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Abstract

Gene co-expression network analysis is an effective method for predicting gene functions and disease biomarkers. However,
few studies have systematically identified co-expressed genes involved in the molecular origin and development of various
types of tumors. In this study, we used a network mining algorithm to identify tightly connected gene co-expression
networks that are frequently present in microarray datasets from 33 types of cancer which were derived from 16 organs/
tissues. We compared the results with networks found in multiple normal tissue types and discovered 18 tightly connected
frequent networks in cancers, with highly enriched functions on cancer-related activities. Most networks identified also
formed physically interacting networks. In contrast, only 6 networks were found in normal tissues, which were highly
enriched for housekeeping functions. The largest cancer network contained many genes with genome stability
maintenance functions. We tested 13 selected genes from this network for their involvement in genome maintenance
using two cell-based assays. Among them, 10 were shown to be involved in either homology-directed DNA repair or
centrosome duplication control including the well- known cancer marker MKI67. Our results suggest that the commonly
recognized characteristics of cancers are supported by highly coordinated transcriptomic activities. This study also
demonstrated that the co-expression network directed approach provides a powerful tool for understanding cancer
physiology, predicting new gene functions, as well as providing new target candidates for cancer therapeutics.
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Introduction

Distinct types of human cancer share similar traits, including

rapid cell proliferation, loss of cell identity, and the ability to

migrate and seed malignant tumors in distal locations. Under-

standing these common traits and identifying the underlying

genes/networks are key to gaining insight into cancer physiology,

and, ultimately, to prevent and cure cancer. With cancer gene

expression microarray datasets increasingly accumulated in central

repositories, many bioinformatics data analysis methods have been

developed to identify cancer related genes, characterize cancer

subtypes and discover gene signatures for prognosis and treatment

prediction. As an example, in breast cancer research, a supervised

approach was adopted to select 70 genes as biomarkers for breast

cancer prognosis [1,2] and was successfully tested in clinical

settings [3]. However, a major drawback of such an approach is

that the selected gene features are usually not functionally related

and hence, cannot reveal key biological mechanisms and processes

behind different patient groups.

In order to overcome this hurdle to identify functionally related

genes associated with disease development and prognosis, several

approaches have been adopted. One such approach is gene co-

expression analysis, which identifies groups of genes that are highly

correlated in expression levels across multiple samples [4–9]. The

metric to measure the correlation is usually the correlation

coefficient (e.g., Pearson correlation coefficient or PCC) between

expression profiles of two genes [4,5,10]. Using this approach, we

were able to identify new gene functions in regulating cell mitosis

in breast cancer [5,11] by studying genes that have high

correlation with the expression of the DNA repair protein,

BRCA1.

By applying an advanced network mining algorithm, dense

modules of highly co-expressed genes can be identified which can

lead to the discovery of new gene functions, disease genes and

biomarkers. For example, Horvath’s group has developed a series

of weighted gene co-expression network analyses using a

hierarchical clustering based approach [6,10,12–15]. This method

was applied to identify disease-associated genes such as ASPM in

glioblastoma [7].

In this study, we hypothesize that studying clusters of frequently

co-expressed genes in multiple types of cancers can shed light on

the gene expression regulatory basis for common traits in cancer.

We developed a workflow to test this hypothesis (Figure 1), and

implemented a state-of-the-art weighted network mining algo-

rithm called QCM (Quasi-Clique Merger [16]) to identify the gene

co-expression clusters from the common cancer background using
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gene expression data from multiple types of cancers. Then, we

further predicted the gene functions based on the networks we

identified and their GO-term enrichment analysis, and validated

our prediction using cell-based assays.

The QCM algorithm mines dense sub-network components in a

weighted network. In contrast to traditional quasi-clique mining

algorithms [4,17,18], QCM fully utilizes the weight of edges

without turning them into un-weighted edges by a threshold cutoff.

In addition, QCM returns dense sub-network components that

allow overlaps of both vertices and edges. This feature makes it

more appealing for mining biological networks than clustering

algorithms. Thirdly and most importantly, QCM was proven

mathematically to be able to generate high density sub-networks

[16], which correspond to tightly co-expressed clusters of genes in

our study.

Gene signatures or networks have been identified as predictive/

prognostic biomarkers based on certain cancer type microarray

data. However, few studies have been applied to identify cancer

associated genes and therapeutic targets in multiple cancer types at

the level of the functional gene module, in which gene clusters are

functionally and possibly physically interacting with each other. It

has been demonstrated by analyzing 507 co-expression modules

and 665 gene signatures that co-expression network mining is a

powerful tool to search for functional enriched modules [19].

Instead of using differential gene expression analysis, our approach

is to directly mine frequent gene networks that are present in large-

scale datasets of multiple cancer types, and compare them with

those found in normal tissues to understand the pathways and

networks that cause the major difference between cancer and

normal tissue. In addition, it was reported that previous co-

expression network searches often resulted in non-reproducible or

poorly overlapped gene signatures/networks [20], which may have

been due to arbitrary thresholds, results sensitive to parameter

tuning, lack of generality or the lack of biological validation of the

gene functions and interactions. We attempted to solve these

problems by applying a weighted network mining algorithm to

identify frequently presented co-expression gene networks on a

common cancer background, and then further validated the

findings with biological experimental evidence.

