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filters to extract anatomical signatures [15]. This is a time-

consuming process and requires expert knowledge. By apply-

ing deep learning, practitioners have been able to achieve many

successes such as organs detection using 3D dynamic contrast-

enhanced MRI scans over a period of time [17] and automatic

segmentation in brain images using 3D convolutional deep

learning architecture on mini-batches of multiple cubes of

brain data [18]. Deep learning methods are highly effective

when the number of available samples are large during a

training stage. For example, in ImageNet Large Scale Visual

Recognition Challenge (ILSVRC), the dataset contained 1

million annotated images. Medical datasets meanwhile are

considerably smaller, typically less than 1,000 images [15].

This poses a problem for creating deep models for medical

imaging which are robust against overfitting. Another problem

is that the process of training deep neural networks using

popular optimizers such as Stochastic Gradient Descent (SGD)

generally require much manual tuning of optimization param-

eters such as learning rates and convergence criteria [41]. In

recent years there have been many alternative optimization

methods for deep learning which require less parameter tuning,

such as Adam [43]. However, these methods do not generalize

as well compared to traditional methods such as SGD [44].

The manual parameter tuning causes a challenge in selecting

suitable deep models for a specific problem. A solution to

these difficulties is to combine multiple deep learning models

trained on medical image datasets which would guarantee

better predictions compared to using individual deep models.

Ensemble learning is a popular machine learning technique

in which multiple learning methods are combined to solve a

computational intelligence problem. [48] tested 179 classifiers

on 121 datasets and the results indicated that ensemble-based

methods achieved the top ranks. In this study, we introduce

an ensemble of deep learning methods for the problem of

semantic medical image segmentation. The ensemble includes

a number of different segmentation algorithms in which their

outputs are combined by a combining algorithm to obtain

the collaborated prediction. It is recognized that different

segmentation algorithms will perform well on different subsets

of examples because of the nature and size of training sets

they have been exposed to and because of method-intrinsic

factors. Therefore we focus on improving the effectiveness of

Abstract—In recent years, deep learning has rapidly become 
a method of choice for segmentation of medical images. Deep 
neural architectures such as UNet and FPN have achieved 
high performances on many medical datasets. However, medical 
image analysis algorithms are required to be reliable, robust, 
and accurate for clinical applications which can be difficult to 
achieve for some single deep learning methods. In this study, we 
introduce an ensemble of classifiers f or s emantic segmentation 
of medical images. The ensemble of classifiers h ere i s a  set 
of various deep learning-based classifiers, a iming t o achieve 
better performance than using a single classifier. W e propose 
a weighted ensemble method in which the weighted sum of 
segmentation outputs by classifiers i s u sed t o c hoose t he final 
segmentation decision. We use a swarm intelligence algorithm 
namely Comprehensive Learning Particle Swarm Optimization 
to optimize the combining weights. Dice coefficient, a  popular 
performance metric for image segmentation, is used as the fitness 
criteria. Experiments conducted on some medical datasets of the 
CAMUS competition on cardiographic image segmentation show 
that our method achieves better results than both the constituent 
segmentation models and the reported model of the CAMUS 
competition.

Index Terms—image segmentation, deep neural networks, en-
semble learning, ensemble method, particle swarm optimization

I. INTRODUCTION

Image segmentation is the process of partitioning an input

image into regions which correspond to different objects

or parts of an object. Segmentation of medical images is

considered very important in providing noninvasive informa-

tion about human body structure [40], which have a vital

role in numerous biomedical imaging applications, such as

tissue volumes quantification, d iagnosis, p athology localiza-

tion, study of anatomical structure, treatment planning, and

computer-integrated surgery [42]. Automation of segmentation

to integrate into clinical processes is therefore desirable. With

the success of deep learning in image classification [ 14] in
2012, practitioners in medical image analysis took notice of

these developments and applied it to segmentation of medical

images. It is well known that localization and interpolation of

anatomical structures in medical images, which is a key step in
radiological workflow, was performed by handcrafting image



the ensemble by using a weight-based combining method. On

a particular problem, some segmentation algorithms will con-

tribute more to the final combining result by associating them

larger weights than those of other ones. The final prediction is

made by using a weighted sum on the outputs of segmentation

algorithms. The weights are chosen to maximize the Dice coef-

ficient, which is a popular performance metric in segmentation,

based on a cross-validation procedure on the training data.

We empirically compared our proposed ensemble with some

well-known deep learning benchmark algorithms on several

medical datasets of the CAMUS competition on cardiographic

image segmentation [38]. In section 2, we briefly introduce en-

semble learning, weighted combining model, Particle Swarm

Optimization and Comprehensive Learning, and techniques for

medical image segmentation problem. In section 3, we give a

detailed description of the proposed ensemble. Experimental

studies on a number of datasets are provided in Section 4,

followed by conclusions in Section 5.

II. BACKGROUND AND RELATED WORK

A. Ensemble System and Weighted Combining Model

Ensemble systems are typically built by generating diverse

classifiers and then combine them to make a final decision.

The first stage is done by training a learning algorithm on

multiple training sets generated from the original training

data or training different learning algorithms on the original

training data to generate Ensemble of Classifiers (EoC) [1],

[2]. The second stage uses a combining method working

on the predictions of the generated classifiers for the final

decision. Fixed combining methods are frequently applied to

the predictions of classifiers to predict class labels. Popular

fixed combining methods use fixed combining rules such as

the Sum Rule, Product Rule, Min Rule, Max Rule, Median

Rule, and Majority Vote Rule [3]. In simple fixed combining

rules, all classifiers are treated equally in the aggregation

step, i.e. all classifiers make an equal contribution in the

final collaborated prediction. It is recognized that the equal

contribution of classifiers may downgrade the performance

of EoC because classifiers perform differently on a particular

dataset and some classifiers need to contribute more than the

others. Weighted combining model, in contrast, assumes that

each classifier puts a different weight on the combining result.

