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Abstract

Although manipulation and bribery have been extensively studied under weighted vot-
ing, there has been almost no work done on election control under weighted voting. This
is unfortunate, since weighted voting appears in many important natural settings. In this
paper, we study the complexity of controlling the outcome of weighted elections through
adding and deleting voters. We obtain polynomial-time algorithms, NP-completeness re-
sults, and for many NP-complete cases, approximation algorithms. In particular, for scor-
ing rules we completely characterize the complexity of weighted voter control. Our work
shows that for quite a few important cases, either polynomial-time exact algorithms or
polynomial-time approximation algorithms exist.

1. Introduction

In many real-world election systems the voters come with weights. Examples range from
stockholder elections weighted by shares, to the US Electoral College, to the often-used ex-
ample of the Nassau County Board of Supervisors, to (in effect) any parliamentary system
in which the parties typically vote as blocks, to Sweden’s system of wealth-weighted voting
instituted in 1866 (and no longer used) where “the wealthiest members of the rural com-
munities received as many as 5,000 votes” and “in 10 percent of the districts the weighted
votes of just three voters could be decisive” (Congleton, 2011). Furthermore, there are
many important voting applications within multiagent systems, e.g., in recommender sys-
tems (Ghosh, Mundhe, Hernandez, & Sen, 1999; Lu & Boutilier, 2011), planning (Ephrati
& Rosenschein, 1997), and web search (Dwork, Kumar, Naor, & Sivakumar, 2001). In these
applications, it is quite natural for the voters (i.e., agents) to be weighted (e.g., by the
amount of trust we put in them or by the power of the resources they possess).

So it is not surprising that in the study of manipulative attacks on elections, weighted
voting has been given great attention. For bribery and manipulation, two of the three most
studied types of manipulative attacks on elections, study of the case of weighted voters
has been extensively conducted. Yet for the remaining one of the three most studied types
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of attacks on elections, so-called control attacks, almost no attention has been given to
the case of weighted voting; to the best of our knowledge, the only time this issue has
been previously raised is in two M.S./Ph.D. theses (Russell, 2007; Lin, 2012). This lack of
attention is troubling, since the key types of control attacks, such as adding and deleting
voters, certainly do occur in many weighted elections. As a coda to this section, we will
give some examples.

We study the complexity in weighted elections of arguably the most important types
of control—adding and deleting voters—for various election systems. We focus on scoring
rules, families of scoring rules, Condorcet-consistent rules, and weakCondorcet-consistent
rules. Control by deleting (adding) voters asks whether in a given election a given candidate
can be made to win by deleting (adding) at most a certain number of the voters (at most
a certain number of the members of the pool of potential additional voters). These control
types model issues that are found in many electoral settings, ranging from human to elec-
tronic. They are (abstractions of) issues often faced by people seeking to steer an election,
such as experts doing campaign management, and deciding for example which k people to
offer rides to the polls. Adding and deleting voters also can occur in multiagent systems.
For example, if agents are entities over the Internet, then one can attempt a denial-of-service
attack on some of them to prevent their votes from arriving on time. On the other hand,
adding voters pertains to simply encouraging some agents to vote, multiplying the existing
agents, or performing false-name attacks (for false-name attacks in related settings, see, for
example, Wagman & Conitzer, 2014; Waggoner, Xia, & Conitzer, 2012; Aziz, Bachrach,
Elkind, & Paterson, 2011).

Control was introduced (without weights) in 1992 in the seminal paper by Bartholdi,
Tovey, and Trick (1992). Control has been the subject of much attention since. That at-
tention, and the present paper, are part of the line of work, started by Bartholdi, Tovey,
and Trick (1989, 1992) and Bartholdi and Orlin (1991), that seeks to determine for which
types of manipulative attacks on elections the attacker’s task requires just polynomial-time
computation. For a more detailed discussion of this line of work, we refer the reader to the
related work section at the end of the paper and to the surveys of Faliszewski, Hemaspaan-
dra, Hemaspaandra, and Rothe (2009), Faliszewski, Hemaspaandra, and Hemaspaandra
(2010), and Brandt, Conitzer, and Endriss (2013).

Our main results are as follows (see Section 6 for tables summarizing our results). First,
in Section 4.1 we provide a detailed study of the complexity of voter control under scoring
protocols, for the case of fixed numbers of candidates. We show that both constructive
control by adding voters and constructive control by deleting voters are in P for t-approval
(and so this also covers plurality and t′-veto1) and are NP-complete otherwise. It is in-
teresting to compare this result to an analogous theorem regarding weighted coalitional
manipulation: There are cases where the complexities of voter control and manipulation
are the same (e.g., for plurality or for Borda) but there are also cases where voter control
is easier (t-approval for t ≥ 2, for elections with more than t candidates). Is it ever pos-
sible that weighted voter control is harder than weighted voting manipulation? We show
that weighted voter control is NP-hard for Condorcet-consistent rules with at least three
candidates (and so clearly is also NP-hard for weakCondorcet-consistent rules with at least

1. If the number of candidates is fixed, then t-veto can be expressed as (m − t)-approval, where m is the
number of candidates. If the number of candidates is unbounded, then t-veto is not t′-approval.
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three candidates). Since weighted coalitional manipulation for the 3-candidate Llull system
is in P (Faliszewski, Hemaspaandra, & Schnoor, 2008), together with the fact that Llull is
weakCondorcet-consistent, this implies that there is a setting where weighted voter control
is harder than weighted coalitional manipulation.

In Sections 4.2 and 4.3 we focus on the complexity of weighted voter control under
t-approval and t-veto, for the case of unbounded numbers of candidates. At the start of
Section 4.2, we will explain why these are the most interesting cases. In Section 4.2 we
resolve six problems left open by Lin (2012). We establish the complexity of weighted
control by adding voters for 2-approval, 2-veto, and 3-approval, and of weighted control
by deleting voters for 2-approval, 2-veto, and 3-veto. In Section 4.3, we give polynomial-
time approximation algorithms for weighted voter control under t-approval and t-veto. Our
algorithms seek to minimize the number of voters that are added or deleted.

We believe that the complexity of weighted voter control, and more generally the com-
plexity of attacks on weighted elections, is an important and interesting research direction
that deserves much further study. In particular, our research suggests that it is worthwhile
to seek approximation algorithms for weighted elections problems and that doing so can
lead to interesting algorithms.

2. Motivation for Studying Control in Weighted Elections

In the Introduction, we noted the importance of weights in many electoral settings and
described the natural importance of—and gave pointers to the extensive line of work
studying—control attacks in many (unweighted) settings. We also stated that control at-
tacks can naturally be expected to occur even in many weighted election settings.

In the present section, we give some examples motivating the study of weighted electoral
control.

Let us consider an academic department that has as its salient issue in a particular
term the question of what course to add to its B.S. major’s requirements. Suppose the
department is highly polarized on this issue by research area, i.e., all the faculty in a given
research area will vote as a block (either because they all agree, or because by tradition
they meet before the actual faculty meetings to, within their group, reach a group position
that they will all support). And suppose that for each group there are days/times where
the entire group would be unlikely to attend, e.g., because that time is the time of the
major yearly research conference in that area. The department chair, knowing that he or
she has the power to schedule when faculty meetings are held, and what the agenda is at
each meeting, might well model his or her task as a weighted control by deleting voters
problem, in which the voters are the groups, each group’s weight is the number of faculty
members in the groups, and the deletion limit is one.

In fact, more generally, individual voters may blur into a collection of weighted votes in
settings where the voter set partitions into groups that will express identical preferences. As
another example of this sort, at one of the authors’ schools, members of the faculty senate
are chosen by the election system known as single transferable vote. However, it is not
unheard of for departmental leaders to send out a friendly suggestion to the department’s
members regarding for whom to vote. If one assumes that the departments vote as blocks,
and one is trying to decide which candidates to add to the election, or convince not to
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run in the election, in order to make a given candidate win (or not win), one in effect is
studying weighted constructive control by adding candidates, weighted constructive control
by deleting candidates, weighted destructive control by adding candidates, or weighted
destructive control by deleting candidates.

The examples just given were ones where the weightings are created by individuals
forming themselves into blocks, and that can occur even in highly political contexts. For
example, in the US House of Representatives, on issues (for example, water rights or farm
subsidies) on which a state’s delegation tends to vote as a block in the parochial interests of
its state’s constituents or companies, pressure by lobbyists on state delegations to abstain
from a given vote is in effect (give or take issues of failing to have a quorum) a control by
deleting voters attack.

However, there are also many voting cases where the weights are inherent in the stand-
alone individual voters, and in many of these cases control attacks may well occur. For
example, consider US Corporate Elections. In these, the vote of each stockholder is weighted
by his or her number of shares. The most natural way to frame control problems in this
setting is the case of adding and deleting candidates, for example, regarding who is running
for a spot as a company officer or director. But even voter control can come into play here,
for example, through some actor sending mailings to—or phoning and speaking to—voters
to convince them to abstain from voting, or to encourage voters to vote in this election.
(The “bound on additions/deletions” model that counts number of voters, rather than their
weights, is quite reasonable in this setting, because regardless of his or her weight, a given
targeted voter can be addressed by, for example, a mailing/visit/phone-call, although in
reality one admittedly might focus more resources on the biggest stockholders.)

There are many other weighted control examples we have not presented. Let us finish
with what is an extremely high-stakes example. In the US Electoral College, which works
by majority rule among the electors, the electors from each state usually vote as a block,
since the system lets whoever has the greatest popular vote in the given state select every
elector from that state (note: two of the fifty states have different policies). Thus the issue
of, for example, whether someone such as Ralph Nader does or does not run, or does or does
not withdraw his name from consideration at some particular time, can have a sweeping
effect on the nation, in what is in effect a weighted control by adding/deleting candidates
scenario.

We have now given a number of examples, some for voter control and some for candidate
control, of settings where weighted control may occur. The examples we have given vary
in their naturalness, and for both weighted and unweighted control there certainly are
points on which the models don’t capture all the nuances of the real world. For example,
some electoral partitioning problems have geographic/contiguity constraints, groups that
are modeled as voting as blocks may in fact have defectors, and Internet denial-of-service
attacks may not have the freedom to suppress each vote independently but rather may
have to suppress all or none of the votes coming over a given line/provider (see, e.g., Chen,
Faliszewski, Niedermeier, & Talmon, 2014). Nonetheless, our belief is that the importance of
weighted elections and the importance of control attacks should not remain forever separate.
We feel that control attacks are sufficiently natural in many weighted settings—varying
from academic departments to companies’ stockholders to nations—that studying weighted
control is worth undertaking. We also feel that, although this is not the subject of the
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present paper, it will be important for experimental studies to be undertaken to see the
extent to which heuristic approaches can circumvent worst-case hardness results regarding
weighted control (see Rothe & Schend, 2013, for an assessment of this type of approach in
other settings, although see also Hemaspaandra & Williams, 2012, for a discussion of some
limitations of heuristic attacks).

3. Preliminaries

We assume that the reader is familiar with the basic notions of computational complexity
theory and the theory of algorithms. Below we provide relevant definitions and conventions
regarding elections, election rules, and control in elections. We also review some NP-
complete problems that we use in our reductions.

3.1 Elections

We take an election to be a pair E = (C, V ), where C is a set of candidates and V is a
collection of voters. Each voter has a preference order over the set C. A preference order
is a total, linear order that ranks the candidates from the most preferred one to the least
preferred one. For example, if C = {a, b, c} and some voter likes a best, then b, and then
c, then his or her preference order is a > b > c. In weighted elections, each voter v also
has a positive integer weight ω(v). A voter of weight ω(v) is treated by the election system
as ω(v) unweighted voters. Given two collections of voters, V and W , we write V + W to
denote their concatenation.

3.2 Election Rules

An election rule (or voting rule) is a function R that given an election E = (C, V ) returns
a subset R(E) ⊆ C, namely those candidates that are said to win the election.

