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Weighted gene co‑expression 
network analysis identifies specific 
modules and hub genes related 
to coronary artery disease
Peng‑Fei Zheng1,2, Lu‑Zhu Chen1, Yao‑Zong Guan2 & Peng Liu 1* 

This investigation seeks to dissect coronary artery disease molecular target candidates along with its 
underlying molecular mechanisms. Data on patients with CAD across three separate array data sets, 
GSE66360, GSE19339 and GSE97320 were extracted. The gene expression profiles were obtained 
by normalizing and removing the differences between the three data sets, and important modules 
linked to coronary heart disease were identified using weighted gene co‑expression network analysis 
(WGCNA). Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and genomes (KEGG) 
pathway enrichment analyses were applied in order to identify statistically significant genetic modules 
with the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool (version 
6.8; http:// david. abcc. ncifc rf. gov). The online STRING tool was used to construct a protein–protein 
interaction (PPI) network, followed by the use of Molecular Complex Detection (MCODE) plug‑ins 
in Cytoscape software to identify hub genes. Two significant modules (green‑yellow and magenta) 
were identified in the CAD samples. Genes in the magenta module were noted to be involved in 
inflammatory and immune‑related pathways, based on GO and KEGG enrichment analyses. After 
the MCODE analysis, two different MCODE complexes were identified in the magenta module, and 
four hub genes (ITGAM, degree = 39; CAMP, degree = 37; TYROBP, degree = 28; ICAM1, degree = 18) 
were uncovered to be critical players in mediating CAD. Independent verification data as well as our 
RT‑qPCR results were highly consistent with the above finding. ITGAM, CAMP, TYROBP and ICAM1 are 
potential targets in CAD. The underlying mechanism may be related to the transendothelial migration 
of leukocytes and the immune response.

In�ammation plays a crucial role in the pathophysiology of coronary artery disease (CAD), it is involved in the 
formation, erosion and �nal rupture of atherosclerotic plaque, resulting in partial or total occlusion of coro-
nary artery. �is might result in myocardial ischemia and hypoxia and thereby an acute myocardial infarction 
(AMI)1. Complete occlusion usually leads to ST-elevation in the electrocardiogram, which is de�ned as an acute 
ST-segment elevation myocardial infarction (STEMI). Partial occlusion or occlusion with collateral circula-
tion without ST-segment elevation is classi�ed as unstable coronary syndrome. Unstable coronary syndromes 
without elevated Troponin T (TnT, a marker of myocardial necrosis) were de�ned as non-ST-segment elevation 
acute coronary syndromes, while those with elevated TnT were de�ned as non-ST-segment elevation myocardial 
infarction (non-STEMI)2. Although with the spread and popularization of emergency percutaneous coronary 
intervention (PCI) treatment, the prognosis of patients with AMI can be signi�cantly improved by rapidly 
restoring blood �ow in occluded vessels. However, CAD still maintains a high morbidity and mortality, and 
leading to signi�cant reduction in quality of life of those patients as well as poses a he�y burden on healthcare 
 systems3,4. �e overall prevalence of CAD, also known as ischemic heart disease, nearly has risen steadily since 
1990, reaching 182 million cases and 9.14 million deaths in  20195. Well established risk factors for CAD include 
high blood pressure, diabetes, a sedentary lifestyle, smoking, family history, obesity, stress and hyperlipidemia. 
Although lots of e�orts have been undertaken in recent years, the prevention and cure of CAD remains a daunt-
ing challenge for physicians around the world. �ere is an urgent need for further exploration of the potential 
molecular mechanisms correlated with CAD. Existing literature indicates that CAD is primarily mediated by 
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coronary  atherosclerosis6. Early intervention in preventing atherosclerosis could signi�cantly decrease CAD, 
stroke and other ischemic diseases from occurring and  developing7.

Microarray analysis might serve as a novel and practical approach to identify susceptibility genes correlated 
with coronary heart  disease8. However, the reproducibility and sensitivity of microarray analysis based on di�er-
entially expressed genes may be  limited9,10. Exactly, hence, currently, the microarray-based transcriptome analysis 
has been largely replaced by (or even singe cell-based) RNA seq. Furthermore, Gene co-expression network-based 
methods have been widely used in processing  microarray11,12 and RNA seq  data13 and have especially been used 
to identify meaningful functional modules. Weighted gene co-expression network analysis (WGCNA) is one of 
the most e�ective methods of gene co-expression network analysis. Transcriptome data from di�erent sources 
within the same species can be grouped together for WGCNA  analysis14. WCGNA generates a scale-free net-
work of gene–gene interactions, if some genes always have similar expression changes in a physiological process 
or di�erent tissues, and these genes will be enriched in a common signi�cant module. Furthermore, it can be 
used to further analyze the correlation between modules and phenotypes or clinical  characteristics15. Given the 
capabilities of WGCNA in formulating a co-expression network comprising of signi�cant modules, we are able 
to glean new information regarding CAD features and may uncover novel insights in CAD-related molecular 
mechanisms, signaling pathways and genetic biomarkers.

