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Abstract. A weighted version of the geometric mean of k (≥ 3) positive invertible

operators is given. For operators A1, ..., Ak and for nonnegative numbers α1, ..., αk such

that
∑k

i=1 αi = 1, we define weighted geometric means of two types, the first type by a

direct construction through symmetrization procedure, and the second type by an indirect

construction through the non-weighted (or uniformly weighted) geometric mean. Both of

them reduce to Aα1
1 · · ·Aαk

k if A1, ..., Ak commute with each other. The first type does not

have the property of permutation invariance, but satisfies a weaker one with respect to

permutation invariance. The second type has the property of permutation invariance. We

also show a reverse inequality for the arithmetic-geometric mean inequality of the weighted

version.

1. Introduction

In [14] and [9], a new definition of the geometric mean of k (≥ 3) (bounded
linear) positive invertible operators (or positive definite matrices) was introduced,
borrowing the technique due to Ando-Li-Mathias [2]. In succession of those results,
we give a weighted version of geometric means of k positive invertible operators,
which extends the weighted mean

A#αB = A
1
2 (A−

1
2 BA−

1
2 )αA

1
2

of two positive invertible operators A and B for α ∈ [0, 1].
Let Ω be the positive cone of all (positive invertible) operators acting on a

Hilbert space H or all n×n positive definite matrices, that is, operators for dimH =
n. We assume that Ω is provided with the Thompson metric ( [3], [4]) defined by

d(A,B) =‖ log A−1/2BA−1/2 ‖ for A, B ∈ Ω.
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Then Ω is complete with respect to the metric and the corresponding metric topol-
ogy agrees with the relative norm topology. As the most fundamental inequality
related to this metric, between weighted geometric means of two operators, the
following one holds ([3]):

d(A1#αA2, B1#αB2) ≤ (1− α)d(A1, B1) + αd(A2, B2)
for A1, A2, B1, B2 ∈ Ω and α ∈ (0, 1).

(1.1)

A definition of a weighted geometric mean G of k operators A1, ..., Ak ∈ Ω cor-
responding to a k-weight w = (α1, ..., αk), that is, an ordered k-tuple of nonnegative

numbers αi with
k∑

i=1

αi = 1 is (cf. [15], [1], [5])

G = g(w; A1, ..., Ak) = A1#x1 · · ·#xk−1Ak

:=

k−2︷ ︸︸ ︷
(· · · ( A1#x1A2)#x2 · · · )#xk−2Ak−1)#xk−1Ak,

(1.2)

where xi =
αi+1∑i+1
j=1 αj

(
0
0

= 0
)

for i = 1, ..., k − 1. Then, of course, G reduces to

Aα1
1 · · ·Aαk

k if all Ai commute with each other. But G does not have always the
property of permutation-invariance (PW3, stated below), one of desirable properties
as an operator mean. So we have to ask another reasonable definition of a weighted
geometric mean. In [14], [9], a usual (non-weighted) geometric mean of k operators
was defined such that the mean has ten properties P1-P10 postulated by Ando-
Li-Mathias [2]. Let G = G(w; A1, ..., Ak) = G(α1, ..., αk;A1, ..., Ak) be a weighted
geometric mean of k operators A1, ..., Ak for any weight w = (α1, ..., αk). Then,
parallel to the properties P1-P10 (in [2]), we want to request the following ten
properties for G to be a reasonable weighted mean:

PW1 Consistency with scalars. If all Ai commute then G = Aα1
1 · · ·Aαk

k .

PW2 Joint homogeneity. G(w; a1A1, ..., akAk) = aα1
1 · · · aαk

k G.

PW3 Permutation-invariance. For any permutation π ∈ S(k), the symmetric
group of k letters

G = G(π(w;A1, ..., Ak)) = G(π(w); π(A1, ..., Ak)).

PW4 Monotonicity. The map (A1, ..., Ak) 7→ G(w; A1, A2, . . . , Ak) is monotone,
i.e., if Ai ≥ Bi for i = 1, . . . , k, then G(w; A1, A2, . . . , Ak) ≥ G(w;B1, B2, . . . , Bk).

PW5 Continuity from above. If {A(n)
1 }, {A(n)

2 }, . . . , {A(n)
k } are monotone

decreasing sequences converging to A1, A2, . . . , Ak, respectively, then
{G(w; A(n)

1 , A
(n)
2 , . . . , A

(n)
k )} converges to G(w; A1, A2, . . . , Ak).
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PW6 Congruence invariance. For any invertible operator S,

G(w; S∗A1S, S∗A2S, . . . , S∗AkS) = S∗G(w;A1, A2, . . . , Ak)S.

