τ of the spawning process. The order of the children corresponds to the order of
processes on the right side of the rule r. εσ is the empty hedge.

The execution of a hedge is modeled by the labelled transition relation =⇒ ⊆
Conf × Hedges × Conf, with:

[none] ε
εσ=⇒ ε [tree] cpw στ=⇒ c′c′′ if c σ=⇒ c′ and pw τ=⇒ c′′

[empty] pw ετ=⇒ pw [rule] pγw
r(σ)
=⇒ c if r = pγ ↪→ c′, c′w σ=⇒ c

We call this the branching semantics of the DPN, since each process has its own
branch in the execution. We are interested in the set

Hedges(C1, C2) = {σ ∈ Hedges | ∃c1 ∈ C1, c2 ∈ C2 with c1
σ=⇒ c2},

of connecting hedges.



Weighted Dynamic Pushdown Networks 595

Example 3. The sets of connecting hedges for our example are Hedges(C1, C2) =
{r1(r2(r6(ετ )r3(r4(ετ ))))} and Hedges(C1, C

′
2) = {r1(r2(ετ r3(r4(ετ ))))}.

We define the ; operator to concatenate a hedge to the last tree of a hedge:

[hedge] (στ) ; σ′ = σ(τ ; σ′) [empty] ετ ;σ′ = σ′ [rule] r(σ) ; σ′ = r(σ ;σ′)

Fig. 2. Example for the concatenation of trees

Appending a hedge removes the rightmost leaf of the first hedge and adds the
trees of the second hedge as new children. Thus, if you only consider concate-
nation of trees, it is simply concatenation along the rightmost branches. The
reason for defining concatenation this way is, that we will later see, that we can
assemble any execution tree for an initial process by concatenating trees from a
finite number of classes. In the context of program analysis, these classes rep-
resent executions inside the body of a procedure. Figure 2 shows how we can
assemble an execution of our example program by concatenating the call rule r1,
the execution inside the called init_worker procedure, containing the execution
of the spawned process, and the rest of the execution of the main procedure. We
extend concatenation of trees to concatenation of hedges to describe the con-
struction of a new tree from a rule and a list of subtrees as concatenation of the
tree with the rule as root node and the empty tree as only child and the hedge
formed by the list of subtrees.

Interleaving vs. Branching. There is a strong connection between the interleaving
and branching semantics of a DPN. A hedge represents of a set of paths, which
can be constructed by interleaving the branches and trees of the hedge. Consider
a function ψ : 2Hedges → 2Paths that computes the set of interleavings of a set of
hedges, here ‖ is used for the standard interleaving operator for paths:

[none] ψ(εσ) = {ερ} [tree] ψ(στ) = ψ(σ) ‖ ψ(τ)
[empty] ψ(ετ ) = {ερ} [rule] ψ(r(σ)) = rψ(σ)

Results from [10] show, that:

Theorem 4. We have:

Paths(C1, C2) = ψ(Hedges(C1, C2)).



596 A. Wenner

Extended Weights. The semiring structure used for WDPN is not suitable to ab-
stract hedges. Especially with regard to the approach of combining an execution
tree out of partial trees by concatenation. The semiring could be used to com-
pute a weight for a given tree by computing the meet-over-all-interleavings, using
the weights given by f for each rule. However in this case the operator � is not
useable as abstraction for concatenation of trees, since the interleaving of a con-
catenated tree would in general not be the same as the concatenation of the inter-
leavings of the partial trees. If we take the trees from Figure 2 and set f(ri) = wi,
the left side evaluates to w1 �w2� (w6�w3⊕w3�w6)�w4, which in general is
different from the value w1 �w2� (w6 �w3�w4⊕w3�w6 �w4⊕w3�w4�w6)
of the right hand side.

To abstract hedges we define an extended complete idempotent semiring,
which contains the additional ⊗̄ operator for parallel combination of weights.
By making the parallel composition explicit and introducing new weights, we
can store additional information in the weights concerning parallel branches
to delay the actual interleaving. An extended complete idempotent semiring
E = (E, ⊕̄, �̄, ⊗̄, 0̄, 1̄) is a tuple, where E is a set of values and ⊕̄, �̄, ⊗̄ are
binary operators on E with:

• (E, ⊕̄, �̄, 0̄, 1̄) is a complete idempotent semiring
• (E, ⊗̄) is a semigroup, 1̄ ⊗̄ e = e for e ∈ E and 0̄ annihilates ⊗̄
• ⊗̄ distributes over arbitrary ⊕̄, i.e.

⊕̄
E1 ⊗̄

⊕̄
E2 =

⊕̄{e1 ⊗̄ e2 | ei ∈ Ei}
for E1, E2 ⊆ E

• (e1 ⊗̄ e2) �̄ e3 = e1 ⊗̄(e2 �̄ e3), for e1, e2, e3 ∈ E

The fourth property ensures, that ; is abstracted by �̄, by always appending
weights to the rightmost weight of a parallel combination. In this regard the ⊗̄
operator differs from the abstract interleaving operator ⊗ introduced in [6]. The
new operator is especially not commutative. This can also be seen in the fact,
that 1̄ is only left identity for ⊗̄, since a 1̄ in the right component can be altered
by appending an additional weight.

