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Abstract

We study the graph clustering problem where

each observation (edge or no-edge between a pair

of nodes) may have a different level of confi-

dence/uncertainty. We propose a clustering al-

gorithm that is based on optimizing an appro-

priate weighted objective, where larger weights

are given to observations with lower uncertainty.

Our approach leads to a convex optimization

problem that is efficiently solvable. We analyze

our approach under a natural generative model,

and establish theoretical guarantees for recover-

ing the underlying clusters. Our main result is a

general theorem that applies to any given weight

and distribution for the uncertainty. By optimiz-

ing over the weights, we derive a provably opti-

mal weighting scheme, which matches the infor-

mation theoretic lower bound up to logarithmic

factors and leads to strong performance bounds

in several specific settings. By optimizing over

the uncertainty distribution, we show that non-

uniform uncertainties can actually help. In par-

ticular, if the graph is built by spending a limited

amount of resource to take measurement on each

node pair, then it is beneficial to allocate the re-

source in a non-uniform fashion to obtain accu-

rate measurements on a few pairs of nodes, rather

than obtaining inaccurate measurements on many

pairs. We provide simulation results that validate

our theoretical findings.
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1. Introduction

Graph clustering concerns with finding densely connected

groups of nodes in a graph. Here an edge between two

nodes usually indicates certain underlying similarity or

affinity between nodes, whereas the absence of an edge in-

dicates dissimilarity and distance. Therefore, the goal of

graph clustering is to infer groups of closely related nodes

given the (often noisy) similarity/dissimilarity observations

encoded in the graph. Graph clustering is an important sub-

routine in many applications, such as community detection,

user profiling and VLSI network partitioning (Mishra et al.,

2007; Yahoo!-Inc, 2009; Krishnamurthy, 1984).

In many of these applications, however, the edge/non-edge

between each node pair may represent very different levels

of confidence of the similarity of the nodes. In some cases,

the observation of an edge (the absence of an edge, resp.)

may be generated by accurate measurements and thus is a

strong indicator that the two nodes should be assigned the

same (different, resp.) clusters. In other circumstances, the

observations may be very uncertain and thus an edge or the

absence of it provides little information about the cluster

structure. As an extreme case, the observations between

some node pairs may carry no information at all, so these

pairs are effectively unobserved. An example with non-

uniform uncertainties is crowd-clustering (Gomes et al.,

2011; Yi et al., 2012), where a number of users are asked

whether or not they think a pair of nodes (e.g., movies or

images) are similar, and the final graph is obtained by ag-

gregating the users’ answers, for instance by taking a ma-

jority vote. The confidence level are naturally different

across pairs: a pair receiving a large number of unanimous

votes has a higher confidence level than those receiving few

votes or divergent votes; in particular, pairs receiving no

votes are completely uncertain.

In such a non-uniform setting, each pair of nodes should

be treated differently according to the level of uncertainty
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between them. In many cases, a priori knowledge is avail-

able for the uncertainty levels since the graph is built from a

known or controlled process. Intuitively, taking advantage

of such knowledge should improve clustering performance.

Our contributions:

In this paper, we exploit the above intuition, and propose a

new approach for clustering graphs with non-uniform edge

uncertainties. Our approach is based on finding the clusters

that optimizes an appropriate weighted objective, where

larger weights are given to node pairs with lower levels of

uncertainties. Doing so leads to an intractable combinato-

rial optimization problem, and our algorithm is a convex

relaxation of it. To study the performance of our approach,

we consider a natural probabilistic model for generating a

random graph from an unknown set of clusters with non-

uniform uncertainties. We provide theoretical guarantees

for when the solution to the convex relaxation coincides

with the combinatorial problem and exactly recovers the

underlying clusters. Our main result is a general theorem

that applies to any given weights and any uncertainty distri-

bution. The theorem leads to a principled way of choosing

the weights optimally based on knowledge of the uncer-

tainties. By specializing this general result to different set-

tings for the uncertainties, we recover the best known the-

oretic guarantees for clustering partially observed graphs,

and obtain new results for more general non-uniform set-

tings. In particular, we show that a weighted approach us-

ing the knowledge of the non-uniform uncertainties have

order-wise better guarantees than an unweighted approach.