Results
Data preprocessing. Interpatch di�erence removal and data normalization were carried out to obtain the 
�nal gene expression pro�les. 113 samples yielded a total of 23,493 gene symbols. Further information regarding 
gene expression pro�le and the sample phenotypes are depicted in Supplementary Tables S1A,B and S2.

Weighted gene co‑expression networks. Weighted gene co-expression networks were constructed 
based on identi�ed genes a�er determining the so� threshold (β = 14) (Fig. 1). In order to create a topological 
overlap matrix (TOM), the adjacency and correlation matrices of the gene expression pro�le were calculated. A 
�nal gene clustering tree based on the gene–gene non-ω similarity was produced (Fig. 2). Using the hierarchical 
average linkage clustering method in combination with the TOM, we proceeded to identify gene modules of 
each gene network. �e dynamic tree cut algorithm highlighted �ve gene modules (Fig. 3). Genes that did not �t 
in any modules were discarded from further analyses (presented as gray modules).

Identification of the modules of interest. Biologically signi�cant modules which those that strongly 
correlated to clinicopathological features. Supplementary Fig. S1 and Fig. 4 show that the green–yellow (r2 = 0.52, 
P = 5E−04) and magenta (r2 = 0.42, P = 0.02) modules were highly correlated with CAD. �erefore, subsequent 
analyses were carried out on genes from both these modules. In addition, Supplementary Fig. S2 shows a highly 
signi�cant correlation between gene signi�cant (GS) versus module membership (MM) in the green-yellow (A) 
and magenta (B) modules with CAD.

Module preservation test. We performed preservation analysis of the expression pro�les of CAD and 
noticed that there were one weak and two strong preserved modules between CAD and control subjects (Sup-
plementary Fig. S3). �e statistical results of medianRank and Zsummary are consistent, which indicates that 
the module size has little e�ect on the preservation analysis. We noticed that the green-yellow and magenta 
modules were highly preserved with CAD; blue and brown modules were weakly preserved with CAD. �ese 
�ndings demonstrated that the gene expression patterns between the CAD and control subjects are di�erent to 
a large extent.

Enrichment analysis of interesting modules. Biological functions of genes in both these mod-
ules were then subjected to further GO and KEGG pathway enrichment analyses. A total of 309 genes in the 
magenta module (Supplementary Table S3) were signi�cantly correlated with the following pathways: leukocyte 
transendothelial migration signaling pathway (ITGAM and ICAM1), TNF signaling pathway (ICAM1), and the 
Staphylococcus aureus infection (ITGAM and ICAM1), rheumatoid arthritis (ICAM1 and ITGAM), tubercu-
losis (ITGAM and CAMP), natural killer cell-mediated cytotoxicity (ICAM1 and TYROBP), and NF-kappa B 
signaling pathways (ICAM1). �e KEGG pathway analysis, molecular functions, biological processes as well as 
cellular components are depicted Fig. 5, with a more detailed presentation of data included in Supplementary 
Tables S4 and S5.

PPI network construction and module analysis of DEGs. �e STRING online tool was used to for-
mulate a PPI network comprising 309 nodes and 3165 edges. Subsequent analysis found that only two MCODEs 
with scores > 6 were detected. Hub genes ITGAM (degree = 39), CAMP (degree = 37), and TYROBP (degree = 28) 
were identi�ed in Molecular-1 (A-1), and ICAM1 (degree = 18) was identi�ed in Molecular-2 (A-2) (Fig. 6). It 
can be concluded that the identi�ed genes are strongly linked to CAD.

Results of meta‑analysis based on three eligible microarrays. �e meta-analysis included three 
di�erent datasets from the GEO database and included a total of 80 acute myocardial infarction (AMI) and 67 
normal subjects. �e integrated gene expression pro�le was obtained a�er eliminating the batch e�ects between 
three datasets and also shown in Supplementary Table S6A,B. A �xed e�ect model was used to identify DEGs 
in INMEX. As a result, a total of 2409 DEGs (1125 upregulated and 1284 downregulated genes) were identi�ed 
in AMI compared with normal subjects (Supplementary Table S7). Additionally, ITGAM, CAMP, TYROBP and 
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ICAM1 were all included in the upregulated DEGs group (Table 1). �e expression pattern of ITGAM, CAMP, 
TYROBP and ICAM1 across three eligible datasets are also shown in Supplementary Fig. S4. Expressions of 
ITGAM, CAMP, TYROBP and ICAM1 genes were also markedly raised in individuals with CAD in comparison 
to healthy subjects.

Validation analysis by RT‑qPCR. �e results of RT-qPCR uncovered that ITGAM, CAMP, TYROBP and 
ICAM1 expressions were markedly raised in those with CAD in contrast to individuals without the condition. 
�ese �ndings re�ect the results of the microarray analysis (Fig. 7).