We fix an extended semiring E = (E, ⊕̄, �̄, ⊗̄, 0̄, 1̄). As with WDPN we assume,
that a weight function f̄ : Δ → E is given. The tuple B = (M, E , f̄) is called a
BWDPN. Given a BWDPN we define an abstraction function β : Hedges → E
for hedges:

[none] β(εσ) = 1̄ [tree] β(στ) = β(σ) ⊗̄ β(τ)
[empty] β(ετ ) = 1̄ [rule] β(r(σ)) = f̄(r) �̄ β(σ)

Overloading it for sets of hedges with β(M) =
⊕̄{β(σ) | σ ∈M}, we define the

BGPP problem for BWDPN as computing:

θ(C1, C2) = β(Hedges(C1, C2)).

Weights vs. Extended Weights. At this point, we have formulated two prob-
lems. The GPP problem describes the meet-over-all-paths of the interleaving
semantics, the BGPP problem describes the meet-over-all-hedges of the branch-
ing semantics. As mentioned in the beginning of this section, the solution to



Weighted Dynamic Pushdown Networks 597

the GPP problem can not be computed directly. However we will later see, that
the solution of the BGPP problem can be obtained by solving a constraint sys-
tem. In the previous paragraph, we have seen, that we can not simply use the
weight domain for the GPP problem as a weight domain for the corresponding
BGPP problem. However Theorem 4 describes a strong relation between the
set of reaching paths and the set of reaching hedges. A similar result can be
shown for the solutions of the GPP and BGPP problems, if the semiring of the
WDPN is related to the extended semiring of the BWDPN. We describe the
necessary relation by an extension. An extension is a tuple (S, E , ι, η), contain-
ing embedding and projection functions ι : D → E and η : E → D, where for
d, di ∈ D, e, ei ∈ E the following conditions hold:

• E is the smallest set with ι(D) ⊆ E, closed under �̄, ⊗̄ and arbitrary ⊕̄
• ι(0) = 0̄, ι(1) = 1̄ and η(ι(d)) = d
• η distributes over arbitrary ⊕̄, i.e. η(

⊕̄
M) =

⊕{η(e) | e ∈M} for M ⊆ E
• η(e ⊗̄ 1̄) = η(e)
• η(e1 ⊗̄ . . . ⊗̄ en) =

⊕n
i=1 di � η(e1 ⊗̄ . . . ⊗̄ e′i ⊗̄ . . . ⊗̄ en) for ei = ι(di) �̄ e′i

The first three points ensure, that every weight of the original semiring has
a corresponding weight in the extended semiring and in reverse every element
of the extended semiring is a combination of embedded weights of the original
semiring. The last two points ensure, that the combination of weights is mapped
to the meet-over-all-interleavings of the weights they are constructed from. For
the rest of the paper, we assume that the semiring S and the extended semiring
E are connected by the extension (S, E , ι, η).

If f̄(r) = ι(f(r)), for all r ∈ Δ, i.e. the analysis of the WDPN is embedded in
the BWDPN, we can prove α(ψ(σ)) = η(β(σ)) for all σ ∈ Hedges by induction
on σ. Consequently with Theorem 4:

Theorem 5. It follows, that:

δ(C1, C2) = η(θ(C1, C2)).

Construction of Extended Semiring and Extension. An example for an extended
semiring E and extension (E ,S, ι, η), which exists for any semiring S, is the
extended semiring of weighted hedges, i.e. hedges where nodes are labelled with
a weight from the semiring S. This abstraction contains nearly all information
contained in the execution trees. An abstraction of an execution hedge is simply
the hedge, where nodes previously annotated with r are now annotated with
f(r) and the empty tree is annotated with 1. Interior nodes labelled with the
neutral element 1, which have no influence on the total weight of the tree, are
removed.

We define the set of weighted trees WTrees recursively, where WHedges =
WTrees+ is the set of weighted hedges:

1 ∈ WTrees w(σ) ∈ WTrees for w ∈ D \ {1}, σ ∈ WHedges

1 is the empty weighted tree consisting of a single leaf node labelled with 1
and w(σ) is a weighted tree with a root node labelled with w and children σ. 1
doubles as the initial empty weighted hedge, and we define 1σ = σ.



598 A. Wenner

The operations of the extended semiring are then mapped onto the corre-
sponding weighted tree operations. We define σ ⊗̄ σ′ = σσ′ and concatenation is
concatenation of weighted hedges as with execution hedges:

[hedge] στ �̄σ′ = σ(τ �̄σ′) [empty] 1 �̄σ = σ [rule] w(σ) �̄ σ′ = w(σ �̄σ′)

Since there is no obvious way to compute a meet for two weighted hedges,
we go to the powerset of WHedges. The extended semiring is given by E =
(E, ⊕̄, �̄, ⊗̄, ∅, {1}), where E = 2WHedges, ⊕̄ = ∪ and �̄, ⊗̄ are extended to sets.