We call this the “power of knowledge”.

We use the above results to obtain theoretical insights to

a resource allocation problem in graph clustering. As a

corollary of our main theorem, it can be shown that the

clustering problem becomes easier when the uncertainties

are more non-uniform across the node pairs (provided that

the knowledge of the uncertainty levels is appropriately ex-

ploited). Therefore, if the uncertainty level of the observa-

tion on each node pair depends on the resource devoted to

it, then it is often more beneficial, sometimes significantly,

to allocate the resource in a non-uniform way, with most of

the resource spent on a small number of nodes so that they

have low uncertainty levels.

We provide simulation results to corroborate our theoreti-

cal findings. The results demonstrate that the weighted ap-

proach and the optimal weights outperform other methods,

and non-uniform resource allocation lead to performance

gain.

1.1. Related Work

Planted partition model/Stochastic block model: The

setup in this paper is closely related to the classical planted

partition model (Condon & Karp, 2001), also known as the

stochastic block model (Rohe et al., 2011). In these mod-

els, n nodes are partitioned into several groups called the

underlying clusters, and a random graph is generated by

placing an edge between each pair of nodes independently

with probability p or q (with p > q) depending on whether

the nodes belong to the same cluster. The goal is to re-

cover the underlying clusters given the graph. Various ap-

proaches have been proposed for this problem, including

spectral clustering algorithms (McSherry, 2001; Giesen &

Mitsche, 2005; Chaudhuri et al., 2012; Rohe et al., 2011)

and randomized combinatorial methods (Shamir & Tsur,

2007). Most related to us are the convex optimization

approaches in Chen et al. (2012; 2011); Ames & Vava-

sis (2011); Oymak & Hassibi (2011); Jalali et al. (2011);

Mathieu & Schudy (2010), which are similar to an un-

weighted version of our method. Except for a few excep-

tions detailed below, most previous work focused on the

uniform uncertainty case.

Graph clustering with non-uniform uncertainty:

Chaudhuri et al. (2012) explicitly consider non-uniform

uncertainty under the planted partition model. They study

the setup where each node is associated with a confidence

di, and the probability of placing an edge between nodes

i and j is dipdj (diqdj resp.) if i and j belong to the

same cluster (different clusters resp.). A spectral clustering

approach is proposed to tackle the problem. In our model

the non-uniformity is pair-wise and need not have a

product form as in their work.

As we explained earlier, clustering with partial observa-

tions can be considered as a special case of non-uniform

uncertainties. Here, an edge or the absence of an edge is

observed for a subset of the nodes pairs. For the other

node pairs only a “?” is observed, meaning no informa-

tion is available, which corresponds to maximum uncer-

tainty in our non-uniform setting. A line of work explicitly

addresses this setup. One natural approach, taken by Oy-

mak & Hassibi (2011), is to convert the problem into one

with uniform uncertainty by imputing the missing obser-

vations (either with no-edge or random choices), and then

apply standard (unweighted) graph clustering methods. A

more refined approach deals with the partial observations

directly (Shamir & Tishby, 2011; Jalali et al., 2011). The

work by Jalali et al. (2011) has the best known guarantees

for the planted partition model with randomly missing ob-

servations. Their formulation is a special case of the more

general method in this paper, and our theoretic results sub-

sume theirs. There exists other work on clustering with par-

tial observations (e.g., Balcan & Gupta, 2010; Voevodski

et al., 2010; Krishnamurthy et al., 2012), but under rather

different settings; it is also unclear how to generalize these

methods to more general non-uniform uncertainty setting.
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Another related line of work is correlation cluster-

