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Abstract Systems-oriented genetic approaches that

incorporate gene expression and genotype data are valuable

in the quest for genetic regulatory loci underlying complex

traits. Gene coexpression network analysis lends itself to

identification of entire groups of differentially regulated

genes—a highly relevant endeavor in finding the underpin-

nings of complex traits that are, by definition, polygenic in

nature. Here we describe one such approach based on liver

gene expression and genotype data from an F2 mouse inter-

cross utilizing weighted gene coexpression network analysis

(WGCNA) of gene expression data to identify physiologi-

cally relevant modules. We describe two strategies: single-

network analysis and differential network analysis. Single-

network analysis reveals the presence of a physiologically

interesting module that can be found in two distinct mouse

crosses. Module quantitative trait loci (mQTLs) that perturb

this module were discovered. In addition, we report a list of

genetic drivers for this module. Differential network analysis

reveals differences in connectivity and module structure

between two networks based on the liver expression data of

lean and obese mice. Functional annotation of these genes

suggests a biological pathway involving epidermal growth

factor (EGF). Our results demonstrate the utility of WGCNA

in identifying genetic drivers and in finding genetic pathways

represented by gene modules. These examples provide evi-

dence that integration of network properties may well help

chart the path across the gene–trait chasm.

Introduction

While traditional meiotic mapping methods such as linkage

analysis and allelic association studies have been fruitful in

identifying genetic targets responsible for Mendelian traits,

these methods have been less successful in the identification

of pathways and genes underlying complex traits. Integra-

tion of gene expression, genetic marker, and phenotype data

via genetical genomics strategies is increasingly used in

complex disease research (Bystrykh et al. 2005; Chen et al.
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2004; Chesler et al. 2005; Hubner et al. 2005; Mahr et al.

2006; Nishimura et al. 2005; Schadt et al. 2003).

Closely related to ‘‘genetical genomics’’ are ‘‘systems

genetics’’ approaches that emphasize network methods to

describe the relationship between the transcriptome, physi-

ologic traits, and genetic markers (Drake et al. 2006;

Kadarmideen et al. 2006; Schadt and Lum 2006). Here we

describe a particular incarnation of a systems genetics

approach: integrated weighted gene coexpression network

analysis (WGCNA) (Zhang and Horvath 2005; Horvath et al.

2006). By focusing on modules rather than on individual

gene expressions, WGCNA greatly alleviates the multiple-

testing problem inherent in microarray data analysis. Instead

of relating thousands of genes to the physiologic trait, it

focuses on the relationship between a few (here 12) modules

and the trait. Because modules may correspond to biological

pathways, focusing the analysis on module eigengenes (and

equivalently intramodular hub genes) amounts to a biologi-

cally motivated data reduction scheme. WGCNA starts from

the level of thousands of genes, identifies clinically inter-

esting gene modules, and finally screens for suitable targets

by requiring module membership (high intramodular con-

nectivity) and other application-dependent criteria such as

gene ontology or associations with clinical trait-related

quantitative trait loci. Genetic marker data allow one to

identify the chromosomal locations (referred to as module

quantitative trait loci, mQTLs) that influence the module

expression profiles. Genetic marker data also allow one to

prioritize genes inside trait-related modules. In particular, if

a genetic marker is known to be associated with the module

expressions, using it to screen for gene expressions that

correlate with the SNP allows one to identify upstream

drivers of the module expressions. The underlying assump-

tion in such an analysis is that functionally related genes and/

or genetic pathways are regulated by common genetic driv-

ers. We have applied this approach to identify mQTLs that

control the expression profiles of a body weight–related

module in an F2 population of mice (Ghazalpour et al. 2006).

Here we extend these findings to another mouse cross. We

also demonstrate the utility of WGCNA in relating distinct

subgroups of a population via differential network analysis.

Materials and methods

The weighted gene coexpression network terminology is

reviewed in Table 1 and in the Supplementary Material,

Appendix A.

Data description

We illustrate our methods using data from previously

studied F2 mouse crosses. The first F2 data set (B · H

cross) was obtained from liver tissue of 135 female mice

derived from the F2 intercross between inbred strains C3H/

HeJ and C57BL/6J (Ghazalpour et al. 2006; Wang et al.