PW7 Joint concavity. The map (A1, A2, . . . , Ak) 7→ G(w;A1, A2, . . . , Ak) is
jointly concave: G(w; λA1 + (1− λ)A′1, . . . , λAk + (1− λ)A′k)

≥ λG(w;A1, A2, . . . , Ak) + (1− λ)G(w;A′1, A
′
2, . . . , A

′
k) (λ ∈ [0, 1]).

PW8 Self-duality. G(w;A1, A2, . . . , Ak)∗ = G(w; A1, A2, . . . , Ak). The dual
G(w;A1, A2, . . . , Ak)∗ is defined by

G(w;A1, A2, . . . , Ak)∗ = G(w; A−1
1 , A−1

2 , . . . , A−1
k )−1.

PW9 (In case A1, A2, . . . , Ak are matrices.) Determinant identity.

detG(w;A1, A2, . . . , Ak) = (det A1)α1 · · · (det Ak)αk .

PW10 The arithmetic-geometric-harmonic mean inequaility.

k∑

i=1

αiAi ≥ G ≥
( k∑

i=1

αiA
−1
i

)−1

.

In this paper, we define weighted geometric means of k operators of two types,
the first one directly obtained by using symmetrization procedure, and the second
one indirectly by using non-weighted geometric means. The second type of the
weighted geometric means has all the ten properties above, but the first type does
not have PW3, though it satisfies a weaker condition related to PW3. Kantorovich
type reverse inequality for weighted geometric means are also given.

2. Weighted geometric means of k operators by direct construction; first
type

A sequence {An} of operators converges to A with respect to strong operator
topology (denoted by An →s A) if ‖ (An − A)x ‖→ 0 as n → ∞ for all vectors
x (∈ H). A norm-convergent sequence is also convergent with respect to strong
operator topology, so that a sequence in Ω is convergent with respect to strong
operator topology if it is convergent with respect to the Thompson metric.

Now we want to prepare a useful lemma related to strong convergence of op-
erators. Recall that we, in (1.2), defined a successive composition of two-operator
weighted geometric means:

g(α1, ..., αk;A1, ..., Ak) = A1#x1 · · ·#xk−1Ak

(
xi =

αi+1∑i+1
j=1 αj

)
.

Related to this mean we have:
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Lemma 2.1. Let {X(r)
1 }, ..., {X(r)

k } be arbitrary k (≥ 2) sequences of positive
operators (∈ Ω) such that 0 < mI ≤ X

(r)
1 , ..., X

(r)
k ≤ MI for some scalars m and

M , and let (α1, ..., αk) be a k-weight of positive numbers. If

δ(r) :=
k∑

i=1

αiX
(r)
i − g(α1, ..., αk; X(r)

1 , ..., X
(r)
k ) →s 0 as r →∞,

then X
(r)
i −X

(r)
j →s 0 for i, j (i 6= j) = 1, ..., k.

Proof. To show the lemma by induction, first consider for k = 2. Let Yr = X
(r)
1 , Zr =

X
(r)
2 , and 1− h = α1, h = α2. Note that for any t ≥ 0,

(2.1) (1− h) + ht− th ≥ min{h, 1− h}(1− t
1
2 )2.

In this inequality, replacing t by Y
− 1

2
r ZrY

− 1
2

r and multiplying Y
1
2

r from both sides,
we can obtain

δ(r) = (1− h)Yr + hZr − Yr#hZr ≥ min{h, 1− h}Y
1
2

r {I − (Y − 1
2

r ZrY
− 1

2
r )

1
2 }2Y

1
2

r .

Hence, if δ(r) →s 0 then, putting Wr = (Y − 1
2

r ZrY
− 1

2
r )

1
2 , we have Y

1
2

r (I −
Wr)2Y

1
2

r →s 0, so that also (I − Wr)Y
1
2

r →s 0. Hence we have, using bounded-
ness assumption,

Yr − Zr = Y
1
2

r (I −W 2
r )Y

1
2

r = Y
1
2

r (I + Wr)(I −Wr)Y
1
2

r →s 0.

Now we assume that the lemma is true for (k− 1) (k ≥ 3), and further assume that

(2.2) δ(r) :=
k∑

i=1

αiX
(r)
i − g(α1, ..., αk; X(r)

1 , ..., X
(r)
k )) →s 0 as r →∞.

