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Abstract. We discuss a variational approach to abstract doubly-nonlinear evolution systems

defined on the time half line t > 0. This relies on the minimization of Weighted Energy-

Dissipation (WED) functionals, namely a family of ε-dependent functionals defined over entire
trajectories. We prove WED functionals admit minimizers and that the corresponding Euler-

Lagrange system, which is indeed an elliptic-in-time regularization of the original problem,

is strongly solvable. Such WED minimizers converge, up to subsequences, to a solution of
the doubly-nonlinear system as ε → 0. The analysis relies on a specific estimate on WED

minimizers, which is specifically tailored to the unbounded time interval case. In particular,

previous results on the bounded time interval are extended and generalized. Applications of
the theory to classes of nonlinear PDEs are also presented.

1. Introduction

We are concerned with the analysis of the Weighted Energy-Dissipation (WED) variational
approach to the abstract doubly-nonlinear Cauchy problem on the time half line t > 0 defined
as

ξ(t) + η(t) = 0 in V ∗ for a.e. t > 0, (1.1)

ξ(t) = dV ψ(u′(t)) in V ∗ for a.e. t > 0, (1.2)

η(t) ∈ ∂φ(u(t)) in V ∗ for a.e. t > 0, (1.3)

u(0) = u0. (1.4)

Here ψ, φ : V → (−∞,∞] are convex functionals defined on a Banach space V with dual V ∗, ψ
has p-growth for some p > 1, dV denotes the Gâteaux derivative, and ∂ is the subdifferential in
the sense of convex analysis from V to V ∗.

The doubly-nonlinear relations (1.1)-(1.3) stand as abstract balance systems between con-
servative and dissipative actions. The former is modeled by the subgradient ∂φ of the energy
φ whereas the latter correspond to the derivative dV ψ of the dissipation potential ψ. As such,
system (1.1)-(1.3) (possibly combined with nonzero forcing in the right-hand side of (1.1), here
neglected for simplicity) appears ubiquitously in applications. In particular, the choice of a
p-homogeneous dissipation ψ corresponds to a gradient flow for p = 2, a rate-independent flow
for p = 1, and a general doubly-nonlinear flow in all other cases. Note that system (1.1)-(1.3)
has already been considered under a variety of different settings, see [5, 8, 10, 11, 30] for some
reference result.
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The aim of this paper is to propose a variational formalism for the treatment of the Cauchy
problem (1.1)-(1.4) of the time half line t > 0. This consists in introducing a parameter-
dependent family of functionals Iε : Lp(R+, e

−t/εdt;V ) → (−∞,∞] defined over entire trajec-
tories and given by

Iε(u) =


∫ ∞

0

e−t/ε
(
εψ(u′(t)) + φ(u(t))

)
dt if u ∈ K(u0),

∞ else,

K(u0) = {u ∈W 1,p(R+, e
−t/εdt;V ) : u(0) = u0 and φ(u) ∈ L1(R+, e

−t/εdt)}

and in verifying that its minimizers uε converge as ε → 0 (up to subsequences) to solutions
of the problem (1.1)-(1.4). The interest in such a variational approach lies in the possibility
of reformulating the differential system (1.1)-(1.4) in terms of a convex minimization problem,
combined in a limiting procedure. This reformulation allows one to apply the techniques of
the modern calculus of variations to the differential problem, in particular the Direct Method,
Γ-convergence, and relaxation.

The role of the exponential weight in Iε is revealed by computing the corresponding Euler-
Lagrange equation. In the current setting these read

−εξ′ε(t) + ξε(t) + ηε(t) = 0 in X∗, for a.e. t > 0, (1.5)

ξε(t) = dV ψ(u′ε(t)) in V ∗, for a.e. t > 0, (1.6)

ηε(t) ∈ ∂XφX(uε(t)) in X∗, for a.e. t > 0, (1.7)

uε(0) = u0. (1.8)

Here, X denotes a Banach space compactly embedded into V and ∂XφX is the subdifferential
from X to X∗ of the restriction φX of φ to X. In particular, the minimizers of the WED
functionals uε solve an elliptic-in-time regularization of the target problem (1.1)-(1.4).

Elliptic-regularization techniques have to be traced back at least to Lions and Oleinik [18,
26], see also Lions & Magenes [19] for a linear theory and Barbu [8] for solvability of nonlinear
differential equations. Its variational version via WED functionals is already mentioned in the
classical textbook by Evans [14, Problem 3, p. 487] and has been used by Ilmanen [16] in
the context of Brakke mean-curvature flow of varifolds, and by Hirano [15] in connection with
periodic solutions of gradient systems.

The WED formalism has then been considered in the context of abstract rate-independent
systems Mielke & Ortiz [25], see also the subsequent [23], and then applied for modeling
crack-front propagation in brittle materials in Larsen, Ortiz, & Richardson [17].

The monograph [25] presents a first discussion of the WED approach in the linear gradient flow
case. Relaxation is then discussed in Conti & Ortiz [12]. The full extent of the classical theory
for convex potentials is recovered in [24] and applied to mean curvature evolution of Cartesian
surfaces in [34]. Bögelein, Duzaar, & Marcellini [9] exploit the WED approach in order to
find a variational solution to ut−∇·f(x, u,∇u)+∂uf(x, u,∇u) = 0 where u : Ω×(0, T )→ Rd and
the field f is convex in (u,∇u). The gradient-flow theory has then been extended to nonconvex
potentials [4] and nonpotential perturbations [22]. A generalization for curves of maximal slope
in metric spaces is also available [28, 29].

A celebrated conjecture by De Giorgi [13] pertains the hyperbolic version of the WED
technique to recover solutions of the semilinear wave equation. Results on this conjecture in
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the positive are in [35] (for the bounded time interval case) and in Serra & Tilli [31] (for the
original, unbounded time interval case). Extensions to mixed hyperbolic-parabolic equations
and to some different classes of nonlinear energies have also been presented [20, 21, 32].

The doubly-nonlinear system (1.1)-(1.3) is considered [1, 2, 3] in the bounded time interval
case t ∈ (0, T ). There, the Euler-Lagrange equation corresponding to Iε (with T instead of ∞)
features the final Neumann condition ξε(T ) = 0, which turns out to be crucial for obtaining a
priori estimates.

The focus of the paper is on the time half line case instead. We prove that the WED
functionals admit minimizers uε for all ε > 0, that these strongly solve the Euler-Lagrange
problem (1.5)-(1.8), and that uε → u up to subsequences as ε → 0, where u solves (1.1)-(1.4).
This is indeed the assertion of our main result, Theorem 1.

Differently from [1, 2, 3], the final Neumann condition ξε(T ) = 0 is obviously here unavailable
and one can rely exclusively on weaker integrability conditions for t→∞. Correspondingly, we
are forced here to adapt the technique from [31] and to obtain a priori estimates from minimality
by comparing with time-rescaled minimizers. On the other hand, in contrast to [1, 2, 3] or [31],
the estimate here delivers the pointwise boundedness of the energy. This in turn allows for a
generalization of the abstract theory. In particular, we present in Section 5 a novel existence
results for an integropartial differential equation of Kirchhoff type.

Note that the target problem (1.1)-(1.4) may admit multiple solutions. On the other hand,
minimizers of the WED functional are unique whenever ψ or φ is strictly convex. A by-product
of our theory is the proof that WED minimizers uε strongly solve the Euler-Lagrange problem
(1.5)-(1.8) in the whole half line t > 0. Such a strong solvability is, to the best of our knowledge,
new.

The paper is organized as follows. We list the assumptions and state our main result in
Section 2. Section 3 is devoted to a proof of the existence for strong solutions to the Euler-
Lagrange problem (1.5)-(1.8). We deal with the limit ε → 0 in Section 4. Finally, applications
of the abstract theory to nonlinear PDE problems are presented in Section 5.