2006). The second F2 (B · D) intercross data included

liver tissue of 113 F2 mice derived from a cross of two

standard inbred strains, C57BL/6J and DBA/2J (Ghazal-

pour et al. 2006; Schadt et al. 2003). Body weight and

related physiologic (‘‘clinical’’) traits were measured in

both sets of mice. We note that B · H and B · D mice

differ in some respects. B · H mice are ApoE null (ApoE

�/�) and thus hyperlipidemic, whereas B · D mice are

wild type (ApoE +/+). B · H mice were fed a high-fat diet

and B · D mice were fed a high-fat, high-cholesterol

atherogenic diet. Also, B · H mice were sacrificed at an

earlier age (24 weeks) than were the B · D mice (16

months).

Coexpression network analysis strategies

In the following, we present two distinct network analysis

approaches: single-network analysis and differential net-

work analysis. The two approaches answer different

questions. The single-network analysis defines modules

that can then be tested for validity with other data sets.

Single-network analysis aims at identifying (a) pathways

(modules) and (b) their key drivers (e.g., hub genes) that

are present in a given data set. For example, we use all

mice of a given F2 intercross to identify trait-related

modules and mQTLs.

The second strategy, differential network analysis, aims

to uncover differences in the modules and connectivity

between different data sets (e.g., males versus females).

Here we use body weight to arrive at two distinct data

sets: lean and obese mice. Each data set is then used to

construct a network. Next, the networks are contrasted to

find (1) nonpreserved modules, (2) differentially expres-

sed genes, and (3) differentially connected genes.

Traditionally, a main goal of studying gene expression

data is to relate differences in gene expression profiles to

phenotypic differences across different conditions (e.g.,

different groups of mice). Viewing individual genes in

isolation and analysis of differential expression is a well-

established technique that has already yielded many

important insights. On the other hand, differential analysis

of network quantities (i.e., quantities describing the rela-

tionships between the genes such as intramodular

connectivity) is neither as developed nor as widely used,

although it has already led to some interesting results. For

example, differential analysis of intramodular connectivity

was used to identify key differences in expression net-

works of human and chimpanzee brains (Oldham et al.

2006).
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Single weighted gene coexpression network analysis

In the case of single-network analysis, one uses a single

network for modeling the relationship between transcrip-

tome, clinical traits, and genetic marker data. In the

following, we describe a typical single-network analysis

for finding body weight–related modules and genes. While

a single network is the focus, it does not imply that only a

single data set is used. Instead, appropriately similar

multiple data sets can be used to validate the robustness of

module definition and connectivity.

In the following, we provide an overview of single-

network analysis strategy, which is depicted in Fig. 1: (1)

A weighted gene coexpression network is constructed from

genome-wide transcription data. (2) Modules are identified

and module centrality measures (intramodular connectiv-

ity) are calculated. (3) Network modules are analyzed for

biological significance. (4) Genetic loci driving function-

ally relevant modules within the network are identified. (5)

Trait-related mQTLs are used to prioritize genes within

physiologically significant modules.

Differential weighted gene coexpression network

analysis

We describe another application of WGCNA, differential

network analysis, which may be useful in identifying gene

pathways distinguishing phenotypically distinct groups of

samples. In our example, we identified the 30 mice at both

extremes of the weight spectrum in the B · H data and

constructed the first network using the 30 leanest mice and

the second network using the 30 heaviest mice. For the ith

gene, we denote by k1(i) and k2(i) the whole-network

connectivity in networks 1 and 2, respectively. To facilitate

the comparison between the connectivity measures of each

network, we divide each gene connectivity by the maxi-

mum network connectivity, i.e.,

K1ðiÞ ¼
k1ðiÞ

maxðk1Þ
and K2ðiÞ ¼

k2ðiÞ
maxðk2Þ

:

Next we define a measure of differential connectivity as

DiffK(i) = K1(i) – K2(i), but other measures of differential

connectivity could also be considered.