The weights and predictions are used to generate a set of

combinations associated with the class labels. The predicted

class label for a sample is then decided by selecting the

maximum value among these combinations. There are some

techniques to obtain the combining weights. Nguyen et al. [1]

searched for the weights by minimizing the distance between

these combinations computed on the training data and the class

label of training observations given in the crisp form. Zhang

and Zhou [4] proposed using linear programming to find the

weights. Sen et al. [5] searched for the combining weights

by minimizing the hinge loss function of the combination and

the class labels of training data. Pacheco et al. [29] performed

ensemble selection and pruning of deep learning classifiers by

learning the Dirichlet distribution of the output probabilities

and optimizing the weights dynamically using a loss function

based on Mahalanobis distance.

B. Particle Swarm Optimization and Comprehensive Learning

Evolutionary Computation (EC) is a family of algorithms

inspired by biological evolution for global optimization. One

of the most popular methods of EC is Particle Swarm Op-

timization (PSO) [6], a swarm-based algorithm inspired by

the emergent motion of a flock of birds searching for food.

This algorithm simultaneously performs a local exploitation

within each particle and global exploration among the whole

swarm. For a U -dimension optimization problem, PSO main-

tains a number of particles whose positions are defined by

xi = (x1

i , x
2

i , ..., x
U
i ), i = 1, ..., N where N is the number of

particles. A velocity vi = (v1i , v
2

i , ..., v
U
i ) is associated with

each particle xi. PSO ensures each particle learns from the

whole swarm during its search by updating each particle’s

velocity based on its current velocity, local best position, and

global best position.

Because all particles learn from the global best position,

PSO can converge prematurely at a local optimum [8]. In

2006, Liang et al. proposed Comprehensive Learning PSO

(CLPSO) [8] which addresses this shortcoming by having

each particle learn from all particles’ local best position.

Specifically, each particle with U -dimension will also have

a U -dimension exemplar vector ei = (e1i , e
2

i , ..., e
U
i ) for

comprehensive learning. The exemplar vector is introduced

for a particle to learn from the local best (pbest) of itself

as well as all the other particles. For example, a particle

with the position (0.13, 0.43, 0.22, 0.74, 0, 11), the velocity

(0.48, 0.25, 0.52, 0.13, -0.15), and the exemplar (6, 8, 4, 8, 4)
would learns/updates the 3rd dimension position value based

on the 3rd dimension position value of the 4th particle’s pbest.

A particle is assigned randomly with an exemplar vector at

initialization. When a particle’s pbest does not improve after

a number of iterations, the exemplar will be updated. In order

to choose which particle to learn from for each dimension, the

algorithms selects randomly two different particles and the one

with higher fitness value will be assigned as the exemplar for

the updated particle on the corresponding dimension [8], [9].

Therefore, only one acceleration of constant c is needed. The

updated equation is given by:

vui ← a× vui + c× r1 × (pbestueu
i

− xu
i ) (1)

in which a is the inertia weight which controls the velocity

speeding rate, c is an acceleration constant used to control

the learning rate of the exemplars’ local best, pbestueu
i

is

the uth dimension of particle’s best position referring to the

uth dimension of exemplar ei, and r1 is a random number

drawn from a uniform distribution over [0, 1]. Considering

that CLPSO has demonstrated state-of-the-art global search

capabilities in various applications [45], such as optimizing

reactive power dispatch [46] and [47] optimizing network

security, in this paper we use CLPSO as an optimization

routine for our proposed method.



C. Medical Image Segmentation

Many research efforts have been made to apply deep

learning to medical image segmentation. An example is UNet

[20] which consists of an equal number of upsampling and

downsampling layers. Each downsampling layer has a skip

connection which concatenates its output feature map with the

input of the corresponding upsampling layer. This allows the

network to take into the full context of the whole image, which

is beneficial in performing segmentation task. Other authors

have extended this architecture to handle 3D medical data,

such as VNet [22], which performs 3D image segmentation

using 3D convolutional layers with an objective function

based on Dice coefficient. Although these specific architec-

tures achieved remarkable results, many authors have also

obtained excellent segmentation results via patch-based deep

neural networks. One of the earliest papers on applying deep

learning to medical image segmentation performed pixel-wise

segmentation of membranes in electron microscopy imagery

in a sliding window fashion [25]. More recent papers use

architectures based on Fully Convolutional Neural Network

(fCNN) [26] over sliding-window due to computational ef-

ficiency. A notable examples is vertebral body segmentation

in MR images using 3D fCNNs to generate vertebral body

likelihood maps for deformable models [27]. Some researchers

have also applied graphical models such as Markov Random

Fields (MRFs) [28] and Conditional Random Fields (CRFs)

[19] on top of the likelihood maps produced by fCNNs to act

as label regularizers.

III. PROPOSED METHOD

Let D be the training set of N observations {(In,Yn)}
N
n=1

,

where In = In(i, j), 1 ≤ i ≤ W, 1 ≤ j ≤ H is an image in

the training set and Yn be its corresponding ground truth.

Each image is given with a number of channels. In this

study, we work on grayscale images which have only one

channel. The ground truth Yn is also an image with size

W×H,Yn = Yn(i, j) showing which label each pixel belongs

to Yn(i, j) ∈ Y , where Y = {ym}
M
m=1

is a set of labels.

Totally, we have N ×W ×H pixels and their corresponding

labels. For the semantic image segmentation problem, we

aim to learn a hypothesis h (i.e., classifier) based on the

relationship between each pixel In(i, j) and its corresponding

label Yn(i, j) of the training data and then use this hypothesis

to assign a label on each pixel of an unsegmented image. The

classifier h is obtained by training a segmentation algorithm

on the training data D. Given an image, h assigns a class label

to each pixel, and the segmentation result for all pixels of the

input image constitutes the segmented image.