2. Main result

We devote this section to the statement of our main result. Let (V, | · |V ) be a uniformly
convex Banach space. We indicate by V ∗ its dual and by 〈·, ·〉V the corresponding duality pairing.
Moreover, let (X, | · |X) be a reflexive Banach space, densely and compactly embedded in V , with
dual space X∗, and duality pairing 〈·, ·〉X . Assume ψ : V → [0,∞) to be Gâteaux differentiable
and convex and φ : V → [0,∞) to be proper, lower semicontinuous, and convex. Let p ∈ (1,∞)
be fixed and assume that there exist a strictly positive constant C and a nondecreasing function
` : R+ → R+ such that the following conditions hold:

|u|pV ≤ C(ψ(u) + 1) ∀u ∈ V , ψ(0) = 0; (2.1)

|dV ψ(u)|p
′

V ∗ ≤ C(|u|pV + 1) ∀u ∈ V , p′ = p/(p− 1); (2.2)

D(φ) ⊂ X ; for each c the set {u ∈ X : φ(u) ≤ c} is bounded in X; (2.3)

|η|X∗ ≤ `(|u|V + φ(u)) ∀η ∈ ∂XφX(u). (2.4)
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As a consequence, there exists a constant C ′ such that

|u|pV ≤ C
′(〈dV ψ(u), u〉V + 1) ∀u ∈ V , (2.5)

ψ(u) ≤ ψ(0) + 〈dV ψ(u), u〉V ≤ C
′ (|u|pV + 1) ∀u ∈ V . (2.6)

In particular, we have thatD(Iε) = {u ∈W 1,p(R+, e
−t/εdt;V ) : φ(u) ∈ L1(R+, e

−t/εdt), u(0) =
u0}.

For the sake of later reference, we shall introduce also the coercivity assumption

|u|X ≤ C(φ(u) + 1) ∀u ∈ D(φ) (2.7)

for some C > 0, which is stronger than (2.3). Under the stronger (2.7) we readily check that
D(Iε) ⊂W 1,p(R+, e

−t/εdt;V ) ∩ L1(R+, e
−t/εdt;X).

Our main result reads as follows.

Theorem 1 (WED variational approach). Assume (2.1)-(2.4). Then:

i) The WED functional Iε admits global minimizers uε in K(u0). Additionally, if either
φ or ψ is strictly convex, the minimizer is unique.

ii) For every minimizer uε of Iε on K(u0) there exists ηε ∈ ∂XφX(uε) such that, by letting
ξε = dV ψ(u′ε), the triple

(uε, ηε, ξε) ∈W 1,p(R+, e
−t/εdt;V )× L∞(R+;X∗)× Lp

′
(R+, e

−t/εdt;V ∗),

is a strong solution of the Euler-Lagrange problem (1.5)-(1.8). Under assumption (2.7),
minimizers of Iε in K(u0) and strong solutions of the Euler-Lagrange system coincide.

iii) For any sequence εk → 0 there exists a subsequence (denoted by the same letter) such
that (uεk , ηεk , ξεk)→ (u, η, ξ) weakly in

W 1,p(0, T ;V ) ∩ Lm(0, T ;X)× Lm(0, T ;X∗)× Lp
′
(0, T ;V ∗)

for all T > 0, m > 1 where (u, η, ξ) is a strong solution to the doubly-nonlinear problem
(1.1)-(1.4). In case X is separable, we additionally have convergences ηεk → η weakly-
star in L∞(R+;X∗) and uεk → u weakly-star in L∞(R+;X).

Theorem 1.i-ii is proved in Section 3 by means of a regularization argument whereas the ε→ 0
limit in Theorem 1.iii is ascertained in Section 4 instead.

Before moving on, let us comment that the assumptions (2.1)-(2.4) are weaker than the one
in [2], which deals with the bounded time interval case. Indeed, we ask here a weaker growth
condition on φ, see (2.3)-(2.4), which allows linearly growing energies. We present in Section
5 an example of an integropartial differential equation whose variational formulation fulfills
(2.1)-(2.4) but cannot be treated under the framework of [2].

3. Existence of solutions to the Euler-Lagrange problem

In this section we check Theorem 1.i-ii, by proving the existence of a solution uε to the Euler-
Lagrange problem (1.5)-(1.8), which also minimizes the WED functional Iε. To this end, we first
consider an approximate functional Iελ, obtained from Iε via Moreau-Yosida regularization (here
λ > 0 is small), and prove that it admits a minimizer uελ. We then prove uniform estimates for
uελ, which allow us to identify the limit uε = limλ→0 uελ as a solution to the Euler-Lagrange
system (1.5)-(1.8). This solution uε turns out to minimize the WED functional Iε as well.
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3.1. Weighted Lebesgue-Bochner spaces. Let us start by recalling some basic facts about
weighted Lebesgue-Bochner spaces. Let q ∈ [1,∞) and ε > 0 be given, and B be a Banach
space. We recall that the space Lq(R+, e

−t/εdt;B) is defined as follows

Lq(R+, e
−t/εdt;B) =

{
u ∈M(R+;B) : t 7→ |u(t)|qBe−t/ε ∈ L1(R+)

}
Here, M(R+;B) stands for the space of strongly measurable functions with values in B. One
can check that

Lq2(R+, e
−t/εdt;B) ↪→ Lq1(R+, e

−t/εdt;B) if 1 ≤ q1 ≤ q2 <∞.

Moreover, it also holds true that

L∞(R+;B) ↪→ Lq(R+, e
−t/εdt;B) if 1 ≤ q <∞.

Moreover, Sobolev spaces W 1,p(R+, e
−t/εdt;B) are also defined analogously.

We now prove a Poincaré-type inequality, which will be of use in the analysis.

Lemma 2 (Poincaré inequality). Let ε > 0, 1 ≤ p < ∞, and B be a reflexive Banach space.
Let u ∈W 1,p(R+, e

−t/εdt;B). Then, there exists a constant C = C(ε, p) such that

‖u‖p
Lp(R+,e−t/εdt;B)

≤ C
(
|u(0)|pB + ‖u′‖p

Lp(R+,e−t/εdt;B)

)
∀u ∈W 1,p(R+, e

−t/εdt;B). (3.1)

Proof. For the sake of notational simplicity, we focus on the case ε = 1, and the general case
can be proved analogously. Let u ∈ L1(R+, e

−tdt) := L1(R+, e
−tdt;R) and assume u ≥ 0 a.e. in

R+. Then, one readily checks that∫ t

0

u(s)e−sds ≤ ‖u‖L1(R+,e−tdt)
∀t > 0. (3.2)

Define now v(t) :=
∫ t

0
u(s)ds for t > 0. By integrating by parts in (3.2) and using v(0) = 0, we

have

v(t)e−t +

∫ t

0

v(s)e−sds ≤ ‖u‖L1(R+,e−tdt)
∀t > 0.

As u (and hence v) is non-negative, taking the limit as t→∞ we get

‖u‖L1(R+,e−tdt)
≥
∫ ∞

0

v(t)e−tdt =

∫ ∞
0

e−t
(∫ t

0

u(s)ds

)
dt. (3.3)

Let now u be in W 1,p(R+, e
−tdt;B) and assume first that p = 1. We estimate∫ ∞

0

|u(t)− u(0)|Be−tdt ≤
∫ ∞

0

e−t
(∫ t

0

|u′(s)|Bds

)
dt.

Applying (3.3), we get∫ ∞
0

|u(t)− u(0)|Be−tdt ≤ ‖|u′|B‖L1(R+,e−tdt)
= ‖u′‖L1(R+,e−tdt;B) . (3.4)

As
∫∞

0
|u(0)|Be−tdt = |u(0)|B

∫∞
0

e−tdt = |u(0)|B , the bound (3.4) implies the assertion with
C = 1 for p = 1.