ROC curve for CAD patients. As shown in Fig. 8, ROC analysis was used to evaluate the predictive values 
of ITGAM, CAMP, TYROBP and ICAM1 for CAD. �e AUC values of ITGAM, CAMP, TYROBP and ICAM1 
were 0.714 (95% CI 0.666–0.762; P < 0.001) with a sensitivity of 74.3% and a speci�city of 76.2%; 0.897 (95% 
CI 0.865–0.928; P < 0.001) with a sensitivity of 84.2% and a speci�city of 91.1%; 0.761 (95% CI 0.716–0.807; 
P < 0.001) with a sensitivity of 77.1% and a speci�city of 79.7% and 0.848 (95% CI 0.811–0.885; P < 0.001) with a 
sensitivity of 83.3% and a speci�city of 86.7% for prediction of CAD risk, respectively. CAMP diagnostic perfor-
mance is depicted to be superior in comparison to other genes.

Figure 1.  Analysis of network topology for various so�-thresholding powers. �e le� panel shows the scale-
free �t index (y-axis) as a function of the so�-thresholding power (x-axis). �e right panel displays the mean 
connectivity (degree, y-axis) as a function of the so�-thresholding power (x-axis).
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Comparison with other methods. Machine learning, more speci�cally, deep learning, is one of the 
most widely used forms of arti�cial intelligence. As is know that deep learning (DL) is widely used for intel-
ligence medicine to assistant disease risk prediction and disease diagnosis based on small sample size, like 
 transcriptomic16 or  genomic17 data, and imaging  data18. �e application of deep learning in disease detection 
or diagnosis is particularly important for clinician, as it has the potential to maximize diagnostic performance. 
Previous research has demonstrated that compared with the traditional Cox model, the risk strati�cation model 
based on gene co-expression network and DL would apply deep Convolutional Neural Network (CNN) to high-
dimensional gene expression data, and could improve the risk strati�cation and survival prediction ability of the 
 model19. In addition, Liu, et al. also noticed that the multi-model deep learning framework based on CNN has 
better performance in the diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) than 
the single-model method and several other competing  methods18. However, the construction of deep learning 
model is tedious and time-consuming, and it is very challenging to build models with deep learning method for 
some parts with complex structure and di�cult to image. �erefore, in the current research, the empirical ROC 
curves of ITGAM, CAMP, TYROBP and ICAM1 were plotted using non-parametric  method20 by SPSS (Version 
22.0) so�ware. Non-parametric method, which do not require any assumptions about data distribution, can be 
calculated without �tting any ROC  curves21. �us, the non-parametric method of area estimation under the 
ROC curve can be used to evaluate the accuracy of all diagnostic tests because there are no restrictions. However, 
the diagnostic performance of non-parametric method may be worse than that of a deep learning model.

Demographic and biochemical characteristics. Both control and CAD individuals had similar pro-
portions of height, age, gender ratio, and proportion of drinkers (Table 2). Patients with CAD were more likely 
to be smokers, and possessed higher levels of serum LDL-C, ApoB, TG and TC levels, body mass index (BMI), 
lucose level, weight, systolic and diastolic blood pressure as well as, glucose level, pulse pressure, in contrast to 
healthy individuals. Serum HDL-C and ApoA1 levels and the ApoA1/ApoB ratio were signi�cantly higher in 
the control group.

Discussion
Despite the plethora of information available regarding CAD, little is known regarding the feasibility of non-
invasive diagnostic markers for this debilitating  disease22–24. To facilitate improved treatment and diagnosis, 
there needs to be a deeper understanding on the underlying pathophysiology of CAD. Di�erential gene analysis 
based on microarray expression data is helpful for us to identify susceptibility genes and elucidate the molecular 
mechanism of CAD, however, microarray expression data are not always reproducible or are too sensitive to 
 errors8. �erefore, the integration of gene expression pro�le data combined with WGCNA analysis may be an 
e�ective method to identify susceptibility genes of CAD. To meet this need, we integrated three di�erent datasets 

Figure 2.  Heatmap plot of topological overlap in the gene network. In the heatmap, each row and column 
correspond to a gene, light color denotes low topological overlap, and progressively darker red denotes higher 
topological overlap. Darker squares along the diagonal correspond to modules. �e gene dendrogram and 
module assignment are shown along the le� and top.
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from CAD patients (GSE66360, GSE19339 and GSE97320) in order to carry out WGCNA analysis, which sub-
sequently identi�ed 2 modules (green-yellow and magenta) that were signi�cantly correlated with CAD. Refer 
to previous  researches25,26, to determine the reliability of the identi�ed CAD-related modules (green-yellow 
and magenta), we have conducted a preservation analysis of the expression pro�les of CAD and we noticed that 
the green-yellow and magenta modules were highly preserved. Furthermore, KEGG and GO gene enrichment 
analyses of these two modules highlighted that those of the magenta module may impart signi�cant biological 
functions closely related to in�ammation, the immune response, and white blood cell activation and migration. 
Four hub genes (ITGAM, TYROBP, ICAM1 and CAMP) were identi�ed in two moleculars that were detected 
by MCODE by analyzing the PPI protein interaction network. Moreover, network-based meta-analysis revealed 
that the expression levels of ITGAM, CAMP, TYROBP and ICAM1 in CAD patients in GSE60993 and GSE66360 
datasets were signi�cantly higher than those in the control group, at the same time, the gene expression levels of 
ITGAM, CAMP and TYROBP in CAD patients in GSE61144 dataset were also signi�cantly higher than those in 
the control group. Similarly, our RT-qPCR results strongly correlated with the above results. ITGAM, TYROBP, 
ICAM1 and CAMP gene expressions were noted to be raised in individuals with CAD in comparison to those 
without. �erefore, the identi�ed ITGAM, TYROBP and ICAM1 and CAMP genes were concluded to be related 
to CAD onset, but the underlying molecular mechanisms of these genes might be slightly di�erent.

