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Abstract. The Hankel transform transplantation operator is investigated by means of
a suitably established local version of the Calderón-Zygmund operator theory. This approach
produces weighted norm inequalities with weights more general than previously considered
power weights. Moreover, it also allows to obtain weighted weak type(1, 1) inequalities,
which seem to be new even in the unweighted setting. As a typical application of the trans-
plantation, multiplier results in weightedLp spaces with general weights are obtained for the
Hankel transform of any order greater than−1 by transplanting cosine transform multiplier
results.

1. Introduction. Given α > −1 and a suitable functionf on (0,∞), its Hankel
transform is defined by

Hαf (x) =
∫ ∞

0
(xy)1/2Jα(xy)f (y)dy , x > 0 .

HereJα(x) denotes the Bessel function of the first kind of orderα, see [7] or [14]. Then
(Hα ◦ Hα)f = f and ‖Hαf ‖L2 = ‖f ‖L2, for any f ∈ C∞

c (0,∞), the space ofC∞
functions with compact support in(0,∞). These two facts are known in the literature for
α ≥ −1/2; in [2, Lemma 2.6] a proof valid for anyα > −1 was furnished. Ifα = −1/2,

thenJ−1/2(t) = (2/πt)1/2 cost, thereforeH−1/2 becomes the cosine transform on(0,∞).

Guy [5] showed that the size of the Hankel transform of any suitable function, when
measured in the power weightLp norm, remains the same whatever the order of the Hankel
transform is. More precisely, givenα, γ ≥ −1/2, 1 < p < ∞ and−1/p < a < 1 − 1/p,
there is a constantC = C(α, γ, p, a) such that for every appropriate functionf

C−1‖Hγ f ‖p,a ≤ ‖Hαf ‖p,a ≤ C‖Hγ f ‖p,a .(1.1)

In another way, (1.1) may be expressed as

‖(Hα ◦ Hγ )f ‖p,a ≤ C‖f ‖p,a ,

where, for 1≤ p < ∞ and any real numbera,

‖g‖p,a =
( ∫ ∞

0
|g(x)xa|pdx

)1/p

.
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Another proof of Guy’s transplantation theorem was delivered by Schindler [12]. She
found an explicit expression of integral kernel of the transplantation operator

Tαγ = Hα ◦ Hγ .

Due to a singularity along the diagonal, the corresponding integral was understood in the
principal value sense.

In [13] one of the authors extended Guy’s result by enlarging the range of admissible pa-
rametersα andγ to α > −1 andγ > −1, and extending the range of power weight exponent
a to −(α + 1/2) − 1/p < a < (γ + 3/2) − 1/p. The result was obtained by transferring
Muckenhoupt’s transplantation theorem for Jacobi expansions to the Hankel transform set-
ting. In the restricted rangeα ≥ −1/2, γ ≥ −1/2 Schindler’s explicit kernel representation
was used to obtain the same conclusion. Thiswas done by splitting the integration into the
three regions: 0< y < x/2, x/2 < y < 3x/2 and 3x/2 < y < ∞. The splitting brought an
advantage: while on both outer regions Hardy’s integral inequalities were applied, the integra-
tion on the inner region was treated by using local versions of the Hardy-Littlewood maximal
function and the Hilbert transform.

The present paper deals with the transplantation operatorTαγ , α, γ > −1, initially
defined as a bounded operator onL2, from the (one-dimensional) Calderón-Zygmund theory
point of view, and the main purpose is to study weightedLp, 1 ≤ p < ∞, mapping properties
of Tαγ with general weights allowed. The associated (Schindler’s) kernelKαγ (x, y) is a
Calderón-Zygmund kernel ifα, γ ≥ 1/2, but it fails to satisfy the appropriate Hörmander
condition when eitherα < 1/2 or γ < 1/2. In these cases problems occur on the regions
0 < y < x/2 and 3x/2 < y < ∞. Therefore we split the operatorTαγ according to these
regions:

Tαγ = T 1
αγ + T 2

αγ + T 3
αγ ,

where the kernelsKi
αγ defining the integral operatorsT i

αγ , i = 1, 2 are given by

K1
αγ (x, y) = χ{(x,y) ; 0<y<x/2}Kαγ (x, y) ,

K2
αγ (x, y) = χ{(x,y) ; 0<3x/2<y}Kαγ (x, y) .

ThenT 1
αγ andT 2

αγ are easy to handle by means of weighted Hardy’s inequalities.

To treatT 3
αγ we introduce a notion of a local Calderón-Zygmund operator, which may

be of independent interest. A canonical example of such an operator is a local analogue of the
Hilbert transform

Hof (x) = P. V.

∫ 3x/2

x/2

f (y)

y − x
dy , x > 0 ,

considered (with a slight modification) by Andersen and Muckenhoupt in [1, Lemma 1]. We
prove that local Calderón-Zygmund operators, as well as the associated maximal truncated
integral operators, are bounded in weightedLp spaces, 1< p < ∞, and satisfy weighted
weak type(1, 1) inequalities, with weights meeting a localAp condition (which is weaker
than the usualAp condition). Finally, we show thatT 3

αγ is, in fact, a local Calderón-Zygmund
operator, hence its mapping properties follow.
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Throughout the paper we use a fairly standard notation. Thus, for a nonnegative weight
w on(0,∞) we writeLp(w) andL1,∞(w) to denote the weightedLp and the weighted weak
L1 spaces (with respect to the Lebesgue measuredx) that consist of all functionsf on(0,∞)

for which

‖f ‖p,w =
( ∫ ∞

0
|f (x)w(x)|p dx

)1/p

< ∞
or

‖f ‖L1,∞(w) = sup
t>0

(
t

∫
{|f |>t}

w(x) dx

)
< ∞ ,

respectively. Ifw ≡ 1 we simplify the notation by writingLp and ‖ · ‖p, or L1,∞ and
‖ · ‖L1,∞ . Given 1 ≤ p ≤ ∞, p′ denotes its conjugate, 1/p + 1/p′ = 1. By 〈f, g〉 we
mean

∫ ∞
0 f (x)g(x) dx whenever the integral makes sense. We will frequently write CZ to

abbreviate the term “Calderón-Zygmund”. The symbolN is used to denote the set of positive
integers{1, 2, . . . }.

The structure of the paper is as follows. In Section 2 we state the main results; these
are contained in Theorems 2.1 and 2.2. Section 3 is devoted to a study of the integral kernel
associated with the Hankel transplantation operator. In Section 4 we introduce a notion of
a local Calderón-Zygmund operator and prove relevant mapping properties in weighted set-
ting. Finally, in Section 5 we provide proofs of the main results and make some additional
observations, including a refinement of Schindler’s singular integral representation ofTαγ

(Proposition 5.1). Definition and some basic properties of localAp weights are contained in
the Appendix (Section 6), which is essentially self-contained.

The authors are highly indebted to Jacek Dziubański for his valuable comments and
remarks and to the referee for very careful reading of the manuscript.

2. Preliminaries and statement of results. We will use the bounds

Jα(t) = O(tα) , t → 0+ ,(2.1)

and

Jα(t) = O(t−1/2) , t → ∞ .(2.2)

A more precise description of behavior of the Bessel functionJα(t) at infinity is given by the
asymptotic formula (cf. [7, (5.11.6)])

√
tJα(t) = √

2/π(cos(t + aα) + bαt−1sin(t + aα) + O(t−2)) , t → ∞ .(2.3)

A bit of comment is, perhaps, necessary on the question why(Hα ◦ Hγ )f is well-
defined forf ∈ C∞

c (0,∞). If α ≥ −1/2, then a natural assumption to make the integral
definingHαg(x) convergent is to assumeg to be Lebesgue integrable (the integral kernels
(xy)1/2Jα(xy), x > 0, are (uniformly) bounded on 0< y < ∞). Assume thatα, γ > −1
andf ∈ C∞

c (0,∞). ThenHγ f (y) is a continuous function of 0< y < ∞ and, by using
(2.1),

Hγ f (y) = O(yγ+1/2) , y → 0+ .(2.4)
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Moreover, by applying (2.3),

Hγ f (y) = O(y−2) , y → ∞(2.5)