Then, take a basic inequality:

g(α1, ..., αk;X(r)
1 , ..., X

(r)
k )≤(1−αk)g(α′1, ..., α

′
k−1; X

(r)
1 , ..., X

(r)
k−1)+αkX

(r)
k ,

α′j =
aj

1− αk
(j = 1, ..., k − 1).

(2.3)

From (2.2) and (2.3),

δ(r) ≥
k−1∑

i=1

αiX
(r)
i − (1− αk)g(α′1, ..., α

′
k−1; X

(r)
1 , ..., X

(r)
k−1)

= (1− αk) ·
{

k−1∑

i=1

α′iX
(r)
i − g(α′1, ..., α

′
k−1; X

(r)
1 , ..., X

(r)
k−1)

}
(≥ 0)
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and δ(r) →s 0, so that by the assumption on (k − 1), we obtain that for all i, j ≤
k − 1, i 6= j, X

(r)
i −X

(r)
j →s 0. Further, note that

ε(r) :=(1− αk)X(r)
1 + αkX

(r)
k −X

(r)
1 #αk

X
(r)
k

=
k−1∑

i=1

αi ·X(r)
1 + αkX

(r)
k − g(α1, ..., αk;

k−1︷ ︸︸ ︷
X

(r)
1 , ..., X

(r)
1 , X

(r)
k )

=
k∑

i=1

αiX
(r)
i − g(α1, ..., αk;X(r)

1 , ..., X
(r)
k )

+
k−1∑

i=1

αi(X
(r)
1 −X

(r)
i )

+g(α1, ..., αk; X(r)
1 , ..., X

(r)
k )− g(α1, ..., αk;

k−1︷ ︸︸ ︷
X

(r)
1 , ..., X

(r)
1 , X

(r)
k ).





Hence ε(r) →s 0, because we have, for the first term of the third identity in above,

k∑

i=1

αiX
(r)
i − g(α1, ..., αk; X(r)

1 , ..., X
(r)
k ) = δ(r) →s 0

by assumption, for the second one
∑k−1

i=1 αi(X
(r)
1 −X

(r)
i ) →s 0 clearly, and for the

last one, by continuity of g(α1, ..., αk; X1, ..., Xk) with respect to (X1, ..., Xk), it
tends to 0, or, by using (1.1) successively,

d


g(α1, ..., αk; X(r)

1 , ..., X
(r)
k ), g(α1, ..., αk;

k−1︷ ︸︸ ︷
X

(r)
1 , ..., X

(r)
1 , X

(r)
k )




≤ α2d(X(r)
2 , X

(r)
1 ) + · · ·+ αk−1d(X(r)

k−1, X
(r)
1 ) →s 0.

Hence by the lemma for the case k = 2, we have X
(r)
1 −X

(r)
k →s 0, which implies

the desired conclusion. 2

Theorem 2.2. Let A1, . . . , Ak be k operators in Ω. For a k-weight w = (α1, . . . , αk)
of positive numbers and a subset S = {π1, . . . , πk} in S(k), we define k sequences
{A(r)

1 }, . . . , {A(r)
k } as follows:

(2.4)





A
(1)
i = Ai i = 1, . . . , k, and for r ≥ 1, i = 1, . . . , k,

A
(r+1)
i = g(πi(w;A1, . . . , Ak)) = g(πi(α1, . . . , αk ; A1, . . . , Ak))

(= g(απi(1), . . . , απi(k) ; Aπi(1), . . . , Aπi(k))).
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Then the above k sequences converge with respect to strong operator topology and
have a common limit (denoted by)

GS = GS(w; A1, . . . , Ak) = GS(α1, . . . , αk ; A1, . . . , Ak).

The constructed mean GS has the following properties:

(i) GS has the properties PW1-PW10 except PW3.

(ii) If σ ∈ S satisfies

(2.5) (σπ1, . . . , σπk) = (πσ(1), . . . , πσ(k)),

then GS is permutation-invariant with respect to σ.

Proof. First assume that mI ≤ Ai ≤ MI (i = 1, ..., k). Then easily we see mI ≤
A

(r)
i ≤ MI. Note that

A
(r+1)
i ≤ (1− απi(k))g(α′πi(1)

, . . . , α′πi(k−1) ;A(r)
πi(1)

, . . . , A
(r)
πi(k−1)) + απi(k)A

(r)
πi(k)

≤ α1A
(r)
1 + · · ·+ αkA

(r)
k (i = 1, ...., k).