A recent study has proven that the occurrence of CAD is caused by a variety of factors, which is a result of 
interaction between alterations in plasma lipid levels, lifestyle, environmental factors and genomic  background27. 
Atherosclerosis is generally regarded as the pathological foundation of  CAD6. Atherosclerosis is a combination 
of abnormal lipid metabolism and a chronic in�ammatory  process28. Transendothelial migration and subinti-
mal aggregation of monocytes are some of the most important features of early human atherosclerotic lesions. 
A�er the di�erentiation into macrophages and the ingestion of lipids, which causes the formation of foam 
cells, the arterial wall may develop atherosclerotic plaques composed of foam cells, calcium, lipids, and other 
 components29. Activated leukocytes can promote vascular endothelial injury and in�ammatory response, and 
secrete a series of in�ammatory factors, such as interleukin-1 (IL-1), TNF-α and IL-6, resulting in cellular adhe-
sion, in�ltration of in�ammatory cells, matrix degradation, all of which culminates in plaque rupture, thereby 
accelerating the progression of  atherosclerosis30. �rough a comprehensive search of the NCBI GENE database, 
we discovered that ITGAM (also known as CR3A; MO1A; CD11B; MAC-1; MAC1A; and SLEB6; gene ID: 3684, 
HGNC: 6149, OMIM: 120980) is located on chromosome 16p11.2 (exon count: 31) and encodes the integrin 
αM chain, which plays a crucial role in several in�ammatory reactions, including the monocyte and neutrophil 

Figure 3.  Clustering dendrogram of genes. Gene clustering tree (dendrogram) obtained by hierarchical 
clustering of adjacency-based dissimilarity. �e colored row below the dendrogram indicates module 
membership identi�ed by the dynamic tree cut method, together with assigned merged module colors and the 
original module colors.
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adhesion to damaged endothelial cells and transendothelial migration, and integrin αM is also involved in 
CD40L-mediated in�ammation during  atherosclerosis31. Several novel studies also proved that ITGAM could 
act as a complement component 3 receptor that is involved in the in�ammatory  response32,33. Additionally, 
Ayari et al. suggested that ITGAM and TYROBP expression levels were raised in human carotid artery  plaques34. 
Yongming Pan et al. also found similar expression trends for ITGAM and TYROBP in a novel Tibetan minipig 
atherosclerosis  model35. TYROBP (also known as DAP12; KARAP; PLOSL; PLOSL1; gene ID: 7305, HGNC: 
12449, OMIM: 221770) encodes a transmembrane signaling polypeptide and is a type of transmembrane recep-
tor that is ubiquitously found in macrophages/monocytes, natural killer (NK) cells and neutrophils. In recent 
years, NK cells, especially NKT cells, have been considered to be important participants in in�ammatory cells 
chemotaxis, adhesion between in�ammatory cells and endothelial cells, and other processes that are active in 

Figure 4.  Module-feature associations. Each row corresponds to a modulEigengene and the column to the 
clinical phenotype. Each cell contains the corresponding correlation in the �rst line and the P-value in the 
second line. �e table is color-coded by correlation according to the color legend.

Figure 5.  GO functional and KEGG pathway enrichment analyses for genes in the object module. �e x-axis 
shows the number of genes and the y-axis shows the GO and KEGG pathway terms. �e − log10 (P-value) 
of each term is colored according to the legend. (A) GO functional enrichment analysis. (B) KEGG pathway 
enrichment  analysis64.
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Figure 6.  PPI network construction and identi�cation of hub genes. (A) PPI network of genes in magenta 
module. �e edge shows the interaction between two genes. Signi�cant modules identi�ed from the PPI 
network using the MCODE with a score > 6.0. (A-1) Molecular-1 with MCODE score = 26.2. (A-2) Molecular-2 
with MCODE score = 13.4.

Table 1.  Four upregulated DEGs (ITGAM, CAMP, TYROBP and ICAM1) in CAD relative to normal subjects.

