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We introduce a new Brownian bridge approximation to weighted empirical
and quantile processes with rates in probability. This approximation leads to
a number of general invariance theorems for empirical and quantile processes
indexed by functions. Improved versions of the Chibisov—O’Reilly theorems,
the Eicker-Jaeschke theorems for standardized empirical and quantile
processes, the normal convergence criterion, and various other old and new
asymptotic results on empirical and quantile processes are presented as
consequences of our general theorems. In the process, we provide a new
characterization of Erdds—Feller—Kolmogorov—Petrovski upper-class func-

tions for the Brownian motion in an improved form.

0. Introduction. Let U, , < --- < U, , denote the order statistics of the
first n of independent uniform-(0,1) (U(0,1)) random variables (xv) U}, U, ...
with the corresponding uniform empirical distribution function G,(-), defined to

be right continuous, and uniform empirical quantile function

U(s)=U,, (k-1)/n<s<k/n (k=1,...,n),

where U,(0) := U, ,. We define the uniform empirical process
a,(s)=n"?(G(s)-s), 0=<s<]l,
and the uniform quantile process

u,(s)=n"%(s—Ufs)), O0<s<l.

Komlos, Major, and Tusnady (1975a) showed that uniform empirical processes
{a,} can be constructed on the same probability space as a sequence of Brownian
bridges {B,(s); 0 < s < 1} in such a way that for all » and x we have

(0.1) P{ sup |a,(s) — B,(s) = n"*(dlogn + x)} < be™%,

0<sx<1

where @, b, and ¢ are positive absolute constants.

M. Csorglé and Révész (1978) showed that an analogous construction was
possible for the uniform quantile process in terms of another sequence of
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32 M. CSORGO ET AL.
Brownian bridges {B,} such that for all n and |x| < c,n'/2, ¢, > 0, we have

(0.2) P{ sup |u,(s)— B,(s)|>n"2%(&logn + x)} < be™%,
O0<s<1
where 5, i), and & are positive absolute constants.

These approximations have wide ranging applications in probability and
statistics [cf. M. Cs6rgd and Révész (1981), M. Csorgé (1983), S. Csorgs and Hall
(1984)]. They are, however, not quite strong enough to yield direct proofs of a
number of limit theorems for weighted empirical and quantile processes, such as
the Chibisov—O’Reilly theorems. In this paper we improve upon these approxi-
mations to get sharper results that can handle the weighted processes. In Section
1 we show that with an appropriate sequence of Brownian bridges { B,} we have

P{ sup |u,(s)— B,(s)|=n"*alogd + x)} < be =,
O<s=<d/n

whenever ny < d < n, 0 < x < d'/?, where n,, a, b, and c are suitably chosen
positive constants. In Section 2 we turn the latter inequality into

sup n’lu,(s) — B,(s)|/s¥*7" = Op(1)
A/n<s<1
for every 0 <v < § and 0 <A < o0 as n — oo, while for every 0 <» < 1 as
n — oo into
sup  nla,(s) — B,(s)/s/?7" = Op(1).
Uy, n<s<1
Naturally we have similar results also in the neighbourhood of one (cf. Theorems
1.1, 2.1, and 2.2). In Section 3 our basic approximations become the essential tools
to prove invariance principles for the empirical and quantile processes indexed by
function classes or sequences of function classes. Sections 4.1-4.6 contain applica-
tions of these improvements upon (0.1) and (0.2).
Besides the notation introduced above we shall use F' to denote any right-con-
tinuous distribution function and

Q(s) =inf{x: F(x)>s}, 0<s<]l,
Q) =Q(0+), - 1)=Q1-)

will denote its left-continuous inverse, the quantile function.

1. An improved construction for approximating the uniform quantile
process by Brownian bridges. The aim of this section is to construct in-
equalities for the sake of describing how near the uniform sample quantile process
{u,(s); 0 < s < 1} can be to a sequence of Brownian bridges {B,(s); 0 < s < 1}.
We have

THEOREM 1.1. There exists a probability space (Q, &7, P) with independent
U©,1) ro U, U,,... and a sequence of Brownian bridges {Bs); 0 < s < 1}
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(i=1,2,...) such that

(1.1) P{ sup |u,(s) — B,(s)|=n"*(alogd + x)} < be

O<s<d/n

and

(1.2) P{ sup |u,(s)— B,(s)|=n"*(alogd + x)} < be“”‘,.

1-d/n<s<l1

whenever ny < d < n,0 < x < d'?, where n,, a, b, and c are suitably chosen
positive constants.

When d = n, Theorem 1.1 reduces to Theorem 1 of M. Csbrgé and Révész
(1978) [cf. (0.2)] which, in turn, 1s based on a similar inequality of Komlés, Major,
and Tusnady (1976) concerning the problem of approximating partial sums of
ii.d. rv by a Wiener process. The proof of Theorem 1.1 exploits the same route.

ProOF. Let {W(¢); 0 <t < o0} and {W®(¢); 0 < t < 0} be independent
copies of a standard Wiener process defined on a probability space with two
independent sequences of i.i.d. exponential rv Y{9, Y{9,..., (i = 1,2), with mean
one, such that for all real x we have the Komlés, Major, and Tusnady (1975a,
1976) inequalities

(1.3) P{ max |(S{— k) — WO(k)|> Clogm + x} < Ke ™,

l<k<m

where, for i = 1,2,

m
S = EY}(”, m=12,...

Jj=1

and C, K, and A are positive universal constants, independent of i = 1,2 and
m=12....
For each integer n > 2 let

Y®w forj=1 i
; forj=1,...15|
¥(n) = .
Y%, for]=[§]+1,...,n+ 1.
Then the rv Yi(n),...,Y, (n) are i.i.d. exponential rv with mean 1. Put

S,(n)= Y Y(n) form=1,...,n+1.
Jj=1

For the sake of notational convenience we will write, from now on, S, instead of
S,(n), and also Y; instead of Y,(n), and will also use the usual convention S; = 0.
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For each integer n > 2 we define the stochastic process

n
Wd(s) for0 <s < [E]’

o= o [5] -efos- 2]
-WP(n+1-3s) for[g]<ssn+1.

Elementary calculations show that for each choice of 0 < s < ¢t < n + 1 we have
EW,(s)=0, EW,(s)W,(t)=s. Hence W, is a standard Wiener process on
[0, n + 1].

From (1.3) we get that for every n > 2,1 < m < [n/2], and x

(1.4) P{ max (S, — &) — W,(k)|= Clogm + x} < Ke™*,
1<k<m

and, since for 1 <k<n-[n/2]1+1, S,,; —8S,.,-, =82, and Wy(n + 1) —
W (n+1— k)= WP(k), we also get that for every 1 <m <n —[n/2]+1
and x
P{ max [(8,,1~ Spe1-p— k) = (Wy(n + 1)

(15) l<k<m
- Wy(n+1-k))|= Clogm+x} < Ke™*,

An elementary argument based on (1.4) and (1.5) shows that there exist
universal constants C,, K, and A, such that for every n>2, 1 <m<n +1,
and x

(1.6) P{  max (S, — &) — W,(k)|= Cylogm + x} < Kpe™to*,

and
P{ max |(S,1 = Spers— B) —(Wi(n + 1)
(1.7) sh=m
= Wi(n+1~k))|> Cologm +x} < Kpe ™.
Now let 4
ﬁk,n=sk/sn+1 fOI'k=].,...,n (n22),
and define

k—1 k
<ss; (k=1,...,n),

i,(s)=n*(s-0U,,) for

B,(s) = n"Y*(sW,(n) — W,(sn)) for0<s<1.

We-note in passing that Bn(s) is a Brownian bridge for each n.
First we need some inequalities for our partial sums of i.i.d. exponential rv
with mean 1 and Brownian bridges.
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Lemma 3.1 in Devroye (1981) immediately implies that for any 0 < x < ; we
have

(1.8) P{|(S,— n)/n|=x} < 2exp(—nx?/4).
The latter can be turned into
(1.9) P{|(S,s1— 1)/S,1|2 x} < Texp(—nx?/64)

for any 0 < x < ; as follows:
P{l(Sys1 = n)/Spirl = x) < P{|(S, = n)/S,| 2 x/2} + P(Y,../8, 2 x/2}

< P{|(S,— n)/n|=x/4} + P{Y,,,/n > x/4}
+2P{S,/n < 1/2}

< P{|(S,— n)/n|> x/4} + P(Y,,,/n > x*/2}
+2P{(S,— n)/n< —1/2}

< 3P{|(S, - n)/n|= x/4} + P{Y,,, > nx*/2}

< 6exp(—nx2/64) + exp(—nx2/2)

< Texp(—nx2/64),

where in the third inequality 0 < x < 1, while in the fourth inequality — ; <

—x /4 was utilized.
Next for any 4 < y < oo and integer 1 < m < oo such that (y — 2)/m"* < |}
we have
(1.10) P< max |S, — k| 2 ym1/2> < Sexp(—y%/16),
l<k<m
since by the P. Lévy inequalities [cf., e.g., pages 247-248 in Loéve (1960)]
P{ max |S, — k| > ym1/2> < 4P{IS, — m| = (y - 2)m'?}

l<k<m

and by (1.8)
P{|(Sm —m)/m| = (y— 2)/m1/2} < 2exp(—(y - 2)2/4) < 2exp(—y?%/16),

where, given our condition on y, the latter inequality is on account of (y — 2) >

¥/2. ‘
As to the needed inequality for a Brownian bridge {B(s); 0 < s < 1}, we have

forany0<a<1, h>0,and0 <u< o0

P, ,(u) = P{ sup |B(a) — B(s)| = uh1/2}
(1.11) sefa—h, a+hIN[0,1] .
< Au'exp(—u?/8)
with a suitably chosen universal constant A. The latter is immediate, for any
Brownian bridge has the representation

(B(s); 0 <s <1} =5{W(s) —sW(1); 0 <s < 1},
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where W is a standard Wiener process, and hence

Pa,,,(u)sp{ sup |W(a)—W(s)|2(u/2)hV2}

a<s<a+h

+P{ sup [W(a)—W(s)|2(u/2)h1/2}

a—-h<s<a

+2P{R|W(1)| = (u/2)h"/?)
< zp{ sup |[W(s)| > (u/2)hv2} +2P{|W(1)]| = u/2)

O<s<h
21\1/2
< 10P{|W(1)| > u/2} < 10(;) u'exp(—u?/8),

where for the last inequality we refer to Feller (1968, page 175).
Now, towards the proof of (1.1), we first note that it suffices to prove it with
d = m, an integer. Set

(1.12) Y =n""*(alogm + x),

where a = 15C, with C, as in (1.6), and consider

P swp [a,(s) = Bs)| 2 )

O<s<m/n

<P{ sp [By(s) - B([n]+1)/n)] 2 ,/3)

O<s<m/n

+P{ sup |, (Lns] + 1)/n) - ,(6)] = 3,/3)

O0<s<m/n

(1.13)

+P{ max |i,(k/n) — B,(k/n)| = y,,,/3}
l<k<m

=P ,+ P, tP,.
An application of (1.11) gives

(1.14) P, , < mA(n'y, )" "exp(~ny2/72)

< biexp(—cx),

where 0 < b,, ¢, < oo are appropriately chosen absolute constants, which do not
depend on n > m > 2 and x > 0. Also

sup |&,(([ns]+1)/n) - @,(s)| <'2n""2,

O<s<l1
hegjlce

(1.15) P, , =0 whenever n, is such that a log n, > 6.

Thus it remains only to estimate P, .
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First we observe that forany 1 <k <n
|8,(k/n) = B(k/n)| < n™2|(S, — k) = W, ()]

k
+n"V2|(S, = 1) = Wn)|
+n V21 4 e |)EY
(116) n n n+1

k
+n7 e, | 1S, - k| + n_w;lﬁn 1S, — n|

5
= Z Ai,n(k)’
i=1
where ¢, = n/S,,, — 1. Hence
5
(117) I)3,ns ZP3,n,i7

1

v

where foreach1 <i <5
P, .= P{ max A, (k)2 3,/15}.

l1<k<m
Applying (1.6), we get
(1.18) P; < Keexp(—Ayx/15).
Next we observe that

n X
Pona = P{I(8, = n) = W()] 2 = (Cylogm + == |

n X
< P{|(s,, = n) = W(n)| = Cy—logm + E}
(1.19)

X
< P{I(Sn —n) = W(n)| = Cylogn + B}

x
<K —Ao— |,
oexP( 015 )
where the third inequality of (1.19) is due to
n
—logm >logn forn>mz=n,,
m

for n, appropriately large, and the last one is by (1.6).
We have also
Py 5 < P{n72(1 + [e,)(m/n) Y, 2 3,/15)
< P{le,| > 3} + P{(m/n)Y,,, = 2n'?y,/45}
(1.20) < 7exp(—n/256) + exp(—2x,/45)
< 7exp(—x/256) + exp(—2x,/45)

< bye™ %%,

37
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where in the third inequality (1.9) was used, and then the assumption x < m'/?
and the fact that m'/2 < n.
For the next term in the upper bound for P; , we have

P, ,< P{ max |S, — k| = m1/2(ymn1/2/15)1/2}
T l<k<m

+P(le,l 2 m™ (3,02 /15) )

(1.21) < 8exp(—n'’%y,,/((16)(15)))

+7 exp(—(n/m)y,n'"2/((15)(64)))
< bge™ %,

where the second inequality is by (1.9) and (1.10) whenever n > m and m is large
enough so that for every 0 < x < m'/?