An m-candidate scoring rule is defined through a nonincreasing vector α = (α1, . . . , αm)
of nonnegative integers. For each voter v, each candidate c receives αpos(v,c) points, where
pos(v, c) is the position of c in v’s preference order. The candidates with the maximum
total score are the winners. Given an election E and a voting rule R that assigns scores to
the candidates, we write scoreE(c) to denote c’s total score in E under R. The voting rule
used will always be clear from context. Many election rules are defined through families of
scoring rules, with one scoring vector for each possible number of candidates. For example:

1. Plurality rule uses vectors of the form (1, 0, . . . , 0).

2. t-approval uses vectors (α1, . . . , αm), where αi = 1 for each i ∈ {1, . . . , t}, and αi = 0
for i > t. By t-veto we mean the system that form candidates uses the (m−t)-approval
scoring vector. For m-candidate t-approval and t-veto systems we will often treat each
vote as a 0/1 m-dimensional approval vector that indicates which candidates receive
points from the vote. Naturally, such a vector contains exactly t ones for t-approval
and exactly t zeroes for t-veto.2

2. We emphasize that such a view of t-approval and t-veto is correct in settings where the set of candidates
remains fixed. If the set of candidates were to change (e.g., as in control by adding/deleting candidates),
then we would have to use the standard, preference-order-based definition.
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3. Borda’s rule uses vectors of the form (m− 1,m− 2, . . . , 0), where m is the number of
candidates.

Given an election E = (C, V ), a candidate c is a Condorcet winner (weak Condorcet
winner) if for every other candidate d ∈ C−{c} it holds that more than half (at least half) of
the voters prefer c to d. Note that it is possible that there is no Condorcet winner in a given
election, and it is even possible that there is no weak Condorcet winner in a given election.
Let Condorcet denote the election system whose winner set is exactly the set of Condorcet
winners, and let weakCondorcet denote the election system whose winner set is exactly the
set of weak Condorcet winners. We say that a rule R is Condorcet-consistent if whenever
there is a Condorcet winner he or she is the sole winner elected under R. Analogously, a rule
is weakCondorcet-consistent if it elects exactly the weak Condorcet winners whenever they
exist. Every weakCondorcet-consistent system is Condorcet-consistent, but the converse
does not always hold.

There are many Condorcet-consistent rules. We will briefly touch upon the Copeland
family of rules and the Maximin rule. For a given election E = (C, V ) and two distinct
candidates c, d ∈ C, we let NE(c, d) be the number of voters that prefer c to d. Let α be a
rational number, 0 ≤ α ≤ 1. Under Copelandα the score of candidate c ∈ C is defined as:

‖{d ∈ C − {c} | NE(c, d) > NE(d, c)}‖+ α‖{d ∈ C − {c} | NE(c, d) = NE(d, c)}‖,

and under Maximin the score of candidate c ∈ C is defined as mind∈C−{c}NE(c, d). The
candidates with the highest score are winners. Llull is another name for Copeland1. Clearly,
Llull and Maximin are weakCondorcet-consistent.

3.3 Electoral Control

We focus on constructive control by adding/deleting voters in weighted elections. However,
there are also other standard types of control studied in the literature (e.g., control by
adding/deleting candidates and various forms of partitioning of candidates and voters; we
point the reader to Section 5 for a discussion of related work).

Definition 3.1. Let R be a voting rule. In both weighted constructive control by adding
voters under rule R (R-WCCAV) and weighted constructive control by deleting voters under
rule R (R-WCCDV), our input contains a set of candidates C, a collection of weighted
voters V (sometimes referred to as the registered voters) with preferences over C, a preferred
candidate p ∈ C, and a nonnegative integer k. In R-WCCAV we also have an additional
collection W of weighted voters (sometimes referred to as the unregistered voters) with
preferences over C. In these problems we ask the following questions:

1. R-WCCAV: Is there a subcollection W ′ of W , of at most k voters, such that p ∈
R(C, V+W ′)?

2. R-WCCDV: Is there a subcollection V ′ of V , of at most k voters, such that p ∈
R(C, V−V ′)?

Although in this paper we focus primarily on constructive control, Section 4.1 makes
some comments about the so-called destructive variants of control problems. Given a vot-
ing rule R, weighted destructive control by adding voters under rule R (R-WDCAV) and
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weighted destructive control by deleting voters under rule R (R-WDCDV) are defined anal-
ogously to their constructive variants, with the only difference being that the goal is to
ensure that the distinguished candidate p is not a winner. We mention in passing that
throughout this paper we use what is known as the nonunique-winner model (a.k.a. the
cowinner model), i.e., the goal is to make p be, or prevent p from being, an element of the
winner set. We consider the nonunique-winner model to be a cleaner and more natural
model than the so-called unique-winner model, in which p must be made or kept from being
a one-and-only winner of the election, as that model more strongly blurs tie-breaking issues
with control issues.

Note that in the above definitions the parameter k defines the number of voters that can
be added/deleted, and not the total weight of the voters that can be added/deleted. This is
a standard approach when modeling strategic behavior in weighted elections. For example,
in the study of “R-weighted-bribery” (Faliszewski, Hemaspaandra, & Hemaspaandra, 2009),
bribing each weighted voter has unit cost regardless of the voter’s weight, and in the study
of weighted manipulation in nearly single-peaked societies (Faliszewski, Hemaspaandra,
& Hemaspaandra, 2014), the “mavericity” of a society depends on the number of so-called
mavericks rather than their total weight. As to what k might be “in practice,” k is reflecting
the ability of the chair to add/delete voters, and so k in practice would reflect how many
voters the chair is viewed as having the resources to lure in or pressure out.

We will consider approximation algorithms for WCCAV and WCCDV under t-approval
and t-veto. When doing so, we will assume that input instances do not contain the integer
k. Rather, the goal is simply to find (when success is possible at all) as small as possible a
collection of voters to add/delete such that p is a winner of the resulting election. (Just as
mentioned in the previous paragraph, we again are counting the number of added/deleted
voters, not the total weight of the added/deleted voters.) For a positive integer h, an
h-approximation algorithm for WCCAV/WCCDV is an algorithm that (when success is
possible at all) always finds a solution that adds/deletes at most h times as many voters as an
optimal action does. The notion of an f(·)-approximation algorithm for WCCAV/WCCDV
is defined analogously, where the argument to f is some variable related to the problem
or instance. And the meaning of O(f(·))-approximation algorithms will be similarly clear
from context. It is natural to worry about how the above seemingly incomplete definitions
interact with the possibility that success might be impossible regardless of how many votes
one adds/deletes. However, for t-approval WCCDV and t-veto WCCDV (and indeed, for
any scoring rule), it is always possible to ensure that p is a winner, for example by deleting
all the voters (recall that we are in the nonunique-winner model). For t-approval WCCAV
and t-veto WCCAV, it is possible to ensure p’s victory through adding voters if and only if
p is a winner after we add all the unregistered voters that approve of p. These observations
make it particularly easy to discuss and study approximation algorithms for t-approval and
for t-veto, because we can always easily check whether there is some solution. For voting
rules that don’t have this easy-checking property, such an analysis might be much more
complicated. The reader may wish to compare our work with Brelsford et al.’s attempt
at framing a general election-problem approximation framework (Brelsford, Faliszewski,
Hemaspaandra, Schnoor, & Schnoor, 2008).

In this paper we do not consider candidate-control cases (such as weighted construc-
tive control by adding candidates and weighted constructive control by deleting candidates,
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WCCAC and WCCDC). The reason is that for a bounded number of candidates, when
winner determination in the given weighted election system is in P it holds that both WC-
CAC and WCCDC are in P by brute-force search. On the other hand, if the number of
candidates is not bounded then candidate control is already NP-hard for plurality (and
t-approval and t-veto, in both the constructive setting and the destructive setting) even
without weights (Bartholdi et al., 1992; Hemaspaandra, Hemaspaandra, & Rothe, 2007;
Elkind, Faliszewski, & Slinko, 2011; Lin, 2012). Furthermore, many results for candidate
control under Condorcet-consistent rules can be claimed in the weighted setting. For exam-
ple, for the Maximin rule and for the Copeland family of rules, hardness results translate
immediately, and it is straightforward to see that the existing polynomial-time algorithms
for the unweighted cases also work for the weighted cases (Faliszewski, Hemaspaandra, &
Hemaspaandra, 2011).

3.4 Weighted Coalitional Manipulation

One of our goals is to compare the complexity of weighted voter control with the complexity
of weighted coalitional manipulation (WCM). WCM is similar to WCCAV in that we also
add voters, but it differs in that (a) we have to add exactly a given number of voters, and
(b) we can pick the preference orders of the added voters. It is quite interesting to see how
the differences in these problems’ definitions affect their complexities.

Definition 3.2. Let R be a voting rule. In R-WCM we are given a weighted election (C, V ),
a preferred candidate p ∈ C, and a sequence k1, . . . , kn of positive integers. We ask whether
it is possible to construct a collection W = (w1, . . . , wn) of n voters such that for each i,
1 ≤ i ≤ n, ω(wi) = ki, and p is a winner of the R election (C, V+W ). The voters in W
are called manipulators.

3.5 Computational Complexity

In our NP-hardness proofs we use reductions from the following NP-complete problems.

Definition 3.3. An instance of Partition consists of a sequence (k1, . . . , kt) of positive
integers whose sum is even. We ask whether there is a set I ⊆ {1, . . . , t} such that

∑
i∈I ki =

1
2

∑t
i=1 ki.

In the proof of Theorem 4.3 we will use the following restricted version of Partition,
where we have greater control over the numbers involved in the problem.

Definition 3.4. An instance of Partition ′ consists of a sequence (k1, . . . , kt) of positive
integers, whose sum is even, such that (a) t is an even number, and (b) for each ki, 1 ≤ i ≤ t,
it holds that ki ≥ 1

t+1

∑t
j=1 kj. We ask whether there is a set I ⊆ {1, . . . , t} of cardinality

t
2 such that

∑
i∈I ki = 1

2

∑t
i=1 ki.

Showing the NP-completeness of this problem is a standard exercise. (In particular, the
NP-completeness of a variant of this problem is established as Lemma 2.3 in Faliszewski
et al., 2009; the same approach can be used to show the NP-completeness of Partition′.)
Our remaining hardness proofs are based on reductions from a restricted version of the well-
known Exact-Cover-By-3-Sets problem. This restricted version is still NP-complete (Garey
& Johnson, 1979).
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Definition 3.5. An instance of X3C ′ consists of a set B = {b1, . . . , b3t} and a family
S = {S1, . . . , Sn} of 3-element subsets of B such that every element of B occurs in at least
one and in at most three sets in S. We ask whether S contains an exact cover for B, i.e.,
whether there exist t sets in S whose union is B.

Our choice to use X3C′ as the basis of some of our reductions, and the particular way
we use it, will allow us to achieve something beyond simply showing that a given weighted
control result is NP-complete. We will indeed be able to show that certain weighted control
results for important election systems remain NP-complete even when the allowed set of
weights is highly restricted, e.g., in some cases, the allowed weight set can be {1, 2} or
{1, 3}. Our cases of this sort appear within the proof of Theorem 4.13 and are highlighted
in the paragraph immediately preceding that theorem.

4. Results

We now present our results. In Section 4.1 we focus on fixed numbers of candidates in
scoring protocols, weakCondorcet-consistent rules, and Condorcet-consistent rules. Then in
Sections 4.2 and 4.3 we consider case of an unbounded number of candidates, for t-approval
and t-veto.

4.1 Bounded Numbers of Candidates

It is well-known that weighted manipulation of scoring protocols is always hard, unless the
scoring protocol is in effect plurality or triviality (Hemaspaandra & Hemaspaandra, 2007).
In contrast, weighted voter control is easy for m-candidate t-approval.

Theorem 4.1. For all m and t, WCCAV and WCCDV for m-candidate t-approval are
in P.