Here α′πi(j)
=

απi(j)

1− απi(k)
. If we write

C
(r)
i = g(α′πi(1)

, . . . , α′πi(k−1) ; A(r)
πi(1)

, . . . , A
(r)
πi(k−1)) and D(s) =

k∑

j=1

αjA
(s)
j ,

then from the above inequalities

D(r+1) = α1A
(r+1)
1 + · · ·+ αkA

(r+1)
k

≤α1

{
(1−απ1(k))C

(r)
1 +απ1(k)A

(r)
π1(k)

}
+· · ·+αk

{
(1−απk(k))C

(r)
k +απk(k)A

(r)
πk(k)

}

≤α1D
(r) + · · ·+ αkD(r) = D(r).

Hence {D(r)} is a decreasing sequence, so that it converges with respect to strong
operator topology. (We shall denote the limit by GS .) If we put

E(r) =α1

{
(1−απ1(k))C

(r)
1 +απ1(k)A

(r)
π1(k)

}
+· · ·+αk

{
(1−απk(k))C

(r)
k +απk(k)A

(r)
πk(k)

}
,

then D(r) − E(r) →s 0 as r →∞, and

D(r) − E(r) =
k∑

i=1

αiI
(r)
i ,
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where

I
(r)
i = D(r) − (1− απi(k))C

(r)
i − απi(k)A

(r)
πi(k)

=
k−1∑

`=1

απi(`)A
(r)
πi(`)

− (1− απi(k))C
(r)
i

= (1−απi(k))

{
k−1∑

`=1

α′πi(`)
A

(r)
πi(`)

−g
(
α′πi(1)

, ..., α′πi(k−1); A
(r)
πi(1)

, ..., A
(r)
πi(k−1)

)}
.

(2.6)

Then since I
(r)
i ≥ 0 (for all i = 1, ..., k), we see (from D(r) − E(r) →s 0) that

I
(r)
i →s 0. Hence by Lemma 2.1 we have

A
(r)
πi(`)

−A
(r)
πi(`′)

→s 0 for `, `′ ≤ k − 1,

or
A

(r)
πi(`)

−A
(r)
πi(1)

→s 0 for ` ≤ k − 1.

Now note that

C
(r)
i −A

(r)
πi(1)

= g(α′πi(1)
, . . . , α′πi(k−1) ; A(r)

πi(1)
, . . . , A

(r)
πi(k−1))

− g(α′πi(1)
, . . . , α′πi(k−1) ;

k−1︷ ︸︸ ︷
A

(r)
πi(1)

, . . . , A
(r)
πi(1)

) →s 0

(2.7)

by continuity of g(α′πi(1)
, . . . , α′πi(k−1) ; A1, . . . , Ak−1). Further, note that D(r−1) ≥

A
(r)
j (or D(r−1) ≥ A

(r)
πi(j)

) for r ≥ 2 (j = 1, ..., k), and

ε(r) := (1− απi(k))(D(r−1) −A
(r)
πi(1)

) + απi(k)(D(r−1) −A
(r)
πi(k))

= D(r−1) −
{

(1− απi(k))A
(r)
πi(1)

+ απi(k)A
(r)
πi(k)

}

= D(r−1) −
{

(1− απi(k))(A
(r)
πi(1)

− C
(r)
i ) + (1− απi(k))C

(r)
i + απi(k)A

(r)
πi(k)

}

= (D(r−1)−D(r))+
{
D(r)−(1−απi(k))C

(r)
i −απi(k)A

(r)
πi(k)

}
−(1−απi(k))(A

(r)
πi(1)

−C
(r)
i )

= (D(r−1) −D(r)) + I(r) − (1− απi(k))(A
(r)
πi(1)

− C
(r)
i ).

Then since D(r−1)−D(r) →s 0, I(r) →s 0 and A
(r)
πi(1)

−C
(r)
i →s 0, we see ε(r) →s 0,

so that D(r−1) −A
(r)
πi(1)

, D(r−1) −A
(r)
πi(k) →s 0. Hence

A
(r)
πi(1)

, A
(r)
πi(k) →s lim

r→∞
D(r) = GS ,
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which is desired. 2

For the facts (i)-(ii), (i) can be shown by induction without difficulty. So it
suffices to show (ii). Let S = {π1, . . . , πk} be a subset of S(k), and let σ be an
element in S. Put

(β1, . . . , βk) = σ(α1, . . . , αk) = (ασ(1), . . . , ασ(k)), i.e., βi = ασ(i), and
(B1, . . . , Bk) = σ(A1, . . . , Ak) = (Aσ(1), . . . , Aσ(k)), i.e., Bi = Aσ(i).

