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Abstract 
     This paper presents a new voice conversion method called 
Weighted Frequency Warping (WFW), which combines the 
well known GMM approach and the frequency warping 
approach. The harmonic plus stochastic model has been used 
to analyze, modify and synthesize the speech signal. Special 
phase manipulation procedures have been designed to allow 
the system to work in pitch-asynchronous mode. The 
experiments show that the proposed technique reaches a high 
degree of similarity between the converted and target 
speakers, and the naturalness and quality of the resynthesized 
speech is much higher than those of classical GMM-based 
systems. 
     Index Terms: voice conversion, speech synthesis, 
harmonic model, GMM, weighted frequency warping 

1. Introduction 
     The goal of voice conversion systems is to modify the 
voice of a source speaker for it to be perceived as if it was 
uttered by another speaker (target speaker). For this purpose, 
relevant characteristics of the source speaker are identified 
and replaced by the characteristics of the target speaker 
without losing any information or modifying the message. In 
speech synthesis, voice conversion techniques have important 
applications. Indeed, text-to-speech synthesis systems (TTS) 
usually generate their output by selecting and concatenating 
speech units taken from a database, which has been 
previously built by recording the voice of a professional or 
skilled speaker. A voice conversion block could be included 
in the TTS system to transform the recorded voice, so that it 
would not be necessary to record a database for each of the 
potential users of the system. 
     Several solutions for the voice conversion problem have 
been proposed since the first codebook-based transformation 
method was developed by Abe et al. [1]. Arslan et al. tried to 
avoid the spectral discontinuities caused by the hard partition 
of the acoustic space by means of a fuzzy classification [2]. 
Other techniques tried to represent the correspondence 
between the frequency axis of the source and target speakers 
by a warping function [3, 4]. Due to the low degree of 
modification, the reached quality was high, but the 
conversion was not successful because the amplitude of the 
formants could not be manipulated. One of the most 
important advances was the use of gaussian mixture models 
(GMM) to implement a continuous probabilistic spectral 
transformation based on the partition of the acoustic space 
into overlapping classes [5, 6]. The spectral envelopes were 
successfully converted without discontinuities, but the 
problem of over-smoothing appeared. Other works based on 
GMM transformations attempted to solve it [7, 8, 9]. At the 
same time, other types of acoustic classification such as 
hidden Markov models or decision trees were investigated 
[10], and the efforts of many authors focused on the residuals 

of the vocal tract parameterization [6, 11]. Nevertheless, the 
problem of high-quality voice conversion for real applications 
is not completely solved. There is still a compromise between 
the degree of transformation of voices and the quality reached 
by the different conversion methods. 
     The main goal of this work is to design a voice conversion 
method that successfully converts voices without significant 
quality degradation. We propose a new technique named 
Weighted Frequency Warping (WFW) where the voice is 
transformed via frequency warping, that is reported to have a 
high quality, combined with GMM that provides good 
conversion results. A different frequency warping function is 
calculated for each frame by means of a linear combination of 
basis functions. The weights of the combination and the 
shapes of the basis functions are obtained from a trained 
GMM, which is also used to increase the similarity between 
the warped source speaker and the target speaker. The model 
assumed for the speech signal is the harmonic plus stochastic 
model (HSM) [14], which provides maximum flexibility and 
capacity of manipulation. The implemented voice conversion 
system is expected to operate not only integrated into a TTS 
system, but also as an independent device which analyzes, 
converts and re-synthesizes speech. For this purpose, the 
classical HSM implementation has been modified to be pitch-
asynchronous. Thus, the problems of pitch marking and 
accurate separation of signal periods are avoided, and the 
analysis rate can be adjusted depending on the applications. 
In exchange, the phase coherence is a crucial point, so new 
procedures for high-quality prosodic modification are also 
proposed in this paper. 
     The paper is structured as follows. In section 2, the new 
WFW voice conversion method is described. In section 3, 
some aspects about the implementation of the system are 
explained in detail, including the speech model and the 
prosodic modification procedures. Section 4 contains the 
results and the discussion of the experiments that compare the 
proposed approach with other reference systems, drawing the 
conclusions that are listed in section 5. 