(using higher order asymptotics, better than (2.3), allows to getHγ f (y) = O(y−k) with
arbitrarily largek). Note that (2.4) and (2.5) ensureHγ f (y) to be integrable and hence, for
α ≥ −1/2,Hα(Hγ f )(x), 0 < x < ∞, makes sense. In the general caseα, γ > −1, (2.4) and
(2.5) show that the functiony → (xy)1/2Jα(xy)Hγ f (y) is integrable and again the integral
definingHα(Hγ f )(x), 0 < x < ∞, makes sense. Thus, from now on, byTαγ we understand
the (unique) isometrical extension onL2 of the operator which forf ∈ C∞

c (0,∞) has the
integral representation

Tαγ f (x) =
∫ ∞

0

∫ ∞

0
(xy)1/2Jα(xy)(yt)1/2Jγ (yt)f (t)dtdy , x > 0 .(2.6)

Given a nonnegative weight functionw(x) on (0,∞), consider the following set of con-
ditions:

sup
r>0

( ∫ ∞

r

w(x)px−p(γ+3/2)dx

)1/p( ∫ r

0
w(x)−p′

xp′(γ+1/2)dx

)1/p′

< ∞ ,(2.7)

sup
r>0

( ∫ r

0
w(x)pxp(α+1/2)dx

)1/p( ∫ ∞

r

w(x)−p′
x−p′(α+3/2)dx

)1/p′

< ∞ ,(2.8)

sup
0<u<v<2u

1

v − u

( ∫ v

u

w(x)pdx

)1/p( ∫ v

u

w(x)−p′
dx

)1/p′

< ∞ .(2.9)

We admit 1≤ p ≤ ∞ when considering (2.7) and (2.8), and 1≤ p < ∞ when considering
(2.9). Here and later on, forp = 1 or p = ∞, integrals of the form appearing in (2.7)–(2.9)
have the usual interpretation. For example, whenp = 1, the second factor in (2.7) is taken as
ess supx∈(0,r)[w(x)−1xγ+1/2]. Note that if a nonnegative weightw on (0,∞) satisfies any of
the conditions (2.7)–(2.9) (or the condition (4.6)), thenw is either identically 0 orw > 0 a.e.
(here the convention 0· ∞ = 0 is used).

It is easily seen that for a power weight functionw(x) = xa, a ∈ R, (2.7) is satisfied if
and only ifa < −1/p + (γ + 3/2), (2.8) is satisfied if and only ifa > −(α + 1/2) − 1/p,

and (2.9) is satisfied for eacha ∈ R. Condition (2.7) is necessary and sufficient for weighted
Hardy’s inequality

( ∫ ∞

0

∣∣∣∣w(x)x−(γ+3/2)
∫ x

0
f (t) dt

∣∣∣∣
p

dx

)1/p

≤ C

( ∫ ∞

0

∣∣∣∣w(x)x−(γ+1/2)f (x)

∣∣∣∣
p

dx

)1/p

(2.10)

to hold, while the condition (2.8) is necessary and sufficient for its dual version( ∫ ∞

0

∣∣∣∣w(x)xα+1/2
∫ ∞

x

f (t) dt

∣∣∣∣
p

dx

)1/p

≤ C

( ∫ ∞

0

∣∣∣∣w(x)xα+3/2f (x)

∣∣∣∣
p

dx

)1/p

(2.11)
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to be satisfied, cf. [9]. The localAp condition (2.9) forwp is, for 1< p < ∞, necessary and
sufficient for the estimate∫ ∞

0
|Tof (x)w(x)|pdx ≤ C

∫ ∞

0
|f (x)w(x)|pdx

to hold, whereTo represents one of the two operators: eitherMo, the local version of the
one-dimensional Hardy-Littlewood maximal operator

Mof (x) = sup
|x−y|≤x/2

1

y − x

∫ y

x

|f (t)|dt , x > 0 ,

or Ho, the local version of the Hilbert transform. The sufficiency part in the above is just a
version of [10, Lemma (9.6)], see also remarks following [13, Lemma 6.1]. Necessity of (2.9)
in case ofHo is stated in [1, Lemma 1] and in case ofMo is provided in Section 6, see Remark
6.4 below. In the casep = 1 the condition (2.9) is necessary and sufficient for the weighted
weak type (1,1) inequality∫

{x>0 ; |Hof (x)|>λ}
w(x)dx ≤ C

λ

∫ ∞

0
|f (x)|w(x) dx, λ > 0 ,

to hold, cf. [1, Lemma 1], and the same is true if we replaceHo by Mo, see Section 6.
The main results of the paper are contained in the following two theorems.

THEOREM 2.1. Let α, γ > −1, α = γ , and 1 < p < ∞ if |α − γ | = 2k for every
k ∈ N, or 1 ≤ p ≤ ∞ if |α − γ | = 2k for some k ∈ N. Let w(x) be a nonnegative weight
that satisfies: Condition (2.7) if α = γ + 2k for some k ∈ N; Condition (2.8) if γ = α + 2k

for some k ∈ N; Conditions (2.7), (2.8)and (2.9) if |α − γ | = 2k for every k ∈ N. Then( ∫ ∞

0
|Tαγ f (x)w(x)|pdx

)1/p

≤ C

( ∫ ∞

0
|f (x)w(x)|pdx

)1/p

for all f ∈ L2 ∩ Lp(w). Consequently, Tαγ extends to a bounded linear operator on Lp(w).

In order to treat the weak type (1,1) inequalities for the transplantation operator, for a
given nonnegative weight functionw(x) on (0,∞), consider the following set of conditions:

sup
r>0

( ∫ ∞

r

(
r

x

)δ
w(x)

xγ+3/2
dx

)(
ess sup
x∈(0,r)

xγ+1/2

w(x)

)
< ∞ ,(2.12)

sup
r>0

rα+1/2
(∫ r

0
w(x)dx

)(
ess sup
x∈(r,∞)

1

xα+3/2w(x)

)
< ∞ ,(2.13)

sup
r>0

( ∫ r

0

(
x

r

)δ

xα+1/2w(x)dx

)(
ess sup
x∈(r,∞)

1

xα+3/2w(x)

)
< ∞ .(2.14)

In (2.12) and (2.14) we assume that there exists a positiveδ such that the corresponding
quantities are finite. Moreover, (2.13) is considered forα ∈ (−1,−1/2] while (2.14) is taken
into account forα ∈ (−1/2,∞).
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It is easily seen that for a power weight functionw(x) = xa, a ∈ R, (2.12) is satisfied if
and only ifa ≤ γ + 1/2, (2.13) and (2.14) are satisfied if and only ifa ≥ −(α + 3/2) (> if
α = −1/2).

Let Pη, Qη, η real, denote the Hardy operators

Pηf (x) = x−η

∫ x

0
f (t)dt , Qηf (x) = x−η

∫ ∞

x

f (t)dt .

Condition (2.12) is necessary and sufficient for the inequality∫
{x>0 ; |Pγ+3/2f (x)|>λ}

w(x)dx ≤ C

λ

∫ ∞

0
|f (x)|x−(γ+1/2)w(x)dx , λ > 0 ,(2.15)

to hold, cf. [1, Theorem 2] taken withp = q = 1, η = γ + 3/2 > 0, U(x) = w(x) and
V (x) = x−(γ+1/2)w(x). Condition (2.13) in the caseα ∈ (−1,−1/2], or Condition (2.14) in
the caseα ∈ (−1/2,∞), are necessary and sufficient for the inequality∫

{x>0 ; |Q−(α+1/2)f (x)|>λ}
w(x)dx ≤ C

λ

∫ ∞

0
|f (x)|xα+3/2w(x)dx , λ > 0 ,(2.16)

to hold, cf. [1, Theorem 4] and [1, Theorem 5] taken withp = q = 1, η = −(α + 1/2),
U(x) = w(x) andV (x) = x(α+3/2)w(x).

THEOREM 2.2. Assume that α, γ > −1and α = γ . Let w(x) be a nonnegative weight
that satisfies: Condition (2.12)if α = γ + 2k for some k ∈ N; Condition (2.13)if γ = α + 2k

for some k ∈ N and α ∈ (−1,−1/2]; Condition (2.14) if γ = α + 2k for some k ∈ N and
α ∈ (−1/2,∞); Conditions (2.12), (2.9)with p = 1, and either (2.13)or (2.14)depending
on whether α ∈ (−1,−1/2] or α ∈ (−1/2,∞), if |α − γ | = 2k for every k ∈ N. Then∫

{x>0 ; |Tαγ f (x)|>λ}
w(x)dx ≤ C

λ

∫ ∞

0
|f (x)|w(x)dx , λ > 0 ,

for all f ∈ L2 ∩L1(w). Consequently, Tαγ extends to a bounded linear operator from L1(w)

to L1,∞(w).

A typical application of transplantation theorems is that for multipliers. We say that a
bounded measurable functionm on (0,∞) is anLp(w) multiplier forHα provided

‖Hα(mHαf )‖p,w ≤ D‖f ‖p,w , f ∈ L2 ∩ Lp(w) .