Entrez ID Gene symbol Gene name Combined ES P value

3684 ITGAM Integrin subunit alpha M 1.0900 1.83E−05

820 CAMP Cathelicidin antimicrobial peptide 1.0255 7.24E−07

7305 TYROBP Transmembrane immune signaling adaptor TYROBP 1.1046 7.40E−08

3383 ICAM1 Intercellular adhesion molecule 1 1.0241 1.16E−06

Figure 7.  Four identi�ed hub genes were veri�ed by RT-qPCR. *P < 0.001.
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the early stages of  atherosclerosis36,37. Previous research has demonstrated that TYROBP acts as one of the key 
drivers of a variety of in�ammatory  pathways38. Wang et al. revealed that APOE mice demonstrated plaques 
which richly expressed TYROBP, a feature thought to result in TREM-1/DAP12 pathway-mediated accelerated 
atherosclerosis  progression39.

A central tenet of the in�ammatory process involves endothelial cell binding by leukocytes through inte-
grins. Intercellular adhesion molecule 1 (ICAM1; CD54) is a representative ligand of integrin that is key to 
mediating leukocyte adhesion to the endothelial cell  surface40. ICAM1-mediated endothelial chemokines attract 
and activate leukocytes, leading to a severe in�ammatory  response41. Silvia Dragoni et al. proved that ICAM-
1-mediated intra-endothelial signaling plays a critical role in regulating lymphocyte transendothelial migration 
and modulating vascular permeability, thereby propagating chronic endothelial  in�ammation42. In addition, 
activation of ICAM-1 also increased the expression of in�ammatory genes correlated with coronary heart dis-
ease, such as IL-1B40, CXCL8, CCL541, and VCAM-143. Similar results were also con�rmed in KEGG pathways 
and GO enrichment analysis, we noticed that ITGAM, TYROBP and ICAM1 were mainly involved in the fol-
lowing in�ammation-related signaling pathways and biological processes: leukocyte transendothelial migration 
(ITGAM and ICAM1), Staphylococcus aureus infection (ITGAM and ICAM1), rheumatoid arthritis (ICAM1), 

Figure 8.  �e ROC curves for the predictive values of ITGAM, CAMP, TYROBP and ICAM1 to identify CAD 
patients from healthy controls. (A) �e AUC of ITGAM in CAD was 0.714 with a sensitivity of 74.3% and a 
speci�city of 76.2%. (B) �e AUC of CAMP in CAD was 0.897 with a sensitivity of 81.2% and a speci�city of 
91.1%. (C) �e AUC of TYROBP in CAD was 0.761 with a sensitivity of 77.1% and a speci�city of 79.7%. (D) 
�e AUC of ICAM1 in CAD was 0.848 with a sensitivity of 83.3% and a speci�city of 86.7%.

Table 2.  Comparison of demographic, lifestyle characteristics and serum lipid levels of the participants. SBP 
Systolic blood pressure; DBP Diastolic blood pressure; PP Pulse pressure; Glu Glucose; HDL-C high-density 
lipoprotein cholesterol; LDL-C low-density lipoprotein cholesterol; Apo Apolipoprotein; TC Total cholesterol; 
TG Triglyceride. a Continuous data were presented as means ± SD and determined by two side t-test. b A Chi-
square analysis was used to evaluate the di�erence of the rate between the groups.

Characteristic Control(n = 216) CAD (n = 230) Test-statistic P

Male/female 150/66 169/61 0.890 0.345

Age (years) 54.02 ± 11.66 53.17 ± 10.19 0.931 0.352

Height (cm) 164.40 ± 7.5 165.22 ± 6.97 − 1.227 0.221

Weight (kg) 58.70 ± 9.08 66.08 ± 10.73 − 7.820 3.89E−14

BMI (kg/m2) 20.00 ± 3.77 24.14 ± 3.23 − 12.460 9.09E−31

Smoking, n % 71 (32.9) 98 (42.6) 4.489 0.034

Alcohol, n %) 57 (26.4) 62 (27.0) 0.018 0.892

SBP (mmHg) 130.88 ± 18.75 136.74 ± 22.56 − 2.974 0.003

DBP (mmHg) 79.95 ± 11.04 82.54 ± 12.05 − 2.221 0.027

PP (mmHg) 50.93 ± 13.40 54.19 ± 16.66 − 1.974 0.049

Glu (mmol/L) 6.12 ± 1.64 6.47 ± 1.86 − 2.104 0.036

TC (mmol/L) 4.49 ± 1.02 4.74 ± 1.36 − 2.164 0.031

TG (mmol/L) 1.36 ± 1.17 1.61 ± 1.07 − 2.864 0.008

HDL-C (mmol/L) 1.65 ± 0.47 1.13 ± 0.30 13.861 1.47E−36

LDL-C (mmol/L) 2.79 ± 0.97 3.06 ± 1.11 − 2.713 0.007

ApoA1 (g/L) 1.42 ± 0.34 0.99 ± 0.31 14.057 2.18E−37

ApoB (g/L) 0.88 ± 0.21 0.95 ± 0.27 − 3.146 0.002

ApoA1/ApoB 1.69 ± 0.52 1.12 ± 0.49 11.732 7.13E−28
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integrin-mediated signaling pathway (ITGAM), Toll-like receptor 4 signaling pathway (ITGAM), tuberculo-
sis (ITGAM), natural killer cell-mediated cytotoxicity (ICAM1 and TYROBP), NF-kappa B signaling pathway 
(ICAM1), and TNF signaling pathway (ICAM1). �erefore, we speculated that ITGAM, TYROBP and ICAM1 
may be involved in atherosclerosis by mediating the in�ammatory pathways described above.