The embedding of the corresponding extension (S, E , ι, η), transforms a weight
into a corresponding set of weighted trees:

ι(0) = ∅ ι(1) = {1} ι(w) = {w(1)}

The projection back into the semiring then computes the value of all interleavings
for a given weighted hedge:

η(1) = 1 η(σ1) = η(σ)
η(w1(σ1) . . . wn(σn)) =

⊕n
i=1 wi � η(w1(σ1) . . . σi . . . wn(σn))

η is extended to sets by η(M) =
⊕{η(σ) | σ ∈M} for M ⊆ WHedges. It can be

easily seen, that the definitions fulfill all the conditions for an extension between
the semiring S and E .

Fig. 3. Different abstractions provide the same result

Figure 3 shows, that in our example from Section 1, the abstraction, with
f(ri) = wi, of the set of paths of the connecting hedges Hedges(C1, C2) and the
projection of the direct abstraction, with f̄(ri) = ι(wi), of the same hedges lead
to the same results, confirming the result of Theorem 5.

Howerver, since the size of the sets, trees and hedges is not bounded, this
extended semiring is not efficient. In the next section we will explain, how in
some cases a smaller representation for the weighted hedges can be found, that
can be used to compute a solution for the BGPP problem.



Weighted Dynamic Pushdown Networks 599

4 Applications

Since the existence of an efficient extended semiring and a matching extension
for a given semiring is not self-evident, we first give some examples of semir-
ings, for which an efficient extended semiring and a corresponding extension can
be constructed, before describing the approach to solve the BGPP problem in
Section 5.

Starting form the weighted trees in the previous section, we can simplify
the appearance of a tree by collapsing sequential parts of a tree using the �
operator of the semiring. To still be able to compute an interleaving of two col-
lapsed branches, we assume an abstract interleaving operator ⊗. The existence
of an abstract interleaving operator is again not self-evident, but is given for the
applications described later in this section. Since a weighted tree can be a repre-
sentation of a partial execution, we can not yet interleave the rightmost branch
with any of the other branches, since it only represents part of the execution of
the rightmost process. The solution to this problem is to precompute the total
weight of the tree for all possible weights of appended weighted trees. Thus the
extended weight representing a collapsed weighted tree is a function from D to
D. Figure 4 visualizes the collapsing of the weighted hedge in our example into
a function.

Fig. 4. Collapsing of a weighted tree

We set E ⊆ {F : D → D}. The embedding of a weight d ∈ D represents
a tree with just a single node labelled by the embedded weight. Concatenation
of another weighted tree leads to concatenation of d with the weight of the
tree, hence ι(d) = Fd, with Fd(x) = d � x. The projection is then a simple
evaluation of the collapsed tree, where the empty weighted tree, with semiring
weight 1 is appended, hence η(F ) = F (1). Concatenation of collapsed trees is
then combination of the functions representing the trees (F �̄G)(x) = F (G(x))
and the meet is the pointwise meet (F ⊕̄G)(x) = F (x)⊕G(x). For interleaving,
the left branch is evaluated at 1 to get the total weight of the left tree and
the interleaving with all possible values for the right tree is precomputed, hence
(F �̄G)(x) = F (1) ⊗G(x). Then E is the smallest set with ι(D) ⊆ E, which is
closed under �̄, ⊗̄ and arbitrary ⊕̄.



600 A. Wenner

Shortest Path Analysis. The shortest path analysis assigns a positive integer
weight to all transitions. The weight of a path is the sum of the weights of the
transitions occurring on the path. The goal is to find the weight of the path
with the smallest weight. We use the semiring S = (N ∪ {∞},min,+,∞, 0)
introduced in [2]. Since + is commutative and associative, the order in which
transitions occur and are combined on a path is irrelevant. Thus + can be used
as the abstract interleaving operator ⊗.

If we apply the construction described above, we get an extended semiring
E = (E, ⊕̄, �̄, ⊗̄, F∞, F0), with ⊕̄, �̄ and ⊗̄ as described. Furthermore, we get an
extension (S, E , ι, η), with ι(d)(x) = d+ x, for d ∈ N ∪ {∞} and η as described.
Since E contains only the elements derived from elements in ι(D), it can be show
that all elements F ∈ E can be written as F (x) = dF + x with dF ∈ N ∪ {∞}.
Then the operators of the extended semiring and extension can be reduced to
the operators of the semiring as follows:

(F �̄G)(x) = (dF + dG) + x (F ⊕̄G)(x) = min{dF , dG} + x
(F ⊗̄G)(x) = (dF + dG) + x η(F ) = dF

One can observe, that instead of the functional notation of E , one can simply
use (N ∪ {∞},min,+,+,∞, 0) as extended semiring. Using this construction,
we can precisely compute the length of the shortest path connecting the starting
and the target set in the DPN.

Example 6. By setting f(r4) = f(r6) = 1 and f(r) = 0 for all other rules, one
can, for example, determine the minimum number of times a is written in our
example.

Bitvector Analyses. Bitvector analyses examine a property represented by a
single bit. For lack of space, we consider only forward, information is propagated
from the start of the program, must, all paths reaching a target configuration
must set the bit to 1, bitvector analyses. Backward, information is propagated
from the end of the program, or may, it suffices, that one path reaching a target
configuration sets the bit to 1, analyses can be handled similarly. The transitions
of the DPN are annotated with transformers, that change the current state of the
bit. We use the semiring S = (D,⊕,�, zero, id), where D = {kill, id, gen, zero}.
Here gen represents the transformer setting the bit to 1, id is the identity and
kill sets the bit to 0. The artificial weight zero is introduced to represent the zero
element of the ring. For a forward analysis, � is reversed functional combination
extended to include zero. In case of a must analysis ⊕ is a meet operator inducing
the ordering kill 
 id 
 gen 
 zero. In [6] it was shown, that the operator ⊗,
defined as f ⊗ g = (f � g)⊕ (g � f), is an abstract interleaving operator on the
path level.