2. The New Method: WFW 
     The spectral conversion method based on GMMs has a 
good performance in terms of similarity between the 
converted and target voices, but the converted speech has a 
lower quality because of several factors: over-smoothing and 
broadening of the formants, effects of the conversion in the 
analysis/synthesis system (residual, phase spectrum…), etc. 
Although different solutions have been proposed for each of 
these problems, there is still a need of preserving the quality 
and naturalness of the signal. On the other hand, it is known 
that the degradation caused by frequency-warping-based 
transformations is minimal, although the conversion scores 
are not as high as in GMM-based systems. The Weighted 
Frequency Warping method (WFW) is a combination 
between these two approaches. 



     As described in [6], GMM-based voice conversion 
systems use a set of time-aligned LSF vectors of the source 
and target speakers, {[xk

T yk
T]T} to estimate the parameters 

{αi, µi, Σi} of a joint model of m gaussian mixtures. Once the 
model has been trained, the transformation function F(x) is 
given by the following equations: 
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where pi(x) is the probability that a LSF vector x belongs to 
the ith gaussian component of the GMM. Observing the 
spectral envelopes given by the mean LSF vectors of each of 
the m acoustic classes of the GMM, µi

x and µi
y, it can be seen 

that their formant structure is quite similar. In this paper we 
propose to use the position of these formants to establish a 
piecewise linear frequency-warping function Wi(f) for each of 
the m acoustic classes, as it is shown in figure 1. We assume 
that phonemes with similar formant structures, which are 
linked to the same gaussian component of the GMM, should 
be associated with similar frequency warping trajectories. 
Thus, the probabilities pi(x) can be used as weights for a 
linear combination of the m different warping trajectories. 
 

 
Once the GMM has been trained, the Weighted Frequency 
Warping method consists of the following steps: 
1. Given a source frame to be converted, the associated LSF 

vector x is calculated. The probabilities pi(x) are 
calculated from the trained GMM (1b). 

2. The frequency-warping function for the frame represented 
by x is obtained by a weighted combination of Wi’s.  
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Thus, a different warping trajectory is assigned to each 
frame. The soft classification provided by the GMM 
makes the warping function evolve slowly in time, 
avoiding the noise caused by the discontinuities. 

3. Let A(f) and θ(f) be the magnitude and phase estimators of 
the spectrum at the current frame. The converted 
amplitude and phase are obtained by warping the source 
envelopes. 

   ( ) ( )( ) ( ) ( )( )fWffWAfA 11 , −− =′=′ θθ      (3a, b) 

This step does not completely transform the source voice into 
the target speaker’s voice because the formants are only 
reallocated while their amplitude remains unmodified. The 
information provided by the GMM transformation allows a 
simple solution to this problem: 
4. A converted F(x) is obtained by means of the 

transformation function (1a) and the corresponding all-
pole envelope is calculated. The energy is measured at the 

bands 100-300Hz, 300-800Hz, 800-2500Hz, 2500-
3500Hz and 3500-5000Hz, which are likely to contain 
different formants. Constant multiplicative factors are 
used inside each band to correct the energy of the 
frequency-warped speech frame. 

3. Implementation of the WFW system 
3.1. Analysis and Reconstruction of Signals 

     In this paper, a modified version of the HSM model [14] is 
used for the analysis and reconstruction of the speech signal. 
The speech signal is modeled by a harmonic component and a 
stochastic component. The harmonic component is a sum of 
sinusoids whose amplitudes, frequencies and phases are 
determined for each speech frame. The stochastic component 
is modeled by a LPC filter driven by white noise. The signal 
parameters are measured at a constant frame rate of fs/N 
frame/sec. fs is the sampling frequency and N corresponds 
typically to a time interval of 8 or 10 ms. From now on, the 
center of the kth analysis frame will be called point k. Pitch 
and voiced/unvoiced decision are taken at every frame k. In 
voiced frames, the harmonic component is characterized by 
the amplitudes and phases of the harmonics below 5 KHz. It 
is not adequate to apply a commonly used time-varying cut-
off frequency, because the voice conversion method uses a 
parameterization of the spectral envelope based on the 
amplitudes of the harmonics. Afterwards, the harmonic 
waveform is reconstructed and subtracted from the original 
signal in order to isolate the stochastic component, which is 
analyzed in N-length frames centered at the points k using 
linear predictive coding (LPC). 
     The signal is reconstructed by overlapping and adding 2N-
length frames centered at each point k. Each frame contains 
the sum of the measured harmonics with constant amplitudes, 
frequencies and phases, and the stochastic contribution, 
generated by filtering white gaussian noise with the measured 
LPC-filters. A triangular window is used to overlap-add the 
frames in order to obtain the time-varying synthetic signal. 
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m is in the range [0, N–1]. The speech signal resynthesized 
from the measured parameters is almost indistinguishable 
from the original. More details about the analysis-synthesis 
process can be found in [12]. 