)1/2

m~Y?(n'%y, /15 <!

4 < (n'/%y,,/15)""

and
0< ((nl/2ym/15)l/2 - 2)/m1/2 <3

and hence the last inequality of (1.21) is also true for every n, < m < n if n, is
large enough.
Finally,

Py, 5 < P{n""*(m/n)le,||S, — n| = 3,,/15}
< P{le,l((S, = n)/n| = n7'/%,,/15}
(1.22) < P{le,| = n 4(5,/15)%} + P{|(S, — n)/n| = n"/4(5,/15)"*}
< 7 exp(—n'/%,,/((15)(64))) + 2 exp( —n'"%y,/((4)(15)))
< be o,

where the fourth inequality is by (1.8) and (1.9) whenever n, < m < n with n,
large enough so that for every 0 < x < m'/2

n‘l/“(ym/15)1/2 <1

and hence also the last inequality of (1.22). _

Combining now (1.18), (1.19), (1.20), (1.21), and (1.22), we get an estimate of
P, ,, of (1.17), which, when combined with the estimate of P, , and B, , of (1.14)
.and (1.15), respectively, results in

(1.23) P{ sup |&,(s) — B,(s)| = n"*(alogd + x)} < be™°*,
O<s<d/n
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whenever n, < d < n, 0 < x < d"/? with suitably chosen positive constants 7.,
a, b, and c.

Towards the proof of (1.2) we can show similarly that under the same
conditions as in (1.23) we have also

(1.24) P{ sup |it,(s) — B(s)| = n"*(alogd + x)} < be .

1-d/n<s=<1

At this stage we should note that, while the proven statements of (1.23) and
(1.24) appear to have the desired appearance of (1.1) and (1.2), respectively, we
have not yet proved the latter two statements. Indeed, the probability measure P
and the stochastic processes i, and B, of (1.23), (1.24) are not the ones claimed
in Theorem 1.1. On the other hand, we have for each n

(1.25) {#.(s);0<s<1}=5{u,(s);0<s<1},

and B, is a Brownian bridge for each n. Hence, by Lemma 4.4.4. of M. Csérgd
and Révész (1981) [cf. also Lemma 3.1.1 in M. Csorgé (1983)], for each n one can
construct a probability space (2,, «7,, P,) with a sequence U,, ..., U, of indepen-
dent U(0, 1) rv and with a Brownian bridge B such that

(1.26) Pn{ sup |u,(s)—BX(s)|=n ?*(alogd + x)} < be™ %,
O<s<d/n

and

(1.27) Pn{ sup  |u,(s) — B¥s)| = n""*(alogd + x)} < be™ %,

1-d/n<s<1

. Whenever np <d<n,0<x<dV2
Using now the construction of the proof of Lemma 3.1.2 in M. Cs6rgé (1983),
(1.26) and (1.27) immediately imply (1.1) and (1.2) as claimed.

From now on throughout the remainder of this exposition, we assume that our
processes and random variables are defined on the probability space constructed
in Theorem 1.1.

2. Rates of convergence of the uniform quantile and empirical processes
to a sequence of Brownian bridges. In this section Theorem 1.1 is used to
deduce rates of convergence results for the sup-norm distance of the uniform
sample quantile and empirical processes from a sequence of Brownian bridges.
One of the main results here is .

THEOREM 2.1.  On the probability space of Theorem 1.1 we have

(2.1) sup n'?u,(s) — B,(s)| = O(logn), a.s.,

O<s<1
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while for every 0 < v < ; and 0 <A < o0 asn — o

(2.2) sup  n’lu,(s) = B,(s)|/(s(1 ~5))"* " = Op(1).
A/n<s<1-A/n

PrOOF. Asto(2.1), weset d = n, x = (2/c)log n in (1.1) say, and (2.1) results
[cf. (0.2)].

Now consider (2.2) which we will prove first with A = 1. Choose any 0 < » < 1,
and write

AR, = sup n’lu,(s) - B(s)|/s"*"

1/n<s<l1

and

AR, = sup  nlu,(s) = B,(s)|/(1-5)"""".

0<s<l-1/n

In order to establish (2.2) with A = 1, it is enough to show that
(2.3) AD, = 0p(1) foranyO<v <,
and
(2.4) A® = 0p(1) forany0 <v» < 1.

We prove only (2.3) and note that the proof of (2.4) is similar. For any
max(e, n,) < d < oo, let

e(d)=d, e(d)=-exp(e, (d)) (i=2,3,...)
and
di=(e;r(d)”" ™ fori=o,...,i,-1,d, - n,
where
i, =max{i: d,_, < n}.
Define the intervals
I =[1/n,dy/n] = [1/n, d*¢ > /n],
I,=1d, ,/n,dy/n] fori=1,...,i,—1,
and

I, = [din—l/n’ di,/n] = [din,l/n,l].

n

Foreachi=0,...,i,— 1let

8,0 = sup{|u,(s) ~ B(s)|: s € [0, dy/n])

and set

& .= sup{lun(s) —B,(s)|:se [0,1]}.
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Let a, b, ¢ be the constants of inequality (1.1). Then we have

2a
p{&}gy > ( ¥ l)log d}
’ 1-—2v»
2a
< P{supn’|u,(s) — B,(s)|/s"*7" = ( + l)logd
sely 1-2»

+ z”‘, P{ supn’|u,(s) — B,(s)|/s"*" = (1 ia2,, + 1)}

i=1 se€l,

— 4V

2a
< P{So,n > nl/z( n + l)log d}

in 2a
+ ) P{Si w2 n_1/2( + l)ei(d)}
o1 ' 1—-2yp

= LR.(a)

Next we should like to use inequality (1.1) in order to estimate the above
probabilities P, (d) (i =0,...,i,). In order to be able to do so, in addition to
requiring that max(e, n,) < d < oo, we will also assume that d and n are chosen
so that

(i) nyg<d¥4"™ < p.
The latter condition and definition of i, will also ensure that
(ii) no<d;<n fori=0,...,i,

" where n, is as in Theorem 1.1. We have also

(iii) logd < di/? = g/0-2»
and
(iv) e(d)<dl”? fori=1,...,1,,

since in this case
e(d)=(logd,)(: —»)<d}”* fori=0,...,i,~-1,
and, by definition of i,
e,(d) <n'?"< n'/? = d}/?.
With (i), (ii), (iii), and (iv) in mind we notice that by.inequality (1.1) we have
P, (d)=P{8,,>n""*(alogd, + logd)}
< be~cled = pd~c,
P, (d) =P8, ,>n*(alogd; + e(d))}

< be~c@d fori=1,...,i,— 1,
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and, since by definition of i,

= 2Vein(d) >logn =logd,,

P, (d)< P{Sim,, >n *(alogd; + e,»n(d))}

< be €D,

Consequently,

plav s (2% 1 logd} <bd ©+ iznbe*vem
(2.5) BYTAL - 2p - :

i=1
<bd /(1 —d°).

Now let ¢ > 0 be given. Then choose d such that bd /(1 — d"¢) < ¢ and a
K = K(¢) such that 2a/(1 — 2») + 1)log d < K. Then choosing n so large that
(i) also holds true, by (2.5) we get

limsupP{AY,> K} <e.

n— o0

This completes the proof of (2.3).

To complete the proof of (2.2) with 0 < A < o0, we have only to cover the
ranges [A/n,1/nland [1 — 1/n,1 — A/n] for fixed A with 0 < A < 1. It is easily
seen that

sup n’|lu,(s)— B,(s)|/s'/%

A/n<s<l/n
< >‘V_1/2n"Ul,n _ 1/n| + >\v—1/2 + AV*I/in/Q sup |Bn(3)|
O0<s<l/n
= OP(I)’

because both sequences of rv on the right-hand side of the above inequality
converge in distribution to a proper rv. A similar argument holds over the
interval [1 — 1/n,1 — A/n]. This also completes the proof of Theorem 2.1.

At this stage a reasonable question is: What can we say about the empirical
process {a,(s); 0 <s <1} along the lines of Theorem 2.1 on the probability
space of Theorem 1.1? An answer to this question is:

THEOREM 2.2. On the probability space of Theorem 1.1 we have
(2.6)
limsup sup n'*|a,(s)— Bn(s)|/((10g n)"*(loglog n)1/4) =24 a.s,

n—-oc 0<s<l

(2.7) sup  n'/a,(s) — B,(s)|/(s(1 ~ 5))"* = Opllog n),

Uy pss<U, 5
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. 1
while for every 0 < v < ; asn - o

(28) sup  n'la,(s) = B,(s)]/(s(1 —$))"* " = 0x(1).

Uy, n<s<U, ,

REMARK 2.1. Before proving this theorem we should note that if we started
out proving a Theorem 1.1-like statement with, instead of u,, a, being approxi-
mated by another appropriate sequence of Brownian bridges, i.e., if instead of
modifying the M. Csorgé and Révész (1978) quantile process construction, we
would have modified the Komlos, Major, and Tusnady (1975) empirical process
construction, then on another appropriate probability space with another ap-
propriate sequence of Brownian bridges, we would have a Theorem 1.1- and also a
Theorem 2.1-like result for «,, and a Theorem 2.2-like result for u,. Thus a dual
approximation theory along these above lines to the one presented in this
exposition for u, and «,, (cf. Theorems 1.1, 2.1, and 2.2) is also feasible for «,, and

u,.
Proor oF (2.6). Using the Brownian bridges B, of Theorem 2.1, triangular
inequalities, and a result of Kiefer (1970), (2.6) is immediate.
The proof of (2.7) and (2.8) will require the following results, listed as Facts 1,
2, and 3.

Fact 1 (Daniels, 1945). Forany 0 <A <landn=>1

(2.9) P{ min nU, ,/k < A} = P{ sup G, (s)/s > 1/>\} =2,

l1<k<n O<s<1
and
P{ min n(1-U,,,_, ,)/k< x}
1<ks<n ’
(2.10)

= P{ sup (1 - G,(s))/(1-3s)= 1/)\} =A.

0<s<l1

Fact 2 (Wellner, 1977). Foranyl <A < w,l1<k<n,andn=>1

1/2
} < 2e M5,

k k
U, .~ <A (1— )
' n+1 n(n+1) n+1

(2.11) P{

From Fact 2 we get

Facr3. ForeveryA>landl<k<n

U k
k,n n

> )\k1/2/n} < 2e” M1,

(2.12) P{
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Proor. We have

k| A\R'? k AR!/? k
P Ukn__ = SP Ukn_ = -
" on n " on+1 n n(n+1)
k AE!/2 k2
sP{ U, . — p-. (1— : )}
’ n+1l n n+1

where the last inequality is due to A > 1. The proof of (2.12) now follows from
(2.11) via the fact that foreveryl <k <nand n > 1

(B2/n)(1 — BV2/(n + 1)) 2 (1/2)(1/n'/2)(k/(n + 1)) /%1 = k/(n + 1))"%.
PROOF OF (2.7) AND (2.8). For any 0 < » < 1 we write

AD, = sup  n'la,(s) = By(s)|/s"*7,

Ui n<8<Uy

and

AD,=  sup  rla,(s) = By(s)|/(1~s)".

U, ,<s<U, ,

In order to establish (2.7) and (2.8) it is enough to show that

(2.13) AL = Op(logn) whenw =1,

. n,v Op(l) WhenO <p< i’
and
(2 14) A® — Op(log n) when v = i,

. n,v OP(]') whenO <p< i.