Results

Identification of high frequency co-expression networks
in cancer and normal samples

Our workflow to identify tightly clustered frequent co-expres-

sion networks was developed as follows (Figure 1): First, we

selected a large number of gene expression datasets for 33 different

types of cancers (originated from 16 tissue types, Table 1),

including sarcoma, carcinoma, adenocarcinoma, leukemia, lym-

phoma, and brain cancer. As a comparison, we selected

microarray datasets from nine different normal tissues. The

datasets were selected such that the sample size in each dataset

is above a minimal threshold to maintain the significance level of

PCC computation (p-values,0.05 for PCC values larger than the

threshold as described in Materials and Methods). In this study, all

the selected datasets have at least 30 samples, which is comparable

to other co-expression network studies [14,21]. To avoid

systematic bias between different microarray platforms, we further

restricted our datasets to a single platform. All the selected datasets

were generated using Affymetrix HU133 Plus 2.0 Genechip. Next,

a total of 2.176108 (20,827620,826/2) gene-pair expression

correlations (PCC) were computed within each dataset, and a

frequency table was built for identified gene pairs with high

correlation between their expression profiles in each dataset. The

frequencies of highly correlated gene pairs were then used as

weights to build a weighted gene co-expression frequency network

(WGCFN). Third, we implemented QCM to identify high

frequency gene co-expression networks in multiple types of

cancers from the WGCFN for cancers and compared them to

those identified in multiple types of normal tissues. In the final

step, identified networks with similar members (overlaps above

30%) were merged iteratively to generate the final networks. This

workflow runs parallel for the datasets from multiple cancer types

and from multiple normal tissues.

The algorithm identified 111 gene co-expression networks

(average network density 0.8160.05) from cancer tissue gene

expression microarray datasets before the merging step, and 70

networks for normal tissues (average network density 0.7360.04)

before the merging step. As a comparison, the average network

density of 1000 randomly selected gene subsets (regardless of the

subset size) was much lower as expected, and was close to the

density of the overall network (0.0497, based on 20,827 genes).

We merged the networks with at least 30% similarity, obtained

18 distinctive networks in cancer datasets, and 6 networks in

normal tissue datasets (Table 2, Table S1, Table S2). Despite the

high diversity of cancer types, GO term enrichment analysis

showed that the networks found from cancer datasets are highly

enriched in elevated activities specific to cancer cells, such as cell

proliferation, immune response, and cancer microenvironment construction,

while the normal tissue networks are generally involved in

housekeeping functions such as cell respiration, metabolism, and protein

synthesis. For the networks that share similar GO term enrichment

between cancer and normal tissue datasets, the cancer network

generally includes most of the members of the normal tissue

network but also contains many more genes. This indicates that

the housekeeping functions in the cancer cell may exceed its

normal range, allowing it to become more interconnected with

other biological processes and pathways, which may contribute to

the excessive uncontrollable growth of cancer cells.

As a comparison and the test for our QCM network mining

workflow, we also applied the workflow described above (Figure 1)

Author Summary

Proteins interact with each other in a network manner to
precisely regulate complicated physiological functions of
life. Diseases such as cancer may occur if the network
regulations go wrong. In cancer research, network mining
has been utilized to identify biomarkers, predict therapeu-
tic targets, and discover new mechanisms for cancer
development. Among these applications, the search for
genes with similar expression patterns (co-expression) over
different samples is particularly successful. However, few
network mining approaches were systematically applied to
different types of cancers to extract common cancer
features. We carried out a systematic study to identify
frequently co-expressed gene networks in multiple cancers
and compared them with the gene networks found in
multiple normal tissues. We found dramatic differences
between networks from the two sources, with gene
networks in cancer corresponding to specific traits of
cancer. Specifically, the largest gene network in cancer
contains many genes with cell cycle control and DNA
stability functions. We thus predicted that a set of poorly
studied genes in this network share similar functions and
validated that most of these genes are involved in DNA
break repair or proper cell division. To the best of our
knowledge, this is the largest scale of such a study.

Gene Co-expression Network Mining in Cancer
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Figure 1. Workflow to mine frequent co-expression network using QCM from cancer and normal tissue microarray datasets. Blue
ovals indicate gene members shared by different networks, ovals in other colors indicate genes unique to each network.
doi:10.1371/journal.pcbi.1002656.g001
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to the lung cancer samples of a single dataset (GSE18842, 46

samples), then to the normal lung tissue of the same dataset (45

samples). Similar observations from multiple cancer types vs.

multiple normal tissue types also hold for the network mining

results from single cancer type and the matching normal tissue.

There are more and denser networks identified from lung cancer

samples as compared with those from normal lung tissue. For the

networks identified from lung cancer samples, they are enriched

with functions related to cancer cells, such as DNA mismatch repair,

immune response, and extracellular matrix (ECM) construction and

organization (Table S4), whereas the networks from normal lung

tissue are instead enriched with housekeeping functions such as

protein synthesis, cell metabolism, and microtubule-based activity (Table S5).

We also identified several immune response clusters from the

normal lung tissue, presumably due to the fact that these normal

lung tissue samples were obtained from the lung cancer patients

and as a result, immune response signals induced from lung cancer

can be spread to neighbor normal lung tissue. From this example,

we conclude that the observations we have made in aggregate

were also true in specific examples.

Network 1 is the predominant network identified consistently

from cancer datasets regardless of the parameter setting (Figure 2,

Table 1. Summary of the sample information for microarray datasets used in the study.

GSE NO. Cancer Type Sample Size Comments

GSE22138 uveal melanoma 63

GSE12460 neuroblastoma 64

GSE23980 soft tissue sarcoma 171

GSE18864 breast cancer all types 84

GSE17920 Hodgkin Lymphoma 130

GSE19069 T-cell lymphoma 137 exclude 10 T-cell controls

GSE17951 prostate cancer 154

GSE16237 neuroblastoma 51

GSE10445 lung adenocarcinoma, large cell carcinoma 72

GSE11151 9 types of renal cancer 62 exclude 5 normal samples

GSE4290 astrocytomas, oligodendrogliomas and glioblastomas. 180 exclude 23 non-tumor samples