3.2. Prosodic Modifications 

     As a pitch-asynchronous scheme is being used, the 
prosodic modification of the signal implies the challenge of 
modifying the phases of the harmonics without altering the 
phase coherence between frames or causing artifacts. For this 
purpose, we developed new strategies to manipulate the 
phases. We consider that the phases φj

(k) measured at a certain 
point k are the sum of two components: a linear-in-frequency 
term given by the parameter α(k), and the phase contribution 
of the time-varying vocal tract, θj

(k). 
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     The duration modification can be carried out by 
increasing or decreasing the distance N between the synthesis 
points in equation (4b), so that the amplitude and fundamental 
frequency variations get adapted to the new time scale. On the 
other hand, if the phases were kept unmodified, fixed at the 
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Figure 1 – 
Frequency warping 
function for the ith 
acoustic class. 



center of the frames, the waveform coherence between 
consecutive points would be lost, causing artifacts and noisy 
pitch variations. Therefore, the change in N needs to be 
compensated with a phase manipulation in a way that the 
waveform and pitch of the duration-modified signal are 
similar to the original. This manipulation should affect only  
to the linear-in-frequency phase term. Assuming that the 
fundamental frequency varies linearly from point k–1 to k, we 
define the function Ψ which represents the expected phase 
increment of the first harmonic between those points, 
affecting only the linear-in-frequency term: 
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If N is substituted by N’, the following phase correction is 
applied: 
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J(k) is the number of harmonics in frame k. This correction 
compensates the modification of N without affecting the small 
local variations in the vocal tract phase response. The 
stochastic coefficients are not modified. 
     For the pitch modifications, the amplitudes of the new 
harmonics A’j

(k) are obtained by a simple linear interpolation 
between the measured log-amplitudes in order to maintain the 
formant structure unaltered. The vocal tract contribution to 
the phases of the new harmonics, θ’j

(k), can be obtained by 
means of a linear interpolation of the real and imaginary parts 
of the complex amplitudes Aj

(k)exp(i·θj
(k)). The values of θj

(k) 
are calculated from the original phases φj

(k) by subtracting the 
linear-in-frequency phase term given by α(k). We estimate α(k) 
using the following formula. 

   ( )∑
=

−=
)(

1

)()()( cosmaxarg
kJ

j

k
j

k
j

k jA αϕα
α

 (8a) 

   )()()( kk
j

k
j jαϕθ −=  (8b) 

Finally, the relative position of the synthesis point within the 
new pitch period is now different and the linear term has to be 
corrected to compensate the modification of the periodicity. 
The phase correction to be performed is given by (7b) with 
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The stochastic coefficients are not modified. 

3.3. Voice Conversion 

     Although this work focuses on the spectral characteristics 
of the voice, a basic prosodic transformation is also applied. 
The fundamental frequency is characterized by a log-normal 
distribution. During the training phase, an estimate of the 
average value µ and variance σ of log f0 is calculated for each 
speaker. Our basic prosodic modification consists of replacing 
the source speaker’s µ and σ by the values of the target 
speaker. The frequencies of the harmonic sinusoids are then 
scaled according to the new pitch values. 
 ( ))source()source(

0)source(

)target(
)target()converted(

0 loglog µ
σ
σµ −+= ff  (10) 

     The WFW method is applied to the HSM model as 
follows. In the training phase, the harmonic amplitudes {Aj

(k)} 
of the source and target training data are measured and the 
discrete all-pole modeling technique [13] is applied to obtain 
the optimal all-pole filters that better fit {Aj

(k)}. The all-pole 
filter coefficients are translated into LSF vectors. The LSF 

vector pairs extracted from the training data are used to train 
the GMM (1). Finally, the warping function Wi(f) associated 
to each gaussian component is calculated from the GMM 
parameters. In the conversion phase, the current LSF vector x 
of the source speaker is determined. The probabilistic weights 
pi(x) (1b) are calculated to obtain the warping function W(f) 
(2) of the current frame. The magnitude envelope A(f) of the 
current frame is estimated by means of a linear interpolation 
between the measured log-amplitudes. The phase envelope 
θ(f) is estimated by linearly interpolating the real and 
imaginary parts of the complex amplitudes Aj