We consider only (2.13). We notice that

AV, =  max sup{n"|¢x,,(s) — B,(s)|/s'* " s € [U, ,, Uk+1,n)}'

l<k<n-1

For any 0 < A < 1 we set 4
n’|a,(s) — B,(s)|
:s€\U, pUiiqn
(Ak/n)l/2—v [ k, k+1, )
= XTVIAD (1) = N TVBD,  with B, = AD,(1).
We observe that by (2.9) we have for any 0 < A < 1
12.16) limsupP{AD, < ¥~V2B®} > 1 — A,

n—oo

AP (N) = max sup{

l<k<n-—1

(2.15)

Consequently, since A can be chosen arbitrarily close to zero, in order to verify
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(2.13) it suffices to show that

1

217) B Lo et
We notice that forany 1 <k<n-—-1.
sup{n’la,(s) = B,(s)|/(k/n)"* " s € [U, 0 Ups1,0) }
< n”lu,(k/n) — B,(k/n)|/(k/n)""*""
VU, = Uyl (R/0) "
+sup{n’| B,(s) — B,(k/n)|/(k/n)""* " s € [Uy, . Up.,0))
< 2n’|u,(k/n) - B,(k/n)|/(k/n)"*""
+n’|u,((k+1)/n) = B,((k + 1)/n)|/(k/n)""*""
+sup{n’|B,(s) — B,(k/n)|/(k/n)"*"": 5 € [Uy, s Upin,n))
+n7"V2/(k/n)" 7" + 0’| B((k + 1)/n) = B(k/n)|/(k/n)"*".
Also, since (k + 1)/2n < k/n, wehaveforanyl < k<n-1
n’|u,((k +1)/n) = B((k + 1)/n)|/(k/n)
< n’lu,((k+1)/n) = B,((k +1)/n)|/((k + 1)/2n)

Hence, by the just presented inequalities, for B{", of (2.15) we have
ny|un(s) - Bn(s)|

1/2—v

1/2-v

B, <3227 sup

1/n<s<1 s7r 41
n’| B,((k + 1)/n) — B,(k/n)|
+ max o
(2.18) 1<k<n-1 (k/n)
n’|B,(s) — By(k/n)|
+ : u .U
lsll?sar)z(—lsup (k/n)l/Q—V s€ [ k.n k+1,n)

=3 22AD 4 1 + CY + DO,
By (2.3) we already have that

(2.19) AY, = 0p(1) when0 << .
Next we show that

(2.20) Ch, = 0p(1) when0<w»< 3,

and ‘

(2:21) Do, = Op(logn) whenv =1,

0,(1) when0 <» < 1.
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In order to verify (2.20), choose any 0 < » < §,and d > 0, and set 0 < 1 — »
= a. Then

n

P{C®, >d} <

n,v =

P{n’|B,((k +1)/n) = B,(k/n)|/(k/n)""*"" > d}

S
—

< k§1P{|B,,((k +1)/n) = B,(k/n)| = n~"/* dk*}

<Ad'Y ke TR/8 .= p(d),
k=1

where the last inequality is by (1.11). Since P(d) — 0 as d — oo, we have (2.20).
Towards the proof of (2.21), choose any 0 < » < * and set § = (1 — »)/2. For
anyl<k<n-—1land b>0let

Cff,)n = k2s+1/2/n,
and
I, (6) = [k/n = 3bcf?), k/n + 3be],

and write
E, (b)=  max sup{n’|B,(s) = B,(k/n)|/(k/n)"*": s € I, ,(b)}.
<k=zn-1
We will first show that for any sequence of positive constants b,

OP((b,,log n)1/2) when » = 1
0,(by?) when0 < » < L.

(2.22) E, (b,) = {

We haveforan0 <» < Jand d> 0

P(E, (b,) = d(3b,)""}

n—1
< P{ sup |B,(s) — B,(k/n)| > d(3bn)1/2k1/2"’n_1/2}

s€l ,(b,)

= TP s [B(s) = B(k/n)]| = dlsbef) )
k=1

s€l, a(b,)
n—1
< Ad71 Z k—aefdzkz"‘/S,
k=1
where, with a = { —» — 8 = J(1 — »), the last inequality is by (1.11).
When 0 < » < {, then a > 0, and so the latter sum of (2.23) is bounded above
by

Ad™' Y ke ¢F/8 = P (d).
k=1

Since P(d) — 0 as d — oo, we have now verified (2.22) when 0 < » < 1.
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When v =1, let d=(8logn)/2 In this case the sum of terms on the
right-hand side of the last inequality of (2.23) is bounded above by

A(8log n) " ?ne e = 4 /(8log n)"?,

which in turn verifies (2.22) when » = 1.

Now we can complete the proof of (2.21). Choose any 0 < » < §, b > 1, and set
8 = (3 — v)/2 as above. For each 1 < k < oo set A, = bk??, and note that

kl/Z}\k/n — bc;;s')n.
By the latter line and (2.12) we get
n n
Y P{U, , — k/n| > bed)) <2 Y eMu/10
k=1 ol

=2 Y e g, (b).
k=1

(2.24)

Thus, with probability larger than or equal to 1 — @, ,(b), we have for every
l<k<n-1

k/n—bef®, < U, , < Uy ,<(k+1)/n+bc, ,.
Since 0 < 28 + § < 2, we have for every 1 < 2 < n — 1 that
(k + 1)28+1/2 < B28+1/2 1] < 2k28+1/2,

and since b > 1, also that 1/n < bef®),.
Therefore, with probability larger than or equal to 1 — @, ,(b),

[Uk,rn Uk+l,n) c Ik,n(b)’
- for every 1 < k < n — 1. Hence, for every choiceof 1 <b< 0 and 0 <» < §
(2.25) D < E, (b)

with probability larger than or equal to 1 — @, (b).
Now when 0 < » < §

(2.26) Qn, (b)) <2 X e7*/:= Q,(b),
k=1
which converges to zero as b — oo. Thus, since by (2.22)
En,v(b) = OP(l)
for each fixed b, for 0 < » < § we can conclude that
(2.27) DY), = O4(1),

by (2.25) and (2.26). .
Finally when » = 1, for each n > e we let b = 20log n. Then for each n > 3

[cf. (2.24)]
(2.28) @,n.1/4(20l0g n) < 2ne?'°6™ = 2n~ "
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Now by (2.22) we have

E, ,(20logn) = Op(logn).
Therefore, by (2.25) combined with (2.28) and the latter line, we get
(2.29) DY, 4 = Op(logn).

Next by (2.27) and (2.29) we get (2.21), and the latter combined with (2.19) and
(2.20) gives (2.17) via (2.18). Having now proven (2.17), the latter via (2.15) and
(2.16) renders also (2.13) true.

The proof of (2.14) is mutatis mutandis in notation, exactly the same as that
of (2.13). The latter two in turn imply (2.7) and (2.8), and the proof of Theorem
2.2 is now complete.

The following corollary to Theorem 2.2 will be useful later on.

COROLLARY 2.1.  On the probability space of Theorem 1.1 we have for every
0<A<ooasn— o

n’|a,(s) — B,(s)] Op(logn) whenv =1,
(2 .30) sup e —
An<s<l1 s 0p(1) when 0 < v < 1,
n’la,(s) — B,(s)] Op(logn) whenv=1,
(2.31) sup s _ 1
oss<i-A/n (1 —s) Op(1) when 0 < v < 1,
and
n’|a,(s) — B,(s)] Op(logn) whenv =1,
(2.32) sup i = 1
Mnsssi-a/n (s(1 = s)) 0x(1) when 0 < v < 1.

ProoOF. First we note that (2.30) and (2.31) together imply (2.32). We will
only provide a proof of (2.30). The proof of (2.31) uses the same techniques. In
order to prove (2.30), by (2.13) it is enough to show that for any A > 0 and
0<v< i, wehaveas n -

v _ B _1

(2.33) sup n |an(s1) - (5| _ A0 |- Op(log n), y=1
A/n<s<1 si/2mv ’ 0p(1), 0<rv<i.
We observe that the left side of (2.33) is bounded above by
n*a,(s)| n’| B,(s)|
sup Y e + sup s
(2.34) A/ <5<y, S A/ MAU, <5<y, S
n’la,(s)— B,(s
+ sup l2a(s) (s)] =A,,+B,,+C, ,.

1/2—v»
U, n<s<1 $ 4
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We have
(2.35) A, , <n T\ 2 UNETY + gt 2ULEY 4 NV 200 .
Since nU, , — 5 an exponential rv with mean 1, we get
(2.36) Uy, = Op(1/n)
and
(2.37) 1/U, , = Op(n).

Hence the right-hand side of (2.35) becomes
n'- 1/20P(n1/2_") + n"+1/20p(n_1/2_") + N 1/2OP(1) — OP(I).

Thus
(2.38) A, , = 0p(1).
In order to show that
(2.39) B, , = Ox(1),

on account of (2.36) and (2.37) it is enough to establish that for every 0 <a < b
< 0

sup n’|B,(s)|/s'/%

a/n<s<b/n
<a’ "% sup n'?B,(s)| = 0p1).
a/n<s<b/n
The latter in turn follows from a straightforward argument based on (1.11).
Finally we note that
C,,<UY? sup n’la,(s) — B,(s)|,
0xs<l1

which by the fact that U;,'* = Oy(1) and by (2.6) implies

3 OP((log n)"*(loglog n)" 4) , v
OP(l)r 0
Combining now (2.38), (2.39), and (2.40), we get (2.33) via (2.34), and (2.30)

itself is now proved by (2.33) and (2.13) combined. This also completes the proof
of Corollary 2.1. 4

1
4

(2.40) C,.,

IIA

v <

-

Concerning «,, in addition to Theorem 2.2 and Corollary 2.2, the following
result will be also useful later on.

COROLLARY 2.2. On the probability space of Theorem 1.1 we have as n = oo

(2:41) sup n'*|a,(s) — B,(s)|/(A,logn)"* -1,

O0<sx<1

where A, = sup, _ , .1|2,(8)}
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Proor. The proof follows directly from (2.1) in combination with the follow-
ing result of Kiefer (1970)

sup n'/%a,(s) — u,(s)|/(Alogn)"? >pl.

O0<s<l1

We note in particular that (2.41) implies
(2.42) sup n'/*|a,(s) — By(s)| = Op((log n)""?),

O<s<l1

and that the (log n)!/?2 rate in the O, term is exact.

The results of this section immediately imply the following “weighted Kiefer
phenomenon.”

COROLLARY 2.3. Forany 0 <» < §{ and XA > 0 we have

sup  nla,(s) —ua(s)|/(s(1 )" = 0p(1).
A/n<s<l-A/n

3. Sup-norm convergence of the uniform quantile and empirical
processes indexed by functions. In the Abstract we have already mentioned
that our improved approximation theory of the uniform quantile and empirical
processes is also going to be useful for proving invariance principles for these
processes indexed by functions. Indeed, the theorems of Section 2 will be essential
to our approach to these types of problems.

Before we state and prove our theorems, we introduce the following conven-
tions concerning integrals:

When 0 < a < b <1 and g is a left-continuous and f is a right-continuous
function then

fabfdg= f[a’b)fdg and fabgdf= f(a,b]gdf,

whenever these integrals make sense as Lebesgue—Stieltjes integrals. In this case
the usual integration by parts formula

[tde + ['sdt = ()1(b) - g(a)i(a)

is valid.
For any Brownian bridge {B(s); 0 < s < 1}, and with 0 <a < b <1 and the
functions f and g as above we define the following stochastic integral

[[1(s) aB(s) = f(8)B(b) ~ F(a)B(a) ~ [*B(s) df(s)

and the same formula for g replacing f.

If g or f are not finite at at least one of the endpoints then the corresponding
integrals are meant as improper integrals whenever they are finite in the
nonstochastic case and almost surely finite in the stochastic case.
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Towards introducing our functional invariance theorems for u,, let 2, (n =
1,2,...) denote any sequence of classes of functions ¢ defined on [1/(n + 1), n/

(n + 1)] such that
(R.1) each 2€ %, can be written as #=4, — 4,, where 2, and 2, are

nondecreasing right-continuous functions defined on [1/(n + 1), n/(n + 1)], and
with ¢, = (logn)?/n

(R.2) M[(e,) =0(1), n-— o,
where

M,(e,) = sup sup {(|¢1(s)| +]2,(s)| +]2,(1 — s)| +]2,(1 — s)|)sl/2}.
LeR, 1/(n+1)<s<eg,

THEOREM 3.1. Let %, (n = 1,2,...) be any sequence of classes of functions
4 as above, satisfying (R.1) and (R.2). Then on the probability space of Theorem
1.1

= 0p(1).

(3.1) D,:= sup
LER,

[ () du(s) = [ a(s) dB(s)
1/(n+1) 1/(n+1)

Proor. We claim that (R.2) implies that
(R.3) sup sup (|2,(8)| +]25(s)]) = o(n/?/(log n)).

LER, e,<s<l—¢,

In order to see this, we observe that, since ¢, and %, are nondecreasing, we have

sup <|¢1(3)| +"&2(s)|) = (Ml(sn)l +24(e,) | +]2,(1 - en)| +25(1 - En)l)

e, <s5<1—¢g,
< M,(e,)/e/? = o(n'2/(log n)),

and (R.3) is verified.
We will from now on assume without loss of generality that each 2 € 2, is

nondecreasing. We observe that by applying integration by parts we have

[2(s)(u,(s) - B,,(S))]ln//((::f)) - '/;’/l(/’(::—i)l)(un(s) — B,(s)) d#(s)

D, = sup {

1eR,

< sup {]2(n/(n + D)) (u,(n/(n +1)) = B,(n/(n + 1)))|

+2(1/(n + D)) (,(1/(n + 1)) = B,(1/(n + D))}

+ sup | [ N u,(s) - By(s)) da(s)
rean, |V1/(n+1)
= AD + AD,
First we note that
AD < M, (e,) sup |ua(s) — By(s)|/(s(2 — s))'"%.

1/(n+1)<s<n/(n+1)
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Now taking A = 1 in (2.2) and using (R.2) we get
Mn(en)OP(l) = OP(l)'
Hence
A = o,(1).

Next consider

" (u,(s) - By(s)) da(s)

A? < sup f

2LER, "€,

+sup | [ (u,(s) = B,(s)) da(s)
rex,1V1/(n+1)

+ sup | [ u,(s) - By(5)) da(s)
LeR,|"1—¢,

= AD 4 AD 4 AD),
First observe that
A(r? < ;ug (I/L(en)l +|¢(1 - en)l) sup |un(s) - Bn(s)l’
€ n

0<s=<1
which by (2.1) and (R.3) is equal to
o(n'/2/log n)Op(log n/n'’?) = op(1).
Hence
AD = 0,(1).