Given anLp(w) multiplier m for Hα, assume thatw is also such that for aγ > −1 the
transplantation inequality of Theorem 2.1 is satisfied and, in addition, the same is true for
the transplantation operatorTγα replacingTαγ . Let Cαγ andCγα denote constants appearing
there. Then, forf ∈ L2 ∩ Lp(w) we can write

‖Hγ (mHγ f )‖p,w = ‖TγαHα(mHγ f )‖p,w

≤ Cγα‖Hα(mHα(Tαγ f ))‖p,w

≤ CγαD‖Tαγ f ‖p,w

≤ CγαDCαγ ‖f ‖p,w .
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This means thatm is anLp(w) multiplier forHγ .

The above specified toα = −1/2 andγ > −1 gives, by Theorem 2.1, the following.

COROLLARY 2.3. Let γ > −1, 1 < p < ∞ and w be a given weight that satisfies

sup
r>0

( ∫ r

0
w(x)pdx

)1/p( ∫ ∞

r

(xw(x))−p′
dx

)1/p′

< ∞(2.17)

and

sup
r>0

( ∫ ∞

r

(x−1w(x))pdx

)1/p( ∫ r

0
w(x)−p′

dx

)1/p′

< ∞(2.18)

if γ = −1/2 + 2k for some k ∈ N, or (2.17), (2.18), (2.7), (2.8)with α replaced by γ and
(2.9) if γ = −1/2+ 2k for every k ∈ N. If m is an Lp(w) multiplier for the cosine transform
H−1/2, then m is also an Lp(w) multiplier for Hγ .

Consequently, we are enabled to derive weightedLp boundedness multiplier results,
with general weights, for the Hankel transform of arbitrary orderγ > −1 by applying known
results (for instance those in [11]) for the Fourier transform, modified in an obvious man-
ner to the cosine transform. This improves previous Hankel multiplier results existing in the
literature, see references in [2].

For example, for the weightwa,b(x) = xaχ(0,1](x)+xbχ(1,∞)(x) both (2.17) and (2.18)
are satisfied provided−1/p < a, b < 1 − 1/p; it is easy to check, that (2.7) and (2.8) with
α = γ are satisfied simultaneously whenever−1/p−(γ +1/2) < a, b < −1/p+(γ +3/2),

whereas (2.9) is satisfied with anya, b ∈ R.

3. The integral kernel Kαγ . In the caseα, γ ≥ −1/2, α = γ, Schindler [12] found
an explicit (singular) integral representation of the transplantation operatorTαγ = Hα ◦ Hγ :
for anyf ∈ C∞

c (0,∞),

Tαγ f (x) = P. V.

∫ ∞

0
Kαγ (x, y)f (y)dy + Cαγ f (x) ,(3.1)

whereCαγ = cos((α − γ )π/2) and, for 0< y < x, Kαγ (x, y) is given by

2Γ ((α + γ + 2)/2)

Γ (γ + 1)Γ ((α − γ )/2)
x−(γ+3/2)yγ+1/2 · 2F1

(
α + γ + 2

2
,
γ − α + 2

2
; γ + 1;

(
y

x

)2)
,

while, for 0< x < y, Kαγ (x, y) equals

2Γ ((α + γ + 2)/2)

Γ (α + 1)Γ ((γ − α)/2)
xα+1/2y−(α+3/2) · 2F1

(
α + γ + 2

2
,
α − γ + 2

2
; α + 1;

(
x

y

)2)

(in Section 5 we will show that the formula (3.1) is valid for a wider range ofα, γ and
for much more general functionsf, see Proposition 5.1 below). Moreover, it was shown
that the singularity along the diagonal is of the following form: with the constantDαγ =
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4/
(
Γ ((α − γ )/2)Γ ((γ − α)/2)(γ − α)

)
,

Kαγ (x, y) = Dαγ
x

x2 − y2 + O

(
1

x
log

x

x − y

)
, x/2 ≤ y < x ,(3.2)

and

Kαγ (x, y) = Dγα

y

y2 − x2 + O

(
1

y
log

y

y − x

)
, x < y ≤ 3x/2 .(3.3)

(In fact (3.2) and (3.3) remain valid forα, γ > −1, see the proof of Proposition 5.1). In
the above formulas we considerΓ (z)−1 to be a continuous function with the sequence of
isolated zeroes in 0,−1,−2, . . . . Hence, ifα = γ + 2k, k = 1, 2, . . . , thenKαγ (x, y) = 0
on 0 < x < y and, moreover,Kαγ (x, y) is continuous as a function considered on the
region 0 < y ≤ x. Similarly, if γ = α + 2k, k = 1, 2, . . . , thenKαγ (x, y) = 0 on
0 < y < x andKαγ (x, y) is continuous on 0< x ≤ y. This is because, in the first case,
(γ − α + 2)/2 ∈ {0,−1,−2, . . . } which means that2F1((α + γ + 2)/2, (γ − α + 2)/

2; γ +1; t) is a polynomial int and the same is true, in the second case, for2F1((α +γ +2)/

2, (α − γ + 2)/2; α + 1; t). It is clear, therefore, that the significance of P. V. in (3.1) is only
for |α − γ | = 2k, k = 1, 2, . . . .

From now on, we assumeKαγ (x, y) to be defined (by the above formulas) forα, γ >

−1. It seems that the restrictionα, γ ≥ −1/2 in [12] was caused only by assuming the
inversion and Plancherel’s formulas to be valid forα ≥ −1/2; as we have already mentioned,
they are valid for−1 < α < −1/2 as well.

The result that follows shows that the kernelKαγ is indeed associated with the operator
Tαγ (in the CZ operator theory sense, cf. [3] or [4]). Our proof of this fact contains ideas and
arguments from [12]; we present it for the sake of completeness.

PROPOSITION 3.1. Let α, γ > −1, α = γ, and suppose that f, g ∈ C∞
c (0,∞) have

disjoint supports. Then

〈(Hα ◦ Hγ )f, g〉 =
∫ ∞

0

∫ ∞

0
Kαγ (x, y)f (y)g(x)dxdy .(3.4)

PROOF. First, note that

〈(Hα ◦ Hγ )f, g〉 = 〈Hγ f,Hαg〉 = lim
ρ→0+

∫ ∞

0
Hγ f (t)Hαg(t)

dt

tρ
.(3.5)

This is because forρ > 0 sufficiently small, such thatα + γ + 2 − ρ > 0 to be precise, by
using (2.4), (2.5) and choosingε > 0 sufficiently small, we have

|Hγ f (t)Hαg(t)|t−ρ ≤ C

{
t−1+ε , for 0 < t ≤ 1 ,

t−4 , for t > 1
(3.6)

with C independent ofρ. Hence the dominated convergence theorem is applicable. Since for
ρ sufficiently small the functionHγ f (t)Hαg(t)t−ρ is integrable, we have∫ ∞

0
Hγ f (t)Hαg(t)

dt

tρ
= lim

c→0+

∫ ∞

0
e−ctHγ f (t)Hαg(t)

dt

tρ
.(3.7)
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Combining (3.5) and (3.7), we get

〈Hγ f,Hαg〉 = lim
ρ→0+ lim

c→0+

∫ ∞

0

∫ ∞

0
f (y)g(x)

×
( ∫ ∞

0
e−ct (xt)1/2Jα(xt)(yt)1/2Jγ (yt)

dt

tρ

)
dxdy .

(3.8)

An application of Fubini’s theorem was possible since∫ ∞

0

∫ ∞

0

∫ ∞

0
|f (y)g(x)|e−ct (xy)1/2((xt)α+(xt)−1/2)((yt)γ +(yt)−1/2)t1−ρdtdxdy<∞ .

A detailed analysis (to be performed in a moment) then shows that entering with limc→0+
under the double integral in (3.8) is possible. Moreover, forx = y,

lim
c→0+

∫ ∞

0
e−ct (xt)1/2Jα(xt)(yt)1/2Jγ (yt)

dt

tρ
= (xy)1/2

∫ ∞

0

Jα(xt)Jγ (yt)

tρ−1
dt ,

since the last integral is convergent in the Riemann sense ifx = y, α, γ > −1 andρ > 0.