Table 1 Short glossary of network concepts

Term Definition

Coexpression network We define coexpression networks as undirected, weighted gene networks. The nodes of such a network

correspond to gene expressions, and edges between genes are determined by the pairwise Pearson

correlations between gene expressions. By raising the absolute value of the Pearson correlation to a

power b � 1 (soft thresholding), the weighted gene coexpression network construction emphasizes large

correlations at the expense of low correlations. Specifically, aij = |cor(xi, xj)|
b represents the adjacency.

Module Modules are clusters of highly interconnected genes. In coexpression networks, modules correspond to

clusters of highly correlated gene expressions.

Connectivity For each gene, the connectivity (also known as degree) is defined as the sum of connection strengths with

the other network genes: ki =
P

u=i aiu. In coexpression networks, the connectivity measures how correlated

a gene is with all other network genes.

Intramodular connectivity

(kIN)

Intramodular connectivity measures how connected, or coexpressed, a given gene is with respect to the

genes of a particular module. The intramodular connectivity may be interpreted as a measure of module

membership.

Module eigengene The module eigengene corresponds to the first principal component of a given module. It can be considered

the most representative gene expression in a module.

Module eigengene-based

connectivity (kME)

The module eigengene-based intramodular connectivity measure kME roughly approximates the standard

intramodular connectivity kIN. This measure is determined by correlating the expression profile of a gene i
with the module eigengene of its resident module: kMEi = |cor(xi, ME)|.

Hub gene This loosely defined term is used as an abbreviation of ‘‘highly connected gene.’’ By definition, genes inside

coexpression modules tend to have high network connectivity.

Gene significance Abstractly speaking, the higher this value, the more significant a gene is. In our application, the gene

significance measures how correlated a gene expression is with a clinical trait. Mouse body weight can be

used to define a physiologic trait–based gene significance measure. Similarly, SNPs can be used to define

SNP-based gene significance measures.

Module significance Module significance is determined as the average of gene significance measures for all genes in a given

module. This measure is highly related to the correlation between module eigengene and the trait.

mQTLs Module quantitative trait loci are chromosomal locations (e.g., SNP markers) that correlate with the module

expression profiles. mQTLs can be defined as hotspots of the expression quantitative trait loci that are

associated with a particular module.
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Software availability

R software tutorials and the data for WGCNA can be found at

http://www.genetics.ucla.edu/labs/horvath/Coexpression

Network/DifferentialNetworkAnalysis/.

Results

Single network analysis results

A single weighted gene coexpression network was con-

structed using expression data from livers of 135 female

mice of the B · H cross, utilizing the 3421 most connected

and varying transcripts from the approximately 23,000

transcripts present on the arrays (Ghazalpour et al. 2006).

Using hierarchical clustering, we obtained 12 modules

(each designated by a color). Gray denotes genes outside of

modules. In this network, the Blue module had the highest

module significance score for the physiologic trait of

mouse weight (g) (module significance = 0.395,

p = 7.7 · 10�5), and was also highly significant for

abdominal fat pad mass (g) (module significance = 0.323,

p = 0.009). These p values remain significant after Bon-

ferroni correction adjusting for 12 modules. We mention

that total mass (g) of other fat depots is also significant

(module significance = 0.309, p = 0.02), but does not

remain significant after Bonferroni correction.

To study the preservation of modules across different F2

intercrosses, we used the B · H module color assignment

to cluster the corresponding network in the B · D mouse

cross data set (Fig. 2a). A weighted gene coexpression

network analysis was constructed using 1953 genes in the

B · D data set that have corresponding probes in the B ·
H data set. We observe that several modules (Red, Blue,

Green-yellow, Turquoise, and Green modules being nota-

ble examples) are roughly preserved between these two

data sets. Figure 2b shows a multidimensional scaling

(MDS) plot of the B · D data colored by B · H modules.

This plot visualizes the pairwise gene dissimilarities by

projecting them into a 3-dimensional Euclidean space.