Choosing any 0 < » < 3, we see that

e"
A? < ( sup f n"‘sl/2"d¢(s))
ver, V1/(n+1)

v 1/2—v
X sup n’|u,(s) — B,(s)|/(s(1 — )",
1/(n+1)<s<n/(n+1)
which by (2.2) with A = { equals
(3.2) { sup fs" n"‘sl/2"’d¢(s)}Op(1).
rem, 1/(n+1)
Applying integration by parts, we have
A E———
ser,’1/(n+1) rem,

-4 - v)f:/"( +A1)s‘1/2"’n"’¢(s) ds}
n

<3M,(e,) + (3 = »)My(e,) [ 571 n7vds

1/(n+1)

< (3+2(3 —»)/7)M,(e,).
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Hence by (3.2) and (R.2)
A? = o,(1).
It can be shown in a similar way that
AR = op(1),
and hence
AD = op(1).
Thus we have established (3.1) and the proof of Theorem 3.1 is complete.

The next corollary to Theorem 3.1 is immediate, and it is going to be useful in
situations where the class of functions 2 of #,, are defined on (0,1) and %,, itself
remains fixed in n.

Let 2 be a class of functions ¢ defined on(0, 1) such that

(R.Y") each 4 can be written as 2 = 4, — 4,, where %2, and %, are nondecreas-
ing right-continuous functions defined on (0, 1).

Let for0 <8 < 1

M(8) = sup sup {(|0(s)] +]aa(s)] +]n,(1 = 8)] +]a,(1 = 8)[}5'7%).

COROLLARY 3.1. Let % be any class of functions ¢ as above, satisfying (R.1")
and such that

(R.2%) limM(§) =
8510

Then on the probability space of Theorem 1.1

(33) D= sup| [V "als) duy(s) = [ () dB,(s)| = 0plD).

1eER

Our next theorem is an analogue of Theorem 3.1 for the empirical process «a,,.
Towards introducing such an analogue, let %, (n=1,2,...) denote any se-
quence of classes of functions ¢ defined on (0, 1) such that

(L.1) each /€ %, can be written as £= ¢, — £,, where ¢, and ¢, are nonde-
creasing left-continuous functions defined on (0,1), and there exists a positive
nonincreasing function L defined on (0, 1] slowly varying near zero such that
with 8, = (log n)/n'/?

(L.2) N(3)=o0(1), n- o,
where ‘
(5 )= sup sup (e +las)] +1a0 - s) +140 - $))s*2/L(s)}.

THEOREM 3.2. Let %, (n=1,2,...) be any sequence of classes of func-
tions ¢ as above, satisfying (L.1) and (L.2). Then on the probability space of
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Theorem 1.1

1 _ 1-1/n s s
sup | [1¢(s) da(s) = [’ *"¢(s) dB,(5)

(34) E, = T = 0p(1).

PROOF. Proceeding as in the proof of Theorem 3.1, it is easy to show that
(L.2) implies

(L3)  sup sup (|4(s)] +]|4(s)]) = o(n/*/(log n)"?).

e, b,<s<1-8,

We will from now on assume without loss of generality that each /< &£, is
nondecreasing. Consider

< sup | [T "¢(s)da(s) = [T e(s s n
B, sup |1 V725 de(s) [ "ete) a0 0
1/n 1
+§:§n/0 ¢(s) da,(s) /L(l/n) + lseungn _/lil/n/(s)dan(s) /L(l/n)

=EN+ E®+ E®.

Now the proof of the fact that E{" = o0(1) proceeds, with minor changes of

details, much as the proof that D, = o(1), except that (2.42), (L.3), and (2.32) are

used instead of (2.1), (R.3), and (2.2). For the sake of brevity we omit the details.
We will now show that E? = 0,(1). We have

sup n1/2/1/nl/(s)lds sup nl/Qfl/nl/(s)ldGn(s)
o o % 0 A 0
" L(1/n) L(1/n)

= DV + D@,
First we note that

DY < N(8,)n"* [/"L(s)s '/ ds/L(1/n).
0

Since L is slowly varying at zero,

n‘ﬂfl/nL(s)s“/2 ds/L(1/n)—>2 asn - oo
0

[cf., e.g., Theorem 1.2.1 on page 15 of deHaan (1970)]. Hence by (L.2)
DV = 0p(1).
Next we observe that
n
D? < N(8,) X L(U, ,)U;;/*I(U;, , < 1/n)/L(1/n)
i=1

< N(8,)K,L(U, ,)(nU, ,)"**/L(1/n),
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where the last inequality is due to w~'/2L(u) being nonincreasing, and K, =
nG,(1/n).
We claim that

L(U,,,)/L(1/n) = Ox(1).

Since L is nonnegative and nonincreasing, and since by (2.37) P{U, , > A/n}
tends to one as n — oo and A |0, it is enough to show that for every 0 < A < 1
L(A/n)/L(1/n) = O(1).

This last statement follows from the assumption that L is slowly varying near

zero and the above claim is proven. Noticing also that K, = Ox(1), we have in
combination with (2.37) again that

D = N(8,)0p(1) = 0p(1).
Hence, as claimed above,
E® = 0p(1).

In the same way it is shown that E$® = o,(1). Thus the proof of Theorem 3.2
is now complete.

In many practical situations the classes of functions .%, remain fixed for all 7.
In these situations the following corollary is going to be useful.

Let & denote any class of functions ¢ defined on (0, 1) such that

(L.Y’) each ¢ can be written as /= ¢, — ¢,, where £, and ¢, are nondecreasing
left-continuous functions defined on (0, 1).

Let L be a positive nonincreasing function defined on (0, ;] slowly varying
near zero and define

N(8) = itelgoiups{(lfl(S)l +|4(s)| +]4:(1 = 5)| +|4(1 = s)|)s¥/%/L(s)}.

The following corollary follows immediately from Theorem 3.2.

COROLLARY 3.2. Let & be any class of functions ¢ as above, satisfying (1.1")
and such that

(L.29) (131&N(8) =0.
Then on the probability space of Theorem 1.1
[l¢(s)day(s) = ["¢(s) dB,(s)
0 1/n

= o0p(1). .

Our next goal is to replace the limits of integration 1/(n + 1) and n/(n + 1),
respectively 1/n and (n — 1)/n, by 0 and 1 when integrating with respect to the
Brownian bridges B, in (3.3), respectively in (3.5).

A function g defined on (0, 1] is going to be called positive if inf, _, _, »q(s)
>0forall0<é< 3.

/L<1/n>

E, = sup
(3.5) ey
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A function w defined on (0, 1) is going to be called positive if infs_  _,_sw(s)
>0forall0 <8< 3.

Let g be any positive function defined on (0, ], nondecreasing in a neighbour-
hood of zero. Such a function ¢ will be called an Erdés—Feller-Kolmogorov—
Petrovski (EFKP) upper-class function of a Brownian bridge {B(s); 0 < s < 1} if

(3.6) limsup |B(s)|/q(s) < o, as.
sl0

REMARK 3.1. We note that, by the usual representation of a Brownian bridge
in terms of a standard Wiener process [cf., e.g., the proof of (1.11)], ¢ is an EFKP

upper-class function of a Brownian bridge if and only if it is an EFKP upper-class
function of a standard Wiener process.

REMARK 3.2. A routine application of Blumenthal’s 0-1 law [cf. Itd and
McKean (1965)] shows that (3.6) holds if and only if there exists a constant
- 0 < B < o such that

(3.7) limsup|B(s)|/q(s) =B, as.
s]0
An EFKP upper-class function ¢ of a Brownian bridge will be called a
Chibisov—O’Reilly function if 8 = 0 in (3.7).
We introduce the following integrals:

(3.8) E(g,c) =[5~ (s)exp(~es"lg(s)) d,
and
? (3.9) I(q,c) = ./él/zs_lexp(—cs‘lqz(s)) ds

for some constant 0 < ¢ < 0.

The integral E(gq, c) appeared in the works of Kolmogorov, Petrovski, Erdés,
and Feller. For details we refer to 1t6 and McKean (1965, Section 1.8).

The integral I(q, c) appeared in the works of Chibisov (1964) and O’Reilly
(1974).

PROPOSITION 3.1. (i) Whenever the integral I(q, c) < oo, then E(q,c + ¢€) <
oo for any € > 0 and q(s)/s/? > o0 as s |0.
(ii) Whenever E(q, c) < o0 and q(s)/s/? > « as s 0, then I(q, ¢) < co.

This proposition and the next two theorems are proved in the Appendix of this
paper.

It is well known that the classical EFKP test gives a criterion, in terms of the
integral E(gq, c), for g to be an upper-class or lower-class function of a Brownian
bridge, provided we assume that ¢(s)/s'/? is nonincreasing in a neighbourhood
of zero. The latter condition is unnatural when talking about upper-class results
only (it might, in fact, be superfluous even for the lower-class result; see our
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conjecture at the end of the paper), and this very condition has created some
confusion in the literature and has led to separating the EFKP upper-class result
from that of O’Reilly (1974). Part of this confusion, and errors in the literature in
connection with it, were cleared up in Section 2 of M. Csorgd, S. Csorgs, Horvath,
and Mason (1985). However, at that time, we could not connect the said two
upper-class results. Proposition 3.1 above makes the connection between the
two integrals figuring in the mentioned two results and leads to the next two
theorems. The real message of these two theorems is that there is only one
characterization of upper-class functions. In addition to this message, the first of
them (Theorem 3.3) in itself provides an interesting addendum to the classic
EFKP upper-class result through neither requiring the continuity of g nor the
mentioned monotonicity of ¢(s)/s'/? near zero, while the second one of them
(Theorem 3.4) is an extension of Q’Reilly’s (1974) Proposition 2.1 for possibly
discontinuous ¢ functions.

THEOREM 3.3. A function q is an EFKP upper-class function of a Brownian
bridge if and only if the integral 1(q, ¢) < o for some ¢ > 0 or, equivalently, if
and only if the integral E(q, c) < oo for some ¢ > 0 and lim oq(s)/s'/* = .

THEOREM 3.4. A function q is a Chibisov—O’Reilly function if and only if the
integral 1(q, c) < o for all ¢ > 0 or, equivalently, if and only if the integral
E(gq,c) < o forall ¢ > 0 and lim, ,q(s)/s'/? = 0.

Now we are in the position of further studying the statement of (3.3) and that
of (8.5) as promised above.

Let Z be a class of functions 2 defined on (0, 1) such that they satisfy (R.1),
and let q,,, ¢,5, ¢4, and g,, be any positive functions defined on (0, 3],
nondecreasing in a neighbourhood of zero, and assumed to be left-continuous. For
§ > 0 and small enough so that the {q;;} (i = 1,2; j = 1,2) are already nonde-
creasing on (0, 8], we define

(3.10) M®(8) = sup [*(2,(s)| dgyi(s),
2ex”0

]
(3.11) M®(8) = sup [|2,(1 — 5)|dazi(s),
24ex’0
i=12 2=12 —12,€(RY)
COROLLARY 3.3. Let # be any class of functions 4 as above, satisfying

(R.Y), and let the {q;;} (i =1,2; j=1,2) functions be also as above. If these
{q:;} functions

(3.12) are EFKP upper—cl(;tss functions of a Brownian bridge and

3.13 li MO(8) =0,
(3.13) lim max M, (8)
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or if they
(3.14) are Chibisov—0’ Reilly functions and
(3.15) lim max M{(8) <M < oo,

8l01<i, j<2

then on the probability space of Theorem 1.1 we have, as n = o,

[l”/‘“%(s)du,,(s) - j(;li(s)dBn(s)

/(n+1)

(3.16) D, = sup = 0p(1).

reR

ProoF. We first note that we have

(3.17)  limsup max sup (|2,(s)|gu(s) +[2,(1 = 8)]gaui(s)) = v,
810 ek 1<i<2 g<cs<s
where y = 0 if (3.13) holds true, and 0 < y < oo if (3.15) holds true. Hence (3.17)
in combination with lim_ | ,q;,(s)/s'/* = oo implies (R.2"), which in turn implies
that Corollary 3.1 is true under our present conditions. [We note that condition
(3.12) is to be interpreted via Theorem 3.3 and that of (3.14) via Theorem 3.4.]
Thus, in order to prove (3.16), it suffices to show that, as n — oo,

+

) = op(1).

[1 a(s)dBy(s)

n/(n+1)

(3.18) sup (

[ Pa(s) dB(s)
e 0

We will only demonstrate that

(3.19) 8, = sup | [ "u(s) dB,(s)| = 0p(1),
1210
for a similar argument yields also that
sup fl 2(s) dB,(s)|= 0p(1).
tex!n/(n+1)

From now on we will assume without loss of generality that each 2 € Z is
nondecreasing. Consequently, when demonstrating (3.19) one generic ¢ function
will suffice in its proof. Towards (3.19) now, we observe that by applying
integration by parts we get

= B,,(s) oh 1/(n+1)
e {“S)q(s) o B,,(s)«u(s)}
(320) 1B,(s)] -
s 0<s<(n+1)7! q(s) )(221;0<s:3£_1)_1|¢(3)|Q(8))

+ sup f‘nﬂ)-an(s)di(s)
2ex!1v0

= 2
= AD + A,
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|

{a()as)igr=o" = [ (s) da(s))

Now

s s Bs)l/a(s))| sun| [ a(s) )

O<s<(n+1)7!