We develop an EoC for solving the image segmentation

problem. We denote K = {Kk}
K
k=1

as the set of K segmen-

tation algorithms. In the ensemble, we train an EoC including

K different classifiers {hk}
K
k=1

and then use a combining

algorithm C to form the final decision making: ĥ = C{hk}
K
k=1

. The EoC {hk}
K
k=1

is generated by training K segmentation

algorithms on the training set D. We then generate the predic-

tions of pixels in training images and then train the combining

algorithm on these predictions. In detail, we use the Stacking

algorithm [2] to generate the predictions for pixels of training

images. First, we divide training set D into T disjoint parts

{D1, ...,DT }, where D = D1 ∪ ... ∪ DT ,Di ∩ Dj = ∅(i 6=
j), |D1| ≈ ... ≈ |DT |, and their corresponding {D̃1, ..., D̃T } in

which D̃t = D−Dt. The segmentation algorithm Kj trains on

D̃i to obtain a classifier C i
j . C i

j works on the images in Di

to output the probability reflecting how supportive a classifier

is to a class label for each pixel. The predictions for an image

I is given in an (W ×H)× (M ×K) matrix P(I):

P(I) =











P1(y1|I(1, 1)) · · · P1(yM |I(1, 1)) · · · PK(y1|I(1, 1)) · · · PK(yM |I(1, 1))
P1(y1|I(1, 2)) · · · P1(yM |I(1, 2)) · · · PK(y1|I(1, 2)) · · · PK(yM |I(1, 2))

... · · ·
... · · ·

... · · ·
...

P1(y1|I(W,H)) · · · P1(yM |I(W,H)) · · · PK(y1|I(W,H)) · · · PK(yM |I(W,H))











(2)

in which Pk(ym|I(i, j)) is the probability that the pixel I(i, j)
belongs to the class label ym given by the classifier generated

by using Kk for each k = 1, ...,K;m = 1, ...,M and
∑M

m=1
Pk(ym|I(i, j)) = 1 [12], [13]. The prediction for all

images in the training set D is given by a (N ×W × H) ×
(M ×K) matrix

P =









P(I1)
P(I2)
· · ·

P(IN )









(3)

The next step is to train the combining algorithm on P .

There are two combining models developed for the ensemble

systems, namely representation-based model and weighted

combining-based model [13]. The representation-based model

creates M representations for M class labels on the predictions

of the training data and then assigns class label which is

associated with the biggest value among similarities (or the

smallest value among dissimilarities) between the prediction

for each test sample and the M representations [2], [12], [13].

Meanwhile, in the weighted combining-based model, classi-

fiers contribute differently to combining by using different

combining weights. The weights may vary for each classifier

or among pairwise of classifier – class label. In this study, we

use a weighted combining-based model which is based on the

weight matrix WWW = {wk,m} in which wk,m is the weight of the

kth classifier on the mth class (k = 1, ...,K;m = 1, ...,M).
Since the ground truths of the training images are given in

advance, the weights of classifiers on the class labels can be

obtained by discovering the relationship between predictions P
and the class labels of the pixels of the training images. First,

the class membership of a pixel I(i, j) associated with the class

ym is obtained by a linear combination of the predictions and

the associated weights as:

CMm(I(i, j)) =

K
∑

k=1

wk,mPk(ym|I(i, j)) = PmWWWm (4)

with Pm = [P1(ym|I(i, j)), P2(ym|I(i, j))..., PK(ym|I(i, j))]
and WWWm = [w1,m, ..., wK,m]T . We then compare the class

memberships associated with the class labels and assign the



class label ys to pixel I(i, j) if its associated class membership

is the biggest among all memberships.

I(i, j) ∈ ys if s = argmaxm=1,...,MCMm(I(i, j)) (5)

In this study, we propose an approach to search for the

combining weights WWW by maximizing the Dice coefficient

computed on the predictions of the proposed ensemble with the

combining weights WWW on training data. Let pred and ground

denote the final predictions and ground truths of all training

pixels:

pred = {pred1, pred2...predM} (6)

ground = {ground1, ground2..., groundM} (7)

in which predm is the vector of size (N×W×H, 1) in which

its element is the prediction for each pixel belonging to the

class label ym in the form of crisp label i.e. in {0, 1}. Likewise

groundm is the vector of size (N×W×H, 1) associated with

the class label ym which is the ground truth of each pixel in

the form of crisp label i.e. in {0, 1}. predm is obtained based

on the classification rule in 5 while groundm is obtained from

the ground truths {Yn}. The Dice coefficient associated with

the class label ym is given by:

DCm =
2× predTmgroundm

||predm||2 + ||ground||2
(8)

The Dice coefficient is the average of all Dice coefficients

associated with the class labels.

DCavg =
1

M

M
∑

m=1

DCm (9)

We maximize the Dice coefficient to find the WWW. This opti-

mization problem is solved by using the CLPSO method.

max
WWW

DCavg

s.t. 0 ≤ wk,m ≤ 1
(10)

In this study, we use three popular segmentation algorithms

namely UNet, LinkNet, and Feature Pyramid Network (FPN)

to train the EoC. It is widely recognized that most segmenta-

tion algorithms based on deep learning are inspired by Fully

Convolutional Network (FCN) [26]. This architecture adapts

an existing classification network, such as VGG16, to the

segmentation problem by replacing the fully connected layers

with convolutional layers, followed by upsampling to produce

dense pixel-level result. Deep networks specifically designed

for medical image segmentation have also been introduced. A

notable example is UNet [20], which consists of a contracting

path and an expanding path. The contracting path consists

of a number of downsampling operations on the input image

in order to extract useful features, while the expanding path

upsample the image back to its original size for the final

prediction. In order to help with localization, high resolution

features from the contracting path are concatenated with the

upsampled output. This is an example of encoder-decoder

architecture, in which an image goes through an encoder

which contracts the image size, and is then decoded back to

Algorithm 1 Training process

Input: Training images D, K segmentation algorithms {Kk}
K
k=1,

parameters for the CLPSO: maximum number of iteration
maxT , population size nPop, acceleration constant c