(k)exp(i·θj
(k)), as 

in section 3.2. Warped envelopes A’(f) and θ’(f) are calculated 
(3). Target amplitudes {A’j

(k)} and phases {θ’j
(k)} are 

calculated by resampling the warped envelopes A’(f) and θ’(f) 
at the positions of the new harmonics defined by the 
transformed f0 (10). The linear-in-frequency phase term is 
adjusted according to the new f0, as explained in section 3.2. 
In some cases, especially when the source speaker is a woman 
and the target speaker is a man, there is not enough 
information available from the source envelopes to fill all the 
harmonics below 5 KHz. In this situation, the envelope F(x) 
obtained by means of the classical GMM transformation (1a) 
is used to get the missing data. Finally, the energy is 
corrected inside the bands defined in section 2 using the 
harmonic amplitudes obtained from the envelope F(x). 
     It is known that the conversion of the stochastic 
component is not as relevant as the harmonic conversion [5, 
11]. Nevertheless, a high correlation is observed between the 
vocal tract shape and the LPC envelope of the stochastic 
component. A reason is that the separation between harmonic 
and stochastic components in the voiced frames is not perfect. 
Furthermore, the assumption that there are no harmonics 
beyond the cut-off frequency of 5 KHz is not completely 
realistic, even though the quality reached in resynthesis is 
very high. For these reasons, it seems adequate to predict the 
stochastic component of the target speaker from his vocal 
tract LSF parameters at voiced frames. Using the GMM 
previously trained, the prediction is carried out using the 
following expression: 

   ( ) ( ) ( )[ ]∑
=

−
−ΣΓ+⋅=

m

i

y
i

yy
iiiistoch yypy

1

1 µη  (11) 

where ystoch is the LSF representation of the stochastic 
component that corresponds to the target speaker’s LSF 
envelope given by y. The optimal vectors ηi and matrices Γi 
are calculated from the training data of the target speaker. 
During the conversion phase, the transformed LSF vector 
F(x) of equation (1a) is used in (11) instead of y. The 
stochastic component of the unvoiced frames is left 
unmodified, because its conversion does not lead to any 
important improvement and it can cause a small loss of 
quality. 

4. Experimental Results 
     The audio database used for the VC evaluation contains 
more than 150 sentences in Spanish, uttered by two male and 
two female speakers. The sampling frequency is 16 KHz and 
the average duration of the sentences is 5 seconds. All the 
sentences were analyzed and parameterized according to the 
model described in section 3, and 80% of them were used for 
the training of the conversion functions. The recorded parallel 
sentences were aligned for each pair of speakers using HMM-
based forced recognition. An 8th order GMM was estimated 
with 14th order LSF vectors. Three methods were compared: 



- TTS: it is a TD-PSOLA TTS system based on 
concatenation of units extracted from the training sentences 
of the target speaker. Obviously, it does not convert voices, 
but it is useful as a reference. 

- GMM: it is a GMM-based voice conversion system using 
the HSM model. The converted amplitudes and phases are 
calculated by resampling the envelope of the all-pole filter 
given by the converted LSF vector. The pitch and the 
stochastic component are transformed using expressions 
(10) and (11), respectively. 

- WFW: the new voice conversion system described above. 
One male and one female speaker were chosen as source, and 
the other two speakers were taken as target, so four different 
conversion directions were considered: male to male (m2m), 
female to female (f2f), male to female (m2f) and female to 
male (f2m). Five sentences were converted and resynthesized 
for all the combinations of methods and conversion 
directions, and 15 volunteers were asked to listen to the 
converted sentences in random order. Only three of them 
were skilled listeners. For each pair of voices, listeners were 
asked to judge if the two voices belonged to the same person 
using a 5-point scale, from 1 (completely different) to 5 
(identical). The final conversion score was obtained by 
averaging all the individual scores. On the other hand, the 
listeners were asked to rate the quality of the sentences from 1 
point (bad) to 5 points (excellent). The table 1 shows the 
results of the perceptual test. 
 