GSE10327 medulloblastoma 62

GSE3141 lung cancer 111

GSE16515 pancreatic cancer 36 exclude normal samples

GSE18842 non-small cell lung cancer 46 45 controls need remove

GSE10245 non-small cell lung cancer 58

GSE9829 hepatocellular carcinoma 194

GSE9891 ovarian tumor 285

GSE10358 acute myeloid leukemia 188

GSE10846 diffuse large B cell lymphoma 414 drug treated

GSE11877 pediatric acute lymphathetic leukemia 207

GSE13041 glioblastomas 267

GSE14333 colorectal cancer 290

GSE15459 gastric tumor 200

GSE16382 soft tissue sarcoma 183

GSE21653 medullary breast cancers 266

GSE21687 ependymoma 83

Normal tissue datasets

GSE NO. Tissue Type Sample Size Comments

GSE18842 non-small cell lung cancer patient normal tissue 45 exclude cancer samples

GSE17913 non-smoker oral mucosa 40 exclude smoker samples

GSE8671 normal colon mucosa 32 exclude cancer samples

GSE1643 normal lung tissues 40

GSE21138 prefrontal cortex 30 exclude Schizophrenia samples

GSE13564 prefrontal cortex 44

GSE7307 90 types of tissues 677 Exclude disease samples, get 23 endometrium
and 22 myometrium samples

GSE11882 brain sample 173 used 43 samples of hippocampus tissue sample

doi:10.1371/journal.pcbi.1002656.t001

Gene Co-expression Network Mining in Cancer
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Table 2, Table S1, Table S3). By contrast, only a small portion of

this network with looser connections was found from normal

tissues (Figure 2, Table S2). Network 1 includes most of the genes

that are frequently identified in a variety of gene signatures studies

of the cancer microarray (Table 3, Table S1) [9,22–28], and

contains some less studied genes as well. The genes in this network

are highly enriched in cell proliferation and genome stability

maintenance functions such as cell cycle control/regulation, mitotic

division, and DNA damage response (DDR). After querying the

Ingenuity Knowledge Base for experimentally validated protein-

protein interactions, we found that 99 out of the 412 gene products

from Network 1 are connected to form a tight protein-protein

interaction (PPI) network, as shown in Figure 3A (enrichment p-

value 5.937E-217). Similarly, 33 out of the 57 genes from Network

6 are connected in a dense PPI network (enrichment p-value

1.564E-52, Figure 3B), which is involved in an extracellular matrix

formation. In addition, we also tested this using a different PPI

dataset obtained from the Protein Interaction Network Analysis

platform (PINA). Null distributions were generated from repetitive

500 random selections of the same number of genes as networks 1

or 6 in PPI interaction database PINA. Next, z-scores of PPI hits in

networks 1 and 6 were obtained from each distribution as

described in the Materials and Methods section. Both networks 1

and 6 yielded very high z-scores (44.06 and 23.76 respectively),

indicating highly enriched PPI in each network. This demonstrates

that our QCM approach not only identifies a co-expression

module that is highly enriched as a functional module, but also is

capable of finding physically interacting networks, which con-

firmed the previous finding that the co-expression module can

reveal those genes that form physically interacting modules [19].

We also isolated a gene network from cancer datasets that has

very diverse GO terms but with no apparent theme (cancer

Network 4 with 73 genes, Figure 2, Table 2, Table S1). Genes in

this orphan network participate in functions including small molecule

biochemistry, lipid metabolism, cell-to-cell communications, connective tissue

development, etc. Interestingly, an almost identical network is also

found in the normal tissue datasets (normal Network 3 with 60

genes, Figure 2, Table 2, Table S2). Inside this gene network, eight

genes were involved in DNA damage response (SMG1, GTSE1,

GTF1H3, PMS2P1, PMS2L2, XRCC2, DCLRE1C, and UACA)

based on GO term enrichment analysis. PGF is involved in

angiogenesis, epithelial cell growth, and the migration of

mesenchymal stem cells [29,30]. NEK9, HAUS2 are involved in

mitotic spindle formation and centrosome integrity [31,32].

However, a majority of the genes in this network are not closely

connected with each other in the protein-protein interaction

database from the most updated Ingenuity Knowledge Base at the

time of the manuscript preparation. Instead, they either participate

in diverse functions, which are not tightly linked to cancer, or have

not been extensively studied. Using the gene set enrichment

analysis tool TOPPGene, we found that within this network, 22

were down- regulated in poorly differentiated thyroid carcinoma,

13 were down-regulated in nasopharyngeal cancer, breast cancer

and hepatocellular carcinoma (HCC), and 12 were up-regulated in

the intrahepatic metastatic HCC versus primary HCC. However,

it is not clear how these genes are functionally or physically

interacting with each other, and the majority of them have not

been linked with cancer development. These genes, along with

other less studied members in this network, may be good targets

for future cancer studies.

Table 2. Summary of co-expression networks identified from multiple cancer datasets vs. normal tissue datasets.

Networks from cancer Datasets Networks from normal tissue datasets

Network ID

Network size
in merged
network

Top biological processes
in the merged network p-value

Network size
in merged
network

Top biological
processes in the
merged network p-value

1 412 Mitotic cell cycle 6.30E-130 198 Cellular respiration 5.31E-72

2 260 Immune response 1.67E-57 71 Protein synthesis 2.84E-99

3 136 Protein synthesis 1.36E-138 60 No significantly
enriched BP

4 73 Cell cycle; Cell-to-cell communication;
connective tissue development

2.41E-03 25 Protein synthesis 4.09E-49

5 61 Type I interferon mediated signaling 8.42E-37 15 Mitotic cell cycle 2.52E-8

6 57 Extracellular matrix organization 1.73E-22 11 Immune response 2.80E-5

7 45 Humoral immune response 1.07E-19

8 36 Immune response 2.74E-17

9 27 No significantly enriched BP n.a.

10 22 Antigen processing and presentation 2.38E-38

11 20 Antigen processing and presentation via
MHC class II

5.28E-35

12 12 Blood vessel development 1.40E-2

13 11 Protein synthesis 8.04E-4

14 11 Respiratory electron transport chain 7.37E-5

15 11 No significantly enriched BP n.a.