If, in fact, intramodular connectivity (centrality and

membership to the Blue module) reflects physiologic sig-

nificance, one would expect to see a high correlation

between kME and GSweight for the Blue module genes. As

in Ghazalpour et al. (2006), we find a high correlation

between kME and GSweight in the B · H cross (r = 0.47,

p � 10�20, Fig. 3c). Here we validate this relationship in

the B · D cross (r = 0.57, p � 10�20, Fig. 3d).

Figure 3a shows that intramodular connectivity (kME)

with regard to the Blue module is preserved between the

B · H and the B · D crosses (correlation r = 0.45,

p � 10�20). GSweight was conserved with a Spearman

correlation of 0.19 (p = 1.0 · 10�17, see Fig. 3b). Net-

work-based gene screening uses both GSweight and kME

to find weight-related genes. Note that kME is better pre-

served than GSweight, which suggests that kME may be a

more robust gene-screening variable (see Fig. 3).

A module QTL on chromosome 19

We had previously identified a single nucleotide poly-

morphism (SNP) marker on chromosome 19 (SNP19) that

affected weight and module expression. Table 2 demon-

strates the preservation of correlations between the Blue

module eigengene MEblue, weight, and SNP19 in both

the B · H and the B · D data sets. A relationship was

seen between MEblue and weight in both the B · H data

(r = 0.62, p = 1.3 · 10�15) and in the B · D cross

(r = 0.34, p = 2.1 · 10�4). We note here that while the

p values are not adjusted for multiple comparisons, using

the most conservative correction—the Bonferroni correc-

tion, wherein we multiply the p significance level by the

number of modules—still results in a significant correla-

tion between MEblue and weight in the B · H data. More

explicitly, in correcting the p value, multiplying

p = 1.3 · 10�15 by the number of modules (12) leads to a

still significant p = 1.6 · 10�14. This illustrates the value

of using WGCNA to reduce the number of multiple

comparisons common to microarray analysis. We note

Fig. 1 Overview of weighted gene coexpression network analysis

(single-network analysis)
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that the mQTL on chromosome 19 had a single-point

LOD score of 3.36. While a relatively weaker correlation

between SNP19 (d19mit71) and weight is seen in B · D

data compared with B · H, homozygous animals for the

B6 allele of a different marker on chromosome 19

(d19mit63) have significantly different weight from DBA

homozygotes (in the B · D cross). This result is

consistent with the previous finding that B6 and DBA

homozygotes have significantly different subcutaneous fat

pad mass (a weight-related trait) (Ghazalpour et al. 2005).

It is also possible that the differences in experimental

design such as diet, age of the animals, and the status of

the Apoe gene could account for the weaker correlation

observed in the B · D network.

Fig. 2 a (Top) Average linkage hierarchical clustering dendrogram

of the B · D cross. (Middle) Visualization of the modules in the

B · D network; module colors correspond to branches of the

dendrogram shown above. (Bottom) Visualization of rough module

preservation. Here we color the genes by the colors of the original

B · H (not B · D) cross. The fact that colors stay together suggests

module preservation. b Multidimensional scaling (MDS) plot of

B · D mouse cross data, with coloring by B · H module definitions

Fig. 3 a Scatterplot of kME in

both crosses. kME describes

each eigengene’s connectivity

to the Blue module. The value

for the B · D cross (y axis) is

plotted against the value in the

B · H data set (x axis). b
Scatterplot between GSweight

for all genes in the B · D cross

(y axis) and in the B · H cross

(x axis). Colors depict B · H

module membership. c
Scatterplot between GSweight

(y axis) and kME (x axis) in the

B · H data set in genes that

overlapped with the B · D

cross. d Same as (c), except in

the B · D cross. Spearman

correlation coefficients are

reported above all plots
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Using a body weight–related mQTL to prioritize genes

inside the Blue module

A SNP marker allows one to define a gene significance

measure, GS.SNP, which can be used to prioritize genes

within a module.

For the ith gene, GS.SNP(i) is defined as the absolute

value of the correlation between the ith gene’s expressions

and a given SNP’s additive marker coding value:

GS:SNPðiÞ¼ j corðxðiÞ; SNPj:

Additive marker coding reflects the dosage of a given

allele; alternatively, one could use dominant or recessive

marker coding (see Supplementary Material, Supplementary

Table 2).