If we apply the construction described above, we get an extended semiring
E = (E, ⊕̄, �̄, ⊗̄, Fzero, Fid), with ⊕̄, �̄ and ⊗̄ as described, and an extension
(S, E , ι, η). Since E is the smallest set containing ι(T ) closed under ⊕̄, �̄ and ⊗̄,
it can be shown, that E = ι(D) ∪ {Fkill}, with Fkill(x) = x � kill, and η(Ff ) = f
and η(Fkill) = kill.



Weighted Dynamic Pushdown Networks 601

This is can be explained by the fact, that a kill occurring in a parallel has the
most impact on the result if it is executed as last transition, where it can not
be overwritten. Thus we need an additional weight, that describes exactly the
effect, that once a kill has occurred as the result of a parallel process, it has to
always be the last weight considered. The function Fkill, describing a partial tree
containing a kill as the result of a parallel branch, does exactly that.

In contrast to kill, id and gen influence an interleaving the most if they are
considered as early as possible. In this case the weight of the parallel branch
needs to be considered right after it was created. Thus parallel composition
degenerates to sequential composition and no additional information needs to
be stored.

Example 7. To determine, whether the value of a written in line 2 is always used
in the calculation in line 3, we can use a forward must bitvector analysis. We set
the weights for the transitions of the DPN to be f(r4) = gen, i.e. if we encounter
the write at line 2, we set the bit to 1, f(r6) = kill, i.e. we set the bit to 0 if line
7 writes, and f(r) = id for all other rules. If the resulting function sets the bit,
we know, that the write in line 2 is always the last write to a before the use in
line 3.

KILL/GEN. KILL/GEN analyses are a special kind of dataflow analysis, where
dataflow facts are elements of a complete distributive lattice (D,�), with least
and greatest elements ⊥,�, and the set of transformers is restricted to T =
{f : D → D | ∃k, g ∈ D with f(x) = (x � kf ) � gf}. They can be used for
bitvector analyses, but also encompass other analyses, like strong copy constant
propagation [6].

We only consider forward KILL/GEN analyses, but backward analyses can
be handled similarly. The semiring is S = (T ∪ {zero},⊕,�, zero, id), where zero
is an artificial element representing the zero element of the ring and id(x) =
(x � �) � ⊥. For elements f, g �= zero we then have (f ⊕ g)(x) = f(x) � g(x)
and (f � g)(x) = g(f(x)). In [6] it was shown, that f ⊗ g = f � g ⊕ g � f is an
abstract interleaving operator.

Applying the construction described above, we arrive at an extended semiring
E = (E, ⊕̄, �̄, ⊗̄, Fzero, Fid) and extension (S, E , ι, η). With ι(g)(f)(x) = f(g(x))
it can be shown, that every element F ∈ E \{Fzero} can be written as F (f)(x) =
f(fF (x))�iF with fF ∈ T, iF ∈ D. The operations on the extended semiring can
then be reduced to operations of the semiring and underlying lattice as follows:

(F �̄G)(f)(x) = f((fF � fG)(x)) � (iF � iG)
(F ⊕̄G)(f)(x) = f((fF ⊕ fG)(x)) � (iF � iG)
(F ⊗̄G)(f)(x) = f(fG(x � kfF )) � (iF � iG � gfF )
η(F )(x) = fF (x) � iF

On the one hand the result for the interleaving operator can be seen as gen-
eralisation of the bitvector result. Parallel effects that improve the result are
applied as early as possible, directly on the initial information and effects that
worsen the result are applied as late as possible, after all information has been



602 A. Wenner

computed. On the other hand we arrive at a result similar to [8]. Here it was
observed, that KILL/GEN analyses can be solved by separating paths directly
reaching a program point from the possible interference of the environment. The
same structure can be found in the extended weight domain, where a weight
is described by a standard transformer, representing the reaching path, that
is applied to the initial data and a lattice element, representing the possible
interference, that is added at the end.

Example 8. To determine, which writes of a can be used in the calculation in line
3, we can use a forward KILL/GEN analysis over the lattice (2{2,7},⊆). We set
the weights for the transitions of the DPN to be f(r4) = λx.{2}, f(r6) = λx.{7}
and f(r) = λx.x for all other rules. If we apply the resulting function to the
empty set, we get the set of writing locations whose value can be used in line 3.

5 Solving the BGPP Problem for BWDPN

Now consider an execution hedge in Hedges(C1, C2). Each tree of the hedge trans-
forms a stack in a starting configuration c1 ∈ C1 into a configuration containing
the transformed original stack and stacks of spawned processes, that is part of a
target configuration c2 ∈ C2. Analogous to the approach in [2], we can split each
tree into several parts along the rightmost branch. We differentiate between two
main types of partial trees. The first type transforms an initial stacktop of the
form pγ into cp′, meaning that the topmost stacksymbol is popped off the stack.
The second type transforms pγ into cp′w, with w ∈ Γ+, pushing additional sym-
bols on the stack. In both cases new process may be spawned and transformed,
forming the configuration c to the left of the initial process. If we take an execu-
tion tree τ , we can observe, that the execution of the initial process can always
be split into a sequence of pop transformation and a final push transformation.