16 10 RNA processing 2.68E-3

17 10 No significantly enriched BP n.a.

18 10 Cellular respiration 1.80E-16

doi:10.1371/journal.pcbi.1002656.t002
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Networks as a potential prognosis marker for multiple
cancers

Since many gene signatures and biomarkers involved in cell

cycle control and cell proliferation overlapped with genes in

Network 1 from cancer datasets (Table 3), we tested their

prognostic capability in breast cancer, ovarian cancer (OV) and

glioblastoma (GBM) patients (Figure 4). Datasets were separated

according to Network 1 (Figure 4A, C, E) or according to the

Van’t Veer 70-gene list (Figure 4B, D, F), and the survival of

patients from each set were plotted up to 20 years. For patients

from the NKI breast cancer dataset with mixed subtypes as well as

the lymph node-positive (LN+) cohort, Network 1 separated the

good and poor outcome groups comparably well as the Van’t Veer

70-gene signature [1] (Figure 4A–D), and both passed the p-value

significance threshold after Bonferroni correction, despite the fact

that the two lists only shared five genes in common (CENPA,

MCM6, ORC6L, PRC1, RFC4). However, for the ER-negative

cohort, neither Network 1 genes (Figure 4E) nor Van’t Veer 70-

genes (Figure 4F) identified the individuals with longer survival.

This suggests that the cell-proliferation network is less prognostic

for the ER-negative cohort.

For GBM and OV cancer patients, in which prognosis studies

based on microarray analysis are relatively scarce, we also tested

the networks we identified from multiple cancer datasets. Network

1 genes failed to separate the good and bad outcome groups, even

though certain cell proliferation genes are known to be associated

with these cancers, such as ASPM in GBM [7] and BRCA1 and

BRCA2 in OV [33]. Thus, a more sophisticated supervised feature

selection approach is needed to improve the separation by

selecting most relevant genes from this network [34]. However,

Network 18 genes, which are enriched with cellular respiration

function, had good prognosis power for GBM (p = 5.89E-3,

Figure 4G) on the TCGA GBM dataset, while a recently published

GBM 23-gene signature [28] failed to separate the good versus

poor patient outcome using the same unsupervised K-means

clustering approach on this dataset (Figure 4H). For OV patients,

Network 17 genes, which have no significantly enriched GO-term

(Table 2, Table S1), performed best among all the networks to

separate the good and bad outcome groups (p = 3.39E-3,

Figure 4I), comparable to an OV 19-gene signature when applied

to the same OV dataset (Figure 4J) [34].

Validation of the predicted gene functions in Network 1
using RNAi

Genome instability, such as aneuploidy, due to hyperactive

centrosome duplication (also called centrosome amplification) has

Figure 2. Comparison of networks identified from multiple cancer vs. normal tissue microarray datasets. Top 13 networks (ranked by
size) were shown. The size of each circle represents the relative size of each network. The numbers inside the circles indicate the size of the network.
The numbers above the connection line indicate the numbers of common genes shared by the two networks. Different top-enriched biological
functions in each network were assigned with different colors. ECM: extracellular matrix construction. Parameter settings are: b= 0.8, c= 0.8, l= 2.0,
t = 1.0 (for networks from cancer datasets); b= 0.8, c= 0.7, l= 2.0, t = 1.0 (for networks from normal tissue datasets).
doi:10.1371/journal.pcbi.1002656.g002
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been observed for decades in cancer cells [35,36]. DNA repair

proteins have recently been shown to localize and regulate the

process as well [37–41]. Based on these findings, we then looked

in Network 1 for genes with unknown functions to further study

their roles in genome stability maintenance. Such genes/proteins

have limited numbers of publications, or have not previously

been shown to regulate centrosome duplication or homologous

recombination. In addition, most genes we selected are absent

from the validated PPI network in Figure 3A (red circles indicate

the four genes present in the validated PPI network). By silencing

the expression of target genes by transfection of siRNA, we

screened for cells defective in homology-directed DNA repair

(HR) or cells with supernumerary centrosomes. BRCA1 was

used as a positive control, since its functions in homologous

recombination and centrosome amplification have been known

[37,40,42–45].

Out of the 13 genes we depleted with siRNA besides BRCA1,

seven were significantly impaired for HR function (ASF1B,

BARD1, CDCA3, DLGAP5, KIF14, MKI67 and ZWINT), and one

was marginally impaired for HR function (NASP) (Figure 5A,

Table 4). Four showed centrosome amplification (KIAA0101,

KIF14, KIF23 and HMMR [5]) on the HeLa cell line and the breast

cancer cell line Hs578T (Figure 5B, Table 4, Figure S2). Among

these genes, BARD1 interacts with BRCA1 in the HR pathway

[46], therefore the HR decrease upon BARD1 depletion was

expected. BLM is an important genome stability maintenance

protein with biochemical activity of a helicase, and BLM

suppresses HR [47,48]. The HR suppression activity of BLM

explains why its depletion increased the cell activity of HR.

HMMR (hyaluronan-mediated motility receptor), although direct-

ly interacts with BRCA1 and BRCA2, surprisingly does not affect

HR activity in the cell after being depleted. However, HMMR

depleted cells are known to exhibit centrosome amplification

phenotype [5]. The depletion of KIAA0101 did not affect the HR

activity, but centrosome amplification was observed. The unaf-

fected HR activity upon KIAA0101 depletion was confirmed by a

separate work published recently [49]. In that work, KIAA0101

was hypothesized to restrict HR activity. In our further study,

KIAA0101 was shown to be over-expressed in breast cancer cells,

and interacting directly with the BRCA1 protein [11]. This finding

provided strong evidence that the cancer frequent co-expression

network mining can be a powerful tool to direct gene function

research, especially to facilitate the search for oncogenes and genes

closely related to cancer cell activities.