(2.8)

We then define sequences {B(r)
1 }, . . . , {B(r)

k }, similarly as, {A(r)
1 }, . . . , {A(r)

k } by
(2.4), that is,

B
(1)
i = Bi (i = 1, . . . , k), and for r ≥ 1,

B
(r+1)
i = g(πi(β1, . . . , βk; B(r)

1 , . . . , B
(r)
k ))

= g(βπi(1), . . . , βπi(k); B
(r)
πi(1)

, . . . , B
(r)
πi(k)).

We show, by induction on r, that

(2.9) B
(r)
i = A

(r)
σ(i) for i = 1, . . . , k, and for r ≥ 1,

which implies that all sequences {B(r)
i }, as a whole, coincide with those of {A(r)

i },
so that GS is invariant under σ. Now for (2.9), it is clear for r = 1. So assume that
(2.9) holds (for r). Then

B
(r+1)
i = g(πi(β1, . . . , βk ;B(r)

1 , . . . , B
(r)
k ))

= g(βπi(1), . . . , βπi(k) ;B(r)
πi(1)

, . . . , B
(r)
πi(k))

= g(ασ(πi(1)), . . . , ασ(πi(k)) ; A(r)
σ(πi(1))

, . . . , A
(r)
σ(πi(k))) (by (2.8))

= g(α(σπi)(1), . . . , α(σπi)(k) ; A(r)
(σπi)(1)

, . . . , A
(r)
(σπi)(k))

= g(σπi(α1, . . . , αk ; A(r)
1 , . . . , A

(r)
k ))

= g(πσ(i)(α1, . . . , αk ; A(r)
1 , . . . , A

(r)
k )) (by (2.5))

= A
(r+1)
σ(i) .

Remark 2.3-1. Related to the assumption (2.5) in Theorem 2.2, we notice, by
definition,

σ(π1, . . . , πk) = (πσ(1), . . . , πσ(k)),

so that the left side usually does not coincide with (σπ1, . . . , σπk), which is multipli-
cation by σ to (π1, . . . , πk) from the left side. Hence (2.5) does not hold in general.

Remark 2.3-2. The assumption (2.5) in Theorem 2.2 needs the relation S =
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σ · S (= {σπ1, . . . , σπk}). In this case the order of σ must be a factor of k, so that
if k is a prime (and if σ 6= id) then S is the cyclic group (with order k) generated
by σ. The authors are very grateful to the referee for communicating those facts.

Example 2.4-1. Let S = {π1, π2, π3, π4} ⊂ S(4), with

(π1, π2, π3, π4) = (id, (12)(34), τ, (12)(34)τ) ,

where τ is an element in S(4). If σ = π2, then
(σπ1, σπ2, σπ3, σπ4) = (π2, π1, π4, π3),

and
(πσ(1), πσ(2), πσ(3), πσ(4)) = (π2, π1, π4, π3).

Hence by Theorem 2.2 (ii), GS is permutation-invariant with respect to σ.

Example 2.4-2. Let p = (12 · · · k) ∈ S(k) be a cyclic permutation of k letters, and
let S = {π1, . . . , πk} with πi = pi−1. If σ = pj , then

(σπ1, . . . , σπk) = (pj , . . . , pk+j−1) = (π1+j , . . . , πk+j).

Here k + ` > k is identified with `. For (πσ(1), . . . , πσ(k)), since

σ = (12 · · · k)j =
(

1 2 . . . k
1 + j 2 + j . . . k + j

)
,

we see σ(1) = 1 + j, . . . , σ(k) = k + j, so that

(πσ(1), . . . , πσ(k)) = (π1+j , . . . , πk+j).

Hence GS is permutation-invariant with respect to σ.

Example 2.4-3. Let

A1 =
[

5 2
2 1

]
, A2 =

[
3

√
2√

2 1

]
, A3 =

[
1 1
1 2

]
, A4 =

[
1 0
0 1

]
,

w = (α1, α2, α3, α4), α1 =
1
12

, α2 =
1
6
, α3 =

1
4
, α4 =

1
2
,

S1 = {π1, π2, π3, π4}, π1 = id, π2 = (1234), π3 = (1234)2, π4 = (1234)3

and
S2 = {π1, π2, π3, π4}, π1 = (23), π2 = (34), π3 = (243), π4 = (123).