If we now classify the partial trees by their initial stack pγ and their result
cp′ or cp′w, we can assemble each execution tree out of these classes. Taking
for example τ1, τ2 with piγi

τi=⇒ cipi+1 and τ3 with p3γ3
τ3=⇒ p′w′, we get an

execution tree τ = τ1 ; τ2 ; τ3 with p1γ1γ2γ3w
τ=⇒ c1c2c3p

′w′w.
Since the spawned processes and pushed stacksymbols of a partial tree are

unbounded this is still an infinite number of classes. We exploit the fact, that we
are only interested in the trees that reach a given regular set of configurations
and assume the set is described by an automaton. The spawned processes and
pushed stacksymbols of a partial tree will not be altered by a concatenated tree,
it will only spawn and transform its own new processes and a push is the final
phase of an execution. Consequently the spawned processes of a partial tree and
the symbols pushed onto the stack have to be part of the final configuration.
Since the configuration is part of a regular set we can describe these parts by
two states of the automaton between which a part is accepted. Grouping the
classes where the spawned processes and pushed stacksymbols are accepted by
the same states together, we arrive at a finite number of classes.



Weighted Dynamic Pushdown Networks 603

To characterise these classes, we take a closer look at the saturation procedure
introduced in [1] to compute the set of predecessor configurations of a given
target set.

Regular Sets of Configurations. The saturation procedure requires special kinds
of automata for representation of the target set. We use M- and M∗-automata,
adapted from [1], as a compact representation for the target set. AM∗-automaton
is a finite automatonA∗ = (S, P ∪Γ, δ, ṡ, F ) that satisfies the following additional
conditions:

• SC , SP ⊆ S, where for all s ∈ SC , p ∈ P exists a unique and distinguished
state sp ∈ SP

• δ = δP ∪δΓ where δP = {(s, p, sp) | s ∈ SC , p ∈ P} and δΓ ⊆ S×(Γ∪{ε})×S
• L(A) ⊆ Conf

A M-automaton A is a M∗-automaton, where the transition relation δ satisfies
the stronger condition δΓ ⊆ S × (Γ ∪ {ε}) × (S \ SP ) and ṡ ∈ S \ SP . We
write s λ−→δ s

′ for (s, λ, s′) ∈ δ and s c−→∗
δ s

′ for the reflexive transitive closure.
L(A) is the language of the automaton. Each regular set of configurations can be
described by an M-automaton. For the rest of the paper we fix two M-automata
A1 = (S1, P ∪ Γ, δ1, ṡ1, F1) and A2 = (S2, P ∪ Γ, δ2, ṡ2, F2) with L(A1) = C1

and L(A2) = C2.

Characterising Trees and Hedges. The following saturation procedure, taken
from [1], works by adding new transitions to the automaton A2, thus allow-
ing more configurations to be accepted. The result is a M∗-automaton A∗

2 =
(S2, P ∪ Γ, δ̄2, ṡ2, F2), with δ̄2 = δP

2 ∪ δ̄Γ
2 , where δ̄Γ

2 is the smallest set fulfilling
the conditions:

[init] t ∈ δ̄Γ
2 if t ∈ δΓ

2

[step] (sp, γ, s
′) ∈ δ̄Γ

2 if r = pγ ↪→ c ∈ Δ, s ∈ SC , s
c−→∗

δ̄2
s′

A transition is added, if there is a rule transforming the symbol into a configu-
ration which is accepted by previously existing transitions. If these transitions
were also added by the saturation, they themselves have a rules, which trans-
form their symbols. If we follow this recursion and assemble the rules into a
tree, we have a tree that transform the symbol of the newly added transition
into a configuration that can be read using only transition of A2. Consequently
all new configurations L(A∗

2) which are accepted because of this transition, are
predecessors of configurations in the original automaton. Additionally a new
transition (sp, γ, s

′) is a witness for the existence of a tree, that transforms pγ
into a configuration c which is accepted between the states s and s′. If s′ ∈ SP

then c = c′p′, since only P transitions reach states in SP and the tree is a pop
transformation as described above. If s′ /∈ SP , we have c = c′p′w′ and the tree
is a push transformation.

We later extend the saturation procedure to collect all of these trees for a
transition by constructing a constraint system L over (2Trees,∪), similar to the



604 A. Wenner

grammar used to describe executions in [2]. The variables of the constraint
system L[t] with t ∈ δ̄Γ

2 can be seen as annotations to the transitions of the
saturated automaton. The least solution of the constraint system then corre-
sponds exactly to the classes of trees described above. We define a function
πL : S2 ×Conf × S2 → 2Hedges that constructs a set of hedges for a configuration
by reading the annotations from the automaton A∗

2:

[empty] πL(s, ε, s) = {εσ}
[epsilon] πL(s, ε, s′) =

⋃{πL(s, ε, s′′) | s′′ ε−→δ̄Γ
2
s′}

[control] πL(s, cp, s′) =
⋃{πL(s, c, s′′)ετ | s′′ p−→δ̄P

2
s′}

∪⋃{πL(s, cp, s′′) | s′′ ε−→δ̄Γ
2
s′}

[stack] πL(s, cγ, s′) =
⋃{πL(s, c, s′′) ; L[(s′′, γ, s′)] | s′′ γ−→δ̄Γ

2
s′}

∪⋃{πL(s, cγ, s′′) | s′′ ε−→δ̄Γ
2
s′}

If we read a partial configuration c between two states of the saturated automa-
ton, we can construct the set of hedges transforming the configuration into a
partial configuration of the target set accepted between the same two states,
using πL.