Observed GS.SNP values are reported in Supplementary

Fig. 2a for our simulated module example. We explore the

relationship between the GS.SNP values obtained by dif-

ferent marker coding methods in Supplementary Material,

Appendix B, and depict the strong relationship between

GS.SNP and the traditional LOD score in Supplementary

Fig. 3. In short, this figure demonstrates that regardless of

whether additive, dominant, or recessive marker coding is

used, GS.SNP is highly related to the LOD score values.

Systems genetics gene-screening criteria

As described above, we found a SNP marker on chromo-

some 19 that is highly related to body weight and to the

Blue module expressions. To determine which gene

expressions mediate between this mQTL and body weight,

it is natural to rank gene expressions based on their cor-

relations with SNP19 and the clinical trait. This suggests to

screen for genes with high GS.SNP19 and high GSweight.

Furthermore, since the Blue module was found to be

related to body weight, it is natural to rank genes by

membership to the Blue module, i.e., by intramodular

connectivity. Our gene-screening criteria for finding the

genetic drivers of body weight are as follows: (1) high

association with the body weight, i.e., high values of

GSweight; (2) membership and hub status in a trait-related

module, i.e., a high value of kME; and (3) high association

with a body weight–related mQTL, i.e., high values of

GS.SNP. Specifically, we used the 85th percentile of each

screening variable, which resulted in nine genes inside the

Blue module (Table 3). The gene list is quite robust with

respect to the percentile as the reader may explore using

our online R software tutorial. An examination of

their potential relationship to body weight using the

Mouse Genomics Informatics gene ontology database

(http://www.informatics.jax.org/) (Eppig et al. 2005) and

existing literature yields the following: Fsp27 encodes a

pro-apoptotic protein. Nordstrom et al. (2005) found that

Fsp27-null mice are resistant to obesity and diabetes. In

addition, Fsp27 expression is halved in obese humans after

weight loss, and other recent research suggests that Fsp27

regulates lipolysis in white human adipocytes (Nordstrom

et al. 2005). A number of the other genes are related to

basic biological processes that may be altered in the obese

state, which is associated clinically with both the metabolic

syndrome and vascular disease, among other conditions.

Gpld1 (glycosylphosphatidylinositol-specific phospholi-

pase D1) expression in liver is increased with a high-fat

diet in mice, and overexpression is associated with an

increase in fasting and postprandial plasma triglycerides

and a reduction in triglyceride-rich lipoprotein catabolism

(Raikwar et al. 2006). Gene products of F7 and Kng2 are

elements of the hemostatic system and may play roles in

thrombosis and vascular disease (Kaschina et al. 2004;

Reiner et al. 2007; Viles-Gonzalez et al. 2006). Our net-

work-based gene screening method appears to identify

biologically relevant genes, considering the evidence from

primary literature supporting involvement of these genes in

obesity (Fsp27) and/or known obesity-related disorders

Table 2 Studying the preservation of correlations between the B · H and the B · D mouse cross data

Relationship B · H B · D

r p r p

cor(MEblue, weight) 0.62 1.3 · 10�15 0.34 2.1 · 10�4

cor(MEblue, SNP19) 0.19 0.024 0.25 0.0087

cor(weight, SNP19) 0.32 2.1 · 10�4 0.16 0.10

cor(kME, GSweight) 0.51 < 2.2 · 10�16 0.57 < 2.2 · 10�16

MEblue denotes the module eigengene of the Blue module, and weight denotes the mouse body weight. SNP19 denotes the SNP marker

(quantitative trait locus) on chromosome 19 that was significantly correlated with body weight in the B · H cross. While the relationship

between SNP19 and MEblue can be reproduced in the B · D data, there is only a weak correlation between SNP19 and weight in the B · D

cross. The highly preserved and strong correlation between GSweight and kME in both crosses shows that highly connected hub genes inside the

Blue module are correlated with weight
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(diabetes, metabolic syndrome, and vascular disease).

Other genes identified by this method may be novel can-

didates. As such, these results should be considered a

starting point for subsequent experimentation to explore

involvement of these genes in obesity.