IBn(s)l ( )
= sup ——— || sup ,
O<s<(n+1)! q(s) Len

where the latter integration by parts equality is on account of taking n large
enough so that ¢ is already nondecreasing on (0,1/(n + 1)]. Hence, for large
enough n,

s <( sp (Bs)/a)){sw  sup [a(s)lals)

0<s<1/(n+1) 1e£0<s<1/(n+1)

1/(n+1)
+sup [ Va(s)  da(s) -
tex”0

Assuming now (3.12) and (3.13), by (3.7) we conclude that
(3.21) sup  |B,(s)|/q(s) = 0p(1), n— o,

0<s<l/(n+1)

Condition (3.13) implies that [cf. (3.17)]

(3.22) sup sup  |2(s)|q(s) = 0(1), n- o,
e 0<s<l/(n+1)

and that

(3.23) sup f‘/‘” "l4(s)|dg(s) = o(1), n - oo.

’te%‘

Hence by (3.21) and (3.22) A)) = 0,(1), and by (3.21), (3.22), and (3.23) A? = o(1).
Thus (3.19) is now proved under the conditions (3.12) and (3.13).
When assuming (3.14) and (3.15), by (3.7) with 8 = 0, we conclude that

(3.24) sup  |B,(s)|/q(s) = 0p(1), n— 0.
O<s<l/(n+1)

Condition (3.15) implies that [cf. (3.17 )]

(3.25) sup sup  |z(s)|g(s) = O(1), n— oo,
e 0<s<1/(n+1)
and that .
1/(n+1)
(3.26) sup j | ( )dg(s) = O(1), n— .
’te%’

Consequently by (3.24) and (3.25), AD = o,,(l), and by (3.24), (3.25), and (3.26),
A® = o,(1). Thus (3.19) is now proved under the conditions (3.14) and (3.15).
This also completes the proof of (3.18) and also that of Corollary 3.3.
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Towards our goal to replace the limits of integration 1/n and (n — 1)/n by 0
and 1 in (3.5), let .Z be a class of functions ¢ defined on (0,1) such that they
satlsfy (L.1), and let q,;, @15, @31, and g4, be any positive functions defined on
(0, 31, nondecreasing in a neighbourhood of zero and assumed to be right-continu-
ous. For § > 0 and small enough so that the {q;;} (i = 1,2; j = 1,2) are already
nondecreasing on (0, 8], we define .

(3.27) NO(3) = sup [*|4(s) | dau(s),

(3.28) NE(8) = sup [*|4,(1 - 5)|dgai(s),
ey 0
i = 1’ 2: = fl - /2 € (Ll,)

COROLLARY 34. Let % be any class of functions ¢ as above, satisfying
(L.1"), and let the {q,;} (i =1,2; j=1,2) functions be also as above. If these
{q.,} functions

(3.29) are EFKP upper-class function of a Brownian bridge and

(3.30) lim max N{)(8) =0,
810 1<i, j<2
or if they
(3.31) are Chibisov-O’Reilly functions and
(3.32) lim max N(8) <N < o,
810 1<i, j<2

then on the probability space of Theorem 1.1, we have, as n — oo,

"¢(s) da,(s) — /0 '¢(s) dB,(s)

(3.33) E, =su = 0p(1).

tey|v0

Proor. We note that we have

(3.34)  limsup max sup (|4(s)lgu(s) +|4(1 — 5)|gzi(s)) = v,

810 pepl<i<2gcg<p
where y = 0 if (3.30) holds true, and 0 < y < o0 if (3.32) holds true. Hence (3.34)
in combination with limg, 4g(s)/s'/? = oo implies (L.2’) with its L(s) = 1. This
in turn implies that, under our present conditions, Corollary 3.2 is true with
L(1/n)=1 in (3.5). Thus, in order to prove (3. 33), it suffices to show that, as
n — oo,

fol/n/(s)dB,,(s) ) = op(1).

sup (
tes

+ f( n_n/,f(s) dB,(s)

The rest of this proof is similar to that of Corollary 3.3 and we omit the
details.
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4. Applications

4.1. A probabilistic proof of the sufficiency part of the normal convergence
criterion. One of the classical central limit theorems of probability theory is the
following result of Feller, Hinchin, and Lévy [cf. Gnedenko and Kolmogorov
(1954, page 172)]:

THEOREM 4.1.1. Let X, X, X,,... be independent nondegenerate rv with
common distribution function F. There exist sequences of constants {A,} and
{C,} (n=1,2,...) such that

(4.1.1) An( 3 X, - c,,) > N(0,1)

i=1
if and only if
(4.1.2) ?P{|X|=2x}/E(|X|(|X|<x) >0 asx— co.
We show here the fact that (4.1.2) implies (4.1.1) is a consequence of Corollary
3.2

Assume (4.1.2). In this case E|X| < co [cf. Rényi (1970), page 455)]. Write
p = EX and let @ be the quantile function of F. We observe that

[los) day(s) = n*{n £ @) =)
which is equal in distribution to
nl/z(n‘1 Xn‘, X, - u).
i=1
Let = {Q)}. Since @ is a nondecreasing left-continuous function defined on
(0, 1), we see that £ satisfies (L.1’). For 0 < s < ; write
o%(s, Q) = fsl“"‘/s”(u A v — uv) dQ(u) dQ(v).

Since F is a nondegenerate distribution function, we can choose a 0 < b < § such
that ¢2(b, Q) > 0. Let ,
o(s, for0 <s < b,
Loy - [
0(b,Q) forb<s<].
It is shown in M. Csbrgd, S. Csorg6, Horvath, and Mason (1986) that (4.1.2)
implies that '

(4.1.3) L is slowly varying near zero
and
(4.1.4) sV |Q(s)|+1Q(1 —s)|}/L(s) >0 ass|O.

Thus % also satisfies (1.2") of Corollary 3.2 with the above L. Hence by the
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latter corollary’s (3.5) we have

[[@s) da(s) = [ "Q(s) dB(5)|/LO/m) = 0pl1), > o0,

Next we show that

(415) [ "Q(s) dB,(s)/L(1/n) > 5N (0,1).
1/n .
Write
Z,=@U)I(1/n<U<1-1/n),

where U is a uniform (0, 1) rv. Let

Q(1 - 1/n), l1-1/n<s<1,
K, (s) = (Q(s), l/n<s<1-1/n,
Q(1/n), 0<s<1/n,

and set Y, = K, (U). We note that
Var(2,/L(1/m)) = Vas{ [!/"Q(s) dB,(s)/L(1/m),

and, since K, is a nondecreasing left-continuous function on (0, 1),
Var, = [ ['(un v - uv) dK(u) dK ()
0 Jo
=0’(1/n,Q),

which equals to L?(1/n) for all sufficiently large n. In order to show (4.1.5), it
suffices to demonstrate that

1-1/n
Q) dB()) oz
= - 1’
L(1/n) Vary,

1/n

(4.1.6) Var

We note that by Minkowski’s inequality
[(VarZ,,)l/2 —(Vary,)"? ’/(Var Y,)"?

(4.1.7) < (E(Y, - 2,))""*/L(1/n)
= (a/n)(Q%*(1/n) + Q*(1 — 1/n)))*/L(1/n),

which by (4.1.4) converges to zero as n — oo. Thus we have (4.1.6), which in turn
implies (4.1.5). Hence (4.1.1) is true with A, = 1/(n'/2L(1/n)) and C, = np.

The reader is referred to Root and Rubin (1973) for an alternative probabilis-
tic proof of the normal convergence criterion.

4.2. Weak convergence of the uniform empirical process in weighted sup—norm
metrics and beyond. Let g be any such real valued positive function on (0, 1) for
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which we have

(4.2.1) limg(s) = limg(s) = oo.
sl0 sT1
Our first result is an immediate corollary to Theorem 2.2.

COROLLARY 4.2.1. On the probability space of Theorem 1.1 we have, as
n— 0,

(4.2.2) sup  |a,(s) = B(s)|/((s(1 — 5)"g(s)) = 0p(1)

lJl,nSSS(]n.n

with any function g as in (4.2.1).
Proor. By (2.8) of Theorem 2.2 with » = 0 the statement of (4.2.2) follows.

Our next statement is an analogue of Corollary 4.2.1, fashioned after Corollary
3.2. For each ¢ € (0,1), let

(s < ¢)/((¢(1 - £))&(2)) if ¢ € (0, ),
(1—I(s <)) /(81 - £)g()) itee[3,1),
where the function g is as in (4.2.1). We write

(4.2.4) B (t) = {Bn(t) fort e [1/n,1 - 1/n),
0 elsewhere,

(42.3) ¢(s) = {

where B, is a Brownian bridge for each n.

COROLLARY 4.2.2. On the probability space of Theorem 1.1 we have, as
n — oo,

(4.2.59) sup |a,(2) — B,(¢)|/((¢(1 = 1)) g(t)) = 0p(1),

0<t<1

and forany 0 < v < }

(4.2.5b) n sup |a,(t) = B,(2)|/(¢(1 = 6))* " = 0p(1).

0<t<l

ProoF. Let w(t) = (1 — t))"/’g(¢) and consider
A6) = [4(s) day(s) = [1 e (s) dB(s)|,
0 1/n

where

a,(t)/w(t) ifte(0,1),

fof‘(s)da”(s) B {—an(t)/w(t) if e [4,1),
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and
0 if0<t<1/n,
1-1/n _ ] (B,(2) = B,(1/n))/w(¢) ifl/n<t<i,
'/l/n “s) dB,(s) = (B,(1 —1/n) — B,(t))/w(t) ifi<t<l-1/n,
0 ifl-1/n<t<l.

By condition (4.2.1) the (L.2’) assumption of Corollary 3.2 is satisfied and by
(3.5) of the latter corollary we get

sup A, (t) = o0p(1), n - .

0<t<1
Hence, in order to verify (4.2.5a), it suffices to show that, as n — oo,
(4.2.6) sup | B,(1/n)]/w(t) = 0,(1)

1/n<t<1/2
and
(4.2.7) sup  |B,(1—1/n)|/w(t) = op(1).

1/2<t<1-1/n
By condition (4.2.1) we have that for any given ¢ > 0 there exists a § = 6(¢) such
that 1/g(¢) < & whenever ¢ € (0, §). Since supy ., 5| B,(1/n)|/w(¢) = op(1) for

any 8 > 0 as n — o0, and with § > 0 and ¢ > 0 as above

sup |B,(1/n)|/w(t) < n'/2(1 = n=1)""|B,(1/n)le,
1/n<t<@

we have (4.2.6). The proof of (4.2.7) goes along similar lines and (5.2.5a) is proved.
To prove (4.2.5b), in light of (2.32) of Corollary 2.1, it is enough to show that

1
forany 0 < v < ¢

AP =n" sup |a,(2)]/(¢(1 =) = 0x(1)
0<t<l/n
and
AP=n"  sup |, (8)|/(¢1 - )7 = 0:(1).
1-1/n<t<1

In particular, notice that

1 1 1/2—vp
AV < sup (nt)?V/1-0)V7 4 nGn(;)/((nUl,n)l/z_"(l - —) ),

0<t<li/n n
which is obviously Ox(1). Similarly, A‘® = Oy(1) and the theorem is proved.

While Corollary 4.2.2 is already a op(1) sup—norm convergence statement over
the whole interval (0, 1) with w(¢), ¢t € (0,1), as in its proof, we should of course
remember that B, in (4.2.5) is zero outside [1/n,1 — 1/n]. Hence if we want to
replace B, by B, in (4.2.5a), it is clear that the weight function w(-) on (0, 1) will
have to be such that

sup |B,(t)|/w(t)=o0p(1), n - 0,
O<t<l/n
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and
sup  [B(O)|/w(t) = 0p(1), 1 oo,

1-1/n<t<1
Now the latter two statements are true if and only if their weight function w is a
Chibisov—-O’Reilly function. A function w on (0, 1) is called a Chibisov—O’Reilly
weight function if w(¢) and w(1 — ¢) are Chibisov—O'Reilly functions on [0, ;]
according to our previous definition following (3.6). The definition of an EFKP
upper-class function in (3.6) is extended to (0,1) in a similar way. Consequently,
we proved the sufficiency part of the following:

THEOREM 4.2.1. Let w be a positive function on (0,1) such that it is
nondecreasing in a neighbourhood of zero and nonincreasing in a neighbour-
hood of one. On the probability space of Theorem 1.1 we have, as n — oo,

(4.2.8) sup. |l (8) = Bu(8)|/w(t) = 0p(1)

0<t<

if and only if w is a Chibisov—O’Reilly function on (0, 1), that is, if and only if
(4.2.9) Hw,e)= [ (1 = £)) exp( —c(#(1 — £)) "w(t)) dt <
0

forall ¢ > 0.