The involvements of ASF1B, DLGAP5 and ZWINT in HR of the

human cell are novel findings. ASF1B is a histone chaperone that

facilitates histone deposition and histone exchange and removal

during nucleosome assembly and disassembly [50,51,52,53,54].

DLGAP5, also called DLG7, is a potential cell cycle regulator that

may play a role in carcinogenesis [55,56], and it was identified in a

gene co-expression analysis of multiple cancer datasets previously

[9]. ZWINT is part of the MIS12 complex, which is required for

kinetochore formation and spindle checkpoint activity [57,58],

and from these functions ZWINT would not be anticipated to

function in HR. All four genes have never previously been shown

to participate in DNA repair. The new discovery of those genes

participating both in spindle/microtubule regulation and HR may

explain the high frequency of hits of these genes in multiple gene

expression profiling studies of cancer datasets (Table 3). We also

tested HR upon TPX2 depletion, and decreased HR activity was

observed. However, TPX2 depletion is lethal to cells, therefore it is

difficult to determine whether the decrease of HR activity is due to

the potential TPX2 function in DNA repair or due to cell death.

MKI67 (also called Ki67) has long been identified as a

proliferation marker in breast tumor grading systems. However,

the exact function of this protein remains obscure [59]. We found

that depletion of MKI67 resulted in up to a five-fold reduction in

HR (Figure 5A). This is the first demonstration that MKI67 is

required for double-strand DNA break repair. This finding may

provide direction for future study of MKI67 to elucidate its role in

tumor proliferation.

KIF14 plays an important role in cytokinesis [60]. KIF23 is a

plus-end-directed motor enzyme that moves anti-parallel micro-

tubules in vitro. It localizes to the interzone of mitotic spindles.

KIF14 and KIF23 directly interact with PRC1 within a complex

that also contains KIF4A and KIF20A [60,61]. KIF14 has been

identified as a prognostic marker in breast and ovarian cancer in

gene expression profiling studies [9,62]. KIF23 was also up-

regulated with three other genes in non-small cell lung cancer [63].

In our study, KIF14 and KIF23 depleted HeLa cells showed

impaired HR, and increased centrosome amplification. However,

we found the effect of KIF23 depletion on HR was complicated

because its depletion caused cells to become resistant to plasmid

transfection, which was confirmed through independent experi-

ments (data not shown). As a result, the KIF23 depletion-induced

genome instability is probably due to an indirect effect.

ASPM was hypothesized to regulate spindle formation and

mitotic process based on sequence similarity (UniProt), but in our

Table 3. Comparison of Cancer Network 1 with gene signatures from other cancer microarray studies.

Reference Cancer type (Sample size) Signature type
% genes overlapping with
Cancer Network 1 genes

[72] Drosophila cell line and siRNA Mitotic division 26

[23] Breast cancer (311 patients) Cell proliferation signature 41

[22] Breast cancer (3 datasets) Cell cycle regulation and proliferation 42

[24] Breast cancer (347 tumors) Genetic grade signature 55

[26] Hepatocellular Carcinoma (91 tumors, 60 normal) Cell cycle regulation and proliferation 58

[27] Meningiomas (3 datasets, 10,16, 56) Tumor grade 64

[28] Glioblastoma (5 datasets) Mitotic cell cycle 74

[25] 6 cancer types (12 datasets) Chromosome instability 80

[9] Multiple cancer types (23 datasets) Cell proliferation 90

[67] 13 cancer types (13 datasets) Cell cycle 100

doi:10.1371/journal.pcbi.1002656.t003
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assay, ASPM depleted cells did not have the centrosome

amplification phenotype. This indicates the ASPM’s role in

spindle regulation may be indirect or it participates in different

pathways than the above ones.

Discussion

It is clear that networks identified from cancers and normal

tissues are very different. The former contain more tightly

connected networks with more members, and with GO terms

closely related to cancer-specific biological processes. By contrast,

analysis from normal cells reveals fewer gene networks with fewer

members that mostly comprise normal cell housekeeping func-

tions. As described in [64], different cancers share common

‘‘hallmarks’’ such as replicative immortality, angiogenesis, invasion

and metastasis. Then in [65], four additional properties were

proposed as common hallmarks or characteristics for cancers

including genome instability/mutation, tumor promoting inflam-

mation, avoiding immune destruction and deregulating cellular

energetics. In addition, tumor microenvironment also plays a

pivotal role in cancer development. Interestingly, our findings are

highly consistent with these common cancer properties. The

predominant network identified from multiple cancer datasets is

most enriched in genes involved in cell cycle control, genome

instability and DNA repair functions (Network 1 with 412 genes),

suggesting that regardless of the cancer types, the most active

process in the cancer cell is cell proliferation, and genome

instability is the enabling characteristics of cancer. Besides the cell

cycle control and genome instability networks identified from

cancer datasets, several immune/inflammation response networks

and the type I interferon network were also identified which are

potentially related to the tumor promoting inflammation and

avoiding immune disruption characteristics. In addition, the

tightly connected extracellular matrix network (Network 6 from

cancer, Table 2) identified in cancer datasets supports the

importance of tumor microenvironment in cancer development.

Lastly, the lack of the cell metabolism network in cancer compared

to the normal tissues (Network 1 from normal tissues, Table 2)

implies disruption of normal cellular energetic processes. Overall,

our results reveal that the common cancer hallmarks and

characteristics involve highly coordinated transcriptomic activities.

Many of the cancer network genes are differentially expressed in

cancer vs. normal samples, and were identified using a differential

expression analysis approach. In fact, cancer network 1 includes a

high proportion of the cell proliferation genes identified from a

differential expression study [22,23] (Table 3). Some studies

combined differential expression analysis with condition specific

co-expression network mining [66–68], and identified cell cycle/

cell proliferation networks in the cancer microarray datasets.