Sector plots for identifying differentially expressed and

differentially connected genes

Differential network analysis is concerned with identifying

both differentially connected and differentially expressed

genes. To measure differential gene expression between the

lean and the obese mice, we use the absolute value of the

Student t-test statistic. Plotting DiffK, the difference in

connectivity between lean and obese mice, versus the t-test

statistic value for each gene gives a visual demonstration of

how difference in connectivity relates to a more traditional

t-statistic describing difference in expression between the

two networks.

Figure 4a shows a scatterplot of DiffK vs. the t statistic.

Eight sectors of the plot with high absolute values of DiffK

(> 0.4) and/or t-statistic values (> 1.96) are shown. Hori-

zontal lines depict sector boundaries based on t-statistic

values, and vertical lines depict boundaries based on DiffK.

These eight sectors are marked by numbers in Fig. 4a. To

assign a significance level (p value) to a gene’s DiffK value

or to its membership in a particular sector defined by DiffK

and t statistic, we use a permutation test approach that

randomly permutes the microarray sample labels. The

permutation test contrasts networks built by randomly

partitioning the 60 mice into two groups. We consider the

number of genes inside a given sector (which is defined by

thresholding the t statistic and DiffK as described above) in

determining significance level. Figure 4b demonstrates the

same information except network membership is permuted.

Based on 1000 random permutations, sector membership

was found to be significant for sectors 2, 3, and 6 with

p � 1.0 · 10�3. Membership in sector 5 was significant

with p � 1.0 · 10�2.

Functional enrichment analysis of sector 3 genes

We analyzed 61 sector 3 genes that were both highly con-

nected in network 1 and lowly connected in network 2 for

functional enrichment using the DAVID database (Dennis

et al. 2003). This software, which is free and available for

download at http://www.d.abcc.ncifcrf.gov/home.jsp, cal-

culates the p value for the extent of enrichment of a given

biological pathway/set by performing Fisher’s exact test.

We focused on sector 3 for two reasons. First, sector 3

members had extreme values of DiffK as well as high t-

statistic values. Also, as one can readily see from Fig. 4a, a

high proportion of Yellow module genes were found in this

module, based on network 1 module definitions. These

Yellow module genes were lowly connected in network 2,

and therefore were annotated as Gray module (background)

members in a module assignment scheme based on network

2. This result suggests that in a pathophysiologic state

(mouse obesity), the Yellow module can no longer be

found.

Results for this analysis that were significant at p < 0.05

level are shown in Table 4. These genes were markedly

Table 3 Gene-screening results of the single-network analysis

Gene Chr ID GS.SNP19 GSweighta kMEb

r p r R

F7 8 MMT00078851 0.26 0.0021 0.67 0.85

Kng2 16 MMT00065159 0.24 0.0048 0.66 0.81

Pdir 16 MMT00008463 0.25 0.0032 0.62 0.80

Slc30a2 4 MMT00071411 0.25 0.0032 0.58 0.79

Lrrc39 3 MMT00078732 0.25 0.0032 0.68 0.78

Ang1 14 MMT00064235 0.29 5.5 · 10�4 0.61 0.80

Fsp27 6 MMT00039459 0.31 2.0 · 10�4 0.61 0.75

Gpld1 13 MMT00016835 0.27 0.0014 0.54 0.77

Sh3d4 14 MMT00013759 0.24 0.0048 0.60 0.79

GS.SNP19 = absolute correlation of gene expressions with SNP19 values; GSweight = absolute correlation of gene expressions with weight

kME = Intramodular connectivity values for nine high-priority genes in the Blue module are shown. Gene symbols, chromosome number, and

probe IDs are also shown for each gene
a All p values for GSweight were less than 10�12

b All p values for GSweight were less than 10�12

T.F. Fuller et al.: Weighted gene coexpression network analysis 469

123



enriched for the extracellular region (37.7% of genes

p = 1.8 · 10�4), extracellular space (34.4% of genes p =

5.7 · 10�4), signaling (36.1% of genes p = 5.4 · 10�4), cell

adhesion (16.4% of genes p = 7.7 · 10�4), and glycopro-

teins (34.4% of genes p = 1.6 · 10�3). Furthermore, 12

terms for epidermal growth factor or its related proteins were

recovered in the functional analysis. A few of the notable

results are EGF-like 1 (8.2% of genes p = 8.7 · 10�4), EGF-

like 3 (6.6% of genes p = 1.6 · 10�3), EGF-like 2 (6.6% of

genes p = 6.0 · 10�3), EGF (8.2% of genes p = 0.013), and

EGF_CA (6.6% of genes p = 0.015).