Proof. Let (C, V,W, p, k) be an instance of WCCAV for m-candidate t-approval. We can
assume that we add only voters who approve of p. We can also assume that we add
the heaviest voters with a particular set of approvals, i.e., if we add ` voters approving
p, c1, . . . , ct−1, we can assume that we added the ` heaviest voters approving p, c1, . . . , ct−1.
Since there are only

(
m−1
t−1

)
—which is a constant—different sets of approvals to consider,

it suffices to try all sequences of nonnegative integers k1, . . . , k(m−1
t−1 ) whose sum is at most

k, and for each such sequence to check whether adding the heaviest ki voters of the ith
approval collection makes p a winner.

For each fixed m and t, it is clear that this algorithm, although brute-force in nature,
runs in time polynomial in the input size. (The actions the algorithm uses are relatively
innocuous, in fact. For example, we use sorting to group together votes within W that have
identical sets of approvals, and to sort each of those in descending order of voter weight.
And the number of sequences of nonnegative integers k1, . . . , k(m−1

t−1 ) whose sum is at most

k is easily bounded by (k + 1)(
m−1
t−1 ), and this for fixed m and t is polynomial in the input

size despite the fact that k is input in binary, because we may without loss of generality

assume that k ≤ ‖W‖. We mention in passing that the (k + 1)(
m−1
t−1 ) bound is often wildly

loose. In particular, the exact number of sequences of nonnegative integers k1, . . . , k(m−1
t−1 )
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whose sum is exactly k′ is
((m−1

t−1 )+k′−1

(m−1
t−1 )−1

)
. So summing that from k′ equals 0 to k′ equals k

gives the number of sequences we will face.)

The same approach and argument work for WCCDV. Here, we delete only voters that
do not approve of p, and again we delete the heaviest voters for each approval collection.
Again, with m and t fixed, the running time is easily seen to be polynomial.

One might think that the argument above works for any scoring protocol, but this is
not the case. For example, consider the 3-candidate Borda instance where V consists of one
weight-1 voter b > p > a and W consists of a weight-2 and a weight-1 voter with preference
order a > p > b. Then adding the weight-1 voter makes p a winner, but adding the weight-2
voter does not. And, in fact, we have the following result.3

Theorem 4.2. WCCAV and WCCDV for Borda are NP-complete. This result holds even
when restricted to a fixed number m ≥ 3 of candidates.

Proof. We start by considering the case of adding voters. We reduce from Partition. Given
a sequence k1, . . . , kt of positive integers that sum to 2K, construct an election with one
registered voter of weight K voting b > p > a > · · · , and t unregistered voters with weights
k1, . . . , kt voting a > p > b > · · · . Set the addition limit to t. With m candidates, the
(initial) score of b is K(m− 1), the score of p is K(m− 2), and the score of a is K(m− 3).
Thus, for p to become a winner, b’s score (relative to p) needs to go down by at least K,
while a’s score (relative to p) should not go up by more than K. It follows that k1, . . . , kt
has a partition if and only if p can be made a winner.

We use the same construction for the deleting voters case. Now, all voters are registered
and the deletion limit is t. Since we can’t delete all voters and since our goal is to make p
a winner, we cannot delete the one voter voting b > p > a > · · · (since then a would be the
unique winner). The rest of the argument is identical to the case of adding voters.

Interestingly, it is possible to extend the above proof to work for all scoring protocols
other than t-approval (the main idea stays the same, but the technical details are more
involved). And so, regarding the complexity of WCCAV and WCCDV for scoring protocols
with a fixed number of candidates, the cases of Theorem 4.1 are the only P cases (assuming
P 6= NP).

Theorem 4.3. For each scoring protocol (α1, . . . , αm), if there exists an i, 1 < i < m, such
that α1 > αi > αm, then WCCAV and WCCDV for (α1, . . . , αm) are NP-complete.

Proof. Let α = (α1, . . . , αm) be a scoring protocol such that there is an i such that α1 > αi >
αm. Let δ be the third largest value in the set {α1, . . . , αm}. We will show that WCCAV
and WCCDV are NP-complete for scoring protocol β = (β1, . . . , βm) = (α1−δ, . . . , αm−δ).
While formally we have defined scoring protocols to contain only nonnegative values, using
β simplifies our construction and does not affect the correctness of the proof. To further
simplify notation, given some candidates x1, . . . , x`, by F [x1 = βi1 , x2 = βi2 , . . . , x` = βi` ]
we mean a fixed preference order that ensures, under β, that each xj , 1 ≤ j ≤ `, is ranked

3. An analogue of this theorem in the model in which we are bounding the total weight of votes that can
be added/deleted was obtained by Russell (2007).
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at a position that gives βij points. (The candidates not mentioned in the F [. . .] notation are
ranked arbitrarily.) We let γ1, γ2, and γ3 be the three highest values in the set {β1, . . . , βm}.
Clearly, β1 = γ1 > γ2 > γ3 = 0. (Note that γ2 might be different from β2, and γ3 might
be different from β3. For example, if β = (3, 3, 2, 0, 0,−1,−1), then γ1 = 3, γ2 = 2, and
γ3 = 0, but β1 = 3, β2 = 3, and β3 = 2.)

We give a reduction from Partition to β-WCCAV (the membership of β-WCCAV in NP
is clear); let (k1, . . . , kt) be an instance of Partition, i.e., a sequence of positive integers that
sum to 2K. We form an election E = (C, V ) where C = {p, a, b, c4, . . . , cm} and where the
collection V contains the following three groups of voters (for the WCCAV part of the proof
below, we set T = 1; for the WCCDV part of the proof we will use the same construction
but with a larger value of T ):

1. A group of T voters, each with weight K and preference order F [b = γ1, a = γ2, p = 0].

2. A group of T voters, each with weight K and preference order F [p = γ1, b = γ2, a = 0].

3. For each ci ∈ C, there are 6 collections of 2T voters, one collection for each permu-
tation (x, y, z) of (p, a, b); the voters in each collection have weight K and preference
order F [x = β1, y = β2, z = β3, ci = βm].

Let M be the number of points that each of a, b, and p receive from the third group
of voters (each of these candidates receives the same number of points from these voters).
For each ci ∈ C and each x ∈ {p, a, b}, x receives at least 4TKγ1 points more than ci from
the voters in the third group (in each vote in the third group, x receives at least as many
points as ci, and there are two collections of 2T voters where x receives β1 = γ1 points and
ci receives βm ≤ 0 points). Thus it holds that our candidates have the following scores:

1. p has M + TKγ1 points,

2. a has M + TKγ2 points,

3. b has M + TK(γ1 + γ2) points, and

4. each candidate ci ∈ C has at most M − 2TKγ1 points (each ci ∈ C receives at most
M − 4TKγ1 points from the third group of voters and at most 2TKγ1 points from
the first two groups of voters).

As a result, b is the unique winner. There are t unregistered voters with weights
Tk1, . . . , Tkt, each with preference order F = [a = γ1, p = γ2, b = 0]. We set the ad-
dition limit to be t. It is clear that irrespective of which voters are added, none of the
candidates in {c4, . . . , cm} becomes a winner.

If there is a subcollection of (k1, . . . , kt) that sums to K, then adding corresponding
unregistered voters to the election ensures that all three of p, a, and b are winners (each
with score M+TK(γ1 +γ2)). On the other hand, assume that there are unregistered voters
of total weight TL, whose addition to the election ensures that p is among the winners. After
adding these voters to the election, p has M+TKγ1 +TLγ2 points, a has M+TLγ1 +TKγ2

points, and b has M + TKγ1 + TKγ2 points. For p to have score at least as high as b, we
must have that L ≥ K. However, for a not to have score higher than p, it must be the case
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that L ≤ K (recall that γ1 > γ2). This means that L = K. Thus it is possible to ensure
that p is a winner of the election by adding at most t unregistered voters if and only if there
is a subcollection of (k1, . . . , kt) that sums to K. And, completing the proof, we note that
the reduction can be carried out in polynomial time.

Let us now move on to the case of WCCDV. We will use the same construction, but
with the following modifications:

1. Our reduction is now from Partition′. Thus without loss of generality we can assume
that t is an even number and that for each i, 1 ≤ i ≤ t, it holds that ki ≥ 1

1+t2K.

2. We set T =
⌈
t
2(t+ 1) γ1

γ1−γ2

⌉
+1 (the reasons for this choice of T will become apparent

in the course of the proof; intuitively it is convenient to think of T as of a large value
that, nonetheless, is polynomially bounded with respect to t).

3. We include the unregistered voters as “the fourth group of voters.”

4. We set the deletion limit to t
2 .

Including the fourth group of voters, candidates have the following scores: p has M +
TKγ1 + 2TKγ2 points, a has M + TKγ2 + 2TKγ1 points, b has M + TK(γ1 + γ2) points,
and each candidate ci ∈ C has at most M points.

By the same reasoning as in the WCCAV case, we see that if there is a size- t2 subcol-
lection of k1, . . . , kt that sums to K, then deleting the corresponding voters ensures that
p is among the winners (together with a and b); we may imagine that we first remove all
the voters from the fourth group and then add back those t

2 of them, whose weights sum
to TK. We now show that if there is a way to delete up to t

2 voters to ensure that p is
among the winners, then the deleted voters must come from the fourth group, must have
total weight K, and there must be exactly t

2 of them. For the sake of contradiction, let us
assume that it is possible to ensure p’s victory by deleting up to t

2 voters, of whom fewer
than t

2 come from the fourth group. Let s be the number of deleted voters from the fourth
group (s < t

2) and let x be a real number such that xTK is their total weight. We have
that xTK is at most (see below for explanation regarding the first inequality)

xTK ≤ 2TK − t− s
1 + t

(2TK) ≤ 2TK

(
1−

t
2 + 1

1 + t

)
= TK

t

1 + t
.

That is, we have 0 ≤ x ≤ t
1+t . To see why the first inequality holds, recall that the

lowest weight of a voter from the fourth group is at least 1
1+t2TK (because we reduce from

Partition′). Thus the highest total weight of s voters from the fourth group is, at most, the
total weight of the fourth-group voters (2TK) less the weight of the lightest t − s voters
from this group (which is at least t−s

1+t(2TK)).

Prior to deleting any voters, a has TK(γ1 − γ2) points more than p. After deleting
the s voters from the fourth group, this difference decreases to TK(1 − x)(γ1 − γ2). If we
additionally delete up to t

2 voters from the first three groups of voters, each with weight K,
then the difference between the scores of a and p decreases, at most, to the following value
(note that in each deleted vote both a and p are ranked at positions where they receive γ1,

518



Weighted Electoral Control

γ2, or 0 points):

TK(1−x)(γ1−γ2)− t
2
Kγ1 ≥ TK

1

t+ 1
(γ1−γ2)− t

2
Kγ1 = K

(
T (γ1 − γ2)

t+ 1
−

t
2(t+ 1)γ1

t+ 1

)
> 0.

The final inequality follows by our choice of T . The above calculation shows that if there
is a way to ensure p’s victory by deleting up to t

2 voters then it requires deleting exactly
t
2 voters from the fourth group. The same reasoning as in the case of WCCAV shows that
these t

2 deleted voters must correspond to a size- t2 subcollection of (k1, . . . , kt) that sums
to K.

As a side comment, we mention that WDCAV and WDCDV for scoring protocols (that
is, the destructive variants of WCCAV and WCCDV) have simple polynomial-time algo-
rithms: It suffices to loop through all candidates c, c 6= p, and greedily add/delete voters
to boost the score of c relative to p as much as possible.

Theorem 4.4. For each scoring protocol α = (α1, . . . , αm), α-WDCAV and α-WDCDV
are in P.

Combining Theorems 4.1 and 4.3, we obtain the following corollary, which we con-
trast with an analogous result for WCM (Hemaspaandra & Hemaspaandra, 2007); we also
mention in passing the recent attainment of a dichotomy result for voter control under
so-called pure scoring rules, for unweighted elections and an unbounded number of candi-
dates (Hemaspaandra, Hemaspaandra, & Schnoor, 2014).