Then by numerical computation we have, (discarded less than 10−6,)

GS1 = GS1(w; A1, A2, A3, A4)

=
[

1.246 916 0.485 219
0.485 219 0.990 793

]
(= A

(r)
1 = A

(r)
2 = A

(r)
3 = A

(r)
4 for r ≥ 4),
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GS2 = GS2(w;A1, A2, A3, A4)

=
[

1.236 306 0.463 749
0.463 749 0.982 817

]
(= A

(r)
1 = A

(r)
2 = A

(r)
3 = A

(r)
4 for r ≥ 3).

In the above, GS1 is permutation-invariant with respect to (all σ ∈) S1, but
GS2 is not so with respect to any σ ∈ S2 : Say, for σ = (23),

GS2(σ(w; A1, A2, A3, A4))
= GS2(α1, α3, α2, α4;A1, A3, A2, A4)
(= GS2(β1, β2, β3, β4; B1, B2, B3, B4))

=
[

1.241 734 0.457 126
0.457 126 0.973 609

]
(= B

(r)
1 = B

(r)
2 = B

(r)
3 = B

(r)
4 for r ≥ 4).

In Theorem 2.2, we took a subset with k elements in S(k) to construct a weighted
geometric mean of k operators. We could take a subset with ` (` ≤ k or ` ≥ k)
elements:

Theorem 2.5. Let A1, A2, · · · , Ak be k operators in Ω, w = (α1, ..., αk) be a k-
weight of nonnegative numbers, and let S = {π1, ..., π`} be a subset of S(k). Define

Bi = g(πi(w; A1, ..., Ak)), i = 1, ..., `.

Further, let v = (β1, ..., β`) be an `-weight of nonnegative numbers and let T =
{σ1, ..., σ`} be a subset of S(`). Then, define

G̃ = GS,T (w; v;A1, ..., Ak) = GT (v; B1, ..., B`).

Then G̃ is a weighted geometric mean which has the properties PW1-PW10 except
PW3. If ` = k, βi = αi (i = 1, ..., k) and T = S, then G̃ = GS(w;A1, ..., Ak).

3. Weighted geometric means of k operators by indirect construction;
second type

Recall that non-weighted (or uniformly weighted) geometric means of k opera-
tors were defined in [14], [9] (cf. [2]) by induction on k, as follows:

(1) First for k = 2, define G(A1, A2) = G#(A1, A2) = A1#A2 (the usual geo-
metric mean) for two operators A1 and A2. Then G(A1, A2) satisfies all properties
P1-P10 (for k = 2).

(2) To define geometric means for k (≥ 3) operators, we assume that for (k−1)
operators A1, ..., Ak−1 we have obtained a geometric mean G(A1, ..., Ak−1) possess-
ing all properties P1-P10.

(3) Then we can define a geometric mean Gλ(A1, ..., Ak) of k operators A1, ..., Ak

with a parameter λ ∈ (0, 1] as the common limit (with respect to the Thompson
metric) of the sequences {A(r)

i }∞r=1 (i = 1, ..., k) defined by

(3.1) A
(1)
i = Ai and A

(r+1)
i = G((A(r)

j )j 6=i)#λA
(r)
i for r ≥ 1.
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Here
G((A(r)

j )j 6=i) = G(A(r)
1 , ..., A

(r)
i−1, A

(r)
i+1, ..., A

(r)
k ).

The operator Gλ(A1, ..., Ak) then again has all the ten properties P1-P10 as desired.

We remark that the above definition (3.1) of the sequences {A(r)
i }∞r=1 is different

from that in [9]. However, clearly the common limit is the same as in [9] if the
parameter λ is replaced by 1− λ.

For the convenience sake, we write G ∈ G(k) if G is a geometric mean of k
operators in Ω with the properties P1-P10. We define [9]

G#,λ1,...,λk
= G#,λ1,...,λk

(A1, ...., Ak+2)

by
G#,λ1,...,λk

= G(#,λ1,...,λk−1),λk
.

Then G#,λ1,...,λk
∈ G(k + 2) is a geometric mean with parameters λ1, ..., λk (k ≥ 1).

Now we define weighted geometric means for k operators through the non-
weighted geometric means by induction on k. First for two operators A1, A2 ∈ Ω
and for any 2-weight w = (α1, α2) (α2 = 1− α1), we put

G(w;A1, A2) = G(α1, α2;A1, A2) = A1#α2A2.

