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Weighted gene co‑expression 
network analysis identifies 
modules and functionally enriched 
pathways in the lactation process
Mohammad Farhadian1*, Seyed Abbas Rafat1, Bahman Panahi2 & Christopher Mayack3

The exponential growth in knowledge has resulted in a better understanding of the lactation process 
in a wide variety of animals. However, the underlying genetic mechanisms are not yet clearly known. 
In order to identify the mechanisms involved in the lactation process, various mehods, including 
meta‑analysis, weighted gene co‑express network analysis (WGCNA), hub genes identification, gene 
ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment at before 
peak (BP), peak (P), and after peak (AP) stages of the lactation processes have been employed. A 
total of 104, 85, and 26 differentially expressed genes were identified based on PB vs. P, BP vs. AP, 
and P vs. AP comparisons, respectively. GO and KEGG pathway enrichment analysis revealed that 
DEGs were significantly enriched in the “ubiquitin‑dependent ERAD” and the “chaperone cofactor‑
dependent protein refolding” in BP vs. P and P vs. P, respectively. WGCNA identified five significant 
functional modules related to the lactation process. Moreover, GJA1, AP2A2, and NPAS3 were defined 
as hub genes in the identified modules, highlighting the importance of their regulatory impacts on 
the lactation process. The findings of this study provide new insights into the complex regulatory 
networks of the lactation process at three distinct stages, while suggesting several candidate genes 
that may be useful for future animal breeding programs. Furthermore, this study supports the notion 
that in combination with a meta‑analysis, the WGCNA represents an opportunity to achieve a higher 
resolution analysis that can better predict the most important functional genes that might provide a 
more robust bio‑signature for phenotypic traits, thus providing more suitable biomarker candidates 
for future studies.

Lactation is a key process for the secretion of milk from the mammary glands. It is a complex and dynamic bio-
logical process, which is an essential part of the mammalian reproduction  system1,2. �e milk production rate 
in most mammalians follows a dynamic curve. A�er an initial increase in milk yield during early lactation, the 
lactation rate reaches a peak point. �en, production slowly decreases gradually until the end of the lactation 
 process3. �erefore, the lactation process can be divided into three distinct stages; namely, before peak (BP), 
peak (P), and a�er peak (AP) phases of lactation. �e last step of the process is known as lactation  persistency4. 
It has been proposed that an increase in production persistency is an alternative approach which can be used to 
increase total milk  production3.

Detailed knowledge of lactation biology at the molecular level is inevitable for the identi�cation of direct 
causative genes responsible for milk production in livestock breeding  programs5. �e di�erent milk composition 
at each lactation step can be determined by measuring the transcriptional regulation of the underlying  genes3. 
Di�erent metabolic and regulatory pathways that produce fatty acids, amino acids, and carbohydrates are also 
involved in the lactation process, and they may determine the nutritional quality of the produced  milk3. For 
instance, casein and whey protein genes are highly expressed throughout all lactation stages in cattle. It has been 
reported that during the lactation process, transcriptionally-regulated genes are mostly enriched in terms of 
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receptor activity, catalytic activity, and signal transducer  activity6. Moreover, the regulatory impacts of JAK-STAT 
, p38 MAPK, and the PI3 kinase pathway on lactation processes have been previously  reported6.

High-throughput whole-transcriptome sequencing technologies, such as microarray and RNA-Seq, pro-
duce an e�cient and comprehensive description of the gene expression pro�les in a given tissue over  time7–10. 
�e RNA-seq technology has been applied for studying di�erent mammals, e.g., in Assad and Churra  sheep11, 
Ghezel  sheep12, Holstein  cattle13, Jersey and Kashmiri  cattle6,  Bu�alo14,15,  humans16, Holstein and Jersey  cows17 
and  goats18. However, analyses typically focuses on di�erentially expressed gene screening, while the degree 
of interconnection between the involved genes has not yet been investigated. Because the genes with similar 
expression patterns may be related in term of function, identifying genes with correlated expression can shed 
more light on their possible  functions19. �e weighted gene co-expression network can be constructed using 
the WGCNA  algorithm20,21. �e WGCNA has been used to dissect the feed e�ciency of dairy  cattle22, the milk 
transcriptome of  bu�alos15, and the liver and muscle transcriptome of  lambs23, thereby highlighting the power 
of the co-expression networks to provide deep insights into these complex processes. In our previous study, 
involving the meta-analysis of milk microarray data from Rat, Wallaby, and Bos Taurus, we identi�ed 31 genes 
involved in the lactation  process4. Overall, we found that the candidate genes frequently enhanced cell immunity 
and growth  systems4.