Let now p > 1. For all δ > 0 there exists some constant Cδ ≥ 0 such that

|u(t)|pB − |u(0)|pB ≤
∫ t

0

(δ|u(s)|pB + Cδ|u′(s)|pB) ds ∀t > 0. (3.5)
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Indeed, by denoting the duality mapping between B and B∗ by FB : B → B∗, and by using the
Young inequality, we get

d

dt
|u(t)|pB = p

〈
|u(t)|p−2

B FBu(t), u′(t)
〉
B
≤ δ|u(t)|pB + Cδ|u′(t)|pB ,

which yields (3.5) upon integrating both sides over (0, t). By choosing δ = 1/2 in (3.5) and
exploiting (3.3), we conclude that∫ ∞

0

|u(t)|pBe−tdt =

∫ ∞
0

e−t
(∫ t

0

d

ds
|u(s)|pBds

)
dt+

∫ ∞
0

e−t |u(0)|pB dt

≤
∫ ∞

0

e−t
(∫ t

0

1

2
|u(s)|pB + C1/2|u′(s)|pBds

)
dt+

∫ ∞
0

e−t |u(0)|pB dt

≤ 1

2

∫ ∞
0

|u(t)|pBe−tdt+ C1/2

∫ ∞
0

e−t|u′(t)|pBdt+

∫ ∞
0

e−t |u(0)|pB dt,

whence the inequality (3.1) follows. �

Remark 3. Note that the integrability of the time derivative u′ does not imply higher integra-
bility on u on R+. In particular, the inclusion W 1,p(R+, e

−t/εdt;B) ⊂ Lq(R+, e
−t/εdt;B) does

not hold if p < q. Indeed, let p < q, B = R, and α be such that qε > α > pε. Then,

p

α
<

1

ε
<
q

α
.

Thus, the function γ : t→ et/α belongs to W 1,p(R+, e
−t/εdt;B) as γ′ = (1/α)γ and∫ ∞

0

γp(t)e−t/εdt =

∫ ∞
0

etp/α−t/εdt =

∫ ∞
0

et(p/α−1/ε)dt <∞.

On the other hand, we have that γ /∈ Lq(R+, e
−t/εdt). Indeed,∫ ∞

0

γq(t)e−t/εdt =

∫ ∞
0

et(q/α−1/ε)dt =∞.

We have hence checked that the exponent in the Poincaré inequality (3.1) is sharp as

W 1,p(R+, e
−t/εdt;B) 6⊂ Lq(R+, e

−t/εdt;B) ∀q > p.

3.2. Approximating functional Iελ. Let Iελ : Lp(R+, e
−t/εdt;V )→ (−∞,∞] be

Iελ(u) :=


∫ ∞

0

e−t/ε
(
εψ(u′(t)) + φλ(u(t))

)
dt if u ∈ Kλ(u0),

∞ else,

Kλ(u0) := {u ∈W 1,p(R+, e
−t/εdt;V ) : u(0) = u0 and φλ(u) ∈ L1(R+, e

−t/εdt)}

where λ > 0 and φλ denotes the Moreau-Yosida regularization of φ (see, e.g., [7]), namely

φλ(u) := inf
v∈V

(
1

2λ
|u− v|2V + φ(v)

)
=

1

2λ
|u− Jλu|2V + φ(Jλu), (3.6)

where Jλ is the resolvent of ∂V φ at level λ, namely the solution operator Jλ : u 7→ Jλu to

FV (Jλu− u) + λ∂V φ(Jλu) = 0 ∀u ∈ V , (3.7)

where FV : V → V ∗ denotes the duality mapping between V and V ∗. Note that

D(Iελ) = Kλ(u0) = {u ∈W 1,p(R+, e
−t/εdt;V ) : u(0) = u0, φλ(u) ∈ L1(R+, e

−t/εdt)}
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and that Iελ can be decomposed as

Iελ = I1
ε + I2

ελ,

where the functionals I1
ε , I

2
ελ : Lp(R+, e

−t/εdt;V )→ (−∞,∞] are defined by

I1
ε (u) =


∫ ∞

0

e−t/εεψ(u′(t))dt if u ∈W 1,p(R+, e
−t/εdt;V ), u(0) = u0,

∞ else,

and

I2
ε (u) =


∫ ∞

0

e−t/εφλ(u(t))dt if φλ(u) ∈ L1(R+, e
−t/εdt),

∞ else,

with domains

D(I1
ε ) = {u ∈W 1,p(R+, e

−t/εdt;V ) : u(0) = u0},

D(I2
ελ) = {u ∈ Lp(R+, e

−t/εdt;V ) : φλ(u) ∈ L1(R+, e
−t/εdt)}.

The functional Iελ is proper, lower semicontinuous, and convex. Moreover, thanks to the
Poincaré inequality (3.1) and assumption (2.1), it is coercive on Lp(R+, e

−t/εdt;V ). The Direct
Method ensures that there exists a minimizer uελ in the closed, convex set Kλ(u0).

3.3. A priori estimates. We now derive a priori estimates for uελ in order to pass to the
limit for λ → 0 (and next for ε → 0). As mentioned in Introduction, we adapt the variational
technique introduced by Serra & Tilli [31], see also [20, 21] and [9]. In what follows, the
symbols C will denote a strictly positive constant independent on ε, λ, and T , possibly varying
from line to line.

We begin with rescaling orbits as follows: For each u : R+ → V set

ũ(s) := u(t) with t = εs.

Then, one has

u′(t) = ũ′(s)
ds

dt
=
ũ′(s)

ε
and dt = εds

and we can rewrite

Iελ(u) = ε

∫ ∞
0

e−s
(
εψ(ũ′(s)/ε) + φλ(ũ(s))

)
ds =: εJελ(ũ).

Let now uελ minimize Iελ on Kλ(u0). Correspondingly ũελ minimizes Jελ on K̃λ(u0) := {ũ :

u ∈ Kλ (u0)}. As φλ ≤ φ, t 7→ u0 ∈ K̃λ(u0), φ(u0) <∞, and ψ(0) = 0, we get

Jελ(ũελ) = min
v∈K̃λ(u0)

Jελ(v) ≤ Jελ(u0) =

∫ ∞
0

e−sφλ(u0)ds

≤
∫ ∞

0

e−sφ(u0)ds = φ(u0) = Jε(u0),

where Jε is defined via

εJε(ũ) := ε

∫ ∞
0

e−s
(
εψ(ũ(s)/ε) + φ(ũ(s)

)
ds = Iε(u).
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In the remainder of this subsection, we simply write ũ instead of ũελ for the sake of notational
simplicity. Let η ∈ C∞c ([0,∞)) be given, g′ = η with g(0) = 0, and, for small δ > 0, define

ϕδ(r) := r − δg(r) ∀r ≥ 0.

Note that ϕδ : R+ → R+ is a diffeomorphism for every δ > 0 sufficiently small. Set

ũδ(s) := ũ(ϕδ(s))

and let πδ be the inverse function of ϕδ, that is,

σ = ϕδ(s) iff s = πδ(σ) = ϕ−1
δ (σ).

By using ũδ(s) = ũ (ϕδ(s)) = ũ(σ), and

dũδ(s)

ds
= ũ′ (ϕδ(s))ϕ

′
δ(s) = ũ′(σ)ϕ′δ (πδ(σ))

we rewrite

Jελ(ũδ) =

∫ ∞
0

e−s
(
εψ(ũ′δ(s)/ε) + φλ(ũδ(s))

)
ds

=

∫ ∞
0

e−πδ(σ)

(
εψ

(
ũ′(σ)

ε
ϕ′δ (πδ(σ))

)
+ φλ(ũ(σ))

)
π′δ(σ)dσ.