Corollary 4.5. For each scoring protocol (α1, . . . , αm) the problems WCCAV and WCCDV
are NP-complete if ‖{α1, . . . , αm}‖ ≥ 3 and are in P otherwise.

Theorem 4.6 (Hemaspaandra & Hemaspaandra, 2007). For each scoring protocol
(α1, . . . , αm), m ≥ 2, WCM is NP-complete if α2 > αm and is in P otherwise.

We see that for scoring protocols with a fixed number m of candidates, either WCM
is harder than WCCAV and WCCDV (for the case of t-approval with 2 ≤ t < m), or
the complexity of WCM, WCCAV, and WCCDV is the same (P-membership for plurality
and triviality, and NP-completeness for the remaining cases). One may wonder which
property of WCM is responsible for the fact that for t-approval, 2 ≤ t ≤ m, WCM is
harder than WCCAV and WCCDC. Speaking very informally, the answer is that WCM
intimately involves the instantiation of the values of the (initially unspecified) votes of the
manipulators, and in this particular setting that is, in effect, requiring them to solve a
Partition problem. On the other hand, in WCCAV and WCCDV the preference orders of
all the voters are fixed in the input, and the chair chooses only which votes to add; this, for
example, facilitated the polynomial-time algorithm in the proof of Theorem 4.1.

There are, nonetheless, voting rules for which WCM is easier than WCCAV and
WCCDV. This happens, for example, if on the one hand in WCCAV and WCCDV un-
der the particular rule the chair has to balance out differing votes in a way that makes
these problems hard, yet on the other hand for WCM under the particular rule we can
show that if there is any successful manipulation then there is one in which all the manip-
ulators cast identical votes. Theorem 4.7, Corollary 4.8, and their proofs present exactly
such a case.
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Theorem 4.7. For every weakCondorcet-consistent election system and for every
Condorcet-consistent election system, WCCAV and WCCDV are NP-hard. This result holds
even when restricted to a fixed number m ≥ 3 of candidates.

Proof. To show that WCCAV is NP-hard, we reduce from Partition. Given a sequence
k1, . . . , kt of positive integers that sum to 2K, construct an election with two registered
voters, one voter with weight 1 voting p > a > b > · · · and one voter with weight 2K voting
b > p > a > · · · , and t unregistered voters with weights 2k1, . . . , 2kt voting a > p > b > · · · .
Set the addition limit to t. Suppose we add unregistered voters to the election with a total
vote weight equal to 2L.

• If L < K, then b is the Condorcet winner, and thus the unique winner of the election.

• If L > K, then a is the Condorcet winner, and thus the unique winner of the election.

• If L = K, then p is the Condorcet winner, and thus the unique winner of the election.

The WCCDV case uses the same construction. Now, all voters are registered and the
deletion limit is t. Since we can delete at most t of our t + 2 voters, and since our goal is
to make p a winner, we can’t delete the sole voter voting b > p > a, since then a would be
the Condorcet winner. The rest of the argument is similar to the adding voters case.

Recall from Section 3 that Condorcet denotes the election system whose winner set is
exactly the set of Condorcet winners, and weakCondorcet denotes the election system whose
winner set is exactly the set of weak Condorcet winners.

Corollary 4.8. For Condorcet and weakCondorcet, WCM is in P and WCCAV and
WCCDV are NP-complete. This result holds even when restricted to a fixed number m ≥ 3
of candidates.

Proof. It is immediate that WCM for Condorcet and weakCondorcet are in P. To see if we
have a “yes”-instance of WCM, it suffices to check whether letting all the manipulators rank
p (the preferred candidate) first and ranking all the remaining candidates in some arbitrary
order ensures p’s victory. NP-completeness of WCCAV and WCCDV follows directly from
Theorem 4.7.

Condorcet and weakCondorcet do not always have winners. For those who prefer their
voting systems to always have at least one winner, we note that WCM for 3-candidate Llull
is in P (Faliszewski et al., 2008).

Corollary 4.9. For 3-candidate Llull, WCM is in P and WCCAV and WCCDV are NP-
complete.

The main results of this section are also presented in Table 1 of Section 6.
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4.2 t-Approval and t-Veto with an Unbounded Number of Candidates

Let us now look at the cases of t-approval and t-veto rules, for an unbounded number of
candidates. The reason we focus on these is that these are the most interesting families of
scoring protocols whose complexity has not already been resolved in the previous section.
The reason we say that is that Theorem 4.3 shows that whenever we have at least three
distinct values in a scoring vector, we have NP-completeness. So any scoring-protocol family
that, for some number of candidates, has three distinct values in its scoring vector is NP-
hard for WCCAV and WCCDV. Thus the really interesting cases are indeed t-approval and
t-veto.

Our starting point here is the work of Lin (2012), which showed that for t ≥ 4, WCCAV
for t-approval and WCCDV for t-veto are NP-complete, and that for t ≥ 3, WCCDV
for t-approval and WCCAV for t-veto are NP-complete. These results hold even for the
unweighted case. It is also known that the remaining unweighted cases are in P (Bartholdi
et al., 1992; Lin, 2012) and that WCCAV and WCCDV for plurality and veto are in P (Lin,
2012). In this section, we look at and solve the remaining open cases, WCCAV for 2-
approval, 3-approval, and 2-veto, and WCCDV for 2-approval, 2-veto, and 3-veto. We
start by showing that 2-approval-WCCAV is in P. We point out that our proof techniques
(especially the polynomial-time algorithms for 2-approval-WCCAV and for 2-veto-WCCDV)
are quite different from those of Lin (2012).

Theorem 4.10. WCCAV for 2-approval is in P.

Proof. We claim that Algorithm 1 solves 2-approval-WCCAV in polynomial time. (In this
algorithm and the proof of correctness, whenever we speak of the r heaviest voters in voter
set X, we mean the min(r, ‖X‖) heaviest voters in X.)

We note that we will add only voters that approve of p. Thus we delete from W all the
voters who do not approve of p.

Let us consider the repeat-until loop in Algorithm 1. If we reject in the first iteration of
this loop (in the first forall loop) then, clearly, there is no solution for the given instance.
Furthermore, we claim that if there is a solution to the input instance, then after the second
forall loop it is still possible to find it. To see this, consider some candidate c ∈ C − {p}
and some number ` ∈ {1, . . . , k − 1}. If the sum of the weights of k − ` heaviest voters in
W that do not approve of c is less than sc (that is, is less than the difference between the
score of c and the score of p in the original election), then we certainly need to add at least
k − `+ 1 voters who do not approve of c. However, since altogether we can add at most k
voters, this means that we can add at most `− 1 voters who do approve of c. In effect, we
can safely delete from W all but `− 1 heaviest voters who approve of c (as in the proof of
Theorem 4.1, if we decide to add some r voters approving {p, c}, we may assume that we
add the r heaviest voters approving {p, c}; thus keeping only the `− 1 heaviest voters that
approve of {p, c} is a correct strategy).

So, if we reject in the first iteration of the repeat-until loop, then certainly there is no
solution for the input instance, and if we do not, then we start the second iteration with
an instance that has a solution if and only if the original one had. Thus, by induction, we
never reject incorrectly in the repeat-until loop. If we get through the repeat-until without
rejecting, and we have fewer than k voters left in W , then adding all of W is the best we
can do (since all voters in W approve p).

521



Faliszewski, Hemaspaandra, & Hemaspaandra

Algorithm 1: 2-approval-WCCAV

Input: (C, V,W, p, k)

forall c ∈ C − {p} do
let sc = score(C,V )(c)− score(C,V )(p).

Delete from W all voters that do not approve of p.
repeat

forall c ∈ C − {p} do
if the sum of the weights of the k heaviest voters in W that do not approve of c is
less than sc then reject
// It is impossible to get score(c) ≤ score(p) by adding less than or equal to k voters

from W .

forall c ∈ C − {p} and ` ∈ {1, . . . , k − 1} do
if the sum of the weights of the k − ` heaviest voters in W that do not approve of c is
less than sc then

delete from W all voters approving c except for the `− 1 heaviest such voters.
// We need to add at least k − `+ 1 voters that do not approve of c, and so we

can add at most `− 1 voters approving c.

until no more changes.
if ‖W‖ ≥ k then accept // We can make p a winner by adding the k heaviest voters from

W .
if ‖W‖ < k then

if adding all of W will make p a winner then accept else reject

On the other hand, if we get through the repeat-until loop, and we have at least k voters
left in W , then adding the k heaviest voters from W will make p a winner. Why? Let c be a
candidate in C−{p}. Let r be the number of voters from W that are added and that approve
of c. Since we made it through the repeat-until, we know that [the sum of the weights of
the k heaviest voters in W that do not approve of c] is at least sc (because we did not reject
in the first forall loop). We will show that after adding the voters, score(c)− score(p) ≤ 0,
which implies that p is a winner. If r = 0, score(c)−score(p) = sc - [the sum of the weights
of the k heaviest voters in W ] ≤ 0. If r > 0, then [the sum of the weights of the k − r
heaviest voters in W that do not approve of c] is at least sc (for otherwise we would have at
most r − 1 voters approving c left in W due to the if statement in the second forall loop).
And so score(c)− score(p) = sc - [the sum of the weights of the k− r heaviest voters in W
that do not approve of c] ≤ 0.

Theorem 4.11. WCCDV for 2-veto is in P.

Instead of proving this theorem directly, we show a more general relation between the
complexity of t-approval/t-veto WCCAV and WCCDV.

Theorem 4.12. For each fixed t, it holds that t-veto-WCCDV (t-approval-WCCDV)
polynomial-time many-one reduces to t-approval-WCCAV (t-veto-WCCAV).

Proof. We first give a reduction from t-veto-WCCDV to t-approval-WCCAV. The idea is
that deleting a t-veto vote v from t-veto election (C, V ) is equivalent, in terms of net effect
on the scores, to adding a t-approval vote v′ to this election, where v′ approves exactly of
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the t candidates that v disapproves of. The problem with this approach is that we are to
reduce t-veto-WCCDV to t-approval -WCCAV and thus we have to show how to implement
t-veto scores with t-approval votes.

Let (C, V, p, k) be an instance of t-veto-WCCDV, where V = (v1, . . . , vn). Let m = ‖C‖.
Let ωmax be the highest weight of a vote in V . We set D to be a set of up to t − 1 new
candidates, such that ‖C‖+ ‖D‖ is a multiple of t. We set V0 to be a collection of ‖C‖+‖D‖t
t-approval votes, where each vote has weight ωmax and each candidate in C ∪D is approved

in exactly one of the votes. For each vote vi in V we create a set Ci = {c1
i , . . . , c

(t−1)(m−t)
i }

of candidates and we create a collection of voters Vi = (v1
i , . . . , v

m−t
i ). Each voter vji ,

1 ≤ j ≤ m − t, has weight ω(vi) and approves of the jth candidate approved by v and of

the t− 1 candidates c
(j−1)(t−1)+1
i , . . . , c

j(t−1)
i .

We form an election E′ = (C ′, V ′), where C ′ = C∪D∪
⋃n
i=1Ci and V ′ = V0+V1+· · ·+Vn.

For each candidate c, let sc be c’s t-veto score in (C, V ); we see that c’s t-approval score in
E′ is ωmax + sc (every candidate from C receives a single approval from one weight ωmax

voter from V0 and for each voter vi in V and for each candidate c that vi approves of, there
is a unique voter in Vi that has the same weight as vi and that approves of c). Furthermore,
each candidate c ∈ C ′−C has t-approval score at most ωmax in E′ (each candidate in C ′−C
is approved by exactly one voter in V ′ and each voter in V ′ has weight at most ωmax).