In the current study, we �rst performed a transcripotme meta-analysis to identi�y master-key responsive 
genes involved at the three stages of the lactation process. �en, the results of the meta-analysis were integrated 
into system biology approaches, i.e., weighted gene co-expression network analysis, and machine learning models 
to identify functional modules along with hub genes in each module.

Results
Meta‑analysis. A number of studies related to the lactation process were selected. Our objective was to 
identify di�erentially-expressed genes (DEGs) to explain the transcriptome variation across di�erent lactation 
stages. �erefore, we performed a meta-analysis of di�erentially expressed genes. A total of �ve studies, covering 
79 samples, were selected for the meta-analysis. �e samples were divided into BP, P, and AP to identify DEGs; 
each period included 26, 24, and 29 samples, respectively. �e range of raw sequence reads per sample was 22.9 
to 60.4 million (Supplementary Table S1). Meta-analysis provided information on the number of DEGs, the 
number of genes that are declared DEG in the meta-analysis that were not identi�ed in any of the individual 
studies or integration driven discoveries (IDD), and the number of genes that are identi�ed as DEG in individual 
studies but not in the meta-analysis (loss genes). �e results of the meta-analysis performed using two methods 
are presented in Table 1.

Table 1 indicates that the p value technique combined with Fisher and inverse normal methods for BP vs. P, 
BP vs. AP, and P vs. AP comparisons give 103 and 73, 83 and 57, 24 and 10 DEGs, respectively. �e number of 
new DEGs (IDD) identi�ed using Fisher and inverse methods were 10:10, 10:8, and 9:9, respectively. A total of 
104 DEGs (78 up-regulated and 26 down-regulated), 85 DEGs (21 up-regulated and 64 down-regulated), and 
26 DEGs (9 up-regulated and 17 down-regulated) were found in BP vs. P, BP vs. AP, and P vs. AP comparisons. 
�e list of DEGs in BP vs. P, BP vs. AP, and P vs. AP comparisons is presented in Supplementary Files 1–3, 
respectively.

Functional analysis of meta‑genes. �e ubiquitin-dependent ERAD and chaperone cofactor-depend-
ent protein refolding terms were frequently enriched in the BP vs. P and P vs. AP comparisons, respectively 
(Fig. 1). Enrichment analysis also highlighted ‘protein processing in endoplasmic reticulum’ and ‘response to 
endoplasmic reticulum stress’ in the BP vs. P comparison. �is is while in the P vs. AP meta-analysis, ‘protein 
refolding’ was the only enriched term for a biological process. Regarding the molecular function category, ‘glu-
tamate receptor binding’ and ‘protein processing in endoplasmic reticulum’ were the enriched terms in the P vs. 
AP, and BP vs. P meta-analysis, respectively.

�e ‘protein processing in endoplasmic reticulum’ is the most important common pathway between associ-
ated modules and the DEGs.

Co‑expressed modules related to the lactation process. A total of 13,591 meta-genes were identi-
�ed from the datasets across three species (i.e., Bos Taurus, Ovis aries, and Bubalus bubalis) (Supplementary 
File 4). To identify genes that have a strong correlation among the meta-genes, a weighted gene co-expression 
network analysis (WGCNA) was performed. Using the dynamic tree cutting algorithm, the meta-genes were 

Table 1.  Results of meta-analysis of RNA-Seq data using Fisher and Invorm methods. DE: corresponds to the 
number of di�erentially expressed genes. IDD: Integration Driven discoveries (the number of genes that are 
declared DE in the meta-analysis that were not identi�ed in any of the individual studies). Loss: the number of 
genes that are identi�ed DE in individual studies but not in meta-analysis.

Common genes DEG

Fisher method Invnorm method

DOWNDE IDD Loss DE IDD Loss UP

BP vs. P 14,122 104 103 10 0 73 10 30 78 26

BP vs. AP 13,738 85 83 10 0 57 8 24 21 64

P vs. AP 13,738 26 24 9 0 10 9 11 9 17
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grouped into 17 modules, which ranged in size from 30 to 5815 genes per modules (Fig. 2A). �e hierarchical 
clustering of the meta-genes, from the three di�erent species across the three di�erent periods of lactation using 
the topological overlap matrix (TOM), is presented in Fig. 2B.