Rewriting [14, p. 401 (2)], we see that the Weber-Schafheitlin integral∫ ∞

0

Jα(xt)Jγ (yt)

tρ−1 dt

equals

yγ Γ
(α+γ+2−ρ

2

)
2ρ−1xγ+2−ρΓ (γ + 1)Γ

(α−γ+ρ
2

) 2F1

(
α + γ + 2 − ρ

2
,
γ − α + 2 − ρ

2
; γ + 1;

(
y

x

)2)

if 0 < y < x, or

xαΓ
(α+γ+2−ρ

2

)
2ρ−1yα+2−ρΓ (α + 1)Γ

( γ−α+ρ
2

) 2F1

(
α + γ + 2 − ρ

2
,
α − γ + 2 − ρ

2
; α + 1;

(
x

y

)2)

if 0 < x < y. Thus, multiplying the above expressions by(xy)1/2 and denoting the outcome
by Kαγ (ρ; x, y) we see that the right side of (3.8) reduces to

lim
ρ→0+

∫ ∞

0

∫ ∞

0
f (y)g(x)Kαγ (ρ; x, y)dxdy .

Finally, the assumption made on the supports off andg and parameter continuity of the hy-
pergeometric function2F1 easily justify an application of the dominated convergence theorem
in the last expression. This finishes proving (3.4).

We now return to justifying the possibility of entering with limc→0+ under the double
integral in (3.8). Recall that the supports off andg are bounded, separated from zero and
such that the distance between them is greater than zero. Our task will be done once we check
that ∣∣∣∣

∫ ∞

0
e−ct (xt)1/2Jα(xt)(yt)1/2Jγ (yt)

dt

tρ

∣∣∣∣ ≤ M

with M independent ofc ∈ (0, 1), x ∈ suppf andy ∈ suppg. Splitting the integration
into (0, 1) and(1,∞) reduces the aim to an analogous estimate with the region of integration
(1,∞) in place of(0,∞).
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Sincet ≥ 1, x ≥ ε, y ≥ ε for anε > 0, we may use the asymptotic (2.3) to expand both
(xt)1/2Jα(xt) and(yt)1/2Jγ (yt). It is then readily seen that after multiplying both expansions,
out of the six resulting terms only the integral including the main terms makes a problem. For
any other integral we enter with the absolute value inside, bounde−ct , the sine and the cosine
by 1 and end up with a convergent integral not depending onc, x ∈ suppf andy ∈ suppg.

Thus, we are reduced to proving the uniform bound∣∣∣∣
∫ ∞

1
e−ct cos(xt + aα) cos(yt + aγ )

dt

tρ

∣∣∣∣ ≤ C ,

which further reduces to showing that the integrals∫ ∞

1
e−ct cos((x ± y)t)

dt

tρ
,

∫ ∞

1
e−ct sin((x ± y)t)

dt

tρ
,

are bounded independently ofc ∈ (0, 1), x ∈ suppf, y ∈ suppg. We consider the first
integral only; the reasoning for the remaining three integrals is analogous.

A change of variableu = (x + y)t shows that the integral equals

(x + y)ρ−1
∫ ∞

x+y

e−uc/(x+y) cosu
du

uρ
.

Recalling thatm ≤ x + y ≤ M for some 0 < m < M < ∞ and using the uniform
boundedness of

∫ M

x+y
exp(−uc/(x + y)) cos(u)u−ρ du, we simplify our task to checking that

the integral ∫ ∞

M

e−uc′
cosu

du

uρ

is a bounded function ofc′ → 0+. This, however, follows from the right continuity atc′ = 0+,

since the integral ∫ ∞

M

cosu

uρ
du

is convergent in the Riemann sense. �

We end this section by establishing essential growth and smoothness regularity estimates
for Kαγ .

PROPOSITION 3.2. Let α, γ > −1 and |α − γ | = 2k, k = 0, 1, 2, . . . . Then

|Kαγ (x, y)| ≤ C

|x − y| ,(3.9)

|∇Kαγ (x, y)| ≤ C

(x − y)2(3.10)

hold in the local region 0 < x/2 ≤ y ≤ 3x/2, x = y. Moreover, if α, γ ≥ 1/2, then the
above estimates hold for all x, y > 0, x = y (in fact (3.9)holds for all x, y > 0, x = y if
α, γ ≥ −1/2).
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PROOF. The estimate (3.9) is a straightforward consequence of (3.2) and (3.3). Indeed,
if x/2 ≤ y < x, then using (3.2) and the inequality logt < t, t > 1, we get

|Kαγ (x, y)| ≤ |Dαγ | x

(x + y)(x − y)
+ C

x − y
≤ C

x − y
.

The casex < y ≤ 3x/2 is treated in the same way, with the aid of (3.3).
Now consider the second estimate. In view of the symmetryKαγ (x, y) = Kγα(y, x) it

is sufficient to prove (3.10) with∇ replaced by∂/∂x. We will examine two cases, depending
on whether(x, y) is below or above the diagonal.

Case 1. 0< x/2 ≤ y < x.

By the differentiation rule [7, (9.2.2)]

∂

∂z
2F1(a, b; c; z) = ab

c
2F1(a + 1, b + 1; c + 1; z)(3.11)

we get

∂

∂x
Kαγ (x, y) = D1(α, γ )x−γ−5/2yγ+1/2

2F1

(
α + γ + 2

2
,
γ − α + 2

2
; γ + 1;

(
y

x

)2)

+ D2(α, γ )x−γ−9/2yγ+5/2
2F1

(
α + γ + 4

2
,
γ − α + 4

2
; γ + 2;

(
y

x

)2)
≡ D1(α, γ )Pαγ (x, y) + D2(α, γ )Qαγ (x, y) .

An application of (3.9) gives

|Pαγ (x, y)| = C

x
|Kαγ (x, y)| ≤ C

x − y
|Kαγ (x, y)| ≤ C

(x − y)2
.

Using the formula (see [7, (9.2.1), (9.2.6)])

2F1(a, b; c; z) = 1

c(1 − z)
[c 2F1(a, b − 1; c; z) + (a − c)z 2F1(a, b; c + 1; z)] ,(3.12)

we obtain

|Qαγ (x, y)| ≤ C1

(
y

x

)γ+5/2 1

x2 − y2

∣∣∣∣ 2F1

(
α + γ + 4

2
,
γ − α + 2

2
; γ + 2;

(
y

x

)2)∣∣∣∣
+ C2

(
y

x

)γ+9/2 1

x2 − y2

∣∣∣∣ 2F1

(
α + γ + 4

2
,
γ − α + 4

2
; γ + 3;

(
y

x

)2)∣∣∣∣
= C̃1

y

x2 − y2 |Kα+1,γ+1(x, y)| + C̃2
y2

x(x2 − y2)
|Kα,γ+2(x, y)|

≤ C

x − y
(|Kα+1,γ+1(x, y)| + |Kα,γ+2(x, y)|) .

By (3.9), the last expression is estimated from above byC(x − y)−2.

Case 2. 0< x < y ≤ 3x/2.
Using (3.11), we get



288 A. NOWAK AND K. STEMPAK

∂

∂x
Kαγ (x, y) = E1(α, γ )xα−1/2y−α−3/2

2F1

(
α + γ + 2

2
,
α − γ + 2

2
; α + 1;

(
x

y

)2)

+ E2(α, γ )xα+3/2y−α−7/2
2F1

(
α + γ + 4

2
,
α − γ + 4

2
; α + 2;

(
x

y

)2)
≡ E1(α, γ )Rαγ (x, y) + E2(α, γ )Sαγ (x, y) .

Now, the estimate (3.9) implies

|Rαγ (x, y)| = C

x
|Kαγ (x, y)| ≤ C

(x − y)2
.

The remaining part is treated with the aid of (3.12):

|Sαγ (x, y)| ≤ C1

(
x

y

)α+3/2 1

y2 − x2

∣∣∣∣2F1

(
α + γ + 4

2
,
α − γ + 2

2
; α + 2;

(
x

y

)2)∣∣∣∣
+ C2

(
x

y

)α+7/2 1

y2 − x2

∣∣∣∣2F1

(
α + γ + 4

2
,
α − γ + 4

2
; α + 3;

(
x

y

)2)∣∣∣∣
= C̃1

y

y2 − x2 |Kα+1,γ+1(x, y)| + C̃2
x

y2 − x2 |Kα+2,γ (x, y)|

≤ C

(x − y)2
.

Finally, it is not difficult to show that ifα, γ ≥ −1/2, then (3.9) and, ifα, γ ≥ 1/2, then
(3.10) hold also in the regions 0< y ≤ x/2 and 0< 3x/2 ≤ y; we simply use the fact that

2F1 is bounded on [0,1/2]. �

4. Local Calderón-Zygmund operators. It is clear that the CZ theory (specified to
R) works, with appropriate adjustments, when the underlying space is(0,∞) equipped with
Lebesgue measuredx. Thus we use properly adjusted facts from the classic CZ theory (pre-
sented, for instance, in [4]) to the aforementioned setting without further comments.