In summary, we find a group of rewired genes identi-

fied by differential connectivity in lean and obese mice.

These genes are highly enriched for extracellular and

cell–cell interactions and notably 12 epidermal growth

factor (EGF) or EGF-related factors. An indirect valida-

tion of the differential network results is provided by a

published article that reports that EGF plays a causal role

in inducing obesity in ovariectomized mice (Kurachi et al.

1993).

Functional enrichment analysis of sector 5 genes

Sector 5 is analagous to sector 3 in that it contains genes with

both extreme differences in connectivity and extreme t-sta-

tistic values. After Bonferroni correction, these genes are

enriched for enzyme inhibitor activity (p = 2.93 · 10�3),

Table 4 Functional enrichment analysis of the results of the differential network analysis

Category Term Gene count % Genes p Value

GOTERM_CC_ALL Extracellular region 23 37.7% 1.8 · 10�4

UP_SEQ_FEATURE Signal peptide 22 36.1% 5.4 · 10�4

GOTERM_BP_ALL Cell adhesion 10 16.4% 7.7 · 10�4

UP_SEQ_FEATURE Domain:EGF-like 1 5 8.2% 8.7 · 10�4

UP_SEQ_FEATURE Glycosylation site:N-linked (GlcNAc...) 21 34.4% 0.0012

UP_SEQ_FEATURE Domain:EGF-like 3 4 6.6% 0.0016

SP_PIR_KEYWORDS Cell adhesion 7 11.5% 0.0017

SP_PIR_KEYWORDS Collagen 5 8.2% 0.0018

UP_SEQ_FEATURE Domain:EGF-like 2 4 6.6% 0.0060

SMART_NAME SM00181:EGF 5 8.2% 0.013

SMART_NAME SM00179:EGF_CA 4 6.6% 0.015

SP_PIR_KEYWORDS egf-like domain 5 8.2% 0.017

INTERPRO_NAME IPR000742:EGF-like, type 3 5 8.2% 0.018

INTERPRO_NAME IPR006210:EGF 5 8.2% 0.021

We studied 61 differentially expressed and differentially connected genes in sector 3. Note the enrichment for EGF-related themes. Additional

details including corrected p values can be found in Supplementary Material, Appendix C

Fig. 4 Sector plots of

differential network analysis. In

(a) and (b), difference in

connectivity (DiffK) is plotted

on the x axis, and t-test statistic

values are plotted on the y axis.

Horizontal lines indicate a

difference in connectivity of

�0.4 and 0.4, whereas vertical

lines depict a t-statistic value of

�1.96 or 1.96. a Observed

DiffK and t-statistic values:

Genes are colored based on

network 1 module definitions.

Numbers indicate sectors 1–8.

b Corresponding sector plot for

a permuted network where array

samples in data sets 1 and 2

were randomly permuted
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protease inhibitor activity (p = 6.00 · 10�3), endopeptidase

activity (p = 6.00 · 10�3), dephosphorylation (p =

0.0122), protein amino acid dephosphorylation

(p = 0.0122), and serine-type endopeptidase inhibitor

activity (p = 0.0417) (Supplementary Table 6). Two genes

were enriched for all significant categories: Itih1 and Itih3.