Then it is easy to see that this mean has all ten properties PW1-PW10. In partic-
ular, as an basic fact A2#α1A1 = A1#1−α1A2, we see

G(α2, α1;A2, A1) = G(α1, α2; A1, A2),

which implies that G(w; A1, A2) has permutation-invariance, PW3.
To define the weighted geometric mean for k (≥ 3) operators, we assume that

G = G(v;X1, ..., Xk−1) is a weighted geometric mean of (k − 1) operators in Ω
for any (k − 1)-weight v. Then for given k operators A1, ..., Ak, and for a k-weight
w = (α1, ..., αk) (without loss of generality, assuming 0 < α1, ..., αk < 1), define, for
i = 1, ..., k,

Bi = G(w′i;A1, ..., Ai−1, Ai+1, ..., Ak)#αiAi,

where w′i =
(

α1

1− αi
, ...,

αi−1

1− αi
,

αi+1

1− αi
, ...,

αk

1− αi

)
. Now choose a (non-weighted)

geometric mean Γ ∈ G(k), and define

G̃ = GΓ(w; A1, ..., Ak) := Γ(B1, ..., Bk).

Then it is not difficult to see that G̃ is a desired weighted geometric mean of k
operators, which has all the ten properties PW1-PW10. Further, if w = ( 1

k , ..., 1
k )

then G̃ = Γ(B1, ..., Bk) by definition, so that G̃ is an extension of the original
geometric mean. Rewriting the above facts as a result, we have
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Theorem 3.1. For any k (≥ 2) operators A1, ..., Ak ∈ Ω and for any k-weight
w = (α1, ..., αk), we can define a weighted geometric mean GΓ(w; A1, ..., Ak) which
has the ten properties PW1-PW10 for k operators in Ω, as an extension of a non-
weighted geometric mean Γ ∈ G(k).

Example 3.2. To compare weighted geometric means of the two types, let

A1 =
[

5 2
2 1

]
, A2 =

[
1 1
1 2

]
, A3 =

[
1 0
0 1

]
,

w = (α1, α2, α3), α1 =
1
2
, α2 =

1
3
, α3 =

1
6
.

First choose Γ = G#, 1
3
∈ G(3). Then

GΓ(w;A1, A2, A3) = Γ(B1, B2, B3) = G#, 1
3
(B1, B2, B3).

Here B1, B2, B3 are defined as follows:

B1 = G

(
α2

1− α1
,

α3

1− α1
;A2, A3

)
#α1A1 = (A2# 1

3
A3)# 1

2
A1,

B2 = G

(
α1

1− α2
,

α3

1− α2
;A1, A3

)
#α2A2 = (A1# 1

4
A3)# 1

3
A2,

B3 = G

(
α1

1− α3
,

α2

1− α3
;A1, A2

)
#α3A3 = (A1# 2

5
A2)# 1

6
A3.

We then, (discarded less than 10−6,) have

GΓ(w; A1, A2, A3) =
[

2.039 159 0.903 343
0.903 343 0.890 577

]
(= B

(r)
1 = B

(r)
2 = B

(r)
3 for r ≥ 20).

Next for S = {id, (123), (123)2} ⊂ S(3), we have

GS(w; A1, A2, A3) =
[

2.037 846 0.895 118
0.895 118 0.883 892

]
(= A

(r)
1 = A

(r)
2 = A

(r)
3 for r ≥ 4).

The geometric mean GΓ(w;A1, A2, A3) is of second type and GS(w; A1, A2, A3)
is of first type. The former is permutation-invariant with respect to S(3), and the
latter is so with respect to S.

Remark 3.3. We have constructed the weighted geometric means, starting from
the definition (1.2) by successive composition of two-operator weighted geometric
means. However, we could begin with another definition by such composition of two-
operator weighted geometric means, so that we could construct various weighted
geometric means. For example, for four operators A1, A2, A3, A4 ∈ Ω with 4-weight
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w = (α1, ..., α4) of positive numbers, we can consider the following five types of
composition:

G[1] = g[1](w; A1, A2, A3, A4) =
(
(A1# α2

α1+α2
A2)# α3

α1+α2+α3
A3

)
#α4A4,

G[2] = g[2](w; A1, A2, A3, A4) =
(

A1# α2+α3
α1+α2+α3

(A2# α3
α2+α3

A3)
)

#α4A4,

G[3] = g[3](w; A1, A2, A3, A4) =
(
A1# α2

α1+α2
A2

)
#α3+α4

(
A3# α4

α3+α4
A4

)
,

G[4] = g[4](w; A1, A2, A3, A4) = A1#α2+α3+α4

(
(A2# α3

α2+α3
A3)# α4

α2+α3+α4
A4

)
,

G[5] = g[5](w; A1, A2, A3, A4) = A1#α2+α3+α4

(
A2# α3+α4

α2+α3+α4
(A3# α4

α3+α4
A4)

)
.