Output: The optimal weights ŴWW and {hk}
K
k=1

1: Learn K classifiers {hk}
K
k=1 on D using {Kk}

K
k=1

2: P = ∅
3: D = D1 ∪ ... ∪ DT ,Di ∩ Dj = ∅(i 6= j)
4: for each Di do
5: D̃i = D− Di

6: Learn ensemble of classifiers on D̃i using {Kk}
K
k=1

7: Classify images in Di by these classifiers
8: Add outputs on samples in Di to P 3
9: Use the CLPSO method: for each candidate WWW, compute the

associated Dice coefficient using Algorithm 2

10: Select the optimal ŴWW with the best Dice coefficient

11: return ŴWW and {hk}
K
k=1

the original size to get the segmentation result. Other examples

include LinkNet [21] which takes the sum of the upsampled

output and the corresponding features in the contracting path,

and FPN [32] which concatenates features of all levels in the

expanding path to help with the final prediction.

The pseudo-code of the training process of the proposed

system is present in Algorithm 1. The algorithm gets the inputs

including the training images D, K segmentation algorithm

{Kk}
K
k=1

, and parameters for the CLPSO (the population

size popSize, the number of iterations iter, and learning

rate controller C). First, we train K segmentation algorithms

{Kk}
K
k=1

on D to create classifiers {hk}
K
k=1

. Then we generate

the prediction P for all pixels of training images by using the

Stacking algorithm (Step 2-8). For each candidate WWW generated

in the CLPSO, we call Algorithm 2 to calculate its associated

Dice coefficient. In Algorithm 2, for each row of P i.e. the

predictions of K classifiers for a pixel, we compute the class

memberships associated with the class labels by using 4 and

then assign a class label to this pixel by using 5. On the

prediction result for all pixels of P , we can obtain the final

predictions pred in the form of crisp labels. By using the

ground truth of all pixels in the training set, we can calculate

the Dice coefficient associated with each class label and the

average Dice coefficient. The CLPSO runs until it reaches

the number of iterations. From the last swarm, we select the

candidate ŴWW which is associated with the best Dice coefficient

as the solution of the problem.

In the classification process, we assign the class label to

an unsegmented image I. We first obtain the predictions

P(I) for all pixels of I by using the EoC {hk}
K
k=1

. The M

class memberships of each pixel then are calculated by using

these predictions and the optimal weight ŴWW (Step 2-5). The

classification rule in 5 is applied to these class memberships

of this pixel to give the final prediction. The predictions for

all pixels of I constitute its segmentation result.



Algorithm 2 Compute the Dice coefficient for each weight

candidate generated in the CLPSO algorithm

Input: Candidate WWW, Predictions P

Output: The Dice coefficient associated with WWW

1: for each row In(i, j) of P do
2: for m← 1 to M do
3: Compute CMm(In(i, j)) by using 4
4: Assign class label to In(i, j) by using 5
5: Generate pred
6: Compute DCavg by 9
7: return DCavg

Algorithm 3 Classification process

Input: Unsegmented image I, the optimal weights ŴWW and {hk}
K
k=1

Output: Segmented result for I

1: Obtain the prediction P(I) by using {hk}
K
k=1

2: for each pixel of I do
3: for m← 1 to M do
4: Compute CMm(I(i, j)) by using Pm getting from P(I) and

ŴWWm from ŴWW

5: Assign label to I(i, j) by using 5
6: return Segmented result for I

IV. EXPERIMENTAL STUDIES

A. Experimental Settings

Two performance metrics were used for the evaluation of

the base segmentation algorithms and the proposed ensem-

ble: Dice coefficient and Mean Absolute Distance (MAD).

Dice coefficient, defined in Equation 8, is one of the most

popular metrics for medical image segmentation. However,

its shortcoming is that it is a measure for total volume

difference, without taking into account local discrepancies

between contours, which is important in the context of medical

image analysis [36]. Therefore, we also used another distance

measure between geometrical contours for the evaluation. Let

GTm and PRm be the set of coordinate vectors of the ground

truth contour and prediction contour with respect to class ym
respectively. The MAD for class ym [37] is defined as follows:

MADm =
1

|GTm|+ |PRm|
(

∑

gt∈GTm

min
pr∈PRm

||gt− pr||

+
∑

pr∈PRm

min
gt∈GTm

||pr − gt||) (11)

To evaluate the effectiveness of our proposed ensemble

compared to the benchmark algorithms, we participated in the

Cardiac Acquisitions for Multi-structure Ultrasound Segmen-

tation (CAMUS) challenge [38], which is a competition for

accurate segmentation of 2D echocardiographic images. The

datasets provided by the competition consists of clinical exams

from 500 patients. For each patient, 2D apical four-chamber

and two-chamber cardiographic images and segmentation were

recorded at two cardiographic positions, End Diastolic (ED)

and End Systolic (ES), making a total of 4 datasets. Three

expert cardiologists were involved in the manual segmentation

of the datasets. Segmentation ground truth is provided for 450

Fig. 1. An image (left) and ground truth (right) of the CAMUS competition.

Fig. 2. Example result for datasets of the CAMUS competition. From left to
right, top to bottom: UNet-VGG16, LinkNet-VGG16, FPN-VGG16, UNet-
ResNet34, LinkNet-ResNet34, FPN-ResNet34, UNet-ResNet101, LinkNet-
ResNet101, FPN-ResNet101, Proposed ensemble (6), Proposed ensemble (9),
test image (ground truth not available)

patients, while the segmentation of the other 50 patients are

not publicly available, and participants have to submit the

results to a server for evaluation 1. The datasets have three

classes: Left ventricle, Myocardium and Left atrium, with an

additional background class. Example images for two-chamber

and four-chamber cases and their corresponding ground truths

are shown in Figure 1. The evaluation server reports the

aggregate results for ED and ES for both four-chamber and

two-chamber cases. We reported the best results achieved by

the author of this competition and the results of constituent

classifiers as benchmark algorithms. For proposed ensemble,

we set T = 5 for the T -fold cross-validation procedure in the

Stacking algorithm. For CLPSO, we set c = 1.494 as in [8],

and maxT = 600, nPop = 10. The predictions generation

on the training set of one case (e.g. two-chamber ED) took

approximately 18 hours using the GPU running in parallel.