We form an instance (C ′, V ′,W, p, k) of t-approval-WCCAV, where W = (w1, . . . , wn),
and for each i, 1 ≤ i ≤ n, ω(wi) = ω(vi), and wi approves exactly of those candidates
that vi disapproves of; adding voter wi to t-approval election (C ′, V ′) has the same net
effect on the scores of the candidates in C as does deleting vi from t-veto election (C, V ).
(The role of the candidates in D is to pad the election so that it is easy to use t-approval
votes—those in V0—to ensure that the candidates in C have at least as many points as the
other candidates, irrespective of which voters we add.) This completes the reduction.

Let us now give a reduction from t-approval-WCCDV to t-veto-WCCAV. The idea is
the same as in the previous reduction and the main difficulty of the proof is to show how to
implement t-approval scores with t-veto votes.4 In particular, the role of the candidates in
D is, again, to provide a convenient way of padding the election and implementing the scores
of the other candidates. However, this time the construction is more involved because of the
nature of t-veto: as opposed to the case of t-approval, under t-veto if we add a candidate
to the election then the total number of candidates approved per vote increases.

Let (C, V, p, k) be an instance of t-approval-WCCDV, where V = (v1, . . . , vn). Let
m = ‖C‖ and let ωmax be the highest weight of a vote in V . We set D to be a set of
candidates such that t ≤ ‖D‖ ≤ 2t − 1 and ‖C‖ + ‖D‖ = s · t for some integer s, s ≥ 3
(note that for our setting to not be trivial it must be the case that m > t). We set V0

to be a collection of 4n(s− 2) (t-veto) votes (over candidate set C ∪D), each with weight
ωmax; each candidate from C is approved in all these votes whereas each candidate from
D is disapproved in at least half of them (since t ≤ ‖D‖ ≤ 2t − 1, it is easy to construct

4. The reader may wonder why we do not simply use the previous argument by applying it to (m− t)-veto
and (m− t)-approval. The reason is that given an instance of (m− t)-veto-WCCDV (with m candidates
and n voters), our reduction would output an instance of (m− t)-approval-WCCAV with more than m
candidates. Thus it would not be correct to interpret this instance as a t-veto-WCCAV instance.
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such votes5). For each vote vi in V , we create a collection Vi of (s− 1) votes satisfying the
following requirements: (a) each candidate approved in vi is also approved in each of the
votes in Vi, and (b) each candidate not approved in vi, is approved in exactly (s− 2) votes
in Vi. (Such votes are easy to construct: We always place the top t candidates from vi in
the top t positions of the vote; for the remaining positions, in the first vote we place the
candidates in some arbitrary, easily computable order, and in each following vote we shift
these candidates cyclically by t positions with respect to the previous vote.) Each vote in
Vi has weight ω(vi).

We form an election E′ = (C ′, V ′), where C ′ = C ∪D and V ′ = V0 + V1 + · · ·+ Vn. For
each candidate c, let sc be c’s t-approval score in (C, V ); we see that c’s t-veto score in E′

is 4n(s − 2)ωmax + (s − 2)(
∑n

i=1 ω(vi)) + sc (c is approved by every voter from V0 and by
at least s − 2 voters from each group Vi, 1 ≤ i ≤ n; additionally, for every voter vi that
approves of c, there is the (s − 1)’th voter in group Vi that approves of c). Furthermore,
each candidate from D has t-veto score at most 3n(s− 2)ωmax in E′ (each of them gets at
most 2n(s− 2)ωmax points from the voters in V0 and at most (s− 2)ωmax points from each
Vi, 1 ≤ i ≤ n).

We form an instance (C ′, V ′,W, p, k) of t-veto-WCCAV, where W = (w1, . . . , wn), and
for each i, 1 ≤ i ≤ n, ω(wi) = ω(vi), and wi disapproves of exactly those candidates that vi
approves of; adding voter wi to t-veto election (C ′, V ′) has the same net effect on the scores
of candidates in C as deleting voter vi from t-approval election (C, V ) has. Furthermore,
since each candidate in D has at least nωmax fewer points than each candidate in C, the
fact that adding wi increases scores of candidates in D does not affect the correctness of
our reduction.

All other remaining cases (WCCDV for 2-approval, WCCAV for 3-approval, WCCAV
for 2-veto, and WCCDV for 3-veto) are NP-complete. Interestingly, in contrast to many
other NP-complete weighted election problems, we need only a very limited set of weights
to make the reductions work. Namely, due to the choice of reducing from X3C′ and due
to the particular reductions we build, the proof of the following theorem establishes (the
details of why are given within the proof) that (a) for every pair of integers 1 ≤ a < b, it
holds that WCCDV for 2-approval and WCCAV for 2-veto are NP-complete even when the
legal set of weights is restricted to be {a, b}, and (b) WCCDV for 3-approval and WCCAV
for 3-veto are NP-complete even when the legal set of weights is restricted to be {1, 3}.

Theorem 4.13. WCCAV for 2-veto and 3-approval and WCCDV for 2-approval and 3-veto
are NP-complete.

Proof. Membership in NP is immediate, so it suffices to prove NP-hardness. We will first
give the proof for WCCDV for 2-approval. By Theorem 4.12 this also immediately gives
the result for WCCAV for 2-veto. We will reduce from X3C′ from Definition 3.5. Let
B = {b1, ..., b3t} and let S = {S1, ..., Sn} be a family of 3-element subsets of B such that
every element of B occurs in at least one and in at most three sets in S. We construct the

5. Here is one possible construction. Let D = {d1, . . . , d`}, where t ≤ ` ≤ 2t − 1. We form sets D0 =
{d1, . . . , dt} and D1 = {d`, . . . , d`−t+1}. We have that D = D0 ∪D1 (D0 and D1 might overlap). There
are an even number of voters in V0; exactly half of them disapprove of the candidates from the set D0

and exactly half disapprove of the candidates from the set D1.
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following instance (C, V, p, k) of WCCDV for 2-approval. We set C = {p} ∪ {bj | 1 ≤ j ≤
3t} ∪ {si, s′i | 1 ≤ i ≤ n} ∪ {d0, d1, . . . , d3t} (d0, d1, . . . , d3t are dummy candidates that are
used for padding). For 1 ≤ j ≤ 3t, let `j be the number of sets in S that contain bj . By
assumption, for each j, 1 ≤ j ≤ 3t, we have that 1 ≤ `j ≤ 3. V consists of the following
voters:

weight preference order
2 si > s′i > · · ·  for all 1 ≤ i ≤ n and Si = {bi1 , bi2 , bi3}
1 si > bi1 > · · ·
1 si > bi2 > · · ·
1 s′i > bi3 > · · ·
2 p > d0 > · · ·

3− `j bj > dj > · · · for all 1 ≤ j ≤ 3t such that `j < 3.

Note that score(si) = 4, score(s′i) = 3, score(bj) = 3, score(p) = 2, and score(dj) ≤ 2.
We set k = n+ 2t and we claim that S contains an exact cover if and only if p can become
a winner after deleting at most n+ 2t voters.

(⇒): Delete the (n − t) weight-2 voters corresponding to the sets not in the cover and
delete the 3t weight-1 voters corresponding to the sets in the cover. Then the score of p
does not change, the score of each si decreases by 2, the score of each s′i decreases by at
least 1, and the score of each bj decreases by 1. So, p is a winner.

(⇐): We need to delete 3t voters to decrease the score of every bj candidate by 1. (Note
that there is no reason to delete the voters with preference orders of the form bj > dj > · · ·
(1 ≤ j ≤ 3t). It suffices to decrease the score of each bj by one and, since we also need to
decrease the scores of candidates si and s′i (1 ≤ i ≤ n), it is always better to delete voters
with preference orders of the form si > bj > · · · and s′i > bj > · · · .) After deleting these 3t
voters, there are at most t values of i, 1 ≤ i ≤ n, such that the score of si and the score of
s′i are at most 2 (for each i, obtaining the score at most 2 for candidates si and s′i takes at
least 3 unique voters of the 3t deleted ones).

If there are exactly t values of i, 1 ≤ i ≤ n, such that the score of si and the score of s′i
are at most 2, then these t values of i correspond to a cover. (Why is this so? We consider
a situation where we have already deleted the 3t voters with preference orders of the forms
si > bj > · · · and s′i > bj > · · · , where bj ∈ Si. If, after deleting these voters, for some i the
scores of both si and s′i decreased to 2, we must have deleted exactly the three voters that
correspond to members of Si. Thus, if after deleting voters corresponding to 3t members
of B we ensured that there are t values i such that the scores of si and s′i decreased to 2,
then it must be the case that these values of i correspond to a cover.) If there are less than
t values of i, 1 ≤ i ≤ n, such that the score of si and the score of s′i are at most 2, then the
remaining voters that are deleted, and there are at most n − t of them, need to decrease
the score of si and/or s′i for more than n− t values of i, 1 ≤ i ≤ n. But that is not possible,
since there is no voter that approves of both si or s′i and sj or s′j for i 6= j.

Note that this construction uses only weights 1 and 2. In fact, we can establish NP-
completeness for WCCDV for 2-approval for every set of allowed weights of size at least
two (note that if the set of weights has size one, the problem is in P, since this is in essence
the unweighted case resolved by Lin, 2012). Since the reductions of Theorem 4.12 do not
change the set of voter weights, we have the same result for WCCAV for 2-veto.
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So, suppose our weight set contains w1 and w2, w2 > w1 > 0. We modify the construc-
tion above as follows. We keep the same set of candidates and we change the voters as
follows.

# weight preference order
1 w2 si > s′i > · · ·  for all 1 ≤ i ≤ n and Si = {bi1 , bi2 , bi3}
1 w1 si > bi1 > · · ·
1 w1 si > bi2 > · · ·
1 w1 s′i > bi3 > · · ·
2 w1 p > d0 > · · · if w2 ≤ 2w1

1 w2 p > d0 > · · · if w2 > 2w1

`− `j w1 bj > dj > · · · for all 1 ≤ j ≤ 3t.

Here, ` is the smallest integer such that `w1 > max(2w1, w2). Note that ` ≥ 3 and so
`−`j is never negative. Note that score(si) = w2+2w1, score(s′i) = w2+w1, score(bj) = `w1,
score(p) = max(2w1, w2), and score(dj) ≤ max(2w1, w2). The same argument as above
shows that S contains an exact cover if and only if p can become a winner after deleting at
most n+ 2t voters.

We now turn to the proof for WCCDV for 3-veto. Our construction will use only weights
1 and 3. Since the reductions of Theorem 4.12 do not change the set of voter weights, weights
1 and 3 also suffice to get NP-completeness for WCCAV for 3-approval. Given the instance
of X3C′ described above, we construct the following instance (C, V, p, k) of WCCDV for
3-veto. We set C = {p} ∪B ∪ {si | 1 ≤ i ≤ n} ∪ {r, d, d′} (d and d′ are dummy candidates
that are used for padding) and V consists of the following voters:

# weight preference order
1 3 · · · > p > si > r  for all 1 ≤ i ≤ n and Si = {bi1 , bi2 , bi3}
1 1 · · · > p > si > bi1
1 1 · · · > p > si > bi2
1 1 · · · > p > si > bi3

3n− 3t 1 · · · > d > d′ > r
3n− 3 1 · · · > d > d′ > si for all 1 ≤ i ≤ n

3n+ 1− `j 1 · · · > d > d′ > bj for all 1 ≤ j ≤ 3t.

It is more convenient to count the number of vetoes for each candidate than to count the
number of approvals. Note that vetoes(si) = 3n+3, vetoes(bj) = 3n+1, vetoes(r) = 6n−3t,
vetoes(p) = 6n, and vetoes(d) = vetoes(d′) ≥ 3n. We claim that S contains an exact cover
if and only if p can become a winner (i.e., have a lowest number of vetoes) after deleting at
most n+ 2t voters.

(⇒): Delete the (n − t) weight-3 voters corresponding to the sets not in the cover and
delete the 3t weight-1 voters that veto p and that correspond to the sets in the cover. Then
vetoes(si) = vetoes(bj) = vetoes(r) = vetoes(p) = 3n and vetoes(d) = vetoes(d′) ≥ 3n. So,
p is a winner.