Recall that G[1] is the type of (1.2) for k = 4. Clearly, each of the above G[i]

reduce to Aα1
1 Aα2

2 Aα3
3 Aα4

4 , if all Ai commute. Consequently, we can choose any of
them for the starting point of our definition of the weighted geometric mean with
respect to four operators. If we choose, say, the type of G[3], then, put





B1 = g[3](α1, α2, α3, α4; A1, A2, A3, A4),
B2 = g[3](α1, α3, α2, α4; A1, A3, A2, A4),
B3 = g[3](α1, α4, α2, α3; A1, A4, A2, A3).

First, say, for S = {π1 = id, π2 = (123), π3 = (123)2} ⊂ S(3), and a 3-weight
v = (β1, β2, β3), define

{
B

(1)
i = Bi for i = 1, 2, 3, and

B
(r+1)
i = g(πi(v;B(r)

1 , B
(r)
2 , B

(r)
3 )) for i = 1, 2, 3, r ≥ 1.

Then as the common limit of {B(r)
i } (i = 1, 2, 3), we obtain a weighted geometric

mean of A1, A2, A3, A4 related to G[3]. Denote by

Ĝ = GS(w; v; A1, A2, A3, A4) = lim
r→∞

B
(r)
i .

Then Ĝ is a weighted geometric mean corresponding to one given as the first type
in Section 2.

Second, define, for a Γ ∈ G(3),

G̃ = GΓ(w;A1, A2, A3, A4) = Γ(B1, B2, B3).

Then we obtain a weighted geometric mean G̃ related to G[3], which corresponds to
one given as the second type in Section 3.
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4. Reverse inequality

Recently, reverse type inequalities of the arithmetic-geometric, the arithmetic-
harmonic, or the arithmetic-geometric-harmonic means for two or more than two
operators were presented in [1], [6], [7], [16]. The following result was shown in [7]:

Lemma 4.1([7, Theorem 9]). Let A1, A2, . . . , Ak be operators such that 0 < mI ≤
Ai ≤ MI for i = 1, 2, . . . , k for some scalars m and M with 0 < m < M . (The
letter I stands the identity operator.) Then

A1 + · · ·+ Ak

k
≤ (M + m)2

4Mm

(
A−1

1 + · · ·+ A−1
k

n

)−1

.

For the reverse version of the weighted mean inequality, the following result was
shown in [14]:

Proposition 4.2([14, Proposition 4.3]). Let mI ≤ A, B, C ≤ MI for some scalars
m and M with 0 < m < M. Then for α, β, γ ≥ 0, α + β + γ = 1, Γ = G#, 2

3
,

αA + βB + γC ≤ (M + m)2

4Mm
GΓ(α, β, γ ;A,B,C).

As an extension of both the above results, we have the following:

Theorem 4.3. Let A1, A2, . . . , Ak be operators such that 0 < mI ≤ Ai ≤ MI
for i = 1, . . . , k for some scalars m and M with 0 < m < M . Assume that w =
(α1, ..., αk) is a k-weight. Then

(4.1)
k∑

i=1

αiAi ≤ (M + m)2

4Mm
GΓ(w;A1, . . . , Ak)

and

(4.2)
k∑

i=1

αiAi ≤ (M + m)2

4Mm
GS(w;A1, . . . , Ak),

where Γ is a geometric mean in G(k) and S is a subset of k elements in S(k).

Proof. Let Φ : B(H) ⊕ · · · ⊕ B(H) 7→ B(H) ⊕ · · · ⊕ B(H) be a map defined as
follows:

Φ(X1, . . . , Xk) =




α1X1 + · · ·+ αkXk 0
. . .

0 α1X1 + · · ·+ αkXk


 .
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Then Φ is positive linear, and normalized, that is, Φ(I(k)) = I(k) (I(k) = (I, · · · , I).)
Furthermore, it is not difficult to see that mI(k) ≤ Φ(A1, . . . , Ak) ≤ MI(k). Hence
by a result due to Mond-Pečarić [8, Theorem 1.32], we have

Φ(A1, . . . , Ak) ≤ (M + m)2

4Mm
Φ(A−1

1 , . . . , A−1
k )−1.

Hence

α1X1 + · · ·+ αkXk ≤ (M + m)2

4Mm
(α1X

−1
1 + · · ·+ αkX−1

k )−1.

From this inequality and PW10 for G = GΓ, GS , we obtain the desired inequalities
(4.1) and (4.2). 2
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