REMARK 4.2.1. According to our Theorem 3.4, the statement (4.2.8) of Theo-
rem 4.2.1 is also equivalent to

A w(t) —1
(4.2.10) E(w,c) = les—/zexp(—c(t(l - t)) wz(t)) dt < oo
for all ¢ > 0, and
(4.2.11) limw(t)t 2 = imw(t)(1 — ¢t)~ "% = .
10 £11

Theorem 4.2.1 has a long history. It was first proved by Chibisov (1964),
assuming some regularity conditions on w, and then by O'Reilly (1974), assuming
only the continuity of w, which is not assumed any more in Theorem 4.2.1. There
have been unsuccessful attempts in the literature to reprove the Chibisov—
O’Reilly theorem. For comments on these we refer to Section 2 in M. Csorgd
et al. (1985). Our Corollary 3.4 may be viewed as an indexed by functions
generalization of the Chibisov—O’Reilly theorem, or, rather, that of Theorem
4.2.1. In order to demonstrate this point, we give two further proofs of the
sufficiency part of Theorem 4.2.1 based on Corollary.3.4.

Proor (b). Let w be a Chibisov—O’Reilly function on (0,1) and write

[ I(s < t)/w(t) if £ (0,4),

(4.2.12) ti(s) = (1-I(s<t)/w(t) ifte[l,1),
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and let
‘I11(s)=Q12(s)=w(3)’ s &€ (0:%],
go(s) = goa(s) = w(1 - s), s € (0, é]

be the {g,,} (i =1,2; j = 1,2) functions of Corollary 3.4. Then it can be easily
verified that the appropriate version of condition (3.32) in our present context
holds true with the upper bound N = 1. Hence the sufficiency part of Theorem
4.2.1 is proved again.

The third proof of the sufficiency part of Theorem 4.2.1 requires also the
following lemma, which is of interest on its own.

LEMMA 4.2.1. For any Chibisov-O’Reilly function q there exists an EFKP
upper-class function q* such that lim ,q*(s)/qg(s) = 0.

Proor. Consider I(q, c) < oo for all ¢ > 0. The integrand of I(q,c) is a
continuous monotone nonincreasing function of c¢. Hence by the monotone
convergence theorem we have lim, | ,I(qg, ¢) = «. Thus we may proceed with the
following construction:

Let ¢, = 1,and A, = ;. Let ¢, = }, and define A, by

H(q,1) = [ exp( - (1/2)°¢(¢) /1) dt
and let
g*(t) =q(t), A,<t<i.
Let ¢, = min(1/2% ¢*(A, + )/g(A, — )), and define A, by
(1/22)1(q,1) = X:\St_lexp(—cgq%t)/t) dt

and let
g*(t) = cyq(t), Ay <t <A,

Continuing similarly, in general, we let
¢, = min(1/2*7", ¢*(A oy +)/g(Ns-y —))
and define A, by
(1/2*"V1(q,1) = /(:\kt’lexp( —ciq?(t)/t) dt
and let

g*(t) = c,_1q(2), Ap<t< A,

Then g*(¢) is an EFKP upper-class function, for, by definition, it is a nondecreas-



EMPIRICAL AND QUANTILE PROCESSES 67

ing function in a neighbourhood of zero, and

g*1) = ¥ [ exp(~(g(1)"/t)
k=2""¢
= ¥ [ en( -} g?(2)/2) de
E=2"2
<y f "t exp(—ci_1g?(t) /t) dt
k=2

Z 227 *I(q,1) = 21(q,1) < oo.

Also,
g*(t)/q(t) = ¢,y <2747 A, <t <A,

and this also concludes the proof of Lemma 4.2.1.

PROOF (c) OF THE SUFFICIENCY PART OF THEOREM 4.2.1. Let w be a
Chibisov—O’Reilly function on (0,1) ¢,(-) be defined as in (4.2.12). Since w is a
Chibisov—O’Reilly function, by Lemma 4.2.1 there exists an EFKP upper-class
function w* such that

(4.2.13) liil(l)w*(s)/w(s) = liiréw*(l —-s)/w(l—5)=0

Let
g:11(8) = g1a(s) = w*(s), SE(O’%]’
q12(8) = g(8) = w*(1 — 5), SE(O,é]
be the {q,;} (i =1,2; j = 1,2) functions of Corollary 3.4. Using these functions
we wish to show now that condition (3.30) of Corollary 3.4 is satisfied. We
demonstrate the latter via showing that lim,, (N{"(8) = 0. The proof of
limg, o N{2(8) = 0 is similar, while N{?(§) = N{'(8) = 0 by definition in our

present context. Without loss of generality we assume that w is a nondecreasing
function on (0, ;) and consider

N®(8) = sup f (I(s < t)/w(t)) dw*(s)

0<t<1/2
= 0<S;liri/2(w*(8 A t)/w(t))
=max{ sup (w*(t)/w(t)), sup ‘(w*(ﬁ)/w(t))}
0<t<é d<t<1,/2

< sup (w*(t)/w(t)) -0 asd o,
. 0<t<d
where the latter limit is by (4.2.13). Hence the sufficiency part of Theorem 4.2.1 is
proved again.
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PROOF OF THE NECESSARY PART OF THEOREM 4.2.1. Let w be any positive
function on (0, 1) such that it is nondecreasing in a neighbourhood of zero and
nonincreasing in a neighbourhood of one, and assume that (4.2.8) holds true with
any sequence of Brownian bridges. First we show that, if (4.2.8) holds true, then
we must have

(4.2.14) limw(s)/s"% = limw(s)/(1 - s)"* = co.
s10 st1
We will demonstrate (4.2.14) via showing that
(4.2.15) limw(s)/s% = co.
sl0

The proof for the other half of (4.2.14) goes along similar lines. Clearly,
P{G,(c/n)=0}=P{U, ,>c/n} >e°, n- oo,

for all ¢ > 0. Then by (4.2.8) and the latter line we have

(4.2.16) 1innli£fp{|3n(c/n) + ¢/n'?| /w(c/n) <&} > e

for all ¢>0 and ¢>0. Let ¢>0 be given and assume that we have
lim, _, w(c/n)/(c/n)? # . Hence there must exist a sequence of integers

{n,}, n, > oo as k - co, such that, for the given ¢ > 0,
kli_{r;o w(c/nk)/(c/nk)l/z =1 < .
Then by (4.2.16) we have
lim P{|B, (¢/n) + ¢/ni?|/uw(c/ny) < ¢

=®(en—c/?)—d(—en—c?)2e ¢

for all ¢ > 0 and the given ¢ > 0. Choosing now ¢ > 0 small enough, the latter
inequality leads to a contradiction. Hence, given (4.2.8), we must have (4.2.15)
and also (4.2.14).

Given now that we must have (4.2.14) if (4.2.8) holds true, we first conclude by

(4.2.5a) that

sup |a,(t)|/w(t) =0p(1), n— oo,
0<t<l/n .

hence we must have also that

(4.2.17) sup |B,(t)|/w(¢) = op(1).

0<t<l/n
Since B, is a Brownian bridge for each n, w(-) must be a Chibisov—O’Reilly
function. Hence by Theorem 3.4 we have also (4.2.9), or, equivalently, (4.2.10) and
(4.2.11). .

Our next theorem is the EFKP upper-class functions analogue of Theorem
4.2.1.
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THEOREM 4.2.2. Let w be a positive function on (0,1) such that it is
nondecreasing in a neighbourhood of zero and nonincreasing in a neighbour-
hood of one. On the probability space of Theorem 1.1 we have as n = o0,
(4.2.18) sup [a,() = B,(¢)]/u(?) = 04(1)

0<t<l1
if and only if w is an EFKP upper-class function on (0,1), that is, if and only if
the integ):al I(w, ¢) is finite for some ¢ > 0, or, equivalently, if and only if the
integral E(w, ¢) is finite for some ¢ > 0 and (4.2.11) holds true.

Proor. Let w be an EFKP upper-class function on (0,1). Then we have
(4.2.5a) of Corollary 4.2.2. Hence by
sup |B,(8)|/w(t) = Op(1), n— o,

0<t<l/n
and
sup | B(6)|/w(t) = O,(1), n oo,

1-1/n<t<l1
being true if and only if their weight function w is an EFKP function of a
Brownian bridge, we get (4.2.18).

Conversely, let w be any positive function on (0, 1) such that it is nondecreas-
ing in a neighbourhood of zero and nonincreasing in a neighbourhood of one, and
assume that (4.2.18) holds true with any sequence of Brownian bridges. First we
show that, given (4.2.18), then we must have also (4.2.14). We show only that
(4.2.15) holds, for the proof of the other half of (4.2.14) is similar. Given (4.2.18),
we have

P{ sup |a,(t) — B,(t)|/w(t) < K} > 1

O<t<l1

for some K if n is large enough. Consider

sup |a,(t) = B,(t)|/w(t) 2 sup (a,(t) — B,(t))/w(t)

0<t<l 0<t<1/2n
> sup (—n'%t - B,(t))/w(t)
0<t<1/2n
> sup (—27V2%Y2 - B,(t))/w(t).
0<tzl/2n

Hence, with {~B,(t); 0 <t <1} =4,{B(t); 0 £t < 1}, a Brownian bridge for
each n, we have

P{ sup (—2’1/2t1/2+B(t))/w(t)'<K};é,

0<t<1/2n

for:n large enough, and consequently,

0 |

P{limsupB(t)/(Kw(t) + 27124177 < 1} >
£10
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Now an application of Blumenthal’s 0-1 law implies that
P{limsupB(t)/(Kw(t) +271241/2) < 1} -1
tlo

Consequently, the function Kw(t) + 2~ /2172 is an EFKP upper-class function
of a Brownian bridge, which in turn implies that we have (4.2.15). .
Given now that we must have (4.2.14) if (4.2.18) is true, we first conclude that

sup |a(t)|/w(t) =0p(1), n- o,
0<t<l/n

hence we must have

sup |Bn,(t)|/w(t) = OP(1)7 n— oo,
0<t<l/n
by (4.2.18). Since B, is a Brownian bridge for each n, w(-) must be an EFKP
upper-class function. This also concludes the proof of Theorem 4.2.2.

REMARK 4.2.2. An immediate generalization of the sufficiency part of Theo-
rem 4.2.2 is that if in Corollary 3.4 we assume (3.29) and (3.32), then we obtain
(3.33) with Oy(1) instead of o(1).

Our next lemma is to augment Corollary 4.2.2, Theorems 4.2.1 and 4.2.2, and
will be useful in the sequel.

LEMMA 4.2.2. Whenever w is an EFKP upper-class function, then for each
— o0 < x < oo and any Brownian bridge B

R,(x) = P| s [B(s)l/u(s) < x)

(4.2.19)
- R(x) = P{ sup |B(s)|/w(s)$x}, n - co.

O<s<l1
Proor. Choose any —co < x < o0 For n > 2, let
Av={  sup  |B(s)l/u(s) < %]
1/n<s<1-1/n

and

A= { sup |B(s)|/w(s) < x}.

O0<s<l1
We notice that A,,, C A, (n=2,3,...) and NT.,A, = A. Hence R (x)=
P(A,)| R(x) = P(A), and (4.2.19) is proved.
‘REMARK 4.2.3. We observe that (3.7) implies
lim inf sup |B(s)|/w(s) > 8 = max(B,v) as.,

=X 1/n<s<l-1/n
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where v < oo is the corresponding limsup as s 11. This in turn implies that for
each x < 8

(4.2.20) R (x) > R(x)=0, n- oo.

We note also that if w is a continuous EFKP upper-class function, then R is
continuous on (— o0, §) U (8§, o).

THEOREM 4.23. Let w be a positive function on (0,1) such that it is
nondecreasing in a neighbourhood of zero and nonincreasing in a neighbour-
hood of one. The sequence of rv sup, . , .;|a,(8)|/w(s) converges in distribution
to a nondegenerate rv if and only if w is an EFKP upper-class function. The
latter nondegenerate ro must be the rv sup, . , .,|B(s)|/w(s).

PrROOF. Assume first that w is an EFKP upper-class function. Then by
Corollary 4.2.2 we have

P{sup la"(s)lsac}—P{ sup Msx}’=0

o<s<1 w(s) l/n<s<1—-1/n w(s)

(4.2.21)  lim

h— oo

for any Brownian bridge and — o0 < x < 0. Hence by Lemma 4.2.2 the sufficiency
part of Theorem 4.2.3 is proved.

Conversely, assume that the rv sup, . , .;la,(s)|/w(s) converge in distribution
to a nondegenerate rv. We show first that then we have

(4.2.22) liminfw(s)/s'/? > K > 0,
510
and
(4.2.23) liminfw(s)/(1 —s)"*> K > 0.
sT1

We demonstrate only (4.2.22) and note that the proof of (4.2.23) is the same.
Choose any 0 < ¢ < 1. Then there exists a 0 < ¢ < 1 and a 0 < C < o0 such that
for all n sufficiently large,

P{U, ,>c/n} 21-¢/2

and

P{ sup |a,(s)|/w(s) < C} >1—¢/2.