The optimization for each of the four datasets in the CAMUS

competition using the CLPSO meanwhile was run on the CPU

and took approximates 26 hours. This can be considered a

reasonable time, compared to other similar works such as

[49] in which the authors took 61 hours to optimize DNN

hyperparameters for medical image segmentation.

B. Influence of Using Different Number of Segmentation Al-

gorithms

We first explored the influence of using different number of

segmentation algorithms on the performance of the proposed

ensemble. We used the following architectures: UNet [20],

LinkNet [21] and Feature Pyramid Network (FPN) [32] with

two backbones VGG16 [33] and ResNet34 [34] to obtain

the ensemble of 6 segmentation algorithms (denoted by Pro-

posed ensemble (6)). We then used these 3 architectures with

1https://www.creatis.insa-lyon.fr/Challenge/camus/scientificInterests.html
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Fig. 3. The performance of proposed ensemble using 6 and 9 segmentation
algorithms.

backbone ResNet101 to generate 3 more segmentation algo-

rithms for the ensemble (denoted by Proposed Method (9)).

All segmentation algorithms were run for 300 epochs when

training classifiers. Figure 3 shows the comparison between the

performance of Proposed ensemble (6) and Proposed ensemble

(9).

With respect to the Dice coefficient, it can be seen that

both ensemble give similar result. For the ED case, Proposed

ensemble (6) achieves a Dice coefficient of 0.946 and 0.959

on Left ventricle and Myocardium class respectively, while

Proposed ensemble (9) gives a higher result of 0.1% in both

classes. For the Left atrium class, Proposed ensemble (6) has a

Dice coefficient of 0.902, which is lower than that of Proposed

ensemble (9) by 0.4%. Proposed ensemble (6) is slightly

better than Proposed ensemble (9) for the ES case, with

Dice coefficient of 0.930 and 0.929 respectively. In contrast,

Proposed ensemble (6) achieves a Dice coefficient of 0.933

on the Left atrium class which is lower than that of Proposed

ensemble (9) by 0.2%. Both ensembles achieve the same result

on the Myocardium class at 0.954.

With respect to the MAD, Proposed ensemble (9) achieves

better result compared to Proposed ensemble (6) for the ED

case by a margin of 0.1 on all three classes (from 1.5 to 1.4

on Left ventricle, 1.7 to 1.6 on Myocardium and 2.0 to 1.9 on

Left atrium). This can also be observed for the ES case, Left

atrium class (from 1.7 to 1.6). It is observed that adding 3

segmentation algorithms with ResNet101 backbone increases

MAD on the two other classes for this case (from 1.4 to 1.5

on Left ventricle and 1.6 to 1.7 on Myocardium).

C. Comparison with Benchmark Segmentation Algorithms

We compared the performance of the Proposed ensemble (9)

with the benchmark algorithms. Tables I and II shows the Dice

coefficient and MAD measured for the ED Case. It can be seen

that the proposed ensemble achieves the best Dice coefficient

for all three classes compared to other benchmarks. For the

Left ventricle class, the proposed ensemble achieves a score of

0.947 which is slightly higher than that of the second best by

UNet-ResNet34 (0.946). Meanwhile, the author’s best achieves

a score of only 0.936. For the two other classes, Myocardium

TABLE I
DICE COEFFICIENT FOR THE DATASETS OF THE CAMUS COMPETITION,

END DIASTOLIC CASE

Left ventricle Myocardium Left atrium

Author’s best 0.936 0.956 0.889
UNet-VGG16 0.307 0.3 0.244
UNet-ResNet34 0.946 0.958 0.9
UNet-ResNet101 0.943 0.957 0.892
LinkNet-VGG16 0.203 0.2 0.197
LinkNet-ResNet34 0.942 0.958 0.897
LinkNet-ResNet101 0.887 0.899 0.843
FPN-VGG16 0.354 0.356 0.279
FPN-ResNet34 0.945 0.958 0.899
FPN-ResNet101 0.925 0.938 0.876
Proposed ensemble (9) 0.947 0.96 0.906

TABLE II
MEAN ABSOLUTE DISTANCE FOR DATASETS OF THE CAMUS

COMPETITION, END DIASTOLIC CASE

Left ventricle Myocardium Left atrium

Author’s best 1.6 1.7 2.2
UNet-VGG16 6.4 6.7 3.4
UNet-ResNet34 1.5 1.7 2
UNet-ResNet101 1.6 1.7 2.2
LinkNet-VGG16 1.2 1.9 1.2

LinkNet-ResNet34 1.6 1.7 2.1
LinkNet-ResNet101 1.5 1.7 2
FPN-VGG16 1.3 2 2.5
FPN-ResNet34 1.5 1.7 2
FPN-ResNet101 1.5 1.8 2.1
Proposed ensemble (9) 1.4 1.6 1.9

and Left atrium, the proposed ensemble has a Dice coefficient

of 0.96 and 0.906 respectively, which is better than the second

best benchmarks by 0.2% and 0.7% respectively. Most of the

contributions to the proposed ensemble are from the segmen-

tation algorithms with ResNet34 and ResNet101 backbone,

while the ones having VGG16 backbone achieve a very low

Dice coefficient at just around 0.2 and 0.3. However, with the

MAD, the proposed ensemble only achieved the best result

for the Myocardium class at 1.6, while for Left ventricle and

Left atrium it only achieved 1.4 and 1.9 respectively compared

to LinkNet-VGG16 which was at 1.2 for both classes. Other

benchmarks achieve slightly higher MAD values for all of

the three classes. This can be explained by the observation

in [36] that in the case where the prediction curvature has

a high degree of winding and low similarity compared to

the reference curvature, it is possible for measures based on

segmentation contours, as opposed to using global information

(such as with Dice coefficient) to miscalculate.