A total of 17 modules were identi�ed (Fig. 3). We show that the three major modules in the co-expresion 
network include turquoise (n = 5818 genes), blue (n = 1915 genes), and brown (n = 1854 genes).

�e 17 functional modules along with their correlation and p values are depicted in Fig. 4. It can be observed 
that the midnight-blue; green, tan; green–yellow, and turquoise modules were speci�cally signi�cant in BP, P, and 
AP periods of lactation, respectively. �e correlation coe�cient and p value between the midnight-blue module 
and the BP period of lactation were 0.26 and 0.04, respectively. �e correlation coe�cient and p value between 
the green and tan modules and the P period of lactation were − 0.23 (0.04) and − 0.28 (0.01), respectively. Both 
of these signi�cant modules had a negative correlation with the P period of lactation. �e correlation coe�cient 
and p value between the green–yellow and turquoise modules in the AP period of lactation were − 0.27 (0.02) 
and − 0.25 (0.03), respectively.

�e gene network visualization of the gene signatures for the meta-genes in groups BP vs. P, BP vs. AP, and P 
vs. AP are presented in Fig. 5A–C, respectively. �e value of the Betweenness Centrality (BC) is between 0 and 
1. �e node size in the networks represents the centrality of the corresponding nodes. �e signi�cance level for 
the hub genes is set at BC ≥ 0.1.

Estimated parameters for BP vs. P, BP vs. AP, and P vs. AP networks are presented in Supplementary Files 
5, 6, and 7, respectively. Based on the BC values in the BP vs. P comparison, the HSPA13, YWHAZ, PDIA3, 
TM9SF3, and CUL3 genes were the top �ve genes. �e RNASEL, MAPK4, SPI1, MYBL2, and MYBL1 genes were 
determined as hubs in the BP vs. AP network. In the P vs. AP network, the HSPA8, ND5, ABCA2, GATA1, and 
CYTB genes were the top �ve hub genes, having the highest value of the BC index.

The overlapping DEGs identified through the meta-analysis and the WGCNA (significant modules) 
approaches are presented in Fig. 6 and Supplementary File 8. Results show that 116 meta-genes involved in sig-
ni�cant modules were identi�ed by the WGCNA analysis. Additionally, the hypergeometric test was performed to 
evaluate the certainty and probability of overlapping between the two approaches, resulting in a value of 0.9839.

Functional impacts of co‑expressed modules. A WGCNA was performed to identify genes that are 
highly correlated among all meta-genes across di�erent stages of lactation. To perform the functional enrich-
ment of the identi�ed modules, we assigned all the top signi�cant modules in each period of lactation into the 

Figure 1.  Network visualization of enriched pathways (GO/KEGG)24 in the gene signature was performed by 
ClueGO analysis. (A) BP vs. P and (B) P vs. AP.
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ClueGO plugin in the Cytoscape so�ware. �e pathway enrichment analysis within the top signi�cant modules 
indicated that the ‘primary bile acid biosynthesis’, ‘tight junction’, ‘Hippo signaling’, ‘adherens junction’, ‘Rap1 
signaling’, ‘phototransduction’, ‘metabolic fatty acid degradation’, and ‘fatty acid metabolism pathways’ were sig-
ni�cantly enriched at BP, P, and AP stages, respectively.

Hub genes identification and validation in co‑expressed modules. Five hub genes were extracted 
for each module (Supplementary File 9). �e hub genes identi�ed for each signi�cant module are presented in 
Table 2.

To validate the identi�ed hub genes, supervised machine learning models were used. Decision Tree (DT) mod-
els identi�ed gene bio-signatures that can discriminate di�erent temporal points of lactation. �e classi�cation 

Figure 2.  Weighted gene co-expression network analysis (WGCNA) of (A) the hierarchical cluster tree of 
13,591 meta-genes between the three species. �e branches and color bands represent the assigned module; and 
(B) co-expression network modules. In the Topological Overlap Matrix (TOM) plot, the light color represents 
low overlap and the progressively darker red color represents higher overlap between the genes.
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accuracy of the constructed models, based on four criteria, i.e., Information Gain Ratio, Information Gain, Gini 
Index, and Accuracy, are presented in Table 3.