Conversion 
 f2f f2m m2f m2m All 
TTS 3.67 3.93 3.93 3.87 3.85 
GMM 3.13 3.27 2.47 3.07 2.98 
WFW 3.00 2.53 3.27 2.93 2.93 

Quality 
 f2f f2m m2f m2m All 
TTS 2.53 2.87 2.47 2.67 2.63 
GMM 3.13 3.33 2.53 2.73 2.93 
WFW 4.20 3.60 3.00 3.27 3.52 

Table 1 – Results of the perceptual test 
 
     The conversion score obtained by the TTS system can be 
considered the maximum score reachable with the training 
data. Due to the small size of the database for a concatenative 
TTS, there are concatenation artifacts. The opinion of the 
listeners seems to be strongly influenced by the concatenation 
artifacts and gives an idea of the difficulty of reaching a score 
higher than 4. There is a small loss of conversion accuracy 
from GMM to WFW. This can be a consequence of the fact 
that details from the source speaker persist when the 
frequency warping function is applied. Looking at the 
different conversion directions it can be seen that the main 
significant differences are located in the cross-gender 
conversion cases. In particular, WFW fails when converting 
from female to male. The reason is the strong f0 contrast 
between those speakers, because the source spectral 
envelopes are defined by few harmonics, while a high number 
of target harmonics have to be extracted from them. 
     Looking at the quality scores, it can be seen that the 
increment of quality from GMM to WFW is important. 
Furthermore, the improvements are visible and consistent in 
every conversion direction. 
     Some other informal tests have been carried out to 
evaluate the WFW system using less training data, and the 
results seem to be very similar to those displayed in table 1. 

5. Conclusions 
     This paper shows that the voice conversion techniques 
based on gaussian mixture models and frequency warping can 
be effectively combined to compensate the drawbacks of both 
methods. A good balance is obtained between the conversion 
and quality scores reached by means of the proposed method, 
WFW. The improvements in the quality of the converted 
synthetic speech are very important with respect to GMM 
methods (around 0.5 points in a MOS test). 

In future works, non-parallel training corpora will be used 
to evaluate the conversion system. 

6. Acknowledgements 
     This work was partially supported by TC-STAR 
(Technology and Corpora for Speech-to-Speech Translation, 
FP6-506738) and AVIVAVOZ (TEC2006-13694-C03). 

7. References 
[1] M.Abe, S.Nakamura, K.Shikano, H.Kuwabara, “Voice 

Conversion through Vector Quantization”, ICASSP, 
1988. 

[2] L.M.Arslan, “Speaker Transformation Algorithm using 
Segmental Codebooks (STASC)”, Speech 
Communication, 1999. 

[3] H.Valbret, E.Moulines, J.P.Tubach, “Voice 
Transformation using PSOLA Technique”, Speech 
Communication, 1992. 

[4] D.Sündermann, H.Ney, “VTLN-based voice 
conversion”, ISSPIT, 2003. 

[5] Y.Stylianou, O.Cappé, E.Moulines, “Continuous 
Probabilistic Transform for Voice Conversion”, IEEE 
Trans. On Speech and Audio Proc., 1998. 

[6] A.Kain, “High-Resolution Voice Transformation”, PhD 
Thesis, OGI School of Science and Engineering, 2001. 

[7] T.Toda, H.Saruwatari, K.Shikano, “Voice Conversion 
Algorithm based on Gaussian Mixture Model with 
Dynamic Frequency Warping of Straight Spectrum”, 
ICASSP, 2001. 

[8] Y.Chen, M.Chu, E.Chang, J.Liu, R.Liu, “Voice 
Conversion with Smoothed GMM and MAP 
Adaptation”, Europ. Conf. on Speech Communication 
and Tech., 2003. 

[9] H.Ye, S.Young, “Quality-enhanced Voice Morphing 
using Maximum Likelihood Transformations”, IEEE 
Trans. On Audio, Speech and Lang. Proc., 2006. 

[10] H.Duxans, A.Bonafonte, A.Kain, J.Van Santen, 
“Including dynamic and phonetic information in voice 
conversion systems”, ICSLP, 2004. 

[11] D.Sündermann, A.Bonafonte, H.Ney, “A Study on 
Residual Prediction Techniques for Voice Conversion”, 
ICASSP, 2005. 

[12] D.Erro, A.Moreno, “A Pitch-Asynchronous Simple 
Method for Speech Synthesis by Diphone 
Concatenation using the Deterministic plus Stochastic 
Model”, SPECOM, 2005. 

[13] A.El-Jaroudi, J.Makhoul, “Discrete All-Pole 
Modeling”, IEEE Trans. on Signal Proc., 1991. 

[14] Y.Stylianou, “Harmonic plus Noise Models for Speech, 
combined with Statistical Methods, for Speech and 
Speaker Modification”, PhD thesis, École Nationale 
Supérieure des Télécommunications, 1996. 