Previous studies have shown that CAD and several autoimmune diseases, such as  psoriasis44, systemic lupus 
 erythematosus45, and rheumatoid  arthritis46, share a common pathogenesis, which suggests that the develop-
ment of atherosclerosis is highly dependent on autoimmunity. �e protein encoded by CAMP belongs to the 
antimicrobial peptide group that was previously established to be an autoantigen in psoriasis which is involved 
in cell chemotaxis, in�ammatory response regulation and immune mediator  induction47,48. Several compelling 
studies also proved that there was abnormal expression of CAMP in atherosclerotic plaques and suggested that 
the autoimmune response mediated by CAMP may be related to the development of  atherosclerosis49,50, and these 
processes may partially account for the signi�cantly raised CAD risk in patients with  psoriasis51. Additinoally, 
Peter M et al. further con�rmed that CAMP was a potential autoantigen implicated in the atherosclerotic immune 
 response52. Furthermore, previous studies have proven that CAMP has been de�ned as a pro-atherosclerotic 
 molecule53,54 and that CAMP-de�cient transgenic mice have a reduced risk of  atherosclerosis55. In addition, we 
noticed that CAMP was mainly enriched in the following signaling pathways and biological processes: tubercu-
losis, innate immune response, cell redox homeostasis, cellular response to interleukin-1, and cellular response 
to tumor necrosis factor. �ese �ndings indicated that CAMP may be involved in atherosclerosis by mediating 
autoimmune or in�ammatory responses. Furthermore, the independent veri�cation data as well as our RT-qPCR 
results also revealed that CAD patients had signi�cantly raised ITGAM, TYROBP, ICAM1 and CAMP expression 
levels in contrast to healthy subjects. In addition, based on ROC curve analysis, we propose CAMP to function 
as a potential diagnostic biomarker for CAD.

�is research had several limitations. Firstly, we have only identi�ed and veri�ed the hub genes that were 
associated with CAD, but have not constructed the transcriptional regulatory network, which may lead to more 
meaningful discoveries. Secondly, the sample sources of the three datasets selected in the current research are 
di�erent and the biological di�erences will inevitably produce an impact on our �ndings. �irdly, there was only 
one disease phenotype of clinical features in this study, thus, more clinical features are needed in order to further 
de�ne the phenotype-genotype relationship. Fourthly, this is a single-center study comprising of a small patient 
number, and large multi-center studies are necessary validate our �ndings. Lastly, the molecular mechanisms of 
ITGAM, TYROBP, ICAM1 and CAMP involved in CAD are still not fully de�ned and require further cytology 
and animal experiments to further outline their respective roles in vivo and in vitro.

In summary, we determined that ITGAM, TYROBP, ICAM1 and CAMP may possess signi�cant roles in medi-
ating the chronic in�ammatory process that eventually culminates in atherosclerosis and CAD. �e underlying 
mechanism may be related to transendothelial migration of leukocytes and the immune response. Independent 
veri�cation data, combined with our RT-qPCR results were similar to those derived from the microarray analysis, 
which further increased the credibility of the conclusion.

Materials and methods
CAD microarray data sets were used to identify hub genes. �ree microarray data sets originating 
from individuals with CAD (GSE66360, GSE19339 and GSE97320) were extracted from the National Center 
for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO, http:// www. ncbi. nlm. nih. gov/ geo/) 
database. �is data was based on the GPL570 A�ymetrix Human Genome U133 Plus 2.0 array and was used to 
construct a co-expression network. �e expression pro�le data from 56 CAD samples and 57 normal samples 
across three data sets were analyzed using integrated analysis. Before we analyzed the data, some powerful and 
accurate R packages, such as a�y, a�yPLM, and RColorBrewer were used to perform quality testing of microar-
ray data. Some functions in a�yPLM package can be used to �t the original data of microarray and generate 
the weights and residuals diagram, relative the relative log expression (RLE) and the relative standard deviation 
(NUSE, Normalized unscaled standard errors) box  diagram25. A�er con�rming that there are no outliers, RMA 
methods were used to normalize gene expression value matrices which were extracted from the original �les in 
CEL format. Furthermore, KNN function of the impute package is used to calculate and supplement missing val-
ues. SVA methods were then used to remove and batch di�erences via the R so�ware (version 4.0.0)12. A�er this, 
gene symbols were designated based on probe identi�cation numbers (IDs) using the Bioconductor  package13. 
Average expression values were used in cases where multiple probe IDs corresponded to the same gene.