Results show that DT with the information gain criterion gained the highest (79%) accuracy (Fig. 7). �e 
DT highlighted the role of the top-ranked genes in the classi�cation of di�erent lactation stages based on the 
expression value of meta-genes25. As shown in Fig. 7, the GJA1 gene has the potential to be considered as a bio-
marker for the lactation process as it is located at the root of the constructed tree. When the value of the GJA1 
gene was greater than 8.687, and the value of AP2A2 gene was greater than 10.144, the samples fell into the AP 
stage. Moreover, if the last feature was equal or lower than 10.144, and the value of the FBXW9 gene was greater 
than 6.483, the sample would fall into the P stage. If the last feature was equal or greater than 6.483, samples 
would fall into the AP stage.

�e importance of the GJA1, AP2A2, FBXW9, NPAS3, INTS1, CDKN2C, HOXC9, and SFI1 in turquoise, 
turquoise, tan, green, turquoise, turquoise, tan, and turquoise modules, respectively, were con�rmed using the 
DT models, highlighting the critical roles of these hubs in the lactation process.

Discussion
Lactation is known to be associated with a number of physiological and metabolic changes. To gain new insights 
into the expression and connections of master-key regulatory genes during the lactation process, we analyzed the 
milk RNA-Seq transcriptome pro�ling data at di�erent lactation stages using a meta-analysis. �en, we integrated 
the meta-analysis results into the WGCNA approach. Using the above-mentioned integrative computational 
and systems biology approach, a set of components responsible for di�erent phases of the lactation process 
were identi�ed, enabling us to determine which genes play a major role in each period of lactation. Overall, 
the meta-analysis detected 104, 85, and 26 DEGs for the BP vs. P, BP vs. AP, and P vs. AP comparisons, 73.5%, 
25.5%, and 34.6% of which were categorized as up-regulated, while 26.4%, 74.4%, and 65.3% were categorized 
as down-regulated in BP vs. P, BP vs. AP, and P vs. AP comparisons, respectively.

�e ‘response to endoplasmic reticulum stress’ GO term was enriched in BP vs. P periods within the meta-
analysis. Milk fat depression studies in laboratory  animals26 suggest that endoplasmic reticulum (ER) stress 
plays a role in the regulation of lipogenic pathways in mammary epithelial cells in  mice27,28. Meta-genes of the 
P vs. AP comparison indicated that there was an enrichment in the protein refolding biological process term, 
and that casein is a well-known major component of milk  protein29. �e role of chaperone-like  activity30 and 
the aggregation inhibitor  function31 for casein have been proved to a�ect other types of milk protein, including 
b-lactoglobulin32,33, a-lactalbumin32, and milk whey  proteins34. �erefore, casein is important for the stabiliza-
tion of milk whey  protein30. One of the main functions of the glutamate receptor in rats involves the regulation 
of the growth  hormone35. �e endoplasmic reticulum synthesizes almost all lipids, including phospholipids 
and cholesterol. �e endoplasmic reticulum (ER) is a critical site for protein, lipid, and glucose metabolism, 
lipoprotein secretion, and calcium  homeostasis36. Previous research has demonstrated that intracellular triglyc-
eride droplets, known as cytoplasmic lipid droplets, are secreted into milk as plasma membrane bilayer-coated 
structures (i.e., milk fat globules)37.

Figure 3.  �e 17 modules identi�ed by the weighted co-expression analysis (WGCNA) along with the number 
of genes in each module.
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Figure 4.  �e module trait relationship (p value) for identi�ed modules (y-axis) in relation with traits (x-axis). 
X-axis legend: BP = before peak; P = Peak; AP = a�er peak.
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Figure 5.  Gene networks for DEGs involved in the lactation process. (A) BP vs. P; (B) BP vs. AP; and (C) P vs. 
AP comparisons are shown. �e mapping strategy of using low parameter values corresponding to bright colors 
was used for node coloring. �e brightest color is green and the darkest color is red. �e default middle color is 
yellow.
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Co-expression network analysis of meta-genes identi�ed 17 co-expressed modules across all three stages of 
lactation. �e signi�cant modules identi�ed included 1 (midnight-blue), 2 (green, tan), and 2 (green–yellow and 
turquoise) modules for BP, P, and AP periods of lactation, respectively.