O<s<l1

Hence with probability greater than or equal to 1 — ¢

(4.2.24) sup |a,(s)|/w(s) < sup |a,(s)|/w(s)<C.
0<s<c/n O<s< U,

The left-hand side of (4.2.24) equals

(4.2.25) sup n2s/w(s) = ¢*%(¢/n)"?/w(c/n).

O<s<c/n
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Thus, on account of (4.2.24) and (4.2.25), we have

(4.2.26) w(c/n)/(e/n)"?> /2/C

for all n sufficiently large. The latter relationship in turn implies (4.2.22). By
(2.32) and (4.2.22) combined we get

sup |, (s) — B,(s)|/w(s) = Op(1).

1/n<s<1-1/n

Consequently, sup,,,_,.;_1/,Bu(s)l/w(s) = Op(1), n — oo, and hence
P{limsup,  o|B(s)|/w(s) < o0} = 1 on account of B, =,B, a Brownian bridge
for each n. The latter implies that w must be an EFKP upper-class function.

REMARK 4.2.4. While obvious, we should nevertheless like to note that the
result of Theorem 4.2.1 cannot imply that of Theorem 4.2.3. That is to say,
as far as convergence in distribution of sup-functionals of a,/w is concerned, a
Chibisov-O’Reilly type theorem like Theorem 4.2.1 is far from being optimal. It
excludes all those EFKP upper-class functions w from the game which are not
necessarily Chibisov—O’Reilly functions. For example, w of Theorem 4.2.3 can be
taken to be the function (s(1 — s)loglog(1/(s(1 — 5))))"/2. However, the latter
function cannot be the w of Theorem 4.2.1.

4.3. Weak convergence of the uniform quantile process in weighted sup-norm
metrics and beyond. Here we consider the problem of approximating the uni-
form quantile process u,, by B, along the lines of Section 4.2. Our first statement
is an immediate corollary to Corollary 2.1.

COROLLARY 4.3.1. On the probability space of Theorem 1.1 we have, as
n — oo,

(4.3.1) sup lu,(s) — Bn(s)l/((s(l - s))1/2g(s)) = op(1)

1/(n+1)<s<n/(n+1)

with any function g as in (4.2.1).

A direct analogue of Theorem 4.2.1 is impossible for the uniform quantile
process u,,. This is due to the fact that

sup |u,(s)]/w(s) = sup (n'210,, , = sl)/w(s)
O<s<(Uy, /23~ (1/n) 0<s<(U, /2N (1/n)
> (1/2)n'?U, ,/w(0 +) = o forall n,

for any function w for which we have lim, , qw(s) = 0.

* Naturally enough, if we redefine u, to be zero on the outside of the interval
[1/(n+ 2),(n + 1)/(n + 2)], then Theorems 4.2.1, 4.2.2, and 4.2.3 remain true
with the thus redefined u, replacing «,, in their statements.
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Following O’Reilly (1974), we can also work with the following modification u,,
of u,. Let

n'/%s, 0<s<1/(n+2),
k k+1
W(g) = { n1/2(s — =
uP(s) = n"*s—-U,,), n+2<ssn+2(k 1,...,n),
n'/%(s — 1), (n+1)/(n+2)<s<1,
0, 0<s<1/(n+2),
uP(s) = (uP(s), k/(n+2)<s<(k+1)/(n+2)(k=1,...,n),
0, (n+1)/(n+2)<s<1,

and define i, to be any one of u" and u. Then Theorems 4.2.1, 4.2.2, 4.2.3, and
their relevant remarks remain true with #, replacing «, in their statements.

4.4. The Eicker (1979) and Jaeschke (1979) results on the asymptotic distribu-
tion of the supremum of standardized empirical processes based entirely on
invariance. Let

a(x) = (2logx)l/2, b(x) =2logx + 2 'loglogx — 2" 'log 7,
a,=a(logn) and b, = b(logn).
Also, for — o0 < t < 00, let E denote the extreme value distribution
E(t) = exp(—exp(-1)).

THEOREM 4.4.1. Forany —oo <t < o0, asn—

(4.4.1) P{anosuplan(s)/(s(l s b < t} E(¢),

(4.4.2) P{anoiupllan(s)|/(s(1 )b, < t} S EX8),

(4.4.3) P{an sup u,(s)/(s(1 - s))">~ b, < t} S E(),
1/(n+1)<s<n/(n+1)

(4.4.4) P{an sup lun‘(s)|/(s(1 -s)-b, < t} - E?(t).

1/(n+1)<s<n/(n+1)

We will show here that the four statements of Theorem 4.4.1 follow entirely
from our approximation. For this purpose, we 1solate several facts as lemmas
leading up to the said proofs.

, LEMMA 4.4.1. Let e, = n Ylogn)®. For any —o0 <t < o0, as n — oo, we
have for any Brownian bridge {B(s); 0 < s < 1}

(4.4.5) P{an sup B(s)/(s(1-8)"* b, < t} S EB(2),

e, <s<l-—g,
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and

(4.4.6) P{an sup  |B(s)|/(s(1 = s))* b, < t} S EX(b).

g, <s<1l—¢g,

This lemma follows directly from the results of Darling and Erdds (1956)
[cf., e.g., Theorem 1.9.1 and Corollary 1.9.1 in M. Csérgd and Révész (1981) or
Lemma 1 in Jaeschke (1979)]. See, however, the correction of a misprint in M.
Csorgd and Révész (1981) as corrected in the proof of Lemma 4.4.3 below.

LEMMA 44.2. Forany ~oo <t < oo and ¢, as in Lemma 4.4.1, as n — o

(4.4.7) P{an sup o (s)/(s(1 —s))"*—b, < t} - E(t),

e, <8<1—¢,

(4.4.8) P{an sup |, (s)|/(s(1 —5))* - b, < t} - EX(1),

g, <s5<1—¢,
(4.4.9) P{an sup  u,(s)/(s(1 —8))"2— b, < t} = E(2),
g,<85<1—¢,
and

(4.4.10) P{an sup  |u,(s)]/(s(1 —s))"* - b, < t} - E*(t).

g, <s<1—g,

ProoF. Consider (4.4.7) and (4.4.8). Choose any 0 < » < ;. We have for large
enough n

o 1WOBOL 20 (s - B)
"eossci-e, (s(1—s)? T (logn)”  i/nss<i-im (s(1 — )

which by Corollary 2.2 equals Op (a,/(log n)3*) = op (1). Hence (4.4.7) and (4.4.8)
follow by Lemma 4.4.1. The other two statements follow in the same way using
Theorem 2.1 instead of Corollary 2.2.

a

LEMMA 4.43. Let {8,} be any sequence of positive numbers such that
1<8,<n,8, > o, and §,/n > 0 asn > oo. Let B*(s) = B(s)/(s(1 — s)'/2
Then for any Brownian bridge B, every 0 <c < oo and —oco <t< oo as
n— o

(4.4.11) P{a(log 8,) sup B*(s) — b(log8}?) < t} - E(t),

c/n<s<8,/n

(‘{-4-12) P{a(log 8,) sup. |B*(s)|- b(log8/?) < t} - E(¢),

¢/n<s<d,/n

(4.4.13) P{a(log 8,) sup B*(s) — b(log 8\/%) < t} - E(2),

1-8,/n<s<l—c/n
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and

(4.4.14) P{a(log 5) sup  |B*(s)|- b(log8?) < t} S EX3).

1-8,/n<s<l—-c/n

Proor. We prove only (4.4.11) here. The proofs for the other statements
follow the same route. Let U denote the Ornstein—Uhlenbeck process as described
on pages 55-57 of M. Csorg6 and Révész (1981). Since

(U(t); —oo <t< oo} =5{(1+e?)e B(e?/(1 +e?)); ~0 <t< oo }

[this is the correct version of (1.9.7) In M. Csorg6 and Révész (1981), resulting in
corresponding trivial changes in their Corollary 1.9.1], we have

BX( () Lo /" ¢ < tiog /™
= ;= <t<-—
c/nssgg&,/n §) = sup i c/n) = 2 o8l 1 Z 8,/nll’

which by stationarity of U is equal in distribution to
sup U(s),

0<s<y,

where
v, = (log 8, — log ¢ + log(n — ¢) — log(n — §,))/2.

Now Theorem 1.9.1 (Darling and Erdds, 1956) in M. Csorgé and Révész (1981)
implies that for any —o0 < ¢ < o0

(4.4.15) P{a(vn)ofup U(s) - b(»,) < t} S E(t), n- .

Since by our condition on 8, we have v,/log 8/> > 1 as n - 0, (4.4.11) follows
from (4.4.15).

LEMMA 4.44. Let {8,) be any sequence of positive numbers such that
1<§,<n,8,> o, and §,/n - 0 asn — . Then, asn — o,

(4.4.16) sup a,(s)/((s(1 —s5))*a(logs,)) =1,
0<s<d,/n

(4.4.17) sup  a,(s)/((s(1 ~ )" a(log,)) —p1,
1-68,/n<s<1

(4.4.18) sup  u,(s)/((s(1 ~ )" a(logs,)) =51,

1/(n+1)<s<8,/n .
and
(4.4.19) sup u'n(s)/((s(l - 5))"a(log 8n)) - pl.

1-8,/n<s<n/(n+1)

Also, the same statements hold with a,(s) replaced by |a,(s)| in (44.16) and
(4.4.17), and u,(s) replaced by \u,(s)| in (4.4.18) and (4.4.19).
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Proor. We will only provide a proof for (4.4.16). The other statements are
proven in the same way. Consider

a,(s) B,(s)
sup —  sup
o<s=<s,/n (8(1 —5))"2a(logs,) 1/m<s<s m (s(1 — 5))"?a(log 8,)

(4.4.20) - la.(s) = B,(s)]
~o<s<1 (s(1 - 5))%a(log §,)
= Op(1/a(logs,)),

where the latter equality is due to (4.2.5b) of Corollary 4.2.2. Since a(log §,) — oo
as n — oo, the first expression of (4.4.20) is a 0p(1) rv as n — oo. Now statement
(4.4.11) with ¢ = 1 implies that, as n — oo,

(4.4.21) sup  B,(s)/((s(1 - s))"a(logs,)) —p1.
1/n<s<8,/n

Hence (4.4.20) and (4.4.21) imply (4.4.16).

ProOF OF THEOREM 4.4.1. We now show how statement (4.4.1) follows from
the above lemmas. Statements (4.4.2), (4.4.3), and (4.4.4) are proven in exactly the
same way. We write

T,=a, sup a,(s)/(s(1~s))"" b,

O<s<1

T\ =a, sup a,(s)/(s(1 ~s))"" -8,

O<s<eg,
2 .— _ 12 _
Tn =a, sup an(s)/(s(l S)) bn’
£, <8<1—¢,

and

TP =a, sup a,s)/(s(1~5))""=b,

l-¢g,<s<1
Then _
T, = max{T", T?, T®}.
By (4.4.7) of Lemma 4.4.2 we see that (4.4.1) will be proven if we can show that

(4.4.22) TO 5p— 00 asn—> o
and
(4.4.23) T® 5p— o0 asn— .

Consider (4.4.22). Let 8, = (log n)®. Applying (4.4.16) we have
(4.4.24) T® = a,0p(a(log$,)) — b,.
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It is easily checked that for any constant 0 < K < o0
(4.4.25) Ka,a(log8,) — b, > —c0 asn — .
Hence by (4.4.24) and (4.4.25) we have (4.4.22). Statement (4.4.23) is proven in the

same way. Thus by the above comments we have (4.4.1).

REMARK 4.4.1. The Eicker (1979) and Jaeschke (1979) versions of (4.4.3) and
(4.4.4) read as follows:

(4.4.26) P{an sup 2(s) -b, < t} - E(t)

U pn<s<U, , (Gn(s)(l - Gn(s)))1/2

and

(4.4.27) P{a,, sup ()] —bnst}eEQ(t)

Unzs<Upn (Gu(8)(1 = G,(8))””
as n — oo. With very little difficulty it can be shown that (4.4.3) and (4.4.4) imply
(4.4.26) and (4.4.27).

4.5. Rényi-type statistics. In this section we prove the following result.

THEOREM 4.5.1. Let a, be any sequence of positive constants such that for
some 0 < B <1, we have 0 < a, < 8 for all large enough n, and na, — .
Then, as n — oo,

1 n s O<t<1

(4.5.1) P{( ilna )1/2as;1£1 (s < x} - P{ sup W(¢) < x}

and

(4.5.2) P{( - fna )1/2 sup Ianis)] Sx} - P{ sup |W(t)|5x>

n a,<s<1 O<t<l1

for any real x, where W is the standard Wiener process.

PROOF. Choose any 0 < » < +. For all n sufficiently large,

(1a_nn)1/2 |a,(s) — B(s)]

sup

- a,<s<1 s
a 172 a(s)— B,(s
S ( n ) a;1/2,,,n,,, sup n,,l n( )l/zwyn( )l
1- a, . 1/n<s<1 s

(na,) (1~ a,) "*0x1)
op(1)
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by Corollary 2.1. But for each n = 1,2, ...