Construction of the weighted gene co‑expression network. WGCNA is a widely used systems biol-
ogy method that is able to transform gene expression data pro�les into a scale-free  network9. Outlier samples 
were excluded to maintain the reliability of network construction results. �e appropriate so� threshold power 
(so� power = 14) was chosen with reference standard scale-free networks, with the power function used to cal-
culate adjacency values between all di�erentially expressed genes. A topological overlap matrix (TOM) was then 
formulated based on the adjacency values in order to calculate the corresponding dissimilarity (1-TOM) values. 
Module identi�cation was accomplished with the dynamic tree cut method by hierarchically clustering genes 
using 1-TOM as the distance measure with a minimum size cuto� of 30 and a deep split value of 2 for the result-
ing dendrogram. A module preservation function was used to verify the stability of the identi�ed modules by 
calculating module preservation and quality statistics in the WGCNA  package14.

Preservation analysis of five network modules. Refer to the methods described in a previous  study26, 
a composite preservation statistics method based on the module Preservation function in the WGCNA R pack-
age was used to verify the conservativeness of the �ve modules. �e Z-summary statistic was used to measure 
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module density and intramodular connectivity metrics in each module. In the corresponding network, Zdensity 
(function 1) was used to conducted the 4 density preservation statistics, Zconnectivity (function 2) was used 
to conducted the 3 connectivity-based statistics, the combines module density and intramodular connectivity 
metrics was measured by the Zsummary (function 3) and de�ned as follows: Z density = median (Z meanCor, Z 
meanAdj, Z propVarExpl, Z meanKME) (function 1); Z connectivity = median (Z cor.kIM, Z cor.kME, Z cor.cor) 
(function 2); Z summary = (Z density + Z connectivity)/2 (function 3). In addition, if Z summary < 2 indicated 
no evidence that the module preserved; if 2 < Z summary < 10 indicated weak to moderate preservation; if Z 
summary > 10 indicated high preservation among modules. �e module size has a strong in�uence on Z statis-
tics. �erefore, the medianRank for preservation analysis was conducted to comparing the preservation statistics 
of di�erent sized modules. It indicates that modules with lower median rank tend to show better preservation 
statistics than those with higher median rank.

Identification of the module of interest and functional annotation. �e relationship between clin-
icopathological characteristics and modules were discerned using the Pearson correlation analysis in order to 
determine CAD-related biological modules. Signi�cant gene modules were subsequently processed with the 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses by using the 
Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool (version 6.8; http:// david. 
abcc. ncifc rf. gov). P < 0.05 was set as the cuto� criterion.

Hub gene analysis. �e degree of module membership (MM) was de�ned as the correlation between mod-
ule eigengenes (Mes) and gene expression pro�les. �e correlation between the gene and external traits was 
determined to be the degree of gene signi�cance (GS). Generally, identi�ed modules with increased MS and 
GS values were then subjected to further scrutinization for their biological  function15. �e Search Tool for the 
Retrieval of Interacting Genes database (version 11.0; http:// www. string- db. org) was used to construct protein–
protein interaction (PPI) gene networks based on the chosen  module16. �is network was then visualized with 
the Cytoscape  so�ware17, with the most valuable clustering module identi�ed using molecular complex detec-
tion (MCODE)18. Modules with an MCODE score > 6 were selected for further analysis.

Sample verification and diagnostic criteria. Two hundred thirty unrelated patients with CAD were 
recruited from the Shao Yang Central Hospital. CAD was de�ned as signi�cant coronary artery stenosis (≥ 50%) 
in at least one of the three main coronary vessels or their main branches (branch diameter ≥ 2 mm)19. �e diag-
nostic criteria for the three types of CAD patients are as follows: (i) stable exertional angina (n = 122), de�ned as 
episodes with reversible ischemic chest pain. (ii) Non-ST-elevation acute coronary syndromes (NSTE-ACS) that 
included non-ST‐elevated myocardial infarction (NSTEMI) patients and unstable angina (n = 66), de�ned as 
angina at crescendo or rest angina. (iii) ST‐elevated myocardial infarction (STEMI) (n = 42) de�ned as elevated 
plasma levels of Troponin T (TnT; at least one value above the 99th percentile) together with ST-segment eleva-
tion or new le� bundle branch block in the electrocardiogram and ischemic symptoms. All subjects had no his-
tory of autoimmune, thyroid, renal, neoplastic, hematologic, liver disease or type 1 diabetes. �e control group 
consisted of two hundred sixteen healthy controls matched by age, ethnicity (Han Chinese) and gender and 
were randomly recruited from the Physical Examination Center of the Shao Yang Central Hospital, in the same 
period. All control individuals were assessed with questionnaires, clinical history and examination to ensure the 
absence of type 2 diabetes mellitus (T2DM), previous myocardial infarction or CAD as well as ischemic stroke 
(IS). Written, informed consent was gained from all individuals prior to participation and all experiments were 
performed in accordance with relevant named guidelines and regulations. �e research proposal was approved 
by the Ethics Committee of the Shao Yang Central Hospital (No: KY 2020-023-08).