Primary bile acid biosynthesis is the only enriched pathway found in the midnight-blue module during the 
BP period of lactation. Bile acids are steroid carboxylic acids derived from cholesterol in  vertebrates38. It has 
been demonstrated that cholesterol esters, glycerides, and phospholipids of milk are all made from fatty acids 
within the mammary  gland38. Bile acids play an important role in animal husbandry because they promote the 
digestion and absorption of fat and fat-soluble substances, saving the energy of the animal, promoting animal 
growth, and thereby improving carcass quality of  livestock39.

Two signi�cant modules in the P period of lactation are associated with the activation of four pathways, 
i.e., the tight junction, Hippo signaling, Adherens junction, and the Rap1 signaling pathway. In the mammary 
gland, during lactation, the tight junctions of the alveolar epithelial cells are impermeable, and, consequently, 
they allow milk to be stored between nursing periods without leakage of milk components from the lumen. 
Nonetheless, mammary epithelial tight junctions are dynamic, and a number of stimuli can regulate  them40. 
Systemic factors such as progesterone, prolactin, and glucocorticoids along with local factors, such as TGF-beta 
intra-mammary and pressure play a crucial role in the regulation of mammary tight junctions. On the other 

Figure 6.  �e Venn diagram representing the number of DEGs selected by the meta-analysis and the number 
of genes selected by the signi�cant modules in the weighted co-expression analysis.

Table 2.  Hub genes in signi�cant modules at BP, P and AP stages of lactation.

Lactation stages

BP P AP

Module Modules Modules

Midnight-blue Green Tan Green–yellow Turquoise

FUZ YAP1 CAMSAP3 P2RX3 EIF1AX

ZNF32 TOM1L1 SIX5 IQCA1 MAGOH

ACOT8 ESRP1 ARHGEF16 FAM71F2 BAG6

WDR18 TEAD1 TMEM120B CATSPERD POMP

KLHDC3 SOWAHB GPRC5B LIM2 CAPZB

Table 3.  Comparison of classi�cation accuracy of constructed Decision Tree (DT) models using di�erent 
criteria.

Criteria Accuracy

Information gain 79.03

Information gain ratio 50.63

Gini index 67.85

Accuracy 78.35
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hand, the tight junction activation has a negative correlation with milk  secretion40. �e next enriched pathway 
in the P period of lactation is the Hippo signaling pathway. �is pathway plays an important role in the control 
of organ size of animals, and it operates through the regulation of cell apoptosis and  proliferation41. Moreover, it 
has been reported that this pathway has a direct impact on the mammary gland development and the lactation 
 process42. Furthermore, cell proliferation and cell di�erentiation can sustain the growth of the mammary gland 
and contribute to milk  production4,43. �e adherence junction is another activated pathway found in the P period 
of lactation. Previous research has con�rmed that the proteins of this pathway are involved in breast  cancer44. 
�is pathway includes a number of intracellular components, such as p120-catenin, β-catenin, and α-catenin45. 
Previous studies have demonstrated that the adherence junction in the epithelial cells aid in their survival dur-
ing  lactation46. �e last signi�cant pathway in the P period is the Rap1 signaling pathway. Previous research has 
found that the Rap1 pathway is a pivotal element in mammary epithelial  cells47. All these enriched pathways 
in the P period are involved in cell di�erentiation and proliferation of the mammary gland, and, consequently, 
they in�uence milk production.

Two signi�cant modules enriched four pathways (i.e., phototransduction, metabolic pathway, fatty acid deg-
radation, and fatty acid metabolism) in the AP period of lactation. Phototransduction is the conversion of light 
into a change in the electrical potential across the cell membrane. �is process activates some signals, leading to 
the opening or closing of ion channels in the cell  membrane48. On the other hand, milk contains many mineral 
ions, which are regulated by the ion channel  control49. �ree remain as activated pathways, including the meta-
bolic pathways, fatty acid degradation, and fatty acid metabolism, all of which contribute to fat metabolism. In 
general, metabolic pathways are associated with a series of chemical reactions, such as fat metabolism. In most 
cases of metabolic pathways, the product of one enzyme acts as the substrate for the  next50. �ese enzymes 
o�en require dietary minerals, vitamins, and other cofactors to function. In addition, milk components such 
as proteins (whey 20% and casein 80%), carbohydrates, coated lipid droplets, water, and ions are synthesized 
and secreted by the mammary  gland51. Milk fat is considered as one of the most important factors in the quality 
of dairy product in the dairy  industry51,52. �e main lipid-associated metabolic pathways include the following 
steps: fatty acid transport, de novo fatty acid (FA) synthesis, FA synthesis, milk lipid synthesis, and �nally droplet 
formation and  secretion51–53. Fat production and milk FA composition depend on the stages of lactation and 