We start with the set containing only the empty hedge and add a new empty
tree, whenever we read a control state of the DPN. Consider for example now
a configuration pγ1γ2. After reading p we are in a state sp and the current set
of hedges is {ετ}. ε transitions do not contain any additional information and
information is simply propagated trough. If we now read the next symbol in the
saturated automaton, we can distinguish two cases for the next transition:

Either the transition is (sp, γ1, s
′
p′). As observed above all trees annotated to

this transition are pop transformations, applying them to pγ1γ2 ends in a con-
figuration cp′γ2, where s c−→∗

δ2
s′. The next transition for γ2, is then (s′p′ , γ2, s

′′),
which is annotated with trees transforming p′γ2 into configurations c′ with

s′ c′−→
∗
δ2
s′′. If we concatenate the trees, we get transformations of pγ1γ2 to

cc′, with s cc′−→
∗
δ2
s′′.

Or the transition is (sp, γ1, s
′), with s′ /∈ SP . As observed the trees annotated

to this transition are push transformations. Starting from pγ1γ2, they lead to

cp′w′γ2, with s
cp′w′
−→

∗
δ2
s′. Since we can accept the configuration as part of the

target set, we have another transition (s′, γ2, s
′′) in the original automaton. The

set of trees transforming the configuration pγ1γ2 is then simply the set of the first
transition. To simplify the construction, we annotate transitions not starting in
states in SP , with the set only containing the empty tree, thus we can simply
concatenate the annotated sets of all transitions in both cases.

This can be extended to a configuration with an arbitrary number of stack
symbols. If we take a configuration p1w1p2w2, we want to construct the set of
hedges transforming the configuration. If we read the configuration left to right
we construct the set of trees for the first stack a described above. If we now
encounter a transition for a control state, a new initial empty tree is added to
the end of the hedges. We can then construct the set of trees for second stack



Weighted Dynamic Pushdown Networks 605

again as described above, since all concatenation operations now concern this
new last tree of the hedges. This can be extended to a configuration with an
arbitrary number of stacks.

Using these observations, we construct a set of constraints in a similar way
the saturation procedure adds transitions to the automaton:

[init] L[t] ⊇ {ετ} if t ∈ δΓ
2

[step] L[(sp, γ, s
′)] ⊇ {r(ετ )} ;πL(s, c, s′) if r = pγ ↪→ c ∈ Δ, s ∈ SC , s

c−→∗
δ̄2
s′

The trees are essentially constructed bottom up. Each transition starts with the
set containing only the empty tree. If we add a new transition, we add all trees
which can be constructed by the rule which lead to the addition, and all hedges,
which are already known to transform the configuration reached by that rule.

Fig. 5. Annotated automaton after saturation

Figure 5 shows part of the resulting automaton of the saturation procedure
applied to the targetC2 set of our example and the least solution of the constraint
system annotated to the transitions of the automaton. The initial automaton is
displayed with solid arrows and transitions added by the saturation are dashed.

For the least solution lfp(L) of L we can prove, by induction on the structure
of the trees τ :

Lemma 9. For s ∈ SC
2 , s

′ ∈ S2, p ∈ P, γ ∈ Γ, (sp, γ, s
′) ∈ δ̄Γ

2 , we have:

lfp(L)[(sp, γ, s
′)] = {τ | ∃c ∈ Conf with pγ τ=⇒ c, s

c−→∗
δ2
s′},

and for s /∈ SP
2 , s

′ ∈ S2, γ ∈ Γ, (s, γ, s′) ∈ δ̄Γ
2 , we get:

lfp(L)[(s, γ, s′)] = {ετ}.
Thus the solution of the constraint system contains exactly the classes of trees
we wanted to characterise. If we annotate the transitions of A∗

2 with lfp(L), we
can prove by induction on the length of the configurations c:

Lemma 10. For s, s′ ∈ S2, c ∈ Conf, we have:

πlfp(L)(s, c, s′) = {σ | ∃c′ ∈ Conf with c σ=⇒ c′, s c′−→
∗
δ2
s′},



606 A. Wenner

Hence we have Hedges({c}, C2) =
⋃{πlfp(L)(ṡ2, c, s) | s ∈ F2} for a configuration

c ∈ Conf. We can describe the set of all reaching hedges from the single configu-
ration c into the set C2. We are now interested in the union of all these sets for
configurations in C1. It suffices to consider configurations in C1 ∩ L(A∗

2), since
all other configurations have an empty set of reaching hedges. Since the number
of configurations can still be infinite and thus we can not evaluate πlfp(L) for all
these configurations, we construct a second constraint system O over (Hedges,∪),
that imitates the computation of πlfp(L) by propagating sets of hedges along the
transitions of an automaton and joining preliminary results at each state of the
automaton.