(⇐): We can assume that we delete only voters that veto p. Suppose we delete k1 weight-
1 voters and k2 weight-3 voters, k1+k2 ≤ n+2t. After this deletion, vetoes(p) = 6n−k1−3k2,
vetoes(r) = 6n− 3t− 3k2, and vetoes(bj) ≤ 3n+ 1. In order for p to be a winner, we need
vetoes(p) ≤ vetoes(r). This implies that k1 ≥ 3t. We also need vetoes(p)− vetoes(bj) ≤ 0.
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Since vetoes(p)− vetoes(bj) ≥ 6n−k1−3k2− (3n+ 1) ≥ 6n− (n+ 2t−k2)−3k2−3n−1 =
2n−2t−2k2−1, it follows that k2 ≥ n−t. (To see that this is the case, note that if we require
that vetoes(p)− vetoes(bj) ≤ 0 and we know that vetoes(p)− vetoes(bj) ≥ 2n−2t−2k2−1,
then we must require that 2n−2t−2k2−1 ≤ 0. This expression is equivalent to k2 ≥ n−t− 1

2 .
Since k2, n, and t are integers, it must be the case that k2 ≥ n− t.) So we delete 3t weight-1
votes and n− t weight-3 votes, and after deleting these voters vetoes(p) = 3n. In order for
p to be a winner, we can delete at most one veto for each bj and at most three vetoes for
each si. This implies that the set of deleted weight-1 voters corresponds to a cover.

4.3 Approximation and Greedy Algorithms

When problems are computationally difficult, such as being NP-complete, it is natu-
ral to wonder whether good polynomial-time approximation algorithms exist. So, mo-
tivated by the NP-completeness results discussed earlier in this paper for most cases of
WCCAV/WCCDV for t-approval and t-veto, this section studies greedy and other approxi-
mation algorithms for those problems. (Recall that WCCAV is NP-complete for t-approval,
t ≥ 3, and for t-veto, t ≥ 2, and WCCDV is NP-complete for t-approval, t ≥ 2, and for
t-veto, t ≥ 3.) First, we will establish a connection to the weighted multicover problem,
and we will use it to obtain approximation results. Then we will obtain an approximation
algorithm that will work by direct action on our problem. Table 3 in Section 6 summarizes
our results on approximation algorithms for t-approval/t-veto WCCAV/WCCDV.

Before we undertake this, let us address in more detail the issue, valuably raised by a
referee, of why one might want to build approximation algorithms for control problems,
and who might use such algorithms, and whether it is unwise to obtain such algorithms if
the people using them might not be “the good guys.” As mentioned above, seeking good
polynomial-time approximation algorithms is one standard approach when exact solutions
are known to be intractable, e.g., NP-complete. Such algorithms will allow a campaign
strategist to, faced with the intractability of computing the optimal number of votes to add
or delete to achieve victory for his or her candidate, at least be able to quickly find an action
that is guaranteed to be within a particular multiplicative factor of the optimal action. One
might expect that our desire to get such approximations would hit a wall regarding the
potential impossibility of exerting control in certain instances, but as we discussed in the
Electoral Control subpart of Section 3, that worry does not hold for the particular problems
for which we will obtain approximation algorithms. Finally, as to the worry that people
(“chairs”) who employ approximation algorithms may not be “the good guys,” we have
the following somewhat multilayered reply. First, “good” and “evil” are highly contextual.
Whether a strategist’s attempts to help his or her candidate win are good or evil is very
much in the eye of the beholder. Some may decry such attempts as part of the brutal nature
of politics. Others may view such attempts, as long as no illegal actions are taken, as a
valid and indeed valuable part of the spirited, vibrant playing field of democracy. Second,
in some settings, control may be simply modeling an optimization problem, and so well-
approximating control isn’t even about candidates, but is simply about efficiency. Third,
even if one views approximating control as helping evil-doers, using that as a reason not to
learn which control problems can be approximated and how well they can be approximated
makes no more sense than sticking one’s head in the sand and hoping that cryptosystems
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can’t be broken. Since evil-doers may well try to build approximation algorithms, or break
cryptosystems, the natural way of thwarting them is for the field to richly explore what
approximations and vulnerabilities exist, so that those who choose what election system
to use for a given problem can choose one that is not weak with respect to having good
approximations under whatever attacks they most fear.

4.3.1 A Weighted Multicover Approach

Let us first consider the extent to which known algorithms for the Set-Cover family of
problems apply to our setting. Specifically, we will use the following multicover problem.

Definition 4.14. An instance of Weighted Multicover (WMC) consists of a set B =
{b1, . . . , bm}, a sequence r = (r1, . . . , rm) of nonnegative integers (covering requirements), a
collection S = (S1, . . . , Sn) of subsets of B, and a sequence ω = (ω1, . . . , ωn) of positive inte-
gers (weights of the sets in S). The goal is to find a minimum-cardinality set I ⊆ {1, . . . , n}
such that for each bj ∈ B it holds that rj ≤

∑
i∈I∧bj∈Si

ωi, or to declare that no such set exists.

That is, given a WMC instance we seek a smallest collection of subsets from S that
satisfies the covering requirements of the elements of B (keeping in mind that a set of
weight ω covers each of its elements ω times). WMC is an extension of Set-Cover with unit
costs. We will not define here the problem known as Covering Integer Programming (see
Kolliopoulos & Young, 2005), which for short is written as CIP. However, that problem
will be quite important to us here. The reason is that we observe that WMC is a special
case of CIP (with multiplicity constraints but) without packing constraints; footnote 6
below is in effect describing how to embed our problem in that problem. An approximation
algorithm of Kolliopoulos and Young for CIP (with multiplicity constraints but) without
packing constraints, applied to the special case of WMC, gives the following result.6

Theorem 4.15 (Kolliopoulos & Young, 2005). There is a polynomial-time algorithm that
when given an instance of WMC in which each set contains at most t elements gives an
O(log t)-approximation.

For t-approval both WCCAV and WCCDV naturally translate to equivalent WMC
instances. We consider WCCAV first. Let (C, V,W, p, k) be an instance of t-approval-

6. The paper of Kolliopoulos and Young (2005) does not directly speak of the WMC problem, but seeing
that their results indeed apply to WMC is an easy, if tedious, exercise. For those readers who would like
to verify that Theorem 4.15 holds, in this footnote we describe exactly where in the paper of Kolliopoulos
and Young one finds the relevant result and which parameters one should use. We warn the reader that
this footnote makes direct references to parts of that paper and so will only make sense if that paper is
simultaneously in hand. This footnote is merely a guide to understanding the particular way we draw
on that paper’s important work; providing a full-fledged survey of, or even a real discussion of, the CIP
problem is beyond the needs and scope of this paper.

Theorem 4.15 follows from the sentence—on page 496 of the work of Kolliopoulos and Young
(2005)—starting “Our second algorithm finds a solution” (which itself follows from their Theorem 8),
keeping in mind that we have none of their so-called packing constraints, and so we may take it that
what they call ε is one and the matrix and vector they call B and b won’t be a factor here. Their vector
a corresponds to our rj ’s; the element in the jth row and ith column of their matrix A will for us be set
to ωi if Si contains bj and 0 otherwise; we set their cost vector c to be a vector of all 1’s; we set their
multiplicity vector d to be a vector of all 1’s; their vector x corresponds to the characteristic function of
our I; and their α will be Theorem 4.15’s bound t on the number of elements of B contained in any Si.
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WCCAV, where W = (w1, . . . , wn) is the collection of voters that we may add. We assume
without loss of generality that each voter in W ranks p among its top t candidates (i.e.,
approves of p).

We form an instance (B, r,S, ω) of WMC as follows. We set B = C − {p}. For each
c ∈ B, we set its covering requirement to be rc = score(C,V )(c) 	 score(C,V )(p), where
i	j =def max(0, i−j). For each vote w ∈W , let Sw be the set of candidates that w does not
approve of. By our assumption regarding each voter ranking p among its top t candidates,
no Sw contains p. We set S = (Sw1 , . . . , Swn) and we set ω = (ω(w1), . . . , ω(wn)). It is easy
to see that a set I ⊆ {1, . . . , n} is a solution to this instance of WMC (that is, I satisfies all
covering requirements) if and only if adding the voters {wi | i ∈ I} to the election (C, V )
ensures that p is a winner. The reason for this is the following: If we add voter wi to the
election then for each candidate c ∈ Swi , the difference between the score of c and the score
of p decreases by ω(wi), and for each candidate c 6∈ Swi this difference does not change. The
covering requirements are set to guarantee that p’s score will match or exceed the scores of
all candidates in the election.

We stress that in the above construction we did not assume t to be a constant. Indeed,
the construction applies to t-veto just as well as to t-approval. So using Theorem 4.15 we
obtain the following result.

Theorem 4.16. There is a polynomial-time O(logm)-approximation algorithm for t-
approval-WCCAV. There is a polynomial-time algorithm that when given an instance of
t-veto-WCCAV (t ∈ N) gives an O(log t)-approximation.

Proof. It suffices to use the reduction of t-approval/t-veto to WMC and apply the algorithm
from Theorem 4.15. For the case of t-approval, the reduction guarantees that each set in
the WMC instance contains at most m elements. For the case of t-veto, each of these sets
contains at most t elements.

We can obtain analogous results for the case of t-approval/t-veto and WCCDV. One can
either provide a direct reduction from these problems to WMC or notice that the reductions
given in the proof of Theorem 4.12 maintain approximation properties.

Theorem 4.17. There is a polynomial-time algorithm that when given an instance of t-
approval-WCCDV (t ∈ N) gives an O(log t)-approximation. There is a polynomial-time
O(logm)-approximation algorithm for t-veto-WCCDV.

4.3.2 A Direct Approach

Using algorithms for WMC, we were able to obtain relatively strong algorithms for
WCCAV/WCCDV under t-approval and t-veto. However, with this approach we did not
find approximation algorithms for t-approval-WCCAV and t-veto-WCCDV whose approxi-
mation ratios depend only on t (and not, for example, on ‖C‖, i.e., m, or on ‖V ‖). In the
following we will seek direct algorithms for these problems.

We now show that a very simple greedy approach yields a polynomial-time t-
approximation algorithm for t-approval-WCCAV and t-veto-WCCDV. (Recall that this
means that in cases when making p win is possible, the number of voters our algorithm
adds/deletes to reach victory is never more than t times that of the optimal set of addi-
tions/deletions.)
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Let GBW (greedy by weight) define the following very simple algorithm for WCCAV.
(The votes are the weighted t-approval vectors induced by the preferences of the voters.)
(Pre)discard all unregistered votes that do not approve of the preferred candidate p. Order
the (remaining) unregistered votes from heaviest to lightest, breaking ties in voter weights
in some simple, transparent way (for concreteness, let us say by lexicographic order on the
votes’ representations). GBW goes through the unregistered votes in that order, and as it
reaches each vote it adds the vote exactly if the vote disapproves of at least one candidate
whose score (i.e., total weight of approvals) is currently strictly greater than that of p. It
stops successfully when p has become a winner and unsuccessfully if before that happens
the algorithm runs out of votes to consider. The following result says that GBW is a t-
approximation algorithm for t-approval-WCCAV, and also for t-veto-WCCDV, using the
obvious analogue of GBW for t-veto-WCCDV, which we will also call GBW.7

Theorem 4.18. Let t ≥ 3. The polynomial-time greedy algorithm GBW is a t-
approximation algorithm for t-approval-WCCAV and t-veto-WCCDV; and there are in-
stances in which GBW’s approximation factor on each of these problems is no better than t.

We prove Theorem 4.18’s upper and lower bound parts separately, through the following
two lemmas from which the theorem immediately follows.

Lemma 4.19. Let t ≥ 3. There are instances on which the polynomial-time greedy algo-
rithm GBW has an approximation factor on t-approval-WCCAV no better than t. There
are instances on which the polynomial-time greedy algorithm GBW has an approximation
factor on t-veto-WCCDV no better than t.