Figure 7.  Graphical model of decision tree using Information Gain criterion based on hub genes in three 
di�erent stages of lactation (Before Peak (BP), Peak (P), and A�er Peak (AP)).
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the level of milk  production52,54,55. In general, most pathways enriched in the AP period of lactation contributed 
toward fat metabolism.

In addition, a number of key hub genes were identi�ed in each module in the BP, P, and AP periods of lacta-
tion. In the P period, the FUZ gene had a higher intra-modular connectivity in the midnight-blue module, and 
this gene is involved in the hedgehog signaling  pathway56. �is pathway is known to be involved in the develop-
ment process. �erefore, the regulation of the hedgehog pathway is necessary for the normal development of 
the  o�spring56.

Two di�erent modules were signi�cantly correlated with the P period, i.e., the green and tan modules. �e 
main hub gene in the green module was the YAP1 gene. Based on the co-expression network results of previous 
studies, the YAP1 gene is involved in the module which is related to milk  lactose57. In the tan module, the CAM-
SAP3 gene was identi�ed as the main hub gene. Previous genome-wide association studies (GWAS) on bovine 
populations highlighted the contribution of this gene in mastitis  characterization58. Mastitis is recognized by a 
high cell count in the milk, which also happens to be one of the most important issues in the dairy industry in 
terms of economic  losses58.

�e main hub gene in the green–yellow module was the P2RX3 gene. It has been proposed that P2RX3 plays 
an important role in the immune  system59. Prior studies have also con�rmed that milk production results in a 
better functioning immune  system4. �e gene EIF1AX was identi�ed as a main hub gene in the turquoise module, 
and we now know that this gene contributes to the synthesis of milk  protein60.

Materials and methods
Data collection. �e RNA-Seq datasets related to the lactation process were downloaded from the Gene 
Expression Omnibus (GEO) and European Nucleotide Archive (ENA) databases. Five RNA-Seq datasets for 
three di�erent species, i.e., Bos Taurus, Ovis aries, and Bubalus bubalis (Table 4), were included in our study. 
Detailed information on the datasets is presented in Supplementary Table S1.

�e �rst dataset (SRP064718) had 12 biological samples from six Chinese Holstein cows, which were divided 
into two groups, i.e., a high production group and a low production group. Samples in this dataset were collected 
at 10 days (n = 3) and 70 days (n = 3) a�er lactation, which were used as before peak and peak samples in the 
meta-analysis, respectively. �e second dataset (SRP125676) covers mammary epithelial cells (MECs) at di�er-
ent stages of lactation (15, 90, and 250 days) from both Jersey and Kashmiri cattle. In this dataset, the samples 
from day 15 were included as before peak (Jersey = 3 and Kashmiri = 3 samples), from day 90 as peak (Jersey = 2 
and Kashmiri = 3 samples), and from day 250 as the a�er peak group (Jersey = 3 and Kashmiri = 3 samples). �e 
third dataset (SRP065967) covers milk somatic cells (MECs) from two dairy sheep breeds, i.e., Churra and Assaf. 
Milk samples were collected at the 10th, 50th, 120th, and 150th day of lactation. �e samples obtained from 
each breed were treated as a separate dataset. Samples from the entire dataset were divided into three groups, 
i.e., before peak (day 10), peak (day 50), and a�er peak (days 120 and 150). �e SRP153744 dataset consisted of 
samples from Murrah bu�aloes at four di�erent stages of lactation, i.e., the 4th, 50th, 140th, and 280th day of 
lactation. �e samples from day 4 were considered to be before peak lactation, day 50 samples were considered to 
be peak samples, and samples from the 140th and 280th days were considered to be in the a�er peak group. �e 
��h dataset (SRP144268) consisted of samples from bu�alo milk. Four bu�aloes were in each group (early, mid, 
and late lactation). �e early, mid, and late stage samples were collected at 30–54, 117–136, and 250–273 days 
postpartum, respectively. All the steps of data collection and downstream analysis are presented in Fig. 8.