Specifically in a smaller scale multiple cancer/normal microarray

dataset study using differential co- expression approach, similar

but smaller cell cycle networks were identified that were 100%

included in our Cancer Network 1 gene list [67] (Table 3).

However, the advantage of using a frequent co-expression network

mining approach is that it combines datasets from multiple

diseases instead of comparing two conditions and therefore, many

microarray studies with few or no normal samples can still be

Figure 4. Kaplan-Meier curve of breast cancer, glioblastoma
(GBM) and ovarian cancer (OV) using network genes identified
from cancer datasets. The p-values are computed using Log- rank
test with 100 repeats. A: using Network 1 genes on NKI mixed cohort; B:
using Van’t Veer 70-gene signature [1] on NKI mixed cohort; C: using
Network 1 genes on NKI LN+ cohort; D: using van’t Veer 70-gene
signature [1] on NKI LN+ cohort; E: using Network1 genes on NKI ER2
cohort; F: using Van’t Veer 70-gene signature on NKI ER2 data. G: using
Network 18 genes on TCGA GBM dataset; H: using 23-gene signature on
TCGA GBM cohort [28]. I: using Network 17 genes on TCGA OV cohort. J:
using 19-gene signature on TCGA OV dataset [34]. Blue lines: good
survival outcome group; Red lines: poor survival outcome group. LN+:
lymph node positive. ER2: estrogen receptor negative.
doi:10.1371/journal.pcbi.1002656.g004

Figure 3. Validated protein-protein interactions on genes from networks identified from cancer datasets using IPA. The edges
represent validated protein-protein interactions obtained from Ingenuity Knowledge Base. The nodes are gene members. Only members with
connection to other members are shown. A: Validated protein-protein interactions on genes from Cancer Network 1 (cell proliferation/cell cycle
control network) using IPA. The red circles indicate the genes further selected for genome stability function assays using RNAi. B: Validated protein-
protein interactions on genes from Cancer Network 6 (extracellular matrix network) using IPA.
doi:10.1371/journal.pcbi.1002656.g003
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Figure 5. Cell-based assays to test gene involvement in the genome stability maintenance using RNAi. Cells transfected with firefly
gene GL2 siRNA were used as the negative control for both assays. A: HR assay on HeLa cells depleting target gene expression by siRNA. Error bar
represents standard error. Asterisks indicate the results with statistically significant decreased activity upon siRNA depletion using Student’s test
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integrated in our mining approach even though they are not

suitable for differential expression analysis. Furthermore, the

network genes identified from frequent co-expression analysis

clearly groups genes into functionally and even physically

interacting clusters, while differential expression analysis identifies

isolated genes which need to be further clustered for functional

analysis.

In normal tissues, the two biggest gene networks identified are

involved in cell metabolism and protein synthesis; the members are

mostly housekeeping genes (Table S2). Because our frequent co-

expression network mining algorithm QCM uses gene-pair

frequency as the edge weight, tissue-specific genes and networks

do not get enriched in this network mining approach. The

difference between cancer and normal tissue networks indicates

that despite the different tissue sources and different cell types,

cancer cells are more similar in their physiological activities,

whereas normal cells are more distinct and specific to their own

cell- type specific activities.

It has been found that several immune response gene co-

expression networks are present in the multiple cancer microarray

datasets [9], and this is confirmed in our results, in which the

second largest network (Network 2 of 260 genes) is mostly involved

in immune response. Protein synthesis is also an important part of

cell proliferation, thus the third largest network found in cancer

datasets is involved in protein synthesis. In addition, the cancer

tissue microenvironment plays a key role in tumorigenesis, tumor

development and metastasis. Our search also identified a network

of 57 genes (Network 6) that are mostly collagen- related genes,

which form an important part of the extracellular matrix and the

cancer tissue microenvironment.

The cancer specific networks we identified showed strong

prognostic power in breast cancer, glioblastoma, and ovarian

cancer patients, especially the cell cycle/proliferation network

(Network 1). It outperforms the 70-gene signature in the survival

analysis of lymph-node positive cohort, and for a subset of this

network (Network 1 before merging step), the performance is even

better (Figure S1). However, it is likely that the large size of this

network caused problems in the K-means algorithm, and hence

the performance was impaired in the GBM and OV prognosis.

Instead, smaller networks (Networks 17 and 18), each with only ten

gene members, can be useful in GBM and OV prognosis.

It has been shown that chromosomal instability and aneuploidy

are typical features of solid tumor cells (reviewed in [69,70]).

Mitotic genes from Drosophila have been used to predict survival for

breast cancer patients [71]. Genes from Network 1 of cancer

datasets are highly enriched for genome stability maintenance

functions such as cell cycle, mitotic apparatus assembly and

regulation as well as DDR and cell proliferation. The importance

of this co- expression network in cancer has been confirmed by its

significant overlap with a number of gene signatures for cell

proliferation [9,22,23], mitotic division and chromosomal insta-

bility [25,72] (Table 3). Among them, the key spindle formation

regulator Aurora-A and TPX2 co- expression were observed in

increased abundance in several cancer types (reviewed in [73]).

This led us to examine genes in that cluster that have not been

shown to be directly involved in DDR or genome stability

maintenance in human cells. Genes that are verified to play roles

in these functions are potential oncogenes. They may serve not

only as candidates of biomarkers, but also as molecular targets of

anti-cancer drugs, for example, Aurora-A inhibitors are already

under clinical trials [74].