Network‑based meta‑analysis to verify the identified hub genes. Acute myocardial infarction 
(AMI) samples from three datasets (GSE60993, GSE61144 and GSE66360) were selected to verify the identi-
�ed hub genes, which are based on the platform of GPL6884 Illumina HumanWG-6 v3.0 expression beadchip, 
GPL6106 Sentrix Human-6 v2 Expression BeadChip and GPL570 A�ymetrix Human Genome U133 Plus 2.0 
array and used to construct the co-expression network. Raw data (.CEL) were processed using so�ware pack-
age in R (version 4.0.0) for microarray quality assessment such as RNA degradation plots, normalized unscaled 
standard errors (NUSE) and relative log expression (RLE). Several samples with abnormal distribution in each 
dataset were removed. A robust multi-array average (RMA) algorithm with background adjustment, log trans-
formation and normalization was used to pre-process all  data56. �e Bioconductor package was used to transform 
the probe identi�cation numbers (IDs) into gene  symbols13. Average expression values were used in cases where 
multiple probe IDs corresponded to the same gene. INMEX was used to carry out microarray-based meta-anal-
ysis in order to incorporate multiple gene expression  datasets57, in compliance to the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses guidelines for meta-analysis58. Each eligible gene expression pro�le 
was uploaded to INMEX. A�er each gene expression pro�le integrity check, the ComBat option in INMEX was 
used to eliminate batch e�ects between three di�erent gene expression pro�les using empirical byes  methods59. 
To eliminate the di�erences in platform usage and study design, heterogeneity among microarray datasets, a 
�xed e�ect model (FEM) was selected for the meta-analysis in compliance to the between-study heterogeneity 
based on Cochran’s Q  test60. Di�erentially expressed genes (DEGs) from the integrated dataset were obtained by 
the GeneVenn web tool from  INMEX61.

Quantitative real‑time PCR. Total RNA was extracted from isolated peripheral blood monocytes 
(PBMCs) using the TRIzol reagent. cDNA was then reverse-transcribed with the PrimeScript RT reagent kit 
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(Takara Bio, Japan). RT-qPCR was then carried out with the resultant cDNA as a template. Hub gene-speci�c 
primers used in these experiments were designed by Sangon Biotech (Shanghai, China) and are detailed in 
Table 3. An ABI Prism 7500 sequence-detection system (Applied Biosystems, USA) using a Taq PCR Master Mix 
Kit (Takara) was used to perform quantitative RT-PCR was performed using RT Reaction Mix in a total volume 
of 20 μL with the following reaction conditions: predenaturation at 95 °C for 30 s, then 40 cycles of 95 °C for 30 s 
and 60 °C for 30 s.

Diagnostic criteria. Serum triglyceride (TG; 0.56–1.70 mmol/L), ApoA1 (1.20–1.60 g/L), total cholesterol 
(TC; 3.10–5.17 mmol/L), apolipoprotein (Apo) B (0.80–1.05 g/L), low-density lipoprotein cholesterol (LDL-C; 
2.70–3.10 mmol/L) and high-density lipoprotein cholesterol (HDL-C; 1.16–1.42 mmol/L) and the ApoA1/ApoB 
ratio (1.00–2.50) levels were de�ned as their respective normal values at our Clinical Science Experiment Center. 
�e diagnostic criteria of  diabetes20,  hypertension21, obesity, normal weight,  overweight22 and  hyperlipidemia23 
were based on previous studies.

Statistical analyses. All data was analysed with the SPSS (Version 22.0). Continuous data is depicted 
in terms of mean ± SD. Independent-samples t tests were used to assess the general characteristics di�erences 
between controls and individuals with CAD patients and controls. �e Chi-square test was utilized to evalu-
ate the di�erences in the amount of alcohol consumers, age distribution and proportion of smokers between 
controls and individuals with CAD. Referring to previous  studies62,63, receiver operating characteristic (ROC) 
curves were built based on plasma levels of ITGAM, CAMP, YROBP and ICAM1 to evaluate the speci�city, sen-
sitivity, and respective areas under the curves (AUCs) with 95% CI. �e optimal cut-o� value for diagnosis was 
investigated by maximising the sum of sensitivity and speci�city and minimising the overall error (square root 
of the sum [1 −  sensitivity]2 + [1 −  speci�city]2), and by minimising the distance of the cuto� value to the top-le� 
corner of the ROC curve, and the corresponding empirical ROC curve of ITGAM, CAMP, TYROBP and ICAM1 
were drawn by a nonparametric method using SPSS so�ware (Version 22.0). R so�ware (version 4.0.0) was used 
to carry out bioinformatic analysis and heat mapping of the correlation models.
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