ing (Bansal et al., 2004). There the goal is to find a set

of clusters that minimize the total number of disagree-

ments between the clusters and the observed graph. One

may also consider minimizing a weighted sum of the dis-

agreements (Demaine et al., 2006), leading to a weighted

objective similar to ours. Work on correlation clustering

focuses on establishing NP-hardness of the optimization

problem and developing approximation schemes (Bansal

et al., 2004; Giotis & Guruswami, 2006; Charikar et al.,

2005). In contrast, we take a statistical approach akin to the

planted partition model, and study conditions under which

the underlying clusters can be recovered with high proba-

bility. Therefore, the theoretical results for correlation clus-

tering are not directly comparable to ours.

Recovering sparse signals and low-rank matrices with

non-uniform priors: The problem of matrix decompo-

sition (Candès et al., 2011; Chandrasekaran et al., 2011)

concerns with separating a low-rank matrix from sparse

entry-wise errors of arbitrary magnitude. A standard ap-

proach is based on convex optimization using the trace

norm (a.k.a. nuclear norm) as a convex surrogate of the

rank function. Chen et al. (2013); Li (2013) consider ex-

tensions of the problem with unobserved entries. A similar

approach has been applied to graph clustering (Jalali et al.,

2011; Chen et al., 2011; Oymak & Hassibi, 2011; Mathieu

& Schudy, 2010). Our clustering algorithm can be con-

sidered as separating a low rank matrix from sparse errors

with a non-uniform prior. While our analysis is restricted

to the graph clustering, our method and intuition may be

relevant to the general matrix decomposition problem. To

the best of our knowledge, matrix decomposition with gen-

eral non-uniform error probability has not been studied in

the literature.

A related problem is recovering of a sparse vector signal,

for which non-uniform priors have been considered. In a

standard setting, it is assumed that each entry of the un-

known vector is known to have a different probability of be-

ing non-zero. Khajehnejad et al. (2011) propose a weighted

`1 norm minimization approach to address this problem.

The analysis of the approach mainly focuses on the special

case where the non-zero probability can take one of two

possible values (Khajehnejad et al., 2011; Oymak et al.,

2011; Krishnaswamy et al., 2012). In this two-value set-

ting, it is shown that the weighted approach is superior to

an unweighted approach.

2. Problem Setup and Algorithms

In this section we provide a formal setup of the graph clus-

tering problem with non-uniform uncertainty levels. We

consider a probabilistic model for generating the graph and

the edge uncertainties based on a set of underlying un-

known clusters. We then present our weighted formulation

for recovering the underlying clusters, which is efficiently

solvable and weighs each node pair differently.

2.1. Model

Suppose there are n nodes which are partitioned into r
unknown clusters of size at least K. We observe an un-

weighted graph of the nodes, given as an adjacency matrix

A ∈ {0, 1}
n×n

, which is generated as follows: For two

nodes i and j in the same cluster, we observe an edge be-

tween them (i.e., Aij = 1) with probability 1 − Pij , and

no edge otherwise; for i and j in different clusters, we ob-

serve an edge between them with probability Pij , and no

edge otherwise. Therefore, Pij can be considered as the

probability of false observation between i and j, where a

false observation is a missing edge between two nodes in

the same clusters (a false negative), or an edge between two

nodes in different clusters (a false positive).

We are interested in the case where the Pij’s are potentially

different across the (i, j)’s, so the uncertainties associate

with each observation Aij are non-uniform. In particular,

Pij = 0 means that Aij is a noiseless observation of the

cluster relation between the nodes i and j, whereas Pij =
1

2

means Aij is purely random and thus the relation between

i and j is unobserved. We use P = (Pij)
n

i,j=1
∈ Rn×n to

denote the matrix of error probabilities.