Lemma 4.20. Let t ≥ 3. The polynomial-time greedy algorithm GBW is a t-approximation
algorithm for t-approval-WCCAV and t-veto-WCCDV.

The proof of our lower-bound claim, Lemma 4.19, consists of a somewhat detailed pair
of constructions, and is of less interest than the upper-bound part of Theorem 4.18, namely
Lemma 4.20. We thus defer to the appendix the proof of Lemma 4.19.

Proof of Lemma 4.20. Let us now prove the two claims that GBW is a t-approximation
algorithm. We will prove the result for t = 3 and WCCAV, but it will be immediately clear
that our proof straightforwardly generalizes to all greater t; and the WCCDV case follows
using Theorem 4.12.

Clearly GBW is a polynomial-time algorithm. Consider a given input instance of t-
approval-WCCAV, with preferred candidate p. Without loss of generality, assume all un-
registered voters approve of p. We will say a candidate “has a gap” (under the current
set of registered voters and whatever unregistered voters have already been added) if that
candidate has strictly more weight of approvals than p does. For each candidate d who has

7. For completeness and clarity, we describe what we mean by GBW for t-veto-WCCDV. Order all votes
that do not approve of p from heaviest to lightest, breaking ties in voter weights in some simple, trans-
parent way (for concreteness, let us say by lexicographic order on the votes’ representations). GBW
goes through these votes in that order, and as it reaches each vote it removes the vote exactly if the
vote approves of at least one candidate whose score (i.e., total weight of approvals) is currently strictly
greater than that of p. It stops successfully when p has become a winner and unsuccessfully if before
that happens the algorithm runs out of such votes to consider.
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a gap, d 6= p, define id to be the minimum number of unregistered voters one has to add to
remove d’s gap; that is, if one went from heaviest to lightest among the unregistered voters,
adding in turn each that disapproved of d, id is the number of voters one would add before d
no longer had a gap. If for any candidate d it holds that no integer realizes id, then control is
impossible using the unregistered voter set. Clearly, any successful addition of voters must
add at least maxd id voters (the max throughout this proof is over all candidates initially
having a gap).

Let us henceforth assume that control is possible in the input case. We will show that
after having added at most 3 ·maxd id voters GBW will have made p a winner, and so GBW
is a 3-approximation algorithm.

Before giving the detailed proof, let us very informally give a sense of the proof’s idea.
Let z be some candidate who allegedly has a gap after GBW has just added 3·maxd id voters,
and freeze the action of GBW at that point. Our proof argues that if relatively many of the
3 ·maxd id voters added by GBW (i.e., at least maxd id of them) do not approve of z, then z
clearly will not have a gap at the point in time when GBW was frozen, and so the assumed
gap can’t exist in this case. Our proof further argues that if relatively few of the 3 ·maxd id
voters added by GBW (i.e., at most (maxd id)−1 of them) do not approve of z (equivalently,
at least 1 + 2 · maxd id of them do approve of z), then we also arrive at a contradiction.
The latter argument is a more subtle one, involving asking which candidate’s (call it y) gap
caused the very last added vote to be added, and if needed drilling down an extra level with
a related few/many argument now focused on y, to show that GBW must at some point
have acted in a way that violates its definition, thus also yielding a contradiction. Since
the “few” and “many” cases above cover all possible cases, our proof will have achieved its
goal. We provide now the formal analysis that carries out this argument line.

So, suppose that after 3 · maxd id additions some candidate, z, still has a gap. As
discussed above we will perform a case analysis to in each case arrive at a contradiction.

Case 1 [In at least maxd id of the first 3·maxd id votes added by GBW, z is not approved].
Since for the last one of these to be added z must still have had a gap before the addition,
each earlier vote considered that disapproved z had a gap for z when it was considered
and so would have been added when reached. So, keeping in mind that iz ≤ maxd id, we
in fact must have added the iz heaviest voters disapproving of z, and so contrary to the
assumption, z no longer has a gap after these additions.

Case 2 [Case 1 does not hold]. So z is approved in at least 1 + 2 ·maxd id of the added
votes. What made the final one of the added votes, call it v′, eligible for addition? It must
be that some candidate, say y, still had a gap just before v′ was added.

Case 2a [y is disapproved in at least maxd id of the 2 ·maxd id votes added before v′ that
approved z]. Then, since until y’s gap was removed no unregistered voters disapproving of
y would be excluded by GBW, y’s iy heaviest voters will have been added. So contrary to
Case 2’s assumption, y does not have a gap when we get to adding vote v′.

Case 2b [Case 2 holds but Case 2a does not]. Then y is approved in at least 1 + maxd id
of the 2 ·maxd id votes before v′ that GBW added that approve z. So we have 1 + maxd id
votes added approving of exactly z and y. But then who made the last of those 1 + maxd id
votes, call it v′′, eligible to be added? It must hold that some candidate w had a gap up
through v′′. But at the moment before adding v′′ we would have added maxd id ≥ iw votes
approving exactly z and y and so disapproving w, and since w allegedly still had a gap, we
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while doing so under GBW would have in fact added the iw heaviest voters disapproving
of w, and so w’s gap would have been removed before v′′, so contrary to our assumption w
was not the gap that made v′′ eligible.

One might naturally wonder how GBW performs on t-veto-WCCAV and t-approval-
WCCDV. By an argument far easier than that used in the above proof of Lemma 4.20, in
both of these cases GBW provides a t-approximation algorithm.

Theorem 4.21. GBW is a t-approximation algorithm for t-veto-WCCAV. GBW is a t-
approximation algorithm for t-approval-WCCDV.

Proof. Consider t-veto-WCCAV. Let p be the preferred candidate. For each candidate d
with an initial positive “gap” relative to the preferred candidate p (i.e., a surplus over p in
total weight of approvals), let id be as defined in the proof of Lemma 4.20. (Recall that id
is the number of votes we would need to add to remove the surplus of d over p if we took
the unregistered votes, discarded all that didn’t simultaneously approve p and disapprove
d, and then added those one at a time from heaviest to lightest until the gap was removed.)
Clearly,

∑
id, where the sum is taken over those candidates with an initial surplus relative

to p, is an upper bound on the number of votes added by GBW. This is true since GBW
works by adding extra votes from heaviest to lightest, restricted to those vetoing a candidate
who at that point has a positive gap relative to p; so under GBW each gap will be closed by
the largest weight votes that address it. On the other hand, in any overall optimal solution
id is a lower bound on the smallest number of votes from that solution’s added-vote set
that would suffice to remove d’s positive gap (since it takes id even if we use the heaviest
votes addressing the gap). In the overall optimal solution each added vote narrows at most
t gaps. So GBW’s solution uses at worst t times as many added votes as does the optimal
solution.

The claim for t-approval-WCCDV follows by Theorem 4.12.

This result replaces a flawed claim in the conference version of this paper (Faliszewski,
Hemaspaandra, & Hemaspaandra, 2013) that GBW and some of its cousins do not provide
O(1) approximations for these problems.8 Of course, having a t-approximation for these two
problems (namely, t-veto-WCCAV and t-approval-WCCDV) is not wildly exciting, since for
these problems the multicover-based approach from earlier in this section showed that for
some function f(t), with f(t) = O(log t), we even have f(t)-approximation algorithms for
these problems. However, if the constant of the “big oh” of that other algorithm is large,
it is possible that for sufficiently small values of t the above approach may give a better
approximation. Also, we feel that it is interesting to learn about the behavior of explicit
heuristics, especially attractive approaches such as greedy algorithms.

It is natural to ask whether similar greedy algorithms work well for other scoring rules,
e.g., for Borda’s rule. Unfortunately, for families of scoring rules other than t-approval and
t-veto the analysis, if at all possible, would likely have to be significantly different than
ours. The main reason for this is that—as discussed in the Electoral Control subpart of

8. Note that here we treat t as a constant and, so, a t-approximation algorithm provides (indeed, is) an
O(1) approximate one. The reason that is true is that, technically speaking, the WCCAV and WCCDV
problems are defined separately for each voting rule. For example, 2-approval-WCCAV is a different
problem than, say, 200-approval-WCCAV.
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Section 3—for t-approval and t-veto it is always easy to verify whether there exists some
solution (although, perhaps, one that is very far from being optimal). For other scoring
rules, e.g., for Borda, it is not at all clear whether this is possible (and we conjecture that,
indeed, it is NP-complete to do so). However, it might be an interesting research direction
to evaluate the effectiveness of such greedy algorithms empirically (we point the reader to
the work of Rothe & Schend, 2013, for a recent survey covering experimental studies of the
complexity of control in elections).

5. Related Work

The study of the complexity of (unweighted) electoral control was initiated
by Bartholdi, Tovey, and Trick (1992), who considered constructive control by
adding/deleting/partitioning candidates/voters under the plurality rule and under the Con-
dorcet rule (that is, the rule that chooses Condorcet winner whenever there is one, and has
no winners otherwise). The various types of control model at least some of the flavor of
actions that occur in the real world, such as voter suppression and targeted get-out-the-vote
drives (see the survey of Faliszewski et al., 2010, for more examples and discussions). A
major motivation for the study of control was to obtain “complexity barrier” results, that is,
results that show that detecting opportunities for various control attacks is computationally
difficult. In particular, Bartholdi, Tovey, and Trick focused on NP-hardness as the measure
of computational difficulty.

This research direction was continued by Hemaspaandra, Hemaspaandra, and
Rothe (2007), who were the first to study destructive control attacks on elections. Since
then, many authors have studied electoral control in many varied settings and under many
different rules; we refer the reader to the survey of Faliszewski et al. (2010). Some recent
research, not covered in that survey, includes complexity-of-control results for the t-approval
family of rules (Lin, 2012), for Bucklin’s rule (and for fallback, its extension for truncated
votes; Erdélyi, Fellows, Rothe, & Schend, 2015a), for maximin (Faliszewski et al., 2011),
for range voting (Menton, 2013), and for Schultze’s rule and the ranked pairs rule (Parkes
& Xia, 2012; Menton & Singh, 2013; Hemaspaandra, Lavaee, & Menton, 2013). In the
present paper, we compare control and manipulation. The recent paper of Fitzsimmons,
Hemaspaandra, and Hemaspaandra (2013) studies settings in which both control and ma-
nipulation are occurring. Researchers have, in the quite different setting of electing members
to fill a fixed-size, multimember panel, defined variants of control that have coexisting con-
structive and destructive aspects (Meir, Procaccia, Rosenschein, & Zohar, 2008). There is
also work analyzing counting variants of control (Wojtas & Faliszewski, 2012), where the
goal is not only to decide if a given control attack is possible, but also to count the number
of ways in which this attack can be carried out.

The complexity-barrier research line turned out to be very successful. For most voting
rules that were considered, a significant number of control attacks are NP-hard. Indeed,
it is even possible to construct an artificial election system resistant to all types of control
attacks (Hemaspaandra, Hemaspaandra, & Rothe, 2009). However, there are also a number
of results that suggest that in practice the complexity barrier might not be as strong as one
might at first think. For example, Faliszewski, Hemaspaandra, Hemaspaandra, and Rothe
(2011) and Brandt, Brill, Hemaspaandra, and Hemaspaandra (2010) have shown that if the
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votes are restricted to being single-peaked, then many control problems that are known to
be NP-complete become polynomial-time solvable. Indeed, this often holds even if elections
are just nearly single-peaked (Faliszewski et al., 2014), as many real-world elections seem
to be (see, e.g., the discussion in Gehrlein & Lepelley, 2012, ch. 2). Similarly, some initial
experimental results of Erdélyi, Fellows, Rothe, and Schend (2015b) suggest that, at least
under certain distributions and settings, some NP-hard control problems can be solved in
practice on many instances. As part of a different line of research, Xia (2012) has studied
the asymptotic behavior of the number of voters that have to be added to/deleted from a
randomly constructed election in a successful control action.