Since we only want the result for configurations in C1 ∩ L(A∗
2), we construct

the constraint system for the product automaton A3 = (S3, P ∪ Γ, δ3, ṡ3, F3) of
A1 and A∗

2, describing the intersection. For s ∈ S3 we write s|i, with i ∈ {1, 2},
to refer to the original state of automaton Ai that was used to form s in the
product automaton.

[empty] O[ṡ] ⊇ {εσ}
[epsilon] O[s′] ⊇ O[s] if (s, ε, s′) ∈ δΓ

3

[control] O[s′] ⊇ O[s]ετ if (s, p, s′) ∈ δP
3

[stack] O[s′] ⊇ O[s] ; lfp(L)[(s|2, γ, s′|2)] if (s, γ, s′) ∈ δΓ
3

Since it works on the transitions of the product automaton, the constraint sys-
tem emulates the steps of πlfp(L) on A∗

2 and simultaneously ensures, that each
transition followed in A∗

2 has a corresponding transition in A1. Thus it only
works on configurations which are also in C1.

It can then be shown, by induction on the length of the configuration c, that:

Lemma 11. For s ∈ S3, we get:

lfp(O)[s] =
⋃

{πlfp(L)(ṡ3|2, c, s|2) | ṡ3|1 c−→∗
δ1
s|1},

Consequently, the solution of the constraint system at the accepting states of
the product automaton can be used to describe the set of all connecting hedges:

Theorem 12. We get:

Hedges(C1, C2) =
⋃

{lfp(O)[s] | s ∈ F3}.

Abstraction. To compute the weight of the hedges, we construct a constraint
system L#, a function π#

L# and constraint system O# over the weight domain by
replacing the operators and constants in the constraint system L, the function
πL and constraint system O, with the corresponding operators and constants
according to the abstraction function β:

(2Hedges,∪) � (E, ⊕̄) M � β(M)
M ;M ′ � β(M) �̄β(M ′) MM ′ � β(M) ⊗̄ β(M ′)



Weighted Dynamic Pushdown Networks 607

Since the order in the abstract domain is dual to the ordering on sets of
hedges, we compute the greatest fixpoint in the abstract domain. Using standard
results from abstract interpretation [9], we get gfp(L#) = β(lfp(L)), π#

gfp(L#)
=

β ◦ πlfp(L) and gfp(O#) = β(lfp(O)) for the solutions of the constraint systems.
With Theorem 12:

Theorem 13. It follows, that:

θ(C1, C2) =
⊕̄

{gfp(O#)[s] | s ∈ F3}.
Thus we can solve the BGPP problem by computing gfp(L#) and gfp(O#). The-
orem 5 states, that we get the solution to the GPP problem by applying η.

Algorithm. Given a WDPN (M,S, f) and two sets of configurations C1, C2,
represented by M-automata A1,A2, the complete algorithm to compute the
solution of the GPP problem δ(C1, C2) consists of the following steps:

1. Find a suitable extended semiring E and extension (S, E , ι, η) and consider
the BWDPN (M, E , f̄), with f̄(r) = ι(f(r)).

2. Construct the automaton A∗
2 using the saturation procedure. The saturation

can be done in O(|S2|3|Δ|‖Δ‖) time, where ‖Δ‖ is the length of the longest
right hand side of a rule in Δ. The size of the transition relation of the
saturated automaton is in O(|δ2| + |S2|2|Δ|).

3. Construct the abstract constraint system L# for A∗
2 and solve it. The con-

struction can be done during the saturation of the automaton. The size of
the constraint system is in O(|δ2| + |S2|2‖Δ‖|Δ|). The time needed to solve
the constraint system depends on the solver and the height and complexity
of the weight domain.

4. Compute the product automaton A3 from A1 and A∗
2.

5. Construct the abstract constraint system O# for A3 and solve it. The con-
struction can be done during the computation of the product automation.
The size of the constraint system is equal to the size of the transition relation
of the product automaton and thus in O(|δ1|(|δ2| + |S2|2|Δ|)).

6. Compute
⊕̄{gfp(O#)[s] | s ∈ F3}.

7. Apply η to get δ(C1, C2).

In total the algorithm is linear in the size of the program |Δ|, exponential in
the size of the rules ‖Δ‖ and polynomial in the number of states and transitions
of the automata describing the starting and target sets of the query. Since all
DPN can be transformed into DPN with only rules of the type pγ ↪→ p′, pγ ↪→
p′γ′, pγ ↪→ p′γ′γ′′ and pγ ↪→ p′γ′p′′γ′′, where the number of rules increases
by a constant factor, the size of the rules ‖Δ‖ can be considered fixed and
small. Similarly the starting and target sets of a query are usually representable
by small automata and thus we have an efficient algorithm. For the first two
applications described in Section 4 the solution of the constraint system can be
computed using standard fixpoint algorithms. Termination of the computation
is guaranteed, since the domains do not contain infinite descending chains. For
the KILL/GEN analyses we additionally require, that the underlying lattice has
no infinite ascending chains, to ensure termination of the fixpoint iteration.