It is in general an ill-posed problem to recover the clus-

ters for arbitrary error probabilities P . For example, if

Pij = 1

2
, ∀j for some node i, then the graph contains no

information about the node i so exact cluster recovery is

impossible. To avoid such pathological situation, we as-

sume that P is randomly generated with i.i.d. entries. In

particular, for each (i, j) and independent of all others, Pij

is a random variable with some distribution Q supported

on [0, 1/2], where Q is either the corresponding probability

mass function if Pij takes discrete values or the probability

density function if Pij is continuous.

2.2. Our Algorithm

Our algorithm is based on finding a clustering of the nodes

that optimizes an appropriate objective. To this end we

need the notion of a cluster matrix: given a clustering of

the n nodes, the associated cluster matrix is an n-by-n 0−1
matrix Y such that Yij = 1 if and only if the nodes i and

j are assigned to the same clusters. Let Y ∗ be the true

cluster matrix associated with the underlying clusters that

generate the graph A. Our goal is therefore to recover Y ∗

from the graph A. A natural approach, akin to correlation

clustering (Bansal et al., 2004), is to find a clustering Y that

maximizes the sum of the total number of edges inside the

clusters and the the total number of missing edges across
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clusters. This can be written as maximizing the quantity

P

i.jAijYij +
P

i.j (1�Aij) (1� Yij)

=
P

i.j (2Aij � 1)Yij + C

over all cluster matrix Y , where C collects the terms inde-

pendent of Y . This formulation gives equal weights to each

node pair. When the uncertainty levels are non-uniform, we

consider instead the following weighted formulation:

max
Y 2Rn×n

X

i,j

Bij(2Aij � 1)Yij

s.t. Y is a cluster matrix,

(1)

where Bij � 0 is the weight assigned to the pair (i, j).

The formulation (1) is a hard combinatorial optimization

problem because there are exponentially many possible

cluster matrices. To obtain a tractable formulation, we re-

lax the constraint “Y is a cluster matrix” with a set of con-

vex constraints. Specifically, we consider the following:

max
Y 2Rn×n

X

i,j

Bij (2Aij � 1)Yij (2)

s.t. Y 2 S, (3)

0  Yij  1, 8i, j, (4)

where S is a convex set that contains Y ⇤. We may use

either one of the following choices:

Snuclear =
�

Y 2 Rn⇥n : kY k
⇤
 n

 

,

Spsd =
�

Y 2 Rn⇥n : trace(Y )  n, Y ⌫ 0
 

;
(5)

here kY k
⇤

is the trace norm (a.k.a. nuclear norm) of Y , de-

fined as the sum of the singular values of Y , and Y ⌫ 0
is the positive semidefinite constraint. Both Snuclear and

Spsd are standard convex relaxations for positive semidef-

inite low-rank matrices and cluster matrices (Mathieu &

Schudy, 2010; Jalali et al., 2011). For both choices of S ,

the formulation (2)–(4) is a semidefinite program (SDP)

and can be solved in polynomial-time. Fast first-order

solvers can also be used; we describe one such solver in

the simulation section.

3. Theoretical Guarantees

In this section, we provide theoretical guarantees for the

formulation (2)–(5) in recovering the true clusters Y ⇤. We

first present a general main theorem that applies to any

weights {Bij} and any distribution Q for the error prob-

abilities {Pij}. We next derive a provably optimal way of

choosing the weights, and characterizes its performance us-

ing the general theorem. We then specialize our theorem to

different settings of Q and {Bij}.

In the sequel, with high probability (w.h.p.) means with

probability at least 1� n�10.

3.1. Main Theorem

We assume that the weights satisfy Bij = f(Pij) for some

function f , so Bij depends on the value of Pij but not the

location (i, j). In this case, the Bij’s are in general random

and identically distributed. A constant function f(·) corre-

sponds to uniform weights that are independent of the error

probabilities. We have the following general theorem.