RNA‑Seq data processing. �e quality of the raw data was assessed using FastQC (v 0.11.5)  so�ware61 
and low quality reads were trimmed using the Trimmomatic (v 0.32)  so�ware62. �e clean and trimmed read of 
sheep, cow, and bu�alo were mapped onto the Ovis aries (Oar_v4.0), Bos Taurus (Btau_5.0.1), Bubalus bubalis 
(UOA_WB_1) reference genomes (available at www. ncbi. gov/ genome), respectively, using Tophat (version2)63. 
Subsequently, �e mapped reads from the BAM �les were counted and assigned to each gene using the HTSeq-
count64. To make an accurate comparison of gene expression between groups, the count values were �rst nor-
malized. �en, di�erentially-expressed genes (DEGs) were screened using  DESeq265 (version 1.28.1) in R, using 
the Bioconductor package with default parameters. In this study, we used library size, size factor normalization 
factors, and group as covariate. �e DESeq2 model internally corrects for library size; therefore, transformed or 
normalized values, such as counts scaled by library size, should not be used as input. �e variance stabilizing 
transformations (VST)66–68 function was used to estimate the sample  di�erences65. �e VST function does not 

Table 4.  Data set ID, species, and number of samples selected for meta-analysis. 1 MFGs = milk fat globules. 
2 Mammary epithelial cells = MECs. 3 Milk Somatic Cells = MSCs.

Accession ID Species Reference

No. of samples

RNA sourceBP P AP

SRP064718 Bos Taurus (Holestian-high milk production) Yang, et al. (2014) 3 3 – MFGs1

SRP125676 Bos Taurus Bhat SA, et al. (2019) 3 2 3 MECs2

SRP065967 Ovis aries Suárez-Vega, A., et al. (2016) 4 4 7 MSCs3

SRP144268 Bubalus bubalis (water bu�alo) Arora R., et al. (2019) 4 4 4 Milk

SRP153744 Bubalus bubalis (Murrah bu�aloes) Deng T., et al. (2019) 2 2 4 Biopsy

http://www.ncbi.gov/genome
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remove variation that can be associated with batch or other covariates. So, we used the “removeBatchE�ect” 
function for remove batch  variations65. Since it is not necessary to re-estimate the dispersion values, we used the 
blind = False option. �e library size and other normalization factors have been normalized through this trans-
formation. �e samples belong each study were normalized together, means each dataset normalized separately.

�e PCA plot for before and a�er normalization modes are presented in the Supplementary Table S2. �e 
cuto� for di�erential expression was set at a fold change ≥|2| along with a corrected p value of ≤ 0.0569.

Since we used the gene lists for weighted co-express analysis using WGCNA packages which is designed for 
clustering genes based on their expression pro�les. So, we �lter genes which has a counts less than 10 in more 
than 90% of samples because these low expressed genes tend to re�ect noise and correlations based on counts 
that are mostly zero aren’t really meaningful.

Meta‑analysis. In order to identify key genes in the lactation process, a meta-analysis was performed for the 
three stages of the lactation process. As data originally came from three di�erent species, to check the e�ects of 
heterogeneous data sources on DEGs, ten attribute weighting algorithms were applied and the results showed the 
type of organism had no or little e�ect on the selected gene  list4. First, BLAST pipeline was employed to identify 
the orthologous across three  species70. �en, p values of di�erentially expressed genes in each dataset were cal-
culated. Finally, p values were combined using the Fisher method, which was implemented in the metaRNA-Seq 
bioconductor  package71. �e combination of individual p values into one statistical test is de�ned as:

x2 = −2

S∑

a=1

ln(pgs)

Figure 8.  Flowchart of the performed meta-analysis and WGCNA analysis of the lactation process using the 
RNA-Seq datasets.
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where pi indicates the individual p value obtained from the gene, g  signi�es the experiment, and S is the total 
number of experiments. Based on the null hypothesis, the distribution of test statistic is x2 with 2 degrees of 
freedom. Based on Table 1, we de�ned three stages of lactation (i.e., BF, P, and AP); therefore, three meta-analysis 
comparisons were performed as BP vs. P, BP vs. AP, and P vs. AP.