608 A. Wenner

6 Conclusion

We presented the GPP problem for a WDPN, which is a model for parallel
programs with dynamic process creation and recursive procedures. The GPP
problem is a general problem formulation, which can, for example, be used to
capture basic dataflow analysis problems. Since the GPP problem can not be
solved directly, our approach is based on an alternative branching semantics
for DPN. The resulting tree shaped executions can be characterised using a
constraint system, which can then be solved over an abstract domain to get
a solution for the BGPP problem for BWDPN. If the weight domains for the
BWDPN and WDPN are connected through an extension, the solution for the
GPP problem can be derived from the corresponding BGPP problem. We have
shown how the results can be used to solve basic dataflow analysis problems like
bitvector analyses or shortest path problems.

Future Work. Firstly, we are currently working on an implementation of the
algorithm and different weight domains.

Another direction of research is the iterated application of our algorithm.
One can observe, that the product automaton computed in Section 5 is again
an M-automaton, whose transitions are indirectly annotated by the solution of
the constraint system. The idea is to take this automaton as the target set for a
second computation, which is initialized with the annotation of the automaton.
Similar techniques have been studied for DPN without weights [11] and WPDS
[4] to realize context-bounded analyses.

To compute the BGPP solution we need to solve a constraint system over
the extended semiring. In practice this requires the extended semiring to fulfill
additional criteria for the computation to terminate, like finiteness or the de-
scending chain condition. To deal with unbounded domains, widening [9] could
be introduced. Additionally in recent work [12,13], new techniques have been
presented to solve equations for more general types of semirings. We plan on
examining, whether these can be applied to our extended semirings.

In addition the relationbetween a semiring and a corresponding extended semir-
ing and extension needs to be studied further. Here especially conditions which
guarantee the existence of an efficient construction are of interest. Or alternatively,
whether there are ways to construct at least an efficient approximation.

Our main application of BWDPN up to now is solving the GPP problem for
WDPN. BWDPN themselves can be interesting. One example are weight do-
mains which rely on thread identity. The thread executing a specific transition
can not be determined from an interleaved path, but is visible in an execu-
tion hedge. The acquisition structures studied in [10], to compute whether there
exists a path connecting two regular sets of configurations w.r.t. a lock sensi-
tive semantics, can for example be adapted into a weight domain for BWDPN.
Furthermore we plan to investigate whether the approach to the analysis of syn-
chronisation taken in [14] can be adapted to our framework and thus extended
to dynamic process creation.



Weighted Dynamic Pushdown Networks 609

Acknowledgement. We thank Markus Müller-Olm and Peter Lammich for helpful
discussions on the topic of dynamic pushdown networks.

References

1. Bouajjani, A., Müller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, pp. 473–487. Springer, Heidelberg (2005)

2. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their
application to interprocedural dataflow analysis. Sci. Comput. Program. 58(1-2)
(2005)

3. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst. 22(2) (2000)

4. Lal, A., Touili, T., Kidd, N., Reps, T.W.: Interprocedural analysis of concurrent
programs under a context bound. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 282–298. Springer, Heidelberg (2008)

5. Esparza, J., Podelski, A.: Efficient algorithms for pre∗ and post∗ on interprocedural
parallel flow graphs. In: POPL. ACM, New York (2000)

6. Seidl, H., Steffen, B.: Constraint-based inter-procedural analysis of parallel pro-
grams. Nordic J. of Computing 7(4) (2000)

7. Knoop, J., Steffen, B., Vollmer, J.: Parallelism for free: efficient and optimal bitvec-
tor analyses for parallel programs. ACM Trans. Program. Lang. Syst. 18(3) (1996)

8. Lammich, P., Müller-Olm, M.: Precise fixpoint-based analysis of programs with
thread-creation and procedures. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR
2007. LNCS, vol. 4703, pp. 287–302. Springer, Heidelberg (2007)

9. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL.
ACM, New York (1977)

10. Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor sets of dynamic push-
down networks with tree-regular constraints. In: Bouajjani, A., Maler, O. (eds.)
Computer Aided Verification. LNCS, vol. 5643, pp. 525–539. Springer, Heidelberg
(2009)

11. Bouajjani, A., Esparza, J., Schwoon, S., Strejček, J.: Reachability analysis of mul-
tithreaded software with asynchronous communication. In: Sarukkai, S., Sen, S.
(eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 348–359. Springer, Heidelberg (2005)

12. Esparza, J., Kiefer, S., Luttenberger, M.: Newton’s method for ω-continuous semir-
ings. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 14–26.
Springer, Heidelberg (2008)

13. Kühnrich, M., Schwoon, S., Srba, J., Kiefer, S.: Interprocedural dataflow analy-
sis over weight domains with infinite descending chains. In: de Alfaro, L. (ed.)
FOSSACS 2009. LNCS, vol. 5504, pp. 440–455. Springer, Heidelberg (2009)

14. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: POPL. ACM, New York (2003)


	Weighted Dynamic Pushdown Networks
	Introduction
	Weighted Dynamic Pushdown Networks
	Branching Weighted Dynamic Pushdown Networks
	Applications
	Solving the BGPP Problem for BWDPN
	Conclusion