There are a number of other problems involving changing the structure of elections.
These problems include candidate cloning, where it is possible to replace a given candidate
c with a number of its clones (Elkind et al., 2011; Elkind, Faliszewski, & Slinko, 2012), or the
possible winner problem when new alternatives join, where some additional, not yet ranked
candidates can be introduced (Chevaleyre, Lang, Maudet, Monnot, & Xia, 2012; Xia, Lang,
& Monnot, 2011). This last problem is also related to the possible winner problem with
truncated ballots (Baumeister, Faliszewski, Lang, & Rothe, 2012a).

The only papers that directly raise the issue of weighted control are, to the best of
our knowledge, the theses of Russell (2007) and Lin (2012). However, we also mention the
papers of Baumeister, Roos, Rothe, Schend, and Xia (2012b), and of Perek, Faliszewski,
Pini, and Rossi (2013), where the authors, in effect, consider problems of affecting the result
of an election through picking the weights of the voters. (The paper of Perek et al. motivates
its study differently, but in effect studies a constrained variant of choosing voter weights.)
Their problems are similar to, though different from, simultaneous (multimode) addition
and deletion of voters (Faliszewski et al., 2011).

This paper has given f(·)-approximation results for weighted election control prob-
lems. Elkind and Faliszewski (2010) have given a 2-approximation algorithm for a weighted,
bribery-related case.

6. Conclusions

We have studied voter control under a number of voting rules, including scoring protocols,
families of scoring protocols, and the (weak)Condorcet-consistent rules. We have shown
that the complexity of voter control can be quite different from the complexity of weighted
coalitional manipulation: there are natural voting rules for which weighted coalitional ma-
nipulation is easy but weighted voter control is hard, and there are natural rules where the
opposite is the case. Furthermore, we have shown that for weighted voter control under
t-approval and t-veto, there are good, natural approximation algorithms. Our results for
voter control in weighted elections are summarized in Tables 1, 2, and 3.
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WCCAV WCCDV WCM

Plurality P (Thm. 4.1) P (Thm. 4.1) P♣

t-approval, 2 ≤ t <
m

P (Thm. 4.1) P (Thm. 4.1) NP-comp.♦

Borda NP-comp. (Thm. 4.2) NP-comp. (Thm. 4.2) NP-comp.♦

α = (α1, . . . , αm),
‖{α1, . . . , αm}‖ ≥ 3

NP-comp. (Thm. 4.3) NP-comp. (Thm. 4.3) NP-comp.♦

Llull (3 candidates) NP-comp. (Cor. 4.9) NP-comp. (Cor. 4.9) P♥

(weak)Condorcet-
consistent rules

NP-hard (Thm. 4.7) NP-hard (Thm. 4.7)
various

complexities

Table 1: Our results for the complexity of control by adding/deleting voters in weighted
elections for any fixed number of candidates, m ≥ 3, compared to the complex-
ity of weighted coalitional manipulation. The result marked with ♣ is due to
Conitzer et al. (2007), the results marked with ♦ are due to Hemaspaandra and
Hemaspaandra (2007), and the result marked with ♥ is due to Faliszewski et al.
(2008).

WCCAV WCCDV

t-approval
t = 2 P (Thm. 4.10) NP-complete (Thm. 4.13)

t = 3 NP-complete (Thm. 4.13) NP-complete♠

t ≥ 4 NP-complete♠ NP-complete♠

t-veto
t = 2 NP-complete (Thm. 4.13) P (Thm. 4.11)

t = 3 NP-complete♠ NP-complete (Thm. 4.13)

t ≥ 4 NP-complete♠ NP-complete♠

Table 2: The complexity of control by adding and deleting voters for t-approval and t-veto
with an unbounded number of candidates. The results marked with ♠ are due to
Lin (2012).
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WCCAV WCCDV

t-approval
O(logm) (Thm. 4.16) O(log t) (Thm. 4.17)

t (Thm. 4.18) t (Thm. 4.21)

t-veto
O(log t) (Thm. 4.16) O(logm) (Thm. 4.17)

t (Thm. 4.21) t (Thm. 4.18)

Table 3: Approximation ratios of our algorithms for WCCAV and WCCDV under t-
approval and t-veto.

Appendix A. Additional Details Related to Section 4.3

We present here the deferred proof of Lemma 4.19 and some other details related to Sec-
tion 4.3.

Proof of Lemma 4.19. Our goal is to show that GBW sometimes really does use fully t
times the optimal number of added/deleted votes, for the cases in question. Examples are
(somewhat detailed but) not hard to construct, and the lower bound even holds for t = 2,
though in Section 4.2 we obtained an exact solution by a different approach. However, one
does have to be careful to set the “gap” pattern created by the unregistered voters to be
a realizable one. For our t-approval-WCCAV construction, this will be easy to do directly.
For our t-veto-WCCDV construction, we will establish realizability through a small tool—
which we hope may prove useful elsewhere—that lets one set up certain patterns of gaps.
We state the tool below as Tool A.1.

Fix any t ∈ {2, 3, 4, . . .}. We will now construct an instance of t-approval-WCCAV on
which GBW uses t times as many additions as the optimal strategy. Our construction
will have 2t candidates: the preferred candidate p, candidates a1, . . . , at, and candidates
d1, . . . , dt−1. Now, suppose that under the votes of the registered voters, the “gaps” are as
follows. For each candidate ai, the total weight of approvals of ai exceeds the total weight
of approvals of p by exactly 2t. And for each candidate di, the total weight of approvals
of di equals the total weight of approvals of p. This can easily be realized, namely by our
registered voter set being one weight-2t voter who approves of each ai.

Our set of unregistered voters will be as follows. There will be one unregistered voter,
call it “nice,” of weight 2t, who approves of p and each of the t − 1 candidates di, and
disapproves of each of the t candidates ai. For each j, 1 ≤ j ≤ t, we will have a single
unregistered voter, call it αj , of weight 3t, who approves of p and of each ai other than aj ,
and disapproves of aj and all the di’s.

Note that GBW will add all t voters αi. But ideal would be to add the single voter called
“nice,” since doing so suffices to make p a winner. So for each t ≥ 2 we have constructed
a setting where GBW for t-approval-WCCAV takes t times more than the optimal number
of added votes.

It also holds that for each t ≥ 2, we can similarly construct a setting where GBW for
t-veto-WCCDV takes t times more than the optimal number of deleted votes, and can prove
that setting to be realizable. In fact, we can do so by following something of the flavor of
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the above scheme, except with a slightly different vote set that adjusts it to handle the case
of deleting voters, and with more care regarding realizability. Here is the construction. Fix
any t ∈ {2, 3, 4, . . .}. Our candidate set will again be the preferred candidate p, candidates
a1, . . . , at, and candidates d1, . . . , dt−1. Let us specify the voter set. We will put into our
voter set a collection of weight-1 votes such that the gaps in total approval weight relative
to d1 created by those votes are as follows. Each of d2 through dt−1 have the same total
approval weight as d1. The total approval weight of p exceeds that of d1 by 3t2 + 3t. And
the total approval weight of each ai exceeds that of d1 by 3t2.

As Tool A.1 below, we will observe that for 2t-candidate t-approval voting, any gap
pattern where the gaps are all multiples of t can be realized. Since in the current proof
we are using 2t-candidate t-veto, and that is the same as 2t-candidate t-approval, Tool A.1
applies here. In particular, Tool A.1 easily builds a set of weight-1 votes realizing precisely
our desired set of gaps. (The exact number of weight-1 votes used in this construction is
not important. However, from the gaps mentioned above and the vote-set size mentioned
in the tool, the precise number is easily seen to be (3t+ 3 + t(3t))(2t− 1).)

We are not yet done building our voter set. We will also have in our voter set one
voter, call it “nice,” of weight 2t, who approves of exactly all t of the ai’s. And for each j,
1 ≤ j ≤ t, we will have one voter of weight 3t who approves of exactly aj and all t − 1 of
the di’s.

Under the entire set of votes created above—the votes from the tool combined with
“nice” and the other t votes just mentioned—it is easy to see that d1 is a candidate having
the least total approval weight, and it is tied in total approval weight with each other di.
The total approval weight of p exceeds that of d1 by 3t. And each ai exceeds d1 in total
approval weight by 5t.

However, in light of the pattern of votes and weights we have here, it is clear that GBW
(in its version for t-veto) will delete the t weight-3t voters. (Note that the votes added by
Tool A.1 are all weight-1 votes, and so are highly unattractive to GBW.) But ideal would
be to delete the single voter called “nice,” since doing so suffices to make p a winner. So for
each t ≥ 2 we have constructed a realizable setting where GBW for t-veto-WCCDV takes t
times more than the optimal number of deleted votes.

Within the above proof, we referred to and used a small tool that can build certain
patterns of vote weight gaps in certain approval elections. It would be an overreach to
claim that this is a McGarvey-like tool, since this is a different setting than, and is a far less
flexible result than, the famous theorem of McGarvey (1953). However, it in a small way is
a tool that perhaps might be useful elsewhere, and so we state and prove this modest tool.

Tool A.1. Let t ≥ 2. Let n1, . . . , n2t−1 be any list of nonnegative integers each divisible by t.
Then there exists a collection of t-approval votes, over 2t candidates, such that under those
votes, relative to the candidate getting the fewest approvals, the list of gaps in number of
approvals between that candidate and the other 2t−1 candidates is precisely (n1, . . . , n2t−1).
Furthermore, this can be done with (2t − 1)(

∑
ni)/t unweighted (i.e., weight 1) votes. It

alternatively can be done with (2t − 1)2 weighted votes (or even (2t − 1)‖{i | ni 6= 0}‖
weighted votes).

Proof. Consider an election with 2t candidates, where the votes cast are t-approval votes.
Consider the collection of 2t − 1 votes, each of weight one, in which the votes all approve
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of a particular candidate (for this example, let that one be the first candidate), and the
remaining t− 1 approvals cyclically rotate around the other candidates. So the t-approval
votes, viewed as bit vectors, are these: 1 1t−1 0t, 1 0 1t−1 0t−1, . . ., 1 0t 1t−1, 1 1 0t 1t−2, . . .,
1 1t−1 0t 1. Note that the first candidate is approved in all 2t − 1 of those votes, and each
other candidate is approved in exactly t− 1 of those votes. So this collection of votes sets
a gap of t in favor of the first candidate, between the total approval weight of the first
candidate and that of each other candidate And the difference in total approval weight
between each other pair of candidates is zero.

Given a gap pattern as stated in the tool, where each gap above the least-approved
candidate (call that candidate c) is a multiple of t, we can simply use the approach of the
above paragraph repeatedly, to boost each other candidate, d, one at a time to whatever
multiple of t it is supposed to exceed c by in total approval weight. (In this, d will play the
role “the first candidate” did in the previous paragraph.) If d’s surplus relative to c is kt
and we wish to use only weight-1 votes, we can do this for d with k(2t− 1) weight-1 votes.
Otherwise, we can do this for d with 2t − 1 weight-k votes. So the total number of votes
used is as given in the statement of this tool.

This appendix is not seeking to provide a comprehensive study of which gap collections
are realizable under t-approval voting, nor is it seeking to find the smallest number of voters
needed to realize realizable gap collection. That is an interesting direction for study, but
is not our goal here. However, we mention that there clearly exist some gap collections
that cannot be realized. For example, the “then there exists” claim of Tool A.1 is not even
always true if one removes the assumption of divisibility by t. An example showing this is
the following. Consider a 4-candidate setting where votes will be 2-approval votes, and we
desire a gap list relative to the least-approved candidate of (1, 1, 1), i.e., each of the other
candidates has one more approval than does the least-approved candidate. Clearly, the
total number of approvals of any set of votes achieving this is 4B + 3, where B is whatever
number of approvals the least-approved candidate happens to get under the vote set one is
trying, and so the total number of approvals is odd. However, any vote set of 2-approval
votes has an even total number of approvals. So this gap collection cannot be realized.
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