We now compute the derivative

dJελ(ũδ)

dδ
=

∫ ∞
0

e−πδ(σ)

(
− d

dδ
πδ(σ)

)(
εψ

(
ũ′(σ)

ε
ϕ′δ (πδ(σ))

)
+ φλ(ũ(σ))

)
π′δ(σ)dσ

+

∫ ∞
0

e−πδ(σ)ε

〈
dV ψ

(
ũ′(σ)

ε
ϕ′δ (πδ(σ))

)
,
ũ′(σ)

ε

d

dδ
(ϕ′δ (πδ(σ)))

〉
π′δ(σ)dσ

+

∫ ∞
0

e−πδ(σ)

(
εψ

(
ũ′(σ)

ε
ϕ′δ (πδ(σ))

)
+ φλ(ũ(σ))

)(
d

dδ
π′δ(σ)

)
dσ.

From condition
dJελ(ũδ)

dδ

∣∣∣∣
δ=0

= 0

and by using the fact that

ϕδ(s)|δ=0 = s, πδ(σ)|δ=0 = σ,

π′δ(σ) =
1

ϕ′δ(s)
=

1

1− δg′(s)
, π′δ(σ)|δ=0 = 1,

ϕ′δ(s) = 1− δg′(s), ϕ′δ(s)|δ=0 = 1,

d

dδ
ϕ′δ (πδ(σ)) =

d

dδ

(
1− δg′ (πδ(σ))

)
= −g′ (πδ(σ))− δg′′ (πδ(σ))

d

dδ
πδ(σ),

d

dδ
ϕ′δ (πδ(σ))

∣∣∣∣
δ=0

= −g′(σ),

d

dδ
π′δ(σ) =

g′(s)

(1−δg′(s))2 ,
d

dδ
π′δ(σ)

∣∣∣∣
δ=0

= g′(σ),

d

dδ
πδ(σ)

∣∣∣∣
δ=0

= lim
δ→0

πδ(σ)−π0(σ)

δ
= lim
δ→0

s− σ
δ

= lim
δ→0

s− ϕδ(s)
δ

= lim
δ→0

s− s+ δg(s)

δ
= g(s),



WED APPROACH FOR DOUBLY-NONLINEAR PROBLEMS 9

we infer that

0 =

∫ ∞
0

e−σ (−g(σ)+g′(σ))L(σ)dσ − ε
∫ ∞

0

e−σ 〈dV ψ (ũ′(σ)/ε) , ũ′(σ)/ε〉 g′(σ)dσ (3.8)

where we set

L(σ) := εψ (ũ′(σ)/ε) + φλ(ũ(σ)). (3.9)

Define now H : [0,∞)→ R as

H(σ) :=

∫ ∞
σ

e−τL(τ)dτ ≥ 0. (3.10)

Then, H(σ)→ 0 as σ →∞ since Jελ(ũ) <∞. We also note that

H ′(σ) = −e−σL(σ). (3.11)

Therefore, by using g(0) = 0, one obtains

−
∫ ∞

0

e−σg(σ)L(σ)dσ =

∫ ∞
0

g(σ)H ′(σ)dσ = −
∫ ∞

0

g′(σ)H(σ)dσ.

The latter allows us to deduce from (3.8) that

0 =

∫ ∞
0

(
−H(σ) + e−σL(σ)− εe−σ 〈dV ψ (ũ′(σ)/ε) , ũ′(σ)/ε〉

)
g′(σ)dσ

=

∫ ∞
0

(
H(σ)− e−σL(σ) + εe−σ 〈dV ψ (ũ′(σ)/ε) , ũ′(σ)/ε〉

)
η(σ)dσ.

From the arbitrariness of η, we conclude that

eσH(σ)− L(σ) + ε 〈dV ψ (ũ′(σ)/ε) , ũ′(σ)/ε〉 = 0 for a.e. σ > 0. (3.12)

Set now E : [0,∞)→ R as

E(σ) :=

∫ σ

0

ε 〈dV ψ(ũ′(τ)/ε), ũ′(τ)/ε〉dτ + eσH(σ). (3.13)

Then, by (3.12) and (3.11), one has

E′(σ) = ε 〈dV ψ(ũ′(σ)/ε), ũ′(σ)/ε〉+ eσH(σ) + eσH ′(σ) = L(σ)− L(σ) = 0.

Therefore, E(σ) ≡ E0 = H(0) is constant. As H is nonnegative, we deduce from (3.13) that∫ ∞
0

ε 〈dψ(ũ′(τ)/ε), ũ′(τ)/ε〉dτ ≤ E0.

Moreover, since ũ is a minimizer of Jελ, one has that

E0 = H(0) =

∫ ∞
0

e−sL(s)ds = Jελ(ũ) ≤ Jελ(u0) = φλ(u0) ≤ φ(u0). (3.14)

Consequently, we obtain that∫ ∞
0

ε 〈dV ψ(ũ′(s)/ε), ũ′(s)/ε〉ds ≤ φ(u0),

which can be rewritten as ∫ ∞
0

〈dV ψ(u′(t)), u′(t)〉dt ≤ φ(u0). (3.15)
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By means of assumption (2.5), for every T > 0 we get

‖u′‖p
Lp(R+,e−t/εdt;V )

≤ C
∫ ∞

0

(〈dV ψ(u′(t)), u′(t)〉+ 1) e−t/εdt ≤ C, (3.16)

‖u′‖pLp(0,T ;V ) ≤
∫ T

0

(〈dV ψ(u′(t)), u′(t)〉+ C) dt ≤ C + CT , (3.17)

as well as

sup
t∈[0,T ]

|u(t)|V ≤ C(T ). (3.18)

Assumption (2.2) yields

‖dV ψ(u′)‖Lp′ (R+,e−t/εdt;V ∗)
≤ C,

‖dV ψ(u′)‖Lp′ (0,T ;V ∗) ≤ C(T ).

Fix now τ > 0. By letting s = t/ε again, we can write∫ ετ+ε

ετ

φλ(u(t))dt = ε

∫ τ+1

τ

φλ(ũ(s))ds.

Recalling definitions (3.9), (3.10), (3.13), formula (3.11), the fact that E(·) is constant, and
estimate (3.14), we have∫ ετ+ε

ετ

φλ(u(t))dt = ε

∫ τ+1

τ

φλ(ũ(s))ds ≤ εeτ+1

∫ τ+1

τ

e−sφλ(ũ(s))ds

≤ εeτ+1

∫ τ+1

τ

e−sL(s)ds ≤ εeτ+1

∫ ∞
τ

e−sL(s)ds

= εeτ+1

∫ ∞
τ

(−H ′(s)) ds = εeτ+1H(τ) ≤ εeE(τ) = εeE0.

Here, we used the inequality eτH(τ) ≤ E(τ), which directly follows from (3.13), and the con-
vexity of ψ. By setting T = ετ , the latter implies

1

ε

∫ T+ε

T

φλ(u(t))dt ≤ C ∀T > 0, ε > 0.

Thus, φλ(u(·)) is bounded in the Morrey space L1,1([0,∞)) = L∞([0,∞)), and hence,

sup
t∈[0,∞)

φλ(u(t)) ≤ C. (3.19)

In particular, ∫ T

0

φλ(u(t))dt ≤ CT ∀T > 0. (3.20)

Let η = ∂V φλ(u). Since φ(Jλu) ≤ φλ(u) and η ∈ ∂V φ(Jλu) ⊂ ∂XφX(Jλu), it follows from
assumptions (2.3), (2.4) that

sup
t∈[0,∞)

|η(t)|X∗ + sup
t∈[0,∞)

|Jλu(t)|X ≤ C. (3.21)
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3.4. Representation of subdifferentials. In order to derive the Euler-Lagrange equation for
Iελ, we prepare here some representation result. Denote by Iελ,V , I1

ε,V , and I2
ελ,V the restrictions

to

V = Lmax{p,2}(R+, e
−t/εdt;V )

of Iελ, I1
ε , and I2

ελ, respectively. We have the following.