{( 2n )1/23"(8):a,,5351}=@{w( on 1_8):an5351},

1-a, ] l-a,

and therefore, for each — o0 < x < o0,

e e R

a,<s<1 -—a s a,<s<1 l-a, s

= P{ sup W(t) < x>
O0<t<1
Thus we have (4.5.1), and (4.5.2) follows in the same way.

In the special case, when a, = 8, (4.51) and (4.52) are due to Rényi (1953).
[See also M. Csorgd (1967) and page 165 of M. Csorgé and Révész (1981).] The
special case of (4.5.1) when a, — 0 as n — oo is Theorem 2.8 of Csaki (1974),
while (4.5.2) with varying a, appears to be new. The left-sided versions of (4.5.1)
and (4.5.2) for a,(s)/(1 — s) can be easily formulated. The corresponding results
for u,(s)/s and u,(s)/(1 — s), which are basically for «,(s)/G,(s) and a,(s)/(1
— G,(8)), can be formulated again very easily.

4.6. Invariance principles for the increments of the uniform quantile and
empirical processes. For any 0 < ¢ < oo, let

A,(c) = Sup{ () - un(c;)(gfin)(b) B, <a<bz<1
(4.6.1)

where & is a positive function on (0,1) such that it is nondecreasing in a
neighbourhood of zero and symmetric about the point 1/2.

THEOREM 4.6.1. On the probability space of Theorem 1.1 we have for any
O0<c< o

(4.6.2) A (c)=0(1) as, n - o,
if and only if
(4.6.3) (s)/(slog(1/s))"* > o0 ass|0.

Proor. First assume (4.6.3). We observe that for any 0 < ¢ < o and n large
enough )
' A (c)<2 sup |u,(s)— B,(s)|/w(n"'clogn)

0<s<1

= O((n""2logn)/i(cn"logn)) as.
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by (2.1) of Theorem 2.1. Condition (4.6.3) implies that
1/@w(n"'clogn) = o(n'/?/logn),

and hence we have (4.6.2).
Now assume (4.6.2) for some 0 < ¢ < 0. Let

AP(c) = sup{n'/?|u,(b) —u,(a)|/clogn:0<a<b<1l,b-a=n"clog n}
and
AP(c) = sup{n'/?|B,(b) — B,(a)|/clogn:0<a<b<1l, b-a= n_lclogn}.
Then '
(4.64) A, (c) > ((n"2%clogn)/iv(cn'logn))|AD(c) — AD(c)].
Now '

AD(e) > (A,—1) as, n- o,

where A, > 1 is the unique root of the equation A + log(1/A) =1+ 1/¢ [cf.
Mason (1984) and Komlos et al. (1975b)]. By the P. Lévy modulus of continuity
for the Brownian bridge [cf., e.g., Theorem 4.1 in M. Cs6rgd and Révész (1981)]
we have

AP(¢) > p2%/c,  n > oo.

It is easily checked that for any 0 < ¢ < 0, 1 + 21/2/c is not equal to A . Thus
we have

(4.6.5) |AD(c) = AP(c)| > plA, — 1= 2Y%/c|#0, n- oo.
. Hence combining (4.6.2) with (4.6.4) and (4.6.5), we get

(n"Y%clogn)/w(ecn ogn) >0, n - o,
which in turn implies that

(n"'clog n)l/z(log(n/(c log n)))1/2
w(n~'clogn)

(4.6.6) -0, n- oo.
Using now the tail monotonicity of i, an elementary argument shows that (4.6.6)
implies (4.6.3).

REMARK 4.6.1. Komlés, Major, and Tusnady (1975a) show that on an ap-
propriate probability space with an appropriate sequence of Brownian bridges B
we have, as n = oo [cf. (0.1)],

(4.6.7) sup n'/?|a,(s) — B,(s)|= O(log n),

ﬁ., O<s<l1

Using the latter result in combination with Komlos et al. (1975b), we note that
on the probability space of (4.6.7), we have also (4.6.2) with a,, replacing u,, if and
only if (4.6.3) holds true just as easily, mutatis mutandis, as the proof of Theorem
4.6.1 above. For another proof of this statement, which uses the Skorohod
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construction and assumes that @' is continuous and strictly increasing on (0, 3],
we refer to Theorem 1.2 in Shorack and Wellner (1982), although Einmahl (1983)
has recently pointed out to us that the necessity part of their proof is in error.
Wellner has afterwards informed us that they have corrected their proof.

APPENDIX

Proor or ProposiTiON 3.1. (i) If I(g,c¢) < o0, then I(q, &) < oo for all
¢ = ¢ > 0. Hence we can assume that ¢ > 1. Any ¢ function is nondecreasing in a
neighbourhood of zero. Let (0, #] be such a neighbourhood, and consider the
following integrals on the interval (0, ¢ 4]:

fds’lexp(—cs_lq2(s)) ds > /Cts‘lexp(—ct’lqz(s)) ds
t . t

(A1) > fCts’lexp(—ct‘1q2(ct)) ds

¢
= log cexp(—c%q?(ct)/(ct)).
The left-hand side of the inequality (A.1) tends to zero as ¢ | 0, and so we get that
(A.2) limg(t)/t"/? = .
10

By (A.2), in turn, we get that for any & > 0,
q(t)/t? < exp(eq?(t)/t) if0 < ¢t < 6%,

where 6* is an appropriately chosen constant. Consequently,
8 * 9%

f t7Y(q()/8/2)exp(—(c + &)t 'q*(t)) dt < [ ¢ 'exp(—ct"'g*(t)) dt < o,
0 0

ie.,, I(q, c) < oo implies E(g,c + &) < oo for any & > 0, and this together with
(A.2) completes the proof of (i) of Proposition 3.1.
(ii) Assuming now (A.2) we have

inf ¢ V2%(t) =K >0,
0<t<1/2

and so
K~'E(q,c) 2 I(q,c),
i.e., finiteness of E(q, ¢) with (A.2) also assumed implies that of I(q, c).

- Proor orF THEOREM 3.3. By Remark 3.1 it suffices to consider the problem of
upper-class functions a Wiener process W.

Let us assume that I(q, ¢) < . Then by Proposition 3.1 we have also (A.2).
Let ¢(-) be a nondecreasing positive function on the interval (0, ]. Then for an
arbitrary division 0 <a =ty <t < --- <t,=b <1 of the interval [a, b] we
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have [cf. Itd and McKean ( (1965), page 34]
P{W(¢) > ¢(¢)forsome tin[a, b]}

s [[@ne) " s(a)exp(~4*(a)/(2t)) dt

+ Xn‘, f‘m (27Tt3)_1/2¢(tm_1)exp(—¢2(tm71)/(2t))dt. .

m=1"tn-1,
Consider now the following specific division of the interval [bA ™", b]:
t,=01/A)""b, m=0,...,n,

where A > 1 and »n is an arbitrary fixed positive integer. On account of ¢,/¢,,_,
= A, wehaveforte[t, ,¢,]
_¢2(tm—l) _¢2(tm71)
A. t™ 1% (¢ —— | < ;) %0(t —_— .
( 3) ¢( m—l)exp( (2t) mflqb( m—l)exp (2}\tm_1)

Let p be any number such that p > A. Then we have xexp(—x2/(2\)) <
exp(—x2%/(2p)) for x > K > 0 if K is sufficiently large. Let

9(t) = (20%)*q(2).
We can assume that b of [bA ™", b] is so small that
o(t)/t'? > K

on (0, b] because of (A.2). Hence for ¢t € [¢,_,,¢,] the right-hand side of the
inequality of (A.3) is bounded above by

exp( _¢2(tm—l)/(2ptmfl)) exp(—¢2(tm_1)/(2pt))
exp(—¢*(t/A)/(2pt))
< exp(—9*(¢/p)/(20t)).
Thus if b of [bA ™", b] is picked small enough, then we have arrived at
P{W(t) > ¢(t) forsome ¢ in [ BA™", b]}

< /‘O/¢2“°’(2wt3) ~exp(~1/(2t)) dt
0

IA

IA

+f *(2nt?) Y exp(— ¢%(t/p)/(2pt)) dt.
to
Using again (A.2), the latter inequality yields by letting n — oo,
P{ W(¢) > (20%)"*q(t) for some ¢ in (0, b]}
< (2m) 1/2/b/pt_ lexp( — cqz(t)/t) dt.
0

The first part of the statement of Theorem 3.3 follows by letting b | 0 on account
of having assumed I(q, ¢) < co. The latter inequality actually proves more than
what the first part of the statement of Theorem 3.3 claims. Namely, since
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p > A > 1 may be taken as close to one as we wish, we concluded that if the
integral I(q, c) is finite, then

(A.4) limsup |W(¢)|/q(t) < (2¢)"* as.
t10

Towards proving the converse now, we assume that ¢ is an EFKP upper-class
function of a Wiener process. We can assume without loss of generality that
B < 1in (3.7). On the basis of Problem 1 of page 35 of It and McKean (1965) we
have

P{W(t) > 2q(¢) for some ¢ in (0, b]} > P{W(d) > 2q(d)}
=1-®(2b2q(b)).

The left-hand side of the latter inequality tends to zero as b |0, hence we have
that (A.2) holds true for any EFKP upper-class function ¢ of W. Let us assume
that b is so small that for ¢ > 4

(A.6) P sup [W(¢)|/q(t) < &/%/2) = }

0<t<bd

(A.5)

and that ¢ is nondecreasing on (0, b]. We introduce the following notations:
b= b27/,
Lj j+1’ j] = (b2 A bz_j]
B, = {— Le/% (1) — x < W(t) - W(b)) < beq(t) — x
forall ¢in L, and forall £ = 0,1,2,..., j — 1},
A = {BW(t) — tW(b;) > 1e/2b,q(b;) — tx for some ¢ in L},
j=0,1,2,...,
and let F; be the distribution function of the rv W(;). Hence
P{W(¢t) > Le'/%q(¢t) forsome 0 < ¢ < b}

> P{ U (W(t) > 3'/%q(b;) for some ¢ in Lj)}
j=1

P{W(t) > Le'/%q(b;) for some ¢ in L; and

I
T8

1

W(t) < 1e/%q(b,) forall tin L,, k=0,1,..., j—1
2 k k

P{W(t) > 3¢'/%q(b;) for some ¢ in L; and

v
T8

—1e%q(b,) < W(1) < 3¢/%q(by)
forall tin L,, k=0,1,...,j— 1}.
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Conditioning each term in W(b;), we get
{W(t) 5€%q(b;) for some t in L; and
— 1e'/%q(by) < W(t) < Le'/%q(b,) forall tin L,, k= 0,1,..., j — 1}
= /_ P{A, and B,) dF(x).
The stochastic process {bW(¢) — tW(b,); ¢ € L} is independent of the stochas-

tic processes {W(t) — W(b)); t € L} (k=0,1,2,..., j — 1). This can be easily
justified by computing covariance functions. Hence

|7 P{a, and B} dF(x) = [ P{A,}P{B,} dF(x)

zfowP{ij}P{Bjx} dF(x).
It can be easily seen that
{W(t/b) —(t/b;)W(1); b27V*D < £ < b2/} =5 {B(2); 1< t < 1},
where B(-) is any Brownian bridge. Hence for x > 0
P{A,} > P{bW(t) — tW(b,) > Le'/*b}/%q(b;) for some ¢ in L}
= P{B(t) > 127 /%(b,) forsome t in § < ¢ < 1}
> P{B(3) > 1267 %(b,) }
> exp(—eb-‘1 2(b-))

where the latter inequality is by Feller (1968, page 175) if b is small enough
because of (A.2), which we already verified by (A.5). Consider now

[ P(By) dF(x) =} [~ P(B,)dFyx)
= tP{—1e/%q(t) < W(t) < e'/%q(t) forall tin L,
and forall £ = 0,1,2,..., j — 1}
= 1P{—1e%(t) < W(t) < 5e'/%q(t), b; < t < b}
>4,
where in the last step (A.6) was used. Hence we have
P{W(t) > Le'/%q(t) for some 0 < t < b}

> Y, [~ P{A; and By} dF(x)
jo17 e

> 1Y exp(—eb'q%(b;))
j=1
1 e b1 -1 2

>1 Z‘,f t~lexp( —2eq(£) /t) dt
j=1"4

t lexp(—2eq®(t)/t) dt

Il
N
o

>
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The latter inequality proves more than what the second part of Theorem 3.3
claims. Namely, we showed that if

(A7) limsup |W(¢)|/q(t) =B as., forsome0 < B < ©
t10

then

(A.8) I(q,c) < w0 forany c > 882.

ProoF oF THEOREM 3.4. The proof of Theorem 3.3 yields (A.4) and (A.8).
Combining the latter two conclusions with Proposition 3.1 we get Theorem 3.4.

We should note that our proof of the second part of the statement of Theorem
3.3 is a modified version of that of Proposition 2.1 of O’'Reilly (1974).

CoNJECTURE. We conjecture that (A.7) implies that I(q, ¢) < o« for any
¢ > B%/2. We already know that I(q, ¢) < oc implies (A.4). Hence, on account of
Proposition 3.1, our conjecture amounts to saying that in the EFKP upper-lower
functions integral test, as given on page 33 of It6 and McKean (1965), the
assumption that their & be continuous and be such that %(¢)/t'/? is nonincreas-
ing can be dropped.
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