Let ∆ = {(x, x) ; x ∈ R+}, R+ = (0,∞), be the diagonal ofR+ × R+. We say, cf. [4,
p. 99], thatK : R+ × R+ \∆ → C is a standard kernel if, forx, y, z > 0,

|K(x, y)| ≤ C|x − y|−1 ,(4.1)

|K(x, y) − K(x, z)| ≤ C|y − z||x − y|−2 if |x − y| > 2|y − z| ,(4.2)

|K(x, y) − K(z, y)| ≤ C|x − z||x − y|−2 if |x − y| > 2|x − z| .(4.3)

Note that by (4.2) and (4.3) standard kernels are continuous. Clearly, they also satisfy the
Hörmander conditions∫

{x>0 ; |x−y|>2|y−z|}
|K(x, y) − K(x, z)|dx ≤ C ,∫

{y>0 ; |x−y|>2|x−w|}
|K(x, y) − K(w, y)|dy ≤ C ,

for all x, y,w, z > 0.
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DEFINITION 4.1. A local standard kernel is a kernelK : R+ ×R+ \∆ → C supported
in the region

D = {(x, y) ; 0 < x/2 ≤ y ≤ 3x/2} ,

and satisfying (4.1)–(4.3) onD.

DEFINITION 4.2. An operatorT is a local Calderón-Zygmund operator if:
(1) T is bounded onL2(0,∞);
(2) there exists a local standard kernelK associated withT such that

〈Tf, g〉 =
∫ ∞

0

∫ 3x/2

x/2
K(x, y)f (y)g(x)dydx

for all f, g ∈ C∞
c (0,∞) with disjoint supports.

PROPOSITION 4.1. Let K(x, y) be a local standard kernel. Then K satisfies the fol-
lowing Hörmander type conditions:∫

(0,∞)\2I

|K(x, y) − K(x, z)| |f (x)| dx ≤ CM+f (y) , y, z ∈ I ,(4.4) ∫
(0,∞)\2I

|K(x, y) − K(w, y)| |f (y)|dy ≤ CM+f (x) , x,w ∈ I ,(4.5)

for all intervals I ⊂ (0,∞). Here M+ denotes the (non-centered) Hardy-Littlewood maximal
function on (0,∞),

M+f (x) = sup
0≤u<x<v

1

v − u

∫ v

u

|f (y)|dy

and 2I is the interval with the same center as I and such that |2I | = 2|I |.
PROOF. We focus on proving (4.4) since the proof of (4.5) is entirely analogous. Let

I = (u, v) ⊂ (0,∞). We may assume thatu < y < z < v; the analysis of the casez < y is
similar.

Since 2I = ((3u − v)/2, (3v − u)/2) the region of integration in (4.4), due to the
assumption on the support ofK, is the set

(y/2, 3z/2)\((3u − v)/2, (3v − u)/2) .

Note that the supports ofK(·, y) andK(·, z) overlap only on(z/2, 3y/2). Thus, proving (4.4)
reduces to showing that each of the three integrals

I1 =
∫

B1

|K(x, y)||f (x)|dx , B1 = (y/2, min{z/2, (3u − v)/2}) ,

I2 =
∫

B2

|K(x, y) − K(x, z)| |f (x)| dx , B2 = (z/2, (3u − v)/2) ∪ ((3v − u)/2, 3y/2) ,

I3 =
∫

B3
|K(x, z)||f (x)|dx , B3 = (max{3y/2, (3v − u)/2}, 3z/2) ,

is bounded by the right side of (4.4). Here we use the convention that(a, b) = ∅ if a ≥ b.
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ConsiderI1 first. If v/u ≤ 3/2, thenB1 = (y/2, z/2) and forx ∈ (y/2, z/2) we have
y −x > y − z/2 > y/4 (the last inequality follows from the fact thatz < v ≤ 3u/2 < 3y/2).
Thus

I1 ≤ C

∫ z/2

y/2

|f (x)|
|y − x|dx ≤ C

y

∫ z/2

y/2
|f (x)|dx ≤ C

y

∫ 3y/2

y/2
|f (x)|dx ≤ CM+f (y) .

If v/u > 3/2, then 3/4 > (3 − v/u)/2. Hence, forx ∈ (y/2, min{z/2, (3u − v)/2}),
y − x > y/4. This is because 3y/4 > 3u/4 > (3u − v)/2, thereforey − x > y − (3u − v)/

2 > y/4. Consequently,

I1 ≤ C

∫ (3u−v)/2

y/2

|f (x)|
|y − x| dx ≤ C

y

∫ 3y/2

y/2
|f (x)| dx ≤ CM+f (y) .

ConsideringI2, we denotel = v − u and use the growth and smoothness conditions
(4.1), (4.2) to get

I2 ≤ C

∫
B2

|y − z|
|x − y|2 |f (x)| dx ≤ Cl

∫
B2

|f (x)|
|x − y|2dx .

The last integral multiplied byl is less than (the series below, in fact, terminates)

l

∞∑
k=−1

∫
{2kl<|x−y|<2k+1l}

|f (x)|
|x − y|2χ(z/2,3y/2)(x)dx

≤ l

∞∑
k=−1

1

(2kl)2

∫
|x−y|<2k+1l

|f (x)|χ(z/2,3y/2)(x)dx

≤
∞∑

k=−1

1

2k

1

2kl

∫
{x ; |x−y|<2k+1l}∩(z/2,3y/2)

|f (x)|dx

≤ 4

( ∞∑
k=−1

2−k

)
M+f (y) .

Finally, considerI3. If v/u ≤ 4/3, thenB3 = (3y/2, 3z/2) and forx ∈ (3y/2, 3z/2)

we havex − z > 3y/2 − z > y/6 (the last inequality follows from the fact thatz < v ≤
4u/3 < 4y/3). Thus

I3 ≤ C

∫ 3z/2

3y/2

|f (x)|
|x − z| dx ≤ C

y

∫ 2y

y/2
|f (x)|dx ≤ CM+f (y) .

If v/u > 4/3, then (3 − u/v)/2 > 9/8. Hence, forx ∈ (max{3y/2, (3v − u)/2}, 3z/2),
x − z > z/8. This is because 9z/8 < 9v/8 < (3v − u)/2, thereforex − z > (3v − u)/

2 − z > z/8. Accordingly,

I3 ≤ C

∫ 3z/2

3y/2

|f (x)|
|x − z| dx ≤ C

z

∫ 3z/2

0
|f (x)|dx ≤ CM+f (y) . �
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DEFINITION 4.3. Let 1≤ p < ∞ andw be a nonnegative weight on(0,∞). We say
thatwp satisfies the (global)Ap condition if

sup
0≤u<v<∞

1

v − u

( ∫ v

u

wp

)1/p(∫ v

u

w−p′
)1/p′

< ∞(4.6)

(if p = 1, then the second integral is understood as ess sup(u,v) w−1). We then writewp ∈
Ap(0,∞) and denote the left side of (4.6) by‖wp‖Ap .

Given a local CZ operatorT with the associated kernelK(x, y) and a nonnegative weight
w such thatwp ∈ Ap(0,∞), consider the truncated integrals

Tεf (x) =
∫

{y>0 ; |x−y|>ε}
K(x, y)f (y)dy , x > 0

(well-defined for everyε > 0, f ∈ Lp(w), 1 ≤ p < ∞, wp ∈ Ap(0,∞)) and the
corresponding maximal operator

T ∗f (x) = sup
ε>0

|Tεf (x)| .

An important consequence of Proposition 4.1 and the general CZ theory is the following.

PROPOSITION 4.2. Let T be a local Calderón-Zygmund operator and w a nonnega-
tive weight such that wp ∈ Ap(0,∞). Then T extends to a bounded operator on Lp(w) if
1 < p < ∞, and to a w-weighted weak type (1, 1) operator, if p = 1. Moreover,

‖Tf ‖p,w ≤ Cp‖wp‖Ap‖f ‖p,w , f ∈ Lp(w) , 1 < p < ∞ ,

‖Tf ‖L1,∞(w) ≤ C1‖w‖A1‖f ‖1,w , f ∈ L1(w) ,

with Cp independent of w. Analogous inequalities are also valid for T ∗.