The result for ES Case are shown in Tables III and IV. As

with the ED case, the proposed ensemble achieved the best

Dice coefficient on all three classes, and the benchmarks using

VGG16 backbone performed poorly. For the Left ventricle

class, the proposed ensemble achieved a score of 0.929 which

was higher than the second best (LinkNet-ResNet34) by 0.1%.

For the Myocardium class, the proposed ensemble obtained the

same Dice coefficient as the second best benchmark (LinkNet-

ResNet34) at 0.954. UNet-ResNet34 and FPN-ResNet34 also

achieved slightly lower scores (0.952 and 0.953 respectively)

while the other benchmarks obtained lower scores from 0.93



TABLE III
DICE COEFFICIENT FOR DATASETS OF THE CAMUS COMPETITION, END

SYSTOLIC CASE

Left ventricle Myocardium Left atrium

Author’s best 0.913 0.946 0.918
UNet-VGG16 0.295 0.305 0.244
UNet-ResNet34 0.925 0.952 0.927
UNet-ResNet101 0.923 0.949 0.918
LinkNet-VGG16 0.106 0.113 0.119
LinkNet-ResNet34 0.928 0.954 0.922
LinkNet-ResNet101 0.871 0.894 0.868
FPN-VGG16 0.317 0.317 0.241
FPN-ResNet34 0.927 0.953 0.926
FPN-ResNet101 0.905 0.93 0.888
Proposed ensemble (9) 0.929 0.954 0.935

TABLE IV
MEAN ABSOLUTE DISTANCE FOR DATASETS OF THE CAMUS

COMPETITION, END SYSTOLIC CASE

Left ventricle Myocardium Left atrium

Author’s best 1.7 1.9 2
UNet-VGG16 2.1 4.8 3.1
UNet-ResNet34 1.6 1.7 1.7
UNet-ResNet101 1.6 1.7 1.8
LinkNet-VGG16 3.6 4.1 3.6
LinkNet-ResNet34 1.5 1.7 1.9
LinkNet-ResNet101 1.5 1.7 1.7
FPN-VGG16 1.7 3 3.3
FPN-ResNet34 1.5 1.7 1.8
FPN-ResNet101 1.5 1.8 2
Proposed ensemble (9) 1.5 1.7 1.6

(FPN-ResNet101) to 0.49 (UNet-ResNet101). The proposed

ensemble achieved for the Left atrium class a Dice score

of 0.935, which was higher than the second best (UNet-

ResNet34) by a margin of 0.6%. With respect to MAD, the

proposed ensemble only achieved better score on the Left

atrium class at 1.6, which was better than the second best

(UNet-ResNet34 and LinkNet-ResNet101) by a difference of

0.1. For the Left ventricle and the Myocardium class, the pro-

posed ensemble achieved a score of 1.5 and 1.7 respectively,

which was the same as with several benchmarks. It should be

noted that even though the improvement was not very high,

this was the average result across 50 patients, while there

are cases in which there was noticeable improvement which

is very important in clinical situations. Table V shows the

comparison of Dice and MAD result for patient 19 between

UNet-ResNet101 and Proposed ensemble (9) on Left atrium

class. It can be seen that for this patient, UNet-ResNet101 has

a ED Dice score of 0.903, compared to 0.926 by Proposed

ensemble (9), which was an increase of more than 2%.

Similarly, there is an improvement of 1% for ES Dice score

(0.942 to 0.952). For MAD score, the proposed ensemble has

a better score by a margin of around 0.3.

Figure 2 shows an example of prediction made by the

benchmarks and the proposed ensemble. It can be seen that

FPN-VGG16 (first row, second column) failed to make a

correct prediction, while LinkNet-VGG16 did not segment the

bottom left part of the Myocardium, and made mistake on

a part of the Left ventricle for Myocardium. UNet-VGG16

wrongly predicted an empty part in the top left as My-

TABLE V
COMPARISON OF DICE AND MAD RESULT FOR PATIENT 19 BETWEEN

UNET-RESNET101 AND PROPOSED ENSEMBLE (9), LEFT ATRIUM CLASS

ED Dice ES Dice ED MAD ES MAD

UNet-ResNet101 0.903 0.942 1.9 1.5
Proposed ensemble (9) 0.926 0.952 1.4 1.2

TABLE VI
OPTIMAL WEIGHTS FOUND BY CLPSO FOR THE TWO-CHAMBER ED CASE

Left ventricle Myocardium Left atrium Background

UNet-VGG16 0.469 0.061 0.390 0.010
UNet-ResNet34 0.358 0.816 0.982 0.267
UNet-ResNet101 0.362 0.640 0.874 0.125
LinkNet-VGG16 0.766 0.126 0.449 0.151
LinkNet-ResNet34 0.815 0.705 0.473 0.682
LinkNet-ResNet101 0.232 0.761 0.708 0.283
FPN-VGG16 0.675 0.368 0.499 0.004
FPN-ResNet34 0.573 0.391 0.970 0.156
FPN-ResNet101 0.891 0.506 0.771 0.321

ocardium, and leaves a small hole in the Left atrium contour.

For the benchmarks using ResNet34 backbone (second row),

UNet-ResNet34 obtained an unsegmented hole in the left of

the Myocardium contour, while LinkNet-ResNet34 predicted

correctly the Left ventricle and Myocardium class but failed

to segment a lower part in the left of the Left atrium class. On

the other hand, FPN-ResNet34 obtained an unsegmented area

in the area between the Left ventricle and the Myocardium.