Lemma 4 (Identification of ∂VI
1
ε,V). We have

D(∂VI
1
ε,V) = {u ∈ D(I1

ε ) : dV ψ(u′) ∈W 1,p′(R+, e
−t/ε;V ∗)} ∩ V,

∂VI
1
ε,V(u)(t) = − d

dt
(εe−t/εdV ψ(u′(t))) ∀u ∈ D(∂VI

1
ε ), for a.e. t > 0.

Proof. Define A : V → V∗ as

D(A) = {u ∈ D(I1
ε ) : dV ψ(u′) ∈W 1,p′(R+, e

−t/ε;V ∗)} ∩ V,

A(u)(t) = − d

dt
(εe−t/εdV ψ(u′(t))) ∀u ∈ D(A), for a.e. t > 0,

so that the assertion corresponds to

∂VI
1
ε,V = A and D(∂VI

1
ε,V) = D(A).

We start with proving inclusion ∂VI
1
ε,V ⊂ A. Set W := W 1,p(R+, e

−t/εdt;V ) ∩ V. Define the

functionals J1, J2 :W → [0,∞) by

J1(u) :=

∫ ∞
0

e−t/εψ(u′(t))dt, J2(u) :=

{
0 if u(0) = u0,
∞ else,

and denote by I1
ε,W the restriction of I1

ε to W. Thus, I1
ε,W = J1 +J2. One can easily check that

J1 is Gâteaux differentiable in W and

〈dWJ1(u), e〉W =

∫ ∞
0

e−t/ε 〈dV ψ(u′(t)), e′(t)〉V dt ∀e ∈ W.

Moreover, J2 is proper, lower semicontinuous, and convex in W, and we have

〈f, e〉W = 0 for all f ∈ ∂WJ2(u) and e ∈ W with e(0) = 0.

Since D(J1) =W, we deduce that

∂WI
1
ε,W = dWJ1 + ∂WJ2

with domain

D(∂WI
1
ε,W) = {u ∈ W : u (0) = u0}.

As we have D
(
I1
ε

)
∩ V ⊂ W ⊂ V, it follows that ∂VI

1
ε,V ⊂ ∂WI

1
ε,W . Let now f ∈ ∂VI

1
ε,V(u)

(hence u(0) = u0). Then,∫ ∞
0

e−t/ε 〈dV ψ(u′(t)), e′(t)〉V dt =

∫ ∞
0

〈f(t), e(t)〉V dt

for all e ∈ W with e(0) = 0. Hence, dV ψ(u′(·)) ∈W 1,p′(R+, e
−t/εdt;V ∗) and

f(t) = − d

dt

(
e−t/εdV ψ(u′(t))

)
for a.e. t > 0.

Thus, u ∈ D(A) and f = A(u).

We now prove the converse inclusion ∂VI
1
ε,V ⊃ A. To this aim, let u ∈ D(A), v ∈ D(Iε) ∩ V,

f ∈ A(u), T > 0, and ϕ ∈ C∞([0,∞)) be a nonincreasing cut-off function with ϕ(t) = 1 for
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t ≤ T and ϕ(t) = 0 for t ≥ T + 1. By recalling the definition of A, integrating by parts, and by
using the fact that u(0) = u0 = v(0) and the definition of subdifferential, we have

〈ϕf, v − u〉V =

∫ T+1

0

〈ϕ(t)f(t), v(t)− u(t)〉V dt

=

∫ T+1

0

〈
−ϕ(t)

d

dt

(
εe−t/εdV ψ(u′(t))

)
, v(t)− u(t)

〉
V

dt

=

∫ T+1

0

ϕ(t)εe−t/ε 〈dV ψ(u′(t)), v′(t)− u′(t)〉V dt

+

∫ T+1

T

ϕ′(t)εe−t/ε 〈dV ψ(u′(t)), v(t)− u(t)〉V dt

≤
∫ T+1

0

ϕ(t)εe−t/ε (ψ(v′(t))− ψ(u′(t))) dt

+ ε|ϕ′|L∞(T,T+1)

(∫ T+1

T

e−t/ε
1

p′
|dV ψ(u′(t))|p

′

V ∗dt+

∫ T+1

T

e−t/ε
1

p
|v(t)− u(t)|pV dt

)
.

Note that, as dV ψ(u′) ∈ Lp′(R+, e
−t/εdt;V ∗) and u, v ∈ V ⊂ Lp(R+, e

−t/εdt;V ),∫ T+1

T

e−t/ε
1

p′
|dV ψ(u′(t))|p

′

V ∗dt+

∫ T+1

T

e−t/ε
1

p
|v(t)− u(t)|pV dt→ 0 for T →∞.

Thus, as T and ϕ are arbitrary, we have

〈f, v − u〉V ≤
∫ ∞

0

εe−t/ε (ψ(v′(t))− ψ(u′(t))) dt = I1
ε (v)− I1

ε (u),

which implies f ∈ ∂VI1
ε,V(u). �

Note that ∂V φλ : V → R is demicontinuous (i.e. strong-weak continuous) and single-valued.
As a consequence, by (3.6), the functional I2

ελ,V : V → (−∞,∞] is such that D(I2
ελ,V) =

D(∂VI
2
ελ,V) = V = Lmax{2,p}(R+, e

−ε/tdt;V ). As ∂VI
1
ε,V + ∂VI

2
ελ,V is maximal monotone in

V × V∗, we have that

∂VIελ,V = ∂VI
1
ε,V + ∂VI

2
ελ,V . (3.22)

3.5. Euler-Lagrange equation for Iελ. Let us first observe that every minimizer uελ of Iελ
belongs to V =Lmax{2,p}(R+, e

−t/εdt;V ). Indeed, from the definition of φλ, we have

φλ(uελ(t)) ≥ 1

2λ
|uελ(t)− Jλuελ(t)|2V for a.e. t > 0.

By multiplying by e−t/ε, integrating over R+, and using (3.19), we obtain

1

2λ

∫ ∞
0

|uελ(t)− Jλuελ(t)|2V e−t/εdt ≤
∫ ∞

0

φλ(uελ(t))e−t/εdt ≤ Cε.

Thanks to (3.21), we hence have uελ ∈ V. In particular

inf{Iελ(v) : v ∈ Lp(R+, e
−t/εdt;V )} = Iελ(uελ) = Iελ,V(uελ) = inf

v∈V
Iελ(v),

which also implies

∂VIελ,V(uελ) 3 0.
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Thanks to the decomposition (3.22) and the fact that uελ ∈ V, we have that

0 ∈ ∂VI1
ε (uελ) + ∂VI

2
ελ(uελ).

Recalling Lemma 4 and noting that

f ∈ ∂VI2
ελ,V(u) if and only if f(t) = e−t/ε∂V φλ(u(t)) for a.e. t > 0,

we deduce that uελ fulfills

−εξ′ελ(t) + ξελ(t) + ηελ(t) = 0 in V ∗ for a.e. t > 0, (3.23)

ξελ(t) = dV ψ(u′ελ(t)) in V ∗ for a.e. t > 0, (3.24)

ηελ(t) = ∂V φλ(uελ(t)) in V ∗ for a.e. t > 0, (3.25)

uελ(0) = u0. (3.26)

Finally, we close this subsection with deriving the rest of a priori estimates: a comparison in
equation (3.23) yields

‖ε (dV ψ(u′))
′ ‖L∞(R+;X∗)+Lp′ (R+,e−t/εdt;V ∗)

≤ C,

‖ε (dV ψ(u′))
′ ‖L∞(0,T ;X∗)+Lp′ (0,T ;V ∗) ≤ C(T ),

which imply

sup
t∈[0,T ]

|εdV ψ(u′)|X∗ ≤ C(T ).