The QCM parameter b and c initial settings affect the number

of networks found and the size of networks. As described in the

Materials and Methods, c is the parameter controlling the

selection of the first edge in each network, l and t control the

adaptive threshold of network density. Together these three

parameters guarantee a lower bound of density for all networks. b
is the threshold for merging networks. High c generates fewer

networks, and high b generates small and tight (high cluster

density) networks. In order to obtain tightly clustered networks

with relatively small size, we selected c= 0.8 and b= 0.8 for cancer

datasets, and c= 0.7, b= 0.8 for normal tissue datasets (to

accommodate the smaller sample size in each dataset and less

total number of datasets available for normal tissues). However,

when b and c are set to 0.5 or above, the results are highly

reproducible, which means the predominant networks we found

from cancer datasets are always enriched with the same GO term,

i.e., cell-cycle/cell proliferation network, immune response and protein

synthesis, whereas the networks obtained from normal tissue

datasets are always enriched with housekeeping functions such

as cellular respiration and protein synthesis. The small set of core genes

are identified with b and c set to high values, as the values of the

parameters decrease, more and more genes join the network, but

the core genes and the enriched function are still preserved (Table

S3, Figure S3). This suggests that the QCM algorithm is very

robust in mining the frequent co-expression network in cancer

microarray data. Furthermore, for all the c settings above 0.5, we

found very little overlap for the top three co-expression networks

(p,0.05). Black line represents the 80% of HR activity in the control sample as a cutoff. B: Centrosome assay on HeLa cell line depleting target gene
expression by siRNA. Error bar represents standard error.
doi:10.1371/journal.pcbi.1002656.g005

Table 4. Summary of effects on genome stability for genes
depleted with siRNA using HR and centrosome assay on HeLa
cells.

Gene Symbol
Decrease
on HDR

Centrosome
Amplification

BRCA1 (positive control) ! !

ASF1B ! NT

ASPM 6 6

BARD1 ! NT

BLM 6 NT

CDCA3 ! 6

DLGAP5 ! NT

HMMR 6 [5]

KIF14 ! !

KIF23 ? !

MKI67 ! NT

NASP ! NT

TPX2 lethal lethal

ZWINT ! NT

!: Decreased HR activity (less than 80% of HR activity of negative control
sample) or supernumerary centrosome phenotype was observed in the cell
with target gene depletion. 6: No effect observed on cells with target gene
depletion. ND: not determined. ?: Decreased HR activity may be due to plasmid
transfection inefficiency. Lethal: the depletion is lethal to cells.
doi:10.1371/journal.pcbi.1002656.t004
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identified between cancer microarray datasets and the ones from

normal tissue (see Table S3), which strongly suggests that the gene

co-expression clusters found in cancer datasets are specifically

involved in cancer-related functions and pathways, while the ones

found in normal tissues are not.

As we have demonstrated, the QCM network mining approach

can be applied to either single or multiple microarray datasets for

co-expressed gene clusters. However, there are some intrinsic

limitations not only for this QCM algorithm, but also for the co-

expression network mining in general. In order to obtain a high

level of significance for the Pearson correlation computing

between each pair of genes, the dataset has to be in a relatively

large size, and contain a good proportion of genes with significant

signals readings and variations. Also due to the focus on gene

expression correlation study, or transcriptome profiling study, any

interaction in the non-transcriptional level, such as interactions in

the post-transcription, translation and post-translation as well as

DNA replication, will not be captured. This is the major limitation

of the co-expression network mining approach per se. Another

drawback exists in our current workflow is that we chose Pearson

correlation to measure the correlation between any gene pair,

which is fast in the computing step. However, in a biology system,

the relationship between the expressions of two genes can be non-

linear as well, therefore we plan to test an improvement to the

method by incorporating the Spearman rank correlation and

mutual information (MI) to further investigate and extract the

non-linear correlated co- expression clusters among genes.

Materials and Methods

Cancer and normal tissue microarray dataset selection
The NCBI Gene Expression Omnibus (GEO) was queried for

cancer microarray datasets prepared from various types of primary

tumor biopsy samples, with a sample size of 30 or more in a

specific dataset (Table 1). This resulted in 27 cancer microarray

datasets of 33 cancer types, including sarcoma, carcinoma,

adenocarcinoma, leukemia, lymphoma, as well as brain cancer.

For datasets containing normal tissue control samples, they were

removed prior to further co-expression network mining. At the

same time, we also queried the GEO database for various types of

normal tissue microarray with sample sizes of at least 20 for any

tissue type, resulting in 7 datasets composed of 9 types of normal

tissues (Table 1). If a normal tissue dataset contained diseased

tissue data, they were removed before running network mining.

For datasets containing multiple tissue types, they were separated

into different datasets before computing PCC. The cancer and

normal tissue datasets were all from the Affymetrix GPL570

platform to avoid any platform related systematic errors among

the datasets. The tissue and cancer types were carefully chosen to

avoid bias towards a particular type of cancer or tissue. All datasets

were pre-filtered to remove probes without gene annotation, and

for genes with multiple probes, we selected the one with the

highest expression values. This resulted in 20,827 probes/genes.

Frequent gene co-expression network mining using QCM
Each pair of genes from a specific cancer or normal tissue

microarray dataset were computed for Pearson Correlation

Coefficient (PCC), and only the gene pairs with high |PCC|

values were retained for network construction. However, since the

range of |PCC| values varies substantially among different

datasets, we cannot select a uniform threshold on the |PCC|

values. Instead, we adaptively set the threshold for |PCC| values

to the top 5% (95 percentile) in each dataset to select the ones with

high confidence (all the selected PCC have p-values less than 0.05).

The frequency of such gene pairs in either cancer datasets or

normal datasets was used as the edge weight for network mining

using a greedy quasi-clique discovery algorithm called Quasi-

Clique Merger (QCM) [16]. QCM is an iterative greedy

algorithm. At the initial step, the edge with largest weight in the

entire work is identified and its weight is designated as w0. Then

for every iterative step, a new network is established with the first

edge being the edge with the largest weight that is not contained in

any previously established networks. In addition, the weight of this

network cannot be smaller than c:w0 (0,c,1), otherwise the

program stops. Once the first edge for a network is identified, new

edges which can contribute most to the total density of the selected

network will be added one a time. During this process, the density

of selected network will gradually reduce. The process will stop if

the edge of choice will drive the density of the network below an

adaptive threshold defined by two parameters t and l. Once the

iteration is over, networks with overlap ratio above a re-defined

threshold b will be merged iteratively and form a large network.