PROOF. A careful analysis of the corresponding reasoning for the usual (global) CZ
operators (cf. for instance [4, Chapters 5, 7]) shows that the (global) standard estimates (4.2)
and (4.3) are exploited only to conclude (4.4) and (4.5). Hence, one can apply the estimates
from Proposition 4.1 directly. First, to obtain the unweightedLp estimates or weak type
(1, 1) for T it is sufficient to use (4.4) and (4.5) withf ≡ 1, cf. [4, Theorem 5.10]. Next, to
obtain weightedLp and weak type(1, 1) estimates forT andT ∗ we use (4.4) and (4.5) and
imitate the argument contained in the proofs of [4, Lemmas 5.15 and 7.9, Theorem 7.12]. The
conclusions of [4, Theorem 7.11 and 7.12, Corollary 7.13] then follow. �

It occurs that the results contained in Proposition 4.2 may be strengthened by allowing
more general weights. This is the essence of the following theorem, which is the main result
of this section (for the definition and properties of localAp classes,Ap

loc, see Section 6).

THEOREM 4.3. Assume that T is a local Calderón-Zygmund operator and let w be a
nonnegative weight on (0,∞) such that wp ∈ A

p

loc.

(a) If 1 < p < ∞, then T extends to a bounded linear operator on Lp(w);
(b) if p = 1, then T extends to a bounded linear operator from L1(w) to L1,∞(w);
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(c) the maximal operator T ∗ is bounded on Lp(w) if 1 < p < ∞; when p = 1, T ∗
satisfies w-weighted weak type (1, 1) inequality.
Moreover, the corresponding Lp and weak type constants depend on w only through the local
Ap norm of wp.

PROOF. We shall use the argument from [1, Section 5], see also [10, p. 31], together
with Proposition 4.2. Let 1< p < ∞, f ∈ L2 ∩ Lp(w), wp ∈ A

p

loc and consider the
intervalsIn = [2n, 2n+3), n ∈ Z. Define the weightwn on (0,∞) to be a restriction of the
weight on(−∞,∞) which is equal tow on In, periodic with period 2|In|, and symmetric
around the point 2n. Then one verifies that the (global)Ap norm of wp

n is estimated from
above, up to a multiplicative constant independent ofw andn, by the localAp norm ofwp

(more precisely,‖wp
n ‖Ap ≤ 2‖wp‖A

p

8,loc
≤ 2cp‖wp‖A

p

loc
, see Section 6 for the notation and

the last inequality). Thus, denotingfn = fχIn, Jn = [2n+1, 2n+2) and using the fact that
Tf (x) = Tfn(x) a.e.x ∈ Jn (explained below) together with Proposition 4.2 we obtain

∫ ∞

0
|Tf (x)w(x)|p dx =

∑
n∈Z

∫
Jn

|Tfn(x)wn(x)|pdx

≤ Cp‖wp‖A
p
loc

∑
n∈Z

∫ ∞

0
|fn(x)wn(x)|pdx

= 3Cp‖wp‖A
p

loc

∫ ∞

0
|f (x)w(x)|pdx .

The identityTf (x) = Tfn(x) a.e.x ∈ Jn is a consequence of the weak association ofT with
the kernel supported in the regionD. Indeed, writef = fn + fχ(In)c; since the functionsχJn

andf χ(In)c have disjoint supports, and forx ∈ Jn the conditionx/2 ≤ y ≤ 3x/2 implies
y ∈ In, it follows that

∫
Jn

T (f χ(In)c )(x)dx =
∫ ∞

0
T (f χ(In)c )(x)χJn(x)dx

=
∫ ∞

0

∫ 3x/2

x/2
K(x, y)f (y)χ(In)c (y)χJn(x)dydx

= 0 .

Clearly, the same is true if we replaceJn by its arbitrary subinterval, thusT (fχ(In)c )(x) =
0 a.e.x ∈ Jn. A careful reader surely observed that we have applied the weak association
condition to functions which are notC∞

c ; nevertheless, this is not an obstacle, because of
Proposition 4.2 and an approximation argument.

Treatment of the casep = 1 is analogous. Givenλ > 0, define the level sets

Eλ = {x > 0 ; |Tf (x)| > λ} , En
λ = {x > 0 ; |Tfn(x)| > λ}
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and write ∫
Eλ

w(x)dx =
∑
n∈Z

∫
Jn

χEn
λ
(x)wn(x)dx

≤ C1‖w‖A1
loc

λ−1
∑
n∈Z

∫ ∞

0
|fn(x)|wn(x)dx

= 3C1‖w‖A1
loc

λ−1
∫ ∞

0
|f (x)|w(x)dx .

In a similar way we deal withT ∗. �

As it was already remarked in Section 2, the localAp condition is also necessary, at least
as the local Hilbert transform is concerned: ifw is a nonnegative weight on(0,∞) such that
Ho is bounded onLp(w) for some 1< p < ∞, or satisfiesw-weighted weak type(1, 1)

inequality ifp = 1, thenwp must be a localAp weight.

5. Proofs of the main results and final remarks. Recall thatT 1
αγ andT 2

αγ denote
the integral operators

T 1
αγ f (x) =

∫ x/2

0
Kαγ (x, y)f (y)dy , T 2

αγ f (x) =
∫ ∞

3x/2
Kαγ (x, y)f (y)dy .

Note that due to the boundedness of2F1 on (0, 1/2) we have

|Kαγ (x, y)| ≤ Cx−(γ+3/2)yγ+1/2 , 0 < y < x/2 ,(5.1)

|Kαγ (x, y)| ≤ Cxα+1/2y−(α+3/2) , 3x/2 < y < ∞ .(5.2)

By takingp = 2 andw(x) ≡ 1 in (2.10) and (2.11) it follows thatT 1
αγ andT 2

αγ are bounded

onL2(0,∞), see the estimates in the proof of Theorem 2.1 below. Thus

T 3
αγ = Tαγ − T 1

αγ − T 2
αγ

is also bounded onL2(0,∞). Moreover, by Proposition 3.1,T 3
αγ is associated with the kernel

K3
αγ (x, y) = χD(x, y)Kαγ (x, y) ,

which by Proposition 3.2 is a local CZ kernel (thegradient estimate (3.10) implies the smooth-
ness conditions (4.2) and (4.3)). ThusT 3

αγ is a local CZ operator.

PROOF OFTHEOREM 2.1. Assume that 1<p<∞ and|α − γ | = 2k, k=0, 1, 2, . . . .

An application of (5.1) and Hardy’s inequality (2.10), under the condition (2.7), gives∫ ∞

0

∣∣T 1
αγ f (x)w(x)

∣∣pdx ≤ C

∫ ∞

0

(
w(x)

∫ x/2

0
x−(γ+3/2)yγ+1/2|f (y)| dy

)p

dx

≤ C

∫ ∞

0

(
w(x)x−(γ+1/2)xγ+1/2|f (x)|

)p

dx

= C

∫ ∞

0

∣∣f (x)w(x)
∣∣pdx .
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Similarly, using (5.2) and Hardy’s inequality (2.11), under the condition (2.8), we get

∫ ∞

0

∣∣T 2
αγ f (x)w(x)

∣∣pdx ≤ C

∫ ∞

0

∣∣f (x)w(x)
∣∣pdx .

The correspondingLp inequality forT 3
αγ is a consequence of Theorem 4.3.

Now, consider 1≤ p ≤ ∞ andk = 1, 2, . . . . If α = γ + 2k, thenKαγ (x, y) vanishes
on the region 0< x < y and, moreover, the hypergeometric function definingKαγ (x, y) is
bounded on 0< y ≤ x. Hence the estimate (5.1) holds for 0< y < x and the desired result
follows by Hardy’s inequality (2.10). Whenγ = α + 2k, thenKαγ (x, y) = 0 on 0< y < x

and2F1 defining it is bounded on 0< x ≤ y, so (5.2) holds for 0< x < y and the conclusion
follows with the aid of Hardy’s inequality (2.11). �

PROOF OFTHEOREM 2.2. Argue as in the proof of Theorem 2.1, using weighted
weak type inequalities (2.15) and (2.16), instead of weighted Hardy’s inequalities (2.10) and
(2.11). �

The next result refines and enlarges Schindler’s singular integral representation ofTαγ .

PROPOSITION 5.1. Let α, γ > −1, |α − γ | = 2k, k = 0, 1, . . . . Then the extension
of Tαγ (obtained in Theorems 2.1 and 2.2) acting on weighted Lp spaces, 1 ≤ p < ∞, has
the singular integral representation (3.1)valid for all f ∈ Lp(w), w being a weight satisfying
the conditions described in Theorem 2.1 if p > 1 or in Theorem 2.2 if p = 1.