These two genes are located near a QTL marker for hyper-

insulinemia (D14Mit52) identified in C57Bl/6, 129S6/

SvEvTac, and (B6 · 129) F2 intercross mice (Almind and

Kahn 2004). Itih3 was independently determined to be a gene

candidate for obesity-related traits based on differential

expression in murine hypothalamus (Bischof and Wevrick

2005). Two serine protease inhibitors, Serpina3n and Serp-

ina10, were enriched for the categories of enzyme inhibitor,

protease inhibitor, and endopeptidase inhibitor. In humans,

Serpina10 is also known as Protein Z-dependent protease

inhibitor (ZPI). This serpin inhibits activated coagulation

factors X and XI; ZPI deficiencies have been found to be

associated with venous thrombosis (Water et al. 2004). We

note that obesity is a strong independent risk factor for

venous thrombosis (Abdollahi et al. 2003; Goldhaber et al.

1997) and that accordingly PZI may be a link between

obesity and increased risk of venous thrombotic events.

Results from functional enrichment analysis for all

other sectors are described in Supplementary Material,

Appendix C and Supplementary Tables 3, 4, 5, 7, and 8

(Supplementary Table 3: enrichment of biological path-

ways/sets for Blue module genes intersecting B · H and

B · D data sets; Supplementary Table 4: enrichment of

biological pathways/sets for sector 2 genes; Supplemen-

tary Table 5: enrichment of biological pathways/sets for

all sector 3 genes; Supplementary Table 7: enrichment of

biological pathways/sets for sector 6 genes; Supplemen-

tary Table 8: enrichment of biological pathways/sets for

sector 8 genes).

Discussion

Integrating weighted gene coexpression network analysis

with genotype data holds great promise for elucidating the

molecular and genetic basis of complex diseases. Since

WGCNA focuses on coexpression modules (as opposed to

individual gene expressions), it will be useful only if trait-

related modules can be detected in the gene expression

data. In our mouse genetics application, we provide evi-

dence for a body weight-related module that can be found

in two F2 mouse crosses.

We show that several modules identified in the F2 B · H

mouse intercross are roughly preserved in an independent

B · D mouse cross. In particular, the weight-related

module found in the F2 mouse intercross is recovered in the

second mouse cross. Highly connected hub genes within

this module are found to have high correlation with weight

(GSweight). We also find that module-based measures tend

to be stable and robust across independent data sets. This is

even more striking given the difference between the B · H

and B · D mouse populations. Hub gene status is also

roughly preserved, validating the importance and robust-

ness of intramodular connectivity. These validation

successes provide evidence for the utility and robustness of

network-based methods.

Central to WGCNA is the concept of intramodular

connectivity, which can be considered a measure of module

membership. In coexpression networks, intramodular hub

genes can be considered the most central genes inside the

module. Because the expression profiles of intramodular

hub genes inside an interesting module are highly corre-

lated, they are statistically equivalent. This does not imply

that such genes have the same functional significance.

Gene ontology may reveal that they differ in terms of

biological plausibility or clinical utility. In many applica-

tions, the list of module hub genes may be further

prioritized based on (1) biological plausibility based on

external gene (ontology) information, (2) availability of

protein biomarkers for further validation, (3) availability of

suitable mouse models for further validation, and/or (4)

druggability, i.e., the opportunity for therapeutic

intervention.

We demonstrate that both single-network and differen-

tial network analyses may be useful for finding body

weight-related genes. Single-network analysis describes

the module structure and topological properties of a single

data set. In single-network analysis, all samples, irrespec-

tive of their clinical trait, are used for network and module

construction. In contrast, differential network analysis

compares two different networks. Differential network

analysis aims to identify genes that are both differentially

expressed and differentially connected. Since module

genes tend to be highly connected in coexpression net-

works, screening for differentially connected genes is

related to studying the preservation of modules between the

two networks. We have shown that genes that are differ-

entially connected may or may not be differentially

expressed. Changes in connectivity may correspond to

large-scale ‘‘rewiring’’ in response to environmental

changes and physiologic perturbations (Luscombe et al.

2004).

The availability of genetic markers greatly enhances the

kind of questions that can be addressed by WGCNA.

Genetic marker data provide valuable information for pri-

oritizing gene expressions inside a module. The resulting

systems genetics gene-screening strategy goes beyond

drafting lists of differentially expressed genes or finding

chromosomal locations that seem to cosegregate with a

trait.
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