The benchmarks using ResNet101 backbone (third row) failed

to segment the Left atrium class altogether. In contrast, both

Proposed ensemble (6) and Proposed ensemble (9) improved

on the base segmentation algorithms to achieve the better

segmentation result. Table VI shows the optimal weights

found by CLPSO for the two-chamber ED case. It can be

seen that overall the ResNet-based algorithms are assigned

a higher weights compared to the VGG16-based algorithms,

however there are cases where the VGG16-based algorithms

are assigned relatively high weights. For example, with respect

to the Left ventricle class, LinkNet-VGG16 and FPN-VGG16

were assigned a weight of 0.766 and 0.675 respectively. This

shows that the weights of the proposed ensemble are not biased

towards well-performing methods. Instead, all the constituent

segmentation algorithms contribute to the ensemble.

V. CONCLUSION

In this paper, we presented a novel weighted ensemble

of deep learning models for the problem of medical image

segmentation. The probability predictions by the segmentation

algorithms are combined based on weighted combining for

a final prediction. Comprehensive Learning Particle Swarm

Optimization (CLPSO), a swarm intelligence algorithm, was

used to find the combining weights which gave the best

fitness value over a five-fold cross-validation procedure. Dice

coefficient, a popular metrics for medical image segmentation,

was used as the fitness criteria. Our result on the datasets

of CAMUS competition shows that the proposed ensemble

achieves an overall improvement compared to several bench-

mark algorithms.



ACKNOWLEDGEMENT

Funding was provided by the Newton Fund Institutional

Links program, project 527639907, in collaboration with Uni-

versidad Nacional Autonoma de Mexico (UNAM), granted

by The British Council, UK, and Secretarı́a de Tecnologı́a e

Innovación (SECTEI), Mexico City, Mexico.

REFERENCES

[1] T.T. Nguyen, M.T. Dang, A.W.C. Liew et al., A weighted multiple
classifier framework based on random projection, Information Sciences,
490 (2019), pp. 36-58.

[2] T.T. Nguyen, T.T.T. Nguyen, X.C. Pham et al., A novel combining
classifier method based on Variational Inference, Pattern Recognition. 49
(2016), pp. 198-212.

[3] J. Kittler, M. Hatef, R.P.W. Duin et al., On Combining Classifiers, IEEE
IEEE Trans. Pattern Anal. Mach. Intell. 20(3) (1998), pp. 226-239.

[4] Y. Zhang, S. Burer, W. Nick Street, Ensemble pruning via semidefinite
programming, J. Mach. Learn. Res. 7 (2006), pp. 1315-1338.

[5] M. U. Sen, H. Erdogan, Linear classifier combination and selection using
group sparse regularization and hinge loss, Pattern Recognition Letters.
34(3) (2013), pp. 265–274.

[6] J. Kennedy, R. Eberhart, Particle Swarm Optimization, in: Proceedings
of ICNN’95, 1995, pp. 1942-1948.

[7] Y. Zhang, S. Wang, G. Ji, A Comprehensive Survey on Particle Swarm
Optimization Algorithm and Its Applications, Mathematical Problems in
Engineering. 2015.

[8] J.J. Liang, A.K. Qin, P. N. Suganthan et al., Comprehensive Learning Par-
ticle Swarm Optimizer for Global Optimization of Multimodal Functions,
IEEE Trans Evo Comp. 10 (3) (2006), pp. 281-295.

[9] B. Tran, B. Xue, M. Zhang, Variable-Length Particle Swarm Optimization
for Feature Selection on High-Dimensional Classification, IEEE Trans
Evo Comp. 23 (3) (2019), pp. 473-487.

[10] X. Yu, X. Zhang, Enhanced comprehensive learning particle swarm
optimization, Applied Mathematics and Computation 242 (2014), pp. 265-
276.

[11] N. Lynn, P.N. Suganthan, Heterogeneous comprehensive learning par-
ticle swarm optimization with enhanced exploration and exploitation,
Swarm and Evolutionary Computation. 24 (2015), pp. 11-24.

[12] T.T. Nguyen, M.D. Dang, V.A. Baghel et al., Evolving interval-based
representation for heterogeneous classifier fusion, Knowledge Based
Systems, 2020.

[13] T.T. Nguyen, A.V. Luong, M.T. Dang et al., Evolving an Optimal
Decision Template for Combining Classifiers, in Proceedings of ICONIP,
2019, pp. 608-620.

[14] A. Krizhevsky, S. Ilya, H. Geoffrey, ImageNet classification with deep
convolutional neural networks, in Commun. ACM 60, 2017, pp. 84-90.

[15] Shen, D., Wu, G., Suk, H.I, Deep learning in medical image analysis,
in Annu. Rev. Biomed. Eng. 19, 2017, pp. 221–248.

[16] Guo, Y., Gao, Y., Shen, D., Deformable MR Prostate Segmentation via
Deep Feature Learning and Sparse Patch Matching, in IEEE Trans Med
Imaging. 2016, pp. 1077-89.

[17] Shin, HC., Orton, MR., Collins, DJ. et al., Stacked autoencoders for
unsupervised feature learning and multiple organ detection in a pilot study
using 4D patient data, in IEEE Trans Pattern Anal Mach Intell. 2013,
35(8), pp. 1930-43.

[18] Kleesiek, J., Urban, G., Hubert, A. et al., Deep MRI brain extraction:
A 3D convolutional neural network for skull stripping, in Neuroimage.
2016, 129, pp. 460-469.

[19] Litjens, G., Kooi, T., Bejnordi, BE. et al., A survey on deep learning in
medical image analysis, in Med Image Anal. 2017, 42:pp.60-88.

[20] Ronneberger O., Fischer P., Brox T., U-Net: Convolutional Networks for
Biomedical Image Segmentation, in MICCAI, 2015.