3.6. Passage to the limit λ → 0. Let uελ be a minimizer of Iελ and ηελ = ∂V φλ(uελ) and
ξελ = dV ψ(u′ελ). We have proved that (uελ, ηελ, ξελ) solves (3.23)-(3.26). Thanks to the uniform
estimates obtained above, for every T > 0 fixed, we deduce the following convergences for some
not relabeled subsequence λ→ 0

uελ → uε weakly in W 1,p(0, T ;V ), (3.27)

Jλuελ → vε weakly in Lm(0, T ;X) ∀m > 1, (3.28)

ξελ → ξε weakly in Lp
′
(0, T ;V ∗), (3.29)

ηελ → ηε weakly in Lm(0, T ;X∗) ∀m > 1, (3.30)

ξ′ελ → ξ′ε weakly in Lm(0, T ;X∗) + Lp
′
(0, T ;V ∗) ∀m > 1, (3.31)

for some limits

vε ∈ L∞(R+;X), uε ∈W 1,p(R+, e
−t/εdt;V ),

ηε ∈ L∞(R+;X∗), ξε ∈ Lp
′
(R+, e

−t/εdt;V ∗).

In case X is separable, we additionally have convergences

Jλuελ → vε weakly star in L∞(R+;X),

ηελ → ηε weakly star in L∞(R+;X∗).

Moving from convergences (3.27)-(3.31) we can pass to the limit in equation (3.23) and get

−εξ′ε + ξε + ηε = 0 in X∗, a.e. in R+.

We now prove the convergence

Jλuελ → vε strongly in C([0, T ];V ). (3.32)
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To this aim, let us define wελ := Jλuελ − uελ. By (3.7) and the convexity of φ, we have

〈FV (wελ(t+h))− FV (wελ(t)), Jλuελ (t+h)− Jλuελ (t)〉V ≤ 0,

which, together with estimate (3.18) and the fact that |Jλa|V ≤ C(|a|V + 1) for all a ∈ V , yields

〈FV (wελ(t+h))− FV (wελ(t)), wελ (t+h)− wελ (t)〉V ≤ C(T )|uελ (t+h)− uελ (t) |V . (3.33)

Estimate (3.17) implies that uελ : [0, T ]→ V is equicontinuous, for every T > 0 fixed, and that
the right-hand side of (3.33) goes to 0 as h → 0, uniformly for t ∈ [0, T ] and λ > 0. Since V is
uniformly convex, thanks to [27], for each R > 0 there exists a strictly increasing function mR

on [0,∞) such that mR(0) = 0 and

mR(|u− v|V ) ≤ 〈FV (u)− FV (v), u− v〉V for u, v ∈ BR := {w ∈ V : |w|V ≤ R}.
In particular, wελ : [0, T ] → V are equicontinuous for all T > 0 and so are Jλuελ. As a
consequence of the compact embedding X ↪→↪→ V and of [33, Theorem 3], we deduce the strong
convergence (3.32). Furthermore, by using estimate (3.20) and (3.6), we conclude that∫ T

0

|Jλuελ(t)− uελ(t)|2V dt ≤ 2λ

∫ T

0

φλ(uελ(t))dt ≤ λC(T )→ 0.

In particular, we get vε = uε and

uελ(t)→ uε(t) strongly in L2(0, T ;V ), for all T > 0,

which yields
uελ(t)→ uε(t) strongly in V, for a.e. t > 0.

By following the argument of [2, Section 3.3], one can prove that ξε(t) = dV ψ(u′ε(t)) and
ηε(t) ∈ ∂XφX(uε(t)) for almost every t ∈ (0, T ) and we get the identifications (3.24)-(3.25) as T
is arbitrary. In particular, we have proved that the Euler-Lagrange problem (1.5)-(1.8) admits
a strong solution on the half line t > 0.

3.7. Minimization of the WED functional Iε. Our next aim is to prove that the above-
determined limit uε indeed minimizes Iε on K(u0). Note that K(u0) ⊂ Kλ(u0) as φλ ≤ φ. By
passing to the limit as λ→ 0 and using the dominated convergence theorem, we have

Iελ(v)→ Iε(v) ∀v ∈ K(u0).

As uελ is a global minimizer of Iελ, we have

Iελ(v) ≥ Iελ(uελ) ∀v ∈ K(u0).

Furthermore, convergences (3.27)-(3.28) and the lower semicontinuity of u 7→
∫ T

0
e−t/εεψ(u′(t))dt

and of u→
∫ T

0
e−t/εφ (u(t)) dt in Lp(0, T ;V ) for every T > 0, give us

lim inf
λ→0

Iελ(uελ) ≥ lim inf
λ→0

∫ T

0

e−t/ε (εψ(u′ελ(t)) + φλ (uελ(t))) dt

= lim inf
λ→0

∫ T

0

e−t/ε (εψ(u′ελ(t)) + φ (Jλuελ(t))) dt

≥
∫ T

0

e−t/ε
(
εψ(u′ε(t)) + φ

(
uε(t)

))
dt.

Taking the supremum for T > 0, we deduce that

Iε(v) ≥ Iε(uε) ∀v ∈ K(u0).

Namely, uε minimizes Iε on K(u0). As a consequence, we deduce that uε ∈ D(Iε).



WED APPROACH FOR DOUBLY-NONLINEAR PROBLEMS 15

In case either ψ or φ is strictly convex, the functional Iε turns out to be strictly convex in
Lp(R+, e

−t/εdt;V ). In particular, the minimizer is unique.

If the WED functional is not strictly convex, we proceed by penalization. Let ûε be a

minimizer of Iε over K(u0). We define the penalized functionals Îε, Îελ by

Îε(u) :=

∫ ∞
0

e−t/ε
(
εψ(u′(t)) + φ̂ (u(t))

)
dt,

φ̂(u) := φ (u) +
c

p
|u− ûε|pV

Îελ(u) :=

∫ ∞
0

e−t/ε
(
εψ(u′(t)) + φ̂λ(u(t))

)
dt,

φ̂λ (u(t)) := φλ (u) +
c

p
|u− ûε|pV ,

where φλ is the Moreau-Yosida regularization of φ and c is a strictly positive constant. Note

that ûε is the unique global minimizer of the strictly convex functional Îε and

Îε(ûε) = Iε(ûε) = min
v∈K(u0)

Iε(v).

Arguing as above we can show that Îελ admits a minimizer ũελ. Moreover, it fulfills for almost
every t > 0

−εξ̃′ελ(t) + ξ̃ελ(t) + η̃ελ(t) = −c|ũελ(t)− ûε(t)|p−2
V FV (ũελ(t)− ûε(t)) in V ∗,

ξ̃ελ(t) = dV ψ(ũ′ελ(t)) in V ∗,

η̃ελ(t) = ∂V φλ(ũελ(t)) in V ∗,

ũελ(0) = u0.

Arguing as in Section 3.6, we can deduce uniform estimates for ũελ and prove the following
convergences as λ→ 0, for all T > 0,

ũελ → ũε weakly in W 1,p(0, T ;V ),

ξ̃ελ → ξ̃ε weakly in Lp
′
(0, T ;V ∗),

η̃ελ → η̃ε weakly in Lm(0, T ;X∗) ∀m > 1,

ξ̃′ελ → ξ̃′ε weakly in Lm(0, T ;X∗) + Lp
′
(0, T ;V ∗) ∀m > 1,

where (ũε, η̃ε, ξ̃ε) solves for almost every t > 0

−εξ̃′ε(t) + ξ̃ε(t) + η̃ε(t) = −c|ũε(t)− ûε(t)|p−2
V FV (ũε(t)− ûε(t)) in X∗, (3.34)

ξ̃ε(t) = dV ψ(ũ′ε(t)) in V ∗, (3.35)

η̃ε(t) ∈ ∂XφX(ũε(t)) in X∗, (3.36)

ũε(0) = u0. (3.37)

Moreover, ũε minimizes Îε, which is strictly convex. This implies that ũε = ûε. Finally, by
directly substituting ũε = ûε into (3.34)-(3.37), we check that ûε solves the Euler-Lagrange
problem (1.5)-(1.8).