Co‑expression network construction. Meta-genes in each comparison (i.e., BP vs. P, BP vs. AP, and P 
vs. AP) were determined using the direct merging approach as described in a previous  study72. �en, expres-
sion values of meta-genes were normalized and subjected to the WGCNA, using the Bioconductor R package 
(version 3.5.1)20, for weighted co-expression network construction. In summary, the similarity matrix between 
each pair of genes across all samples was calculated based on its Pearson’s correlation value. �en, the similarity 
matrix was transformed into an adjacency matrix. Subsequently, the topological overlap matrix (TOM) and the 
corresponding dissimilarity (1-TOM) value were computed. Finally, a dynamic tree cut (DTC) algorithm was 
employed to detect gene co-expression modules. �e modules were constructed with a cut height of 0.975, and 
a minimum module size of 30 genes.

Protein–protein interaction (PPI) network of the identi�ed modules was constructed based on the STRING 
database (https:// string- db. org/)73 as prescribed  by74. To visualize the constructed networks, the Cytoscape so�-
ware (version 3.7.2)75 was used.

Gene ontology analysis of significant modules. To interpret the biological signi�cance of the DEGs, 
enrichment analysis was performed based on Gene Ontology and KEGG  pathways24. ClueGO was used to illus-
trate overrepresented Gene Ontology (GO). ClueGO is a Cytoscape plug-in that visualizes the non-redundant 
biological terms for large numbers of genes, and integrates the GO terms to create a GO/pathway  network76.

Identification and validation of hub genes. Hub genes, de�ned as highly interconnected nodes 
in each module, are considered as functionally-important  genes77. To identify the hub genes, the moduleEi-
gengenes function was used for calculating the modules’ eigengenes, considered as the principal component of 
each module. Each network has several properties, including intramolecular connectivity  (Kwithin), total connec-
tivity  (Ktotal), and module membership (ME), which can be used for the identi�cation of genes with a high degree 
of connectivity within a module (i.e., hub genes)78. It is suggested that the hub genes may have a signi�cant 
biological function within their  module78.

In this study, the connectivity scores within the modules were calculated using between-centrality indices. 
�e Cytoscape so�ware (version 3.7.2)75 was used to visualize signi�cant modules, and the hub genes in each 
corresponding module.

In order to validate and evaluate the hub genes’ e�ciency for distinguishing di�erent stages of lactation, the 
identi�ed meta-genes with their corresponding expression values were subjected to feature (i.e., gene) selection 
based on ten weighting algorithms, i.e., PCA, Uncertainty, Relief, Chi Squared, Gini Index, Deviation, Rule, Gain 
Ratio, Information Gain, and Support-Vector Machines (SVM). Meta-genes with weighting values higher than 
0.7 were selected for the construction of the Decision Tree (DT). �e DTs were constructed using Information 
Gain, Information Gain ratio, Gini index, and Accuracy criteria along with the leave-one-out cross-validation 
(LOOCV) method. In this procedure, the initial dataset was split into a training set and a testing set. One sample 
from the initial dataset is consecutively discarded for the testing set, while the others remain for the  training25,79.

�e PRISMA checklist is included as Supplementary Table S3.

Conclusions
In this study, we integrated a meta-analysis with the gene co-expression network analysis on RNA-Seq data to 
identify the key genes involved in the Before Peak (BP), Peak (P), and A�er Peak (AP) stages of the lactation 
process. �e �ndings of this study highlighted the e�ciency of the applied approaches for the identi�cation of key 
genes and major pathways, involved in the lactation process. Enrichment analysis of the identi�ed meta-genes 
highlighted the contribution of fat metabolism, cell di�erentiation, cell proliferation, milk protein production, 
and immune competency to the lactation process. Interestingly, all the above-mentioned functions a�ect milk 
quality and production. Furthermore, the �ndings of the current study support the notion that the WGCNA in 
combination with meta-analysis can provide an opportunity to obtain a better resolution analysis, which can 
better predict the most important functional genes that might provide a more robust bio-signature for phenotypic 
traits, thereby possibly providing more promising biomarker candidates for future studies.
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