[21] A. Chaurasia, E. Culurciello, LinkNet: Exploiting encoder representa-
tions for efficient semantic segmentation, in IEEE Visual Communications
and Image Processing, 2017, pp. 1-4.

[22] F. Milletari, N. Navab, S. Ahmadi, V-Net: Fully Convolutional Neural
Networks for Volumetric Medical Image Segmentation, in Fourth Inter-
national Conference on 3D Vision, 2016, pp. 565-571.

[23] Drozdzal, M., Vorontsov, E., Chartrand, G. et al., The importance of skip
connections in biomedical image segmentation, in Proceedings of Deep
Learning in Medical Image Analysis. 2016, vol. 10008, pp. 179–187.

[24] Andermatt, S., Pezold, S., Cattin, P., Multi-dimensional gated recurrent
units for the segmentation of biomedical 3D-data. in Proceedings of Deep
Learning in Medical Image Analysis, 2016, vol. 10008, pp. 142–151.

[25] Ciresan, D., Giusti, A., Gambardella, L.M. et al., Deep neural networks
segment neuronal membranes in electron microscopyimages, in Proceed-
ings of NIPS, 2016, pp. 2843–2851.

[26] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for
semantic segmentation, in IEEE CVPR, 2015, pp. 3431-3440.

[27] Korez, R., Likar, B., Pernus, F. et al.. Model-based segmentation of
vertebral bodies from MR images with 3D CNNs, in Proceedings of
MICCAI, 2016, pp. 433–441.

[28] Shakeri, M., Tsogkas, S., Ferrante, E. et al., Sub-cortical brain structure
segmentation using F-CNNs, in Proceedings of the IEEE International
Symposium on Biomedical Imaging, 2016, pp. 269-272.

[29] A. G. C. Pacheco, T. Trappenberg, R. A. Krohling, Learning dynamic
weights for an ensemble of deep models applied to medical imaging
classification, in IJCNN, 2020, pp. 1-8.

[30] D. Guo, Y. Pei, K. Zheng et al., ”Degraded Image Semantic Segmen-
tation With Dense-Gram Networks,” in IEEE Trans Image Process, vol.
29, 2020, pp. 782-795.

[31] Jingru Yi, Pengxiang Wu, Menglin Jiang et al., Attentive neural cell
instance segmentation, Med Image Anal, vol. 55, 2019, pp. 228-240.

[32] T. Lin, P. Dollar, R. Girshick et al., Feature Pyramid Networks for Object
Detection, in IEEE CVPR, 2017, pp. 936-944.

[33] S. Liu, W. Deng, Very deep convolutional neural network based image
classification using small training sample size, in 3rd IAPR Asian
Conference on Pattern Recognition, 2015, pp. 730-734.

[34] K. He, X. Zhang, S. Ren et al., Deep Residual Learning for Image
Recognition, in IEEE CVPR, 2016, pp. 770-778.

[35] Q. Liu, X. Tang, D. Guo et al., Multi-class Gradient Harmonized Dice
Loss with Application to Knee MR Image Segmentation, in MICCAI,
2019, pp. 86–94.

[36] H. Kim, S. Park, S. Lo et al., Bidirectional local distance measure for
comparing segmentations, in Medical Physics, 2019, vol. 39, no. 11, pp.
6779–6790.

[37] A. Taha, A. Hanbury, Metrics for evaluating 3D medical image segmen-
tation: analysis, selection, and tool, in BMC Medical Imaging, vol. 15,
Aug. 2015.

[38] S. Leclerc, E. Smistad, J. Pedrosa, et al., Deep Learning for Segmen-
tation Using an Open Large-Scale Dataset in 2D Echocardiography, in
IEEE Trans Med Imaging, 2019, vol. 38, no. 9, pp. 2198–2210.

[39] Farag A.A., Ahmed M.N., El-Baz A. et al., Advanced Segmentation
Techniques. In: Handbook of Biomedical Image Analysis. International
Topics in Biomedical Engineering. Springer, 2015.

[40] Elnakib A., Gimel’farb G., Suri J.S. et al., Medical Image Segmentation:
A Brief Survey. In: Multi Modality State-of-the-Art Medical Image
Segmentation and Registration Methodologies. Springer, 2011.

[41] Quoc V. Le, Jiquan Ngiam, Adam Coates et al., On optimization methods
for deep learning. In Proceedings of ICML, 2011, pp. 265–272.

[42] Pham D.L., Xu C, Prince J.L, Current methods in medical image
segmentation. Annual Review of Biomedical Engineering, 2000.

[43] Kingma, Diederik P., and Ba, J., Adam: A Method for Stochastic
Optimization. ICML, 2015.

[44] Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern et al., The marginal
value of adaptive gradient methods in machine learning. In Proceedings
of NIPS, 2017, pp. 4151–4161.

[45] Z. Hu, Y. Bao, T. Xiong, Comprehensive learning particle swarm
optimization based memetic algorithm for model selection in short-term
load forecasting using support vector regression. In Appl. Soft Comput.,
2014, pp. 15–25.

[46] K.Mahadevan, P.S. Kannan, Comprehensive learning particle swarm
optimization for reactive power dispatch. In Appl. Soft Comput., 2010,
pp. 641-652.

[47] H. Ali, F.A. Khan, Attributed multi-objective comprehensive learning
particle swarm optimization for optimal security of networks. In Appl.
Soft Comput., 2013, pp. 3903–3921.

[48] M.Fernández-Delgado, E. Cernadas, S. Barro et al., Do we need hun-
dreds of classifiers to solve real world classification problems? J. Mach.
Learn. Res. 15, 1, 2014, pp. 3133–3181.

[49] Baldeon Calisto, M., Lai-Yuen, S., AdaResU-Net: Multiobjective adap-
tive convolutional neural network for medical image segmentationaldeon-
Calisto and Susana K Lai-Yuen. In Neurocomputing 2020, pp. 325-340.


	coversheet_template
	DANG 2021 Weighted ensemble of deep (AAM)