Assume now the stronger coercivity condition (2.7) and let (uε, ηε, ξε) solve the Euler-Lagrange
problem (1.5)-(1.8). Given any v ∈ W 1,p(R+, e

−t/εdt;V ) ∩ L1(R+, e
−t/εdt;X) with v(0) = 0
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one can check that ∫ ∞
0

e−t/ε
(
〈εξ′ε(t), v′(t)〉V + 〈ηε(t), v(t)〉X

)
dt = 0. (3.38)

Indeed, it suffices to test (1.5) with ϕv, where ϕ ∈ C∞([0,∞)) is a nonincreasing cut-off function
with ϕ(t) = 1 for t ≤ T and ϕ(t) = 0 for t ≥ T + 1, and take the limit as T → ∞. Let now
w ∈ K(u0) be given and set v = w − uε. By (2.7), we find that v ∈ L1(R+, e

−t/εdt;X) ∩
W 1,p(R+, e

−t/εdt;V ). By using the convexity of φ and ψ we get by (3.38) that

Iε(w)− Iε(uε) ≥
∫ ∞

0

e−t/ε
(
〈εξ′ε(t), v′(t)〉V + 〈ηε(t), v(t)〉X

)
dt = 0

so that uε minimizes Iε on K(u0). This concludes the proof of Theorem 1.i-ii.

4. The causal limit

Let us now proceed to the proof of Theorem 1.iii by checking that, up to subsequences, uε
converges to a strong solution of (1.1)-(1.4). This limit is usually referred to as causal limit as
it connects the noncausal, elliptic-in-time Euler-Lagrange system to the causal target problem
(1.1)-(1.4).

Starting from the uniform estimates derived in Section 3.3 and using the lower semicontinuity
of norms and of φ, we deduce the following bounds, for all T > 0,

‖u′ε‖Lp(0,T ;V ) + ‖ξε‖Lp′ (0,T ;V ∗) + ‖εξ′ε‖L∞(0,T ;X∗)+Lp′ (0,T ;V ∗) ≤ C(T ),

‖uε‖L∞(R+;X) + sup
t≥0

φ(uε(t)) + ‖ηε‖L∞(R+;X∗) ≤ C,

which, up to not relabeled subsequences, imply the following convergences for all T > 0 as ε→ 0

uε → u weakly in W 1,p(0, T ;V ) and strongly in C([0, T ];V ), (4.1)

uε → u weakly in Lm(0, T ;X) ∀m > 1, (4.2)

ξε → ξ weakly in Lp
′
(0, T ;V ∗), (4.3)

εξ′ε → 0 weakly in Lm(0, T ;X∗) + Lp
′
(0, T ;V ∗) ∀m > 1, (4.4)

ηε → η weakly in Lm (0, T ;X∗) ∀m > 1, (4.5)

for some limits

u ∈W 1,p(0, T ;V ) ∩ L∞(R+;X), ξ ∈ Lp
′
(0, T ;V ∗), η ∈ L∞ (R+;X∗) ∀T > 0.

Note that, in case X is separable, we additionally have the convergences

uε → u weakly star in L∞ (R+;X) ,

ηε → η weakly star in L∞ (R+;X∗) .

Convergences (4.3)-(4.5) are sufficient in order to pass to the limit in equation (1.5) and
obtain

ξ + η = 0 in X∗ a.e. in R+. (4.6)

We now check that η ∈ ∂XφX(u). Let us start observing that, for every v ∈ X, ϕ ∈ C∞c ([0,∞)),
and t ≥ 0, we have

〈εξε(t)ϕ(t), v〉X =

〈∫ t

∞
ε (ξεϕ)

′
, v

〉
X

=

∫ t

∞
〈εξ′ε, v〉X ϕ+

∫ t

∞
〈εξε, v〉X ϕ

′ → 0.
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Let us now compute that∫ ∞
0

〈ηε, uεϕ〉X =

∫ ∞
0

〈εξ′ε, uεϕ〉X −
∫ ∞

0

〈ξε, uεϕ〉V

= −〈εξε(0), uε(0)ϕ(0)〉X −
∫ ∞

0

(
〈εξε, u′εϕ〉V + 〈εξε, uεϕ′〉V

)
−
∫ ∞

0

〈ξε, uεϕ〉V

→ −
∫ ∞

0

〈ξ, uϕ〉V .

Therefore, we have

lim
ε→0

∫ ∞
0

〈ηε, uεϕ〉X = −
∫ ∞

0

〈ξ, uϕ〉V =

∫ ∞
0

〈η, uϕ〉X .

As ϕ is arbitrary, we conclude that

lim
ε→0

∫ T

0

〈ηε, uε〉X =

∫ T

0

〈η, u〉X ∀T > 0.

Thus, by using the demiclosedness of the maximal monotone operator ∂XφX in Lm (0, T ;X)×
Lm

′
(0, T ;X∗), we deduce that η(t) ∈ ∂XφX (u(t)) for almost every t > 0, namely relation (1.3).

Moreover, we find by (4.6) that η(t) ∈ V ∗ for almost every t > 0. Thus, thanks to [2, Prop.
2.1], η(t) ∈ ∂V φ(u (t)) for almost every t > 0 and equation (4.6) actually holds in V ∗ for a.e.
t > 0. This proves (1.1) and (1.3).

In order to identify the limit of ξε as a subgradient of ψ at u′ε, we use the following lemma.

Lemma 5. Let ϕ ∈ C1([0,∞)) be nonincreasing with ϕ(t) = 1 for t ≤ T and ϕ(t) = 0 for
t ≥ T + 1. Then, there exists a constant C > 0 such that∫ ∞

0

〈ξε, u′εϕ〉V ≤ εCφ(u0) + φ(u0) +

∫ T+1

T

φ(uε)ϕ
′.

Proof. We test equation (3.23) with u′ελϕ to get∫ ∞
0

〈ξελ, u′ελϕ〉V = ε

∫ ∞
0

〈ξ′ελ, u′ελϕ〉V −
∫ ∞

0

〈ηελ, u′ελϕ〉V . (4.7)

Denote by ψ∗ the Fenchel conjugate of ψ. By observing that u′ελ ∈ ∂V ∗ψ∗(ξελ), we estimate

ε

∫ ∞
0

〈ξ′ελ, u′ελ〉V ϕ = ε

∫ ∞
0

d

dt
ψ∗(ξελ)ϕ = −εψ∗(ξελ(0))ϕ(0)− ε

∫ ∞
0

ψ∗(ξελ)ϕ′

≤ εC
∫ T+1

T

ψ∗(ξελ) ≤ εC
∫ ∞

0

〈ξελ, u′ελ〉V
(3.15)

≤ εCφ(u0).

Here we used nonnegativity of ψ∗ (from ψ∗ ≥ −ψ(0) = 0 ) and ϕ, the definition of subdifferential,
and estimate (3.15). Note that, by chain-rule, we also have

〈ηελ, u′ελ〉V =
d

dt
φλ(uελ) a.e. in R+.

Therefore, by integrating by parts, we can derive∫ ∞
0

〈ηελ, u′ελ〉V ϕ =

∫ ∞
0

d

dt
φλ(uελ)ϕ = −φλ(uελ(0))ϕ (0)−

∫ T+1

T

φλ(uελ)ϕ′

≥ −φλ(u0)−
∫ T+1

T

φ(Jλuελ)ϕ′.
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Hence, by substituting it into (4.7) and by using the lower semicontinuity of u 7−→ −
∫ T+1

T
φ(u)ϕ′

in Lp(T, T + 1;V ), convergences (3.27), (3.29), (3.32), and the pointwise convergence φλ(v) →
φ(v) for all v ∈ D(φ), we get∫ ∞

0

〈ξε, u′ε〉V ϕ = lim
λ→0

∫ ∞
0

〈ξελ, u′ελ〉V ϕ

≤ lim sup
λ→0

ε

∫ ∞
0

〈ξ′ελ, u′ελ〉V ϕ+ lim sup
λ→0

(
−
∫ ∞

0

〈ηελ, u′ελ〉V ϕ
)

≤ εCφ(u0) + lim
λ→0

φλ(u0)− lim inf
λ→0

∫ T+1

T

φ(Jλuελ) (−ϕ′)

≤ εCφ(u0) + φ(u0) +

∫ T+1

T

φ(uε)ϕ
′.