The overlap ratio is defined as the ratio between the number of

shared genes between two networks and the number of genes in

the smaller network. The algorithm was implemented in C++,

with the hierarchical clustering step omitted. The parameters were

set as follows: t = 1.0, b= 0.8–0.9, l= 2.0, c= 0.5–0.9. The density

of a weighted network with N vertices was defined as: d~
PN

i=j wij

N(N{1)=2
with wij being the weight between vertices vi and vj

(i = 1, 2, …, N; j = 1, 2, …, N; i?j), normalized between 0 and 1.

For randomly selected gene subsets, average gene subset size 10

and 400 were selected from the entire gene pool of Affymetrix

HU133 2.0 Plus platform (GEO accession number GPL570), and

the network density for each subset was computed using above

formula. The random selections were repeated 1000 times for each

size, and the average network density was calculated.

Homology directed repair (HR) assay
HeLa-DR13-9 cells (PuroR) and the pCBASce vector (AmpR)

containing disrupted GFP gene and I-SceI were used in the assay as

described in [42,75]. Cells transfected with firefly gene GL2 siRNA

were used as the negative control. For the experiment with target

gene depletion by RNAi, 1 to 3 independent siRNA molecules were

used for each gene (Table S6). The assay was repeated at least three

times for each siRNA depletion. Two rounds of transfection were

performed following Oligofectamine+siRNA protocol (Invitrogen).

On Day 1, HeLa-DR cells (46104 in a 2 cm2 well) were plated in

media of DMEM with 1% Pen/Strep, 10% Bovine Serum and

Puromycin final conc. of 1.5 !g/ml. On Day 2, the first

transfection was performed with 60 pmoles of siRNA with 1.5 mL

of Oligofectamine. On Day 3, the cells were transferred to 10 cm2

well dishes. On Day 4, 100 pmoles of siRNA with 3 mg of

pCBASCeI expression vector were co- transfected. On Days 5 to 7,

the cells were trypsinized and those among 10,000 total cells that

expressed green fluorescence were measured using a Becton

Dickinson FACSCalibur instrument in the Ohio State Compre-

hensive Cancer Center’s Analytical Flow Cytometry core lab. The

pCAGGS vector was used as a control. Both pCBASce and

pCAGGS were gifted from M. Jasin of the Memorial Sloan-

Kettering Cancer Center.

Centrosome duplication assay
The assay was done according to [11] on HeLa and Hs578T

cell lines. 1 to 3 independent siRNA molecules were used for each

gene (Table S6). siRNA and GFP-centrin plasmid [76] transfec-

tion was done using Lipofectamine 2000 (Invitrogen) according to
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the manufacturer’s protocol, and cells were fixed 48 hours post-

transfection. Either one or three different siRNA were transfected

for a target gene. GFP- centrin2 marks centrioles, and these were

counted by fluorescence microscopy using a Zeiss Axiovert 200 M

microscope. The same GL2 siRNA transfected cells were used as

the negative control.

Survival analysis
The Breast Cancer dataset (NKI-295 dataset) and clinical

information were obtained from the Netherlands Kanker Instituut

(NKI) with 295 patients (226 ER+ and 69 ER2, 147 LN2 and

148 LN+). The Glioblastoma multiforme (GBM) and ovarian

serous cystadenocarcinoma (OV) dataset was downloaded from

the TCGA website (http://tcga.cancer.gov/). Among them, 345

patients from GBM and 156 from OV with valid vital status

information were used.

For a selected gene list, the gene expressions of a patient form a

vector. For testing datasets from different microarray platform,

only matched genes from identified networks were used. We then

used a K-means clustering algorithm (with distance set as

correlation, repeated 100 times) to cluster patients into two

groups. The survival time statistics were calculated by log rank and

visualized in Kaplan-Meier survival curves [77]. If a patient’s vital

status is ‘LIVING’, ‘days_to _last_followup’ was used for the

survival curve, otherwise, the ‘days_to_death’ was used.

Gene ontology enrichment analysis, protein-protein
interaction network construction and PPI enrichment
analysis

GO enrichment on each the networks identified from QCM

was analyzed by ToppGene Suite developed by the Division of

Biomedical Informatics, Cincinnati Children’s Hospital Medical

Center (BMI CCHMC) (URL http://toppgene.cchmc.org). PPI

networks were constructed using IngenuityH Systems (IPA, http://

www.ingenuity.com) with only validated physical protein-protein

interactions extracted from the Ingenuity Knowledge Base using

cancer network genes as input. PINA (Protein Interaction

Network Analysis) data were used to compute the significance of

protein-protein interactions in a specific network gene set. PINA

integrates protein-protein interaction data from six curated public

PPI databases and builds a comprehensive, non-redundant protein

interaction dataset to look for interacting gene pairs [78]. For a

cancer network being tested, we first query its genes in PINA

database for known PPI relationship, and the significance of the

number of hits in the PINA database was measured using

hypogeometric test implemented in Matlab. Total of 73,472 gene

pairs from PINA was used in the hypogeometric test. In addition,

we also compared the tested cancer network with randomly

selected networks. Specifically, we generated a randomly selected

gene list (from the entire gene set of Affymetrix GPL570 platform)

with the same number of genes as the cancer network, and then

queried in PINA database for this random list and counted how

many hits (known PPI relationships in PINA) can be detected. This

random test was then repeated 500 times and the number of hits in

the 500 tests was used to estimate a null distribution of PPI hits in

PINA database. It was then used to compute the z-score for the

number of hits for the two true cancer networks (network 1 and

network 6). The z-score is the measurement of how many standard

deviations the observed value is away from the mean, indicating

the statistical significance of PPI enrichment in this case.
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