PROOF. Recall that Schindler [12] proved that (3.1) holds forf ∈ C∞
c , provided

α, γ ≥ −1/2. Here we claim that a detailed and careful analysis of Schindler’s argument
[12, pp. 368–379] shows that (3.1) remains valid forf ∈ C∞

c (0,∞) whenα, γ > −1 (in
particular, (3.2) and (3.3) hold also ifα or γ is in (−1,−1/2)). The conclusion of Proposition
5.1 then follows by standard arguments (see [4, Chapter 5, Section 4]), Theorem 4.3 (c), the
fact thatT 3

αγ is a local CZ operator and the density ofC∞
c (0,∞) in all weightedLp spaces

under consideration.
We now give merely an outline of necessary modifications of Schindler’s reasoning for

proving (3.1) under the aforementioned assumptions. The starting point is the formula (2.6)
(understood as iterative integral, with both inner and outer integrals Lebesgue integrable, no
application of Fubini’s theorem possible), which replaces the second formula in [12, Section
2]. The next point to be explained is the fact that the contribution of

∫ 1

0

∫
|x−t |≤δ

(xy)1/2Jα(xy)(yt)1/2Jγ (yt)f (t)dtdy

tends to zero asδ → 0+. In view of (2.1) the absolute value of this expression is bounded by

Cxα+1/2
∫ 1

0

∫
|x−t |≤δ

|f (t)tγ+1/2| dtyα+γ+1dy
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and the required claim follows sincef (t)tγ+1/2 is bounded on(0,∞) andα + γ + 1 > −1.

Another place to be modified is the result contained in [12, Lemma 2], which in our setting is

lim
ρ→0+

∫ ∞

0
y−ρHγ f (y)(xy)1/2Jα(xy)dy = Hα(Hγ f )(x) .

The problem is in justifying the use of the dominated convergence theorem; this was already
done in the proof of Proposition 3.1. In all other places that need a modification a similar
reasoning is used. �

REMARK 5.2. By Proposition 3.2 the kernelKαγ (x, y) is a (global) standard kernel,
providedα, γ ≥ 1/2, |α − γ | = 2k, k = 0, 1, . . . . As it may be easily seen, the argument
used in the proof of Proposition 3.2 for showing (3.10) (the estimate used in proving (4.2) and
(4.3)) fails outsideD either if α < 1/2 or γ < 1/2. It is important to stress here, however,
that even in the caseα, γ ≥ 1/2 restricting the kernel toD brings an advantage: outsideD
we use Hardy’s inequalities while insideD we deal with a local CZ operator which results
in admitting more weights. To be more precise, we shall show that for 1< p < ∞ the
condition (4.6) implies (2.7) forγ ≥ −1/2 and (2.8) forα ≥ −1/2 (we thank Óscar Ciaurri
for assistance in proving this) while in the casep = 1 the condition (4.6) implies (2.12) for
γ ≥ −1/2 and either (2.14) forα > −1/2 or (2.13) forα = −1/2. Indeed, in the case
1 < p < ∞, if w satisfies (4.6) andγ ≥ −1/2, α ≥ −1/2, thenwp ∈ Ap(0,∞) and hence

‖M+g‖p,w ≤ C‖g‖p,w .(5.3)

SinceM+ dominates the Hardy operatorP1,∣∣∣∣1

x

∫ x

0
g(t)dt

∣∣∣∣ ≤ 2M+g(x), x ∈ (0,∞) ,

it follows that

|Pγ+3/2f (x)| ≤ |P1
(
f (t)t−(γ+1/2)

)
(x)| ≤ 2M+

(
f (t)t−(γ+1/2)

)
(x) ,

therefore

‖Pγ+3/2f ‖p,w ≤ C‖f (x)x−(γ+1/2)‖p,w .(5.4)

This is (2.10) hence, necessarily,w satisfies (2.7). On the other hand, ifw satisfies (4.6),
thenw−p′ ∈ Ap′(0,∞) and hence (5.3) holds withw−1 andp′ replacingw andp. Thus
(5.4) holds with the analogous replacement and, in addition, withγ replaced byα. It is easily
seen that the dual inequality to (5.4) with the aforementioned replacements is (2.11) hence,
necessarily,w satisfies (2.8).

In the casep = 1 the argument is similar. Ifw satisfies (4.6) withp = 1, thenw ∈
A1(0,∞) and hence

‖M+g‖L1,∞(w) ≤ C‖g‖1,w .

Consequently, givenγ ≥ −1/2 it follows that

‖Pγ+3/2f ‖L1,∞(w) ≤ C‖f (x)x−(γ+1/2)‖1,w .
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This is (2.15) hence, necessarily,w satisfies (2.12). On the other hand, ifw satisfies (4.6) with
p = 1, then

1

v − u

∫ v

u

w ≤ C ess inf
x∈(u,v)

w(x) , 0 ≤ u < v < ∞ .

This is theA1 condition, readily seen to be equivalent withM+w(x) ≤ Cw(x) a.e., cf. [4, p.
134], which is necessary and sufficient for

‖M+gw−1‖∞ ≤ C‖gw−1‖∞
to hold, cf. [8, Theorem 4]. (Here is a short argument of this fact: for sufficiency we can
assume that‖gw−1‖∞ < ∞ and then

‖M+(gw−1w)w−1‖∞ ≤ ‖gw−1‖∞‖(M+w)w−1‖∞ ≤ C‖gw−1‖∞ ;
necessity is immediate.) Hence, givenα ≥ −1/2 we obtain

‖Pα+3/2fw−1‖∞ ≤ C‖f (x)x−(α+1/2)w(x)−1‖∞ .(5.5)

Since the dual toL1(w) is L∞(w−1) (with the pairingh �→ ∫ ∞
0 hϕ, ϕ ∈ L∞(w−1) !), it is

easily seen that the dual inequality to (5.5) is

‖Q−(α+1/2)f ‖1,w ≤ C‖f (x)xα+3/2‖1,w ,

which implies (2.16) hence, necessarily, either (2.14) ifα > −1/2 or (2.13) ifα = −1/2
follows.

REMARK 5.3. Mapping properties ofT 3
αγ can be obtained in another way, by proving

the estimate
|T 3

αγ f (x)| ≤ C(Mof (x) + Hof (x)) ,

see [13]. Nevertheless, the CZ approach is more insightful and results in some additional
profits, one of them being Proposition 5.1.

REMARK 5.4. As it was already pointed out,Kαγ is a standard kernel whenever
α, γ ≥ 1/2, |α − γ | = 2k, k = 0, 1, 2, . . . . Consequently, in such a case further mapping
properties ofTαγ follow by a general theory, cf. [4, Chapter 6]. For instance,Tαγ extends
to a bounded operator fromH 1 to L1. It is worth noting that Kanjin [6] has recently proved
a stronger result:Tαγ extends to a bounded operator onH 1 wheneverα ≥ −1/2 andγ >

−1/2.

6. Appendix: localAp theory. In this section we show that most of the basic proper-
ties ofAp weights carry over localAp weights. Although some of the facts are not indispens-
able for the rest of the paper, they seem to be worthy of attention and therefore are presented.
The proofs are direct modifications of the corresponding proofs for (global)Ap weights. We
give a part of them for the sake of convenience and completeness, mainly according to [4,
Chapter 7].

In what follows we shall denote

Ik = {[u, v) ; 0 < u < v < ku} , k > 1 .
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Observe, that ifI ∈ Ik and[u, v) ⊂ I, then also[u, v) ∈ Ik. Given 1≤ p < ∞ andk > 1,

let Ap
k,loc be the class of all nonnegative weightsw on (0,∞) satisfying

sup
I∈Ik

1

|I |
( ∫

I

w

)1/p(∫
I

w−p′/p
)1/p′

< ∞ .(6.1)

If p = 1, then we understand the second integral as ess supI w−1. Note, thatw satisfies (2.9)
if and only if wp ∈ A

p

2,loc.

PROPOSITION 6.1. Let 1 ≤ p < ∞. Then A
p
k,loc = A

p
2,loc for any k > 1.

PROOF. Clearly,Ap

k2,loc ⊂ A
p

k1,loc whenever 1< k1 ≤ k2. To show the converse inclu-
sion we shall use the reasoning from the proof of [1, Lemma 1]. Let 1< p < ∞. Notice first
that Hölder’s inequality gives

(
√

k1 − 1)u ≤
(∫ √

k1u

u

w

)1/p(∫ √
k1u

u

w−p′/p
)1/p′

and, consequently,( ∫ √
k1u

u

w−1/(p−1)

)1−p

≤ (
√

k1 − 1)−pu−p

∫ √
k1u

u

w .