This completes the proof. �

Let ϕ be given as in Lemma 5. Then, by using the lower semicontinuity of φ and convergence
(4.1), we obtain

lim sup
ε→0

∫ ∞
0

〈ξε, u′ε〉V ϕ ≤ lim
ε→0
{εCφ(u0)}+ φ(u0) + lim sup

ε→0

∫ T+1

T

φ(uε)ϕ
′

≤ φ(u0)− lim inf
ε→0

∫ T+1

T

φ(uε) (−ϕ′) ≤ φ(u0) +

∫ T+1

T

φ(u)ϕ′

= −
∫ ∞

0

〈η, u′〉V ϕ =

∫ ∞
0

〈ξ, u′〉V ϕ.

From the arbitrariness of ϕ, by using the demiclosedness of maximal monotone operators, we
deduce that ξ(t) = dV ψ(u′ (t)) for almost every t > 0, namely (1.2). This concludes the proof
of Theorem 1.

5. Applications

The abstract theory developed in the present paper provides direct extension of the results in
[2] to unbounded time intervals. In particular, all doubly-nonlinear PDE systems from [2] can
be investigated on the time half line by means of Theorem 1. For instance, one can consider the
problem

α(∂tu(x, t))−∇ ·
(
a(x)|∇u(x, t)|m−2∇u(x, t)

)
= 0 for (x, t) ∈ Ω× R+, (5.1)

u(x, t) = 0 for (x, t) ∈ ∂Ω× R+ (5.2)

u(x, 0) = u0(x) forx ∈ Ω, (5.3)

where Ω is a nonempty, open, and bounded subset of Rd with smooth boundary ∂Ω. Here,
α : R→ R is a maximal monotone operator such that there exists p > 1 and a positive constant
C such that

C|s|p − 1

C
≤ A(s) :=

∫ s

0

α(r)dr and |α(s)|p
′
≤ C(|s|p + 1) ∀s ∈ R. (5.4)

The coefficient a : Ω→ R+ is measurable, bounded, and uniformly positive, almost everywhere
in Ω, and u0 ∈ W 1,m(Ω), a ∈ L∞(Ω). Theorem 1 implies that the minimizers uε of the WED
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functional

Iε(u) =

∫ ∞
0

e−t/e
(
ε

∫
Ω

A(∂tu(x, t))dx+
1

m

∫
Ω

a(x)|∇u(x, t)|mdx

)
dt

converge, up to subsequences, to solutions of system (5.1)-(5.3) as ε→ 0. We refer to Section 7
of [2] for additional details.

As already mentioned, the assumptions on the energy functional (2.3)-(2.4) are more general
than the analogous ones in [2]. There φ is assumed to show a polynomial behavior φ(u) ∼ |u|mX
for m > 1. Here, linearly growing energy potentials φ can be considered instead (i.e., m = 1).
The possibility of this extension originates from the different estimation technique.

We give now an explicit example of a doubly-nonlinear problem which is treatable within this
abstract frame but is not included into [2]. Let us consider the following nonlocal, Kirchhoff-type
integropartial differential equation(∫

Ω

|∇u|2
)1/2

α(∂tu)−∆u = 0 in Ω× R+, (5.5)

u = 0 on ∂Ω× R+, (5.6)

u(0) = u0 in Ω, (5.7)

where α : R→ R is nondecreasing, continuous, and satisfies (5.4) for some p ∈ (1, 2d/(d− 2)+).
In order to apply our abstract theory, we set V = Lp(Ω), X = H1

0 (Ω),

ψ(u) =

∫
Ω

A(u), φ(u) =


(∫

Ω

|∇u|2
)1/2

= |u|H1
0 (Ω) = |u|X if u ∈ X,

∞ else.

Note that φ is lower semicontinuous in X = D(φ) = D(∂φ), which implies that φ is lower
semicontinuous in V as well. Moreover, φ is convex and has bounded sublevels in X. Namely, it
satisfies (2.3). Moreover, φ is Gâteaux differentiable in X \ {0}. Indeed, for every u ∈ X \ {0},
x ∈ X, and h ∈ R, we have

φ(u+hx) =

(∫
Ω

|∇u+ h∇x|2
)1/2

=

(∫
Ω

|∇u|2 + 2h∇u∇x+ o(h)

)1/2

=

(∫
Ω

|∇u|2
)1/2

+ h

∫
Ω

∇u · ∇x
(∫

Ω

|∇u|2
)−1/2

+ o(h)

= φ(u) + h 〈−∆u, x〉X

(∫
Ω

|∇u|2
)−1/2

+ o(h).

Thus, the Gâteaux differential dXφX of φ is given by

dXφX : u 7−→
(∫

Ω

|∇u|2
)−1/2

〈−∆u, ·〉X ∀u ∈ X \ {0}.

We now prove that

∂XφX(0) = {η ∈ X∗ : |η|X∗ ≤ 1} =: B1
X∗ .

Indeed, fix η ∈ ∂XφX(0). Then, by the definition of subdifferential

〈η, u〉X ≤ φ(u)− φ(0) = φ(u) = |u|X for all u ∈ X.
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Thus, taking the supremum over the set {u ∈ X : |u|X ≤ 1}, we get |η|X∗ ≤ 1, which yields
∂XφX(0) ⊂ B1

X∗ . Conversely, fix η ∈ B1
X∗ . For all u ∈ X we have

〈η, u〉X ≤ |η|X∗ |u|X ≤ |u|X = φ(u).

Thus, η ∈ ∂XφX(0). The arbitrariness of η ensures that B1
X∗ ⊂ ∂XφX(0). Furthermore, note

that, for all u ∈ X \ {0} and η = dXφX(u), we have

|η|X∗ = sup
x∈X, |x|X=1

〈η, x〉X =

(∫
Ω

|∇u|2
)−1/2

sup
x∈H1

0 (Ω), |x|
H1

0(Ω)
=1

∫
Ω

∇u · ∇x

≤ sup
x∈H1

0 (Ω), |x|
H1

0(Ω)
=1

(∫
Ω

|∇u|2
)−1/2 ∫

Ω

|∇u|2
∫

Ω

|∇x|2

=

(∫
Ω

|∇u|2
)1/2

= φ(u).

In particular, φ satisfies assumption (2.4). We refer to [2, Section 6] to check that assumptions
(2.1) and (2.2) are satisfied.

The direct application of Theorem 1 entails the following.

Theorem 6. Let the above assumptions be satisfied. Then, there exists ε0 > 0 such that for
every ε ∈ (0, ε0) system(∫

Ω

|∇u|2
)1/2

(−ε∂t (α(∂tu)) + α(∂tu))−∆u = 0 in Ω× R+,

u = 0 on ∂Ω× R+,

u(0) = u0 in Ω,

admits a solution uε ∈ W 1,p(0, T ;Lp(Ω)) ∩ L∞(R+;H1
0 (Ω)) with α(∂tu) ∈ W 1,p′(0, T, Lp

′
(Ω))

for all T > 0. Moreover, there exists a non-relabeled subsequence uε such that uε → u strongly
in C ([0, T ];Lp(Ω)) for all T > 0, where u ∈ W 1,p(0, T ;Lp(Ω)) ∩ L∞(R+;H1

0 (Ω)) for all T > 0
is a solution of (5.5)-(5.7).
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