Now, letw ∈ A
p
k1,loc. Since the condition (6.1) forw is equivalent to( ∫ v

u

w

)( ∫ v

u

w−1/(p−1)

)p−1

≤ C(v − u)p , 0 < u < v < k1u ,(6.2)

we obtain ∫ k1u

√
k1u

w ≤
∫ k1u

u

w ≤ C(k1 − 1)pup

( ∫ k1u

u

w−1/(p−1)

)1−p

≤ C(k1 − 1)pup

( ∫ √
k1u

u

w−1/(p−1)

)1−p

≤ C(
√

k1 + 1)p
∫ √

k1u

u

w .

Iterating this process we conclude that∫ v

u

w ≤ Cp,k1,k2

∫ √
k1u

u

w , k1u ≤ v < k2u .

Similar arguments show an analogous inequality for
∫ v

u
w−1/(p−1), therefore (6.2) holds with

k1 replaced byk2 (and a new constantC depending also onk1 andk2).
In the casep = 1 essentially the same reasoning works hence we do not provide the

details. �

Thus the classAp

k,loc is in fact independent ofk > 1, hence it will be denoted byAp

loc.

The condition (6.1) will be referred to as a localAp condition, and weights fromAp

loc will
be called localAp weights. By theAp

k,loc constant (or norm) ofw ∈ A
p
loc we mean the value
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of the left side in (6.1) and denote it by‖w‖A
p

k,loc
. Note that by the proof of Proposition 6.1 the

A
p

k,loc andA
p

l,loc norms are comparable, the corresponding constants being dependent only on

k, l andp. TheA
p
2,loc norm ofw ∈ A

p
loc will be simply called localAp norm and denoted by

‖w‖A
p
loc

.

Define fork > 1 a local version of the Hardy-Littlewood maximal function

Mk,locf (x) = sup
x∈I∈Ik

1

|I |
∫

I

|f (y)|dy .

PROPOSITION 6.2. Let 1 ≤ p < ∞ and k > 1. The condition w ∈ A
p

loc is necessary
for the local maximal function Mk,loc to satisfy the weighted weak type (p, p) inequality

w({x > 0 ; Mk,locf (x) > λ}) ≤ C

λp

∫ ∞

0
|f (x)|pw(x)dx , λ > 0 .

PROOF. Let f ≥ 0 and, with the notationf (I) = ∫
I f, let I ∈ Ik be such thatf (I) >

0. Observe, that if 0< λ < f (I)/|I |, then

I ⊂ {x > 0 ; Mk,loc(χI f )(x) > λ} .

Therefore, using the weighted weak type(p, p) inequality forMk,loc, we see that

w(I) ≤ C

λp

∫
I

f pw , 0 < λ < f (I)/|I | ,

with a constantC independent off andλ. This gives

w(I)

(
f (I)

|I |
)p

≤ C

∫
I

f pw ,(6.3)

which after substitutingf = χS, S ⊂ I, specializes to

w(I)

( |S|
|I |

)p

≤ Cw(S) .(6.4)

Note that, after excluding the trivial casesw ≡ 0 andw ≡ ∞ a.e., the above inequality
implies that 0< w < ∞ a.e.

Assume first thatp = 1 and letA = ess infx∈I w(x). For eachε > 0 there exists a set
Sε ⊂ I of positive measure such thatw(x) ≤ A + ε for x ∈ Sε. Now, (6.4) givesw(I)/

|I | ≤ C(A + ε) and hence

w(I)

|I | ≤ Cw(x) , a.e. x ∈ I ,

which is equivalent to the localA1 condition.
When 1< p < ∞ we takef = w1−p′

χI in (6.3) to get

w(I)

(
1

|I |
∫

I

w1−p′
)p

≤ C

∫
I

w1−p′
,

which is easily seen to be equivalent to the localAp condition. �
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PROPOSITION 6.3. Let k > 1. If 1 < p < ∞ and wp ∈ A
p

loc, then the local maximal
function Mk,loc is bounded from Lp(w) to Lp(w). Moreover, if w ∈ A1

loc, then Mk,loc is
bounded from L1(w) to L1,∞(w). The corresponding Lp and weak type (1, 1) constants
depend on w only through the local Ap norm of wp.

PROOF. We shall use the argument, which was already applied in the proof of Theorem
4.3. Let In = [kn, kn+3), n ∈ Z. Define the weightwn on (−∞,∞) to be equalw on
In, periodic with period 2|In|, and symmetric around the pointkn. Then one verifies that the
(global)Ap norm ofwp

n is estimated from above by the localAp norm ofwp times a constant
independent ofw andn. Thus, denotingfn = fχIn, Jn = [kn+1, kn+2) and observing that if
x ∈ Jn then the condition 0< u < x < v < ku impliesu, v ∈ In, we obtain forp > 1∫ ∞

0
(Mk,locf (x)w(x))pdx =

∑
n∈Z

∫
Jn

(Mk,locfn(x)wn(x))pdx

≤
∑
n∈Z

∫
(Mfn(x)wn(x))pdx

≤ c
∑
n∈Z

∫
|fn(x)wn(x)|pdx

= 3c

∫ ∞

0
|f (x)w(x)|pdx .

In the above we used weightedLp inequality for the Hardy-Littlewood maximal functionM.

Treatment of the casep = 1 is analogous, see the proof of Theorem 4.3. �

REMARK 6.4. SinceM3/2,locf ≤ 2Mof ≤ 2M2,locf, Propositions 6.2 and 6.3 remain
true withMk,loc replaced byMo.

COROLLARY 6.5. Let 1 ≤ p < ∞, w ∈ A
p

loc and I ∈ Ik for some k > 1. There exists
a constant C depending only on k, p and the A

p

loc norm of w such that for each measurable
set S ⊂ I ( |S|

|I |
)p

≤ C
w(S)

w(I)
.

PROOF. In virtue of Proposition 6.3 the constantC in (6.4) depends only onp and the
A

p

k,loc norm ofw. �

PROPOSITION 6.6. The local A1 condition is equivalent to

Mk,locw(x) ≤ Cw(x) , a.e. x ∈ (0,∞) ,(6.5)

with k > 1 fixed.

PROOF. It is straightforward that (6.5) implies the localA1 condition. To prove the
converse, suppose that for everyI ∈ Ik

w(I)

|I | ≤ Cw(x) , a.e. x ∈ I .
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Observe, that ifx is such thatMk,locw(x) > Cw(x), then there existsI ∈ Ik with rational
endpoints such thatw(I)/|I | > Cw(x), sox lies in a subset ofI of measure 0. Taking the
union of all such exceptional sets for all intervalsI ∈ Ik with rational endpoints we conclude
thatMk,locw(x) > Cw(x) holds only on a set of measure zero. �

PROPOSITION 6.7.
(a) A

p

loc ⊂ A
q

loc, 1 ≤ p < q;
(b) w ∈ A

p

loc if and only if w1−p′ ∈ A
p′
loc, 1 < p < ∞;

(c) If w0, w1 ∈ A1
loc, then w0w

1−p
1 ∈ A

p
loc, 1 < p < ∞.

PROOF. All the statements are rather direct consequences of the localAp condition; for
example, to check (a) we takeI ∈ I2 and write forp = 1(

1

|I |
∫

I

w1−q ′
)q−1

≤ ess sup
x∈I

w(x)−1 ≤ C

(
w(I)

|I |
)−1

,

and whenp > 1 we use Hölder’s inequality to get(
1

|I |
∫

I

w1−q ′
)q−1

≤
(

1

|I |
∫

I

w1−p′
)p−1

≤ C

(
w(I)

|I |
)−1

.

The remaining items are verified in a similar manner. �

PROPOSITION 6.8 (Reverse Hölder Inequality).Let 1 ≤ p < ∞, w ∈ A
p

loc and
k > 1. There exist constants C and ε, depending only on p, k and the local Ap norm of w,

such that (
1

|I |
∫

I

w1+ε

)1/(1+ε)

≤ C

|I |
∫

I

w , I ∈ Ik .

PROOF. The reasoning is essentially the same as that for globalAp weights, see [4,
Chapter 7, Section 2]. �

The reverse Hölder inequality has the following notable consequences.

COROLLARY 6.9.
(a) A

p

loc = ⋃
q<p A

q

loc, 1 < p < ∞;
(b) if w ∈ A

p

loc, 1 ≤ p < ∞, then w1+ε ∈ A
p

loc for some ε > 0;
(c) if k > 1 and w ∈ A

p

loc, 1 ≤ p < ∞, then there exists δ > 0 such that

w(S)

w(I)
≤ C

( |S|
|I |

)δ

for all I ∈ Ik and S ⊂ I.
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