Theorem 1. Suppose there exists b > 0 such that 0 
Bij  b almost surely for all (i, j). Then Y ⇤ is the unique

optimal solution to the program (2)–(5) with high probabil-

ity if for all (i, j) and a universal constant c0,

E

✓

1

2
� Pij

◆

Bij

�

� c0

0

@

b log n

K
+

q

E
⇥

B2
ij

⇤

n log n

K

1

A .

(6)

Here the theorem applies to both choices in (5), and the

expectations and probability are w.r.t. the randomness of

{Pij}, {Bij} and A.

Remark 1. The condition (6) is identical for different (i, j)
since the (Pij , Bij)’s are identically distributed. This re-

mark applies to any expression that involves the expecta-

tions or distributions of Pij , Bij and Aij .

We note that b in the theorem can be any number and is

allowed to scale with n and K etc.

3.2. Optimal Weighting and Maximum Likelihood

Estimators

We now turn to the question of how to choose the weights

Bij = f(Pij) or equivalently the function f(·). Under

the generative model in Section 2.1, a natural candidate is

to consider the Maximum Likelihood objective, which we

now show is a special case of our weighted objective (2).

Given the graph A and the error probabilities P , the Max-

imum Likelihood Estimator (MLE) searches for a cluster

matrix Y which maximizes the log likelihood logPY (A)
of observing A given Y , where

logPY (A)

=
X

i,j

log
h

(1� Pij)
AijYij (Pij)

(1�Aij)Yij

⇥ (Pij)
Aij(1�Yij) (1� Pij)

(1�Aij)(1�Yij)
i

=
X

i,j

(2Aij � 1)Yij log

✓

1� Pij

Pij

◆

+ C 0,

where C 0 collects the terms that are independent of Y .

Therefore, the MLE objective corresponds to our objec-

tive (2) with the weights Bij = log
⇣

1�Pij

Pij

⌘

. In fact, we

may use any upper bound P̄ij 
1
2 of the exact error prob-
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ability Pij , which provides additional flexibility in the se-

quel. We refer to this as the MLE weights, namely

BMLE
ij := log

✓

1� P̄ij

P̄ij

◆

, for each (i, j). (7)

Remark 2. The MLE weight BMLE
ij has a natural inter-

pretation. When P̄ij = Pij = 1

2
, the observation Aij on

the pair (i, j) is purely random. In this case, BMLE
ij =

log
�

(1� 1

2
)/ 1

2

�

= 0 so we assign zero weight to the

pair (i, j). If P̄ij = Pij ! 0, then Aij is noiseless

and we have exact knowledge about the cluster relation-

ship between i and j; in particular Aij = 1 if and only

if i and j are in the same underlying cluster. In this case,

the MLE weight satisfies BMLE
ij ! +1, so by maximiz-

ing Bij (2Aij � 1)Yij , we force Yij to equal Aij , agreeing

with the exact knowledge we possess.

Our analysis shows that the weights BMLE
ij are order-wise

optimal under certain technical conditions, in the sense that

its performance is (order-wise) at least as good as any other

choice of for the weights Bij . In fact, it is order-wise as

good as any algorithm for recovering Y ⇤. To see this, we

first derive a guarantee for the MLE weights. The following

corollary is proved using the general Theorem 1. Recall

that P̄ij 
1

2
is any upper bound on Pij .

Corollary 1. Suppose 1

2
� P̄ij � ✏, 8(i, j) almost surely

for some 1

4
� ✏ > 0. The weighted formulation (2)–(5)

with the MLE weights Bij = BMLE
ij has a unique optimal

solution equal to Y ⇤ with high probability provided

E

✓

1

2
�P̄ij

◆

log
1�P̄ij

P̄ij

�

� c1
n

K2
log

✓

1

✏

◆

log n, 8(i, j)

(8)

for some universal constant c1. Moreover, the condition (8)

is satisfied if we take P̄ij = max
�

Pij ,
1

16

 

in (7) and

E

"

✓

1

2
� Pij

◆2
#

� c2
n

K2
log n, 8(i, j). (9)

Again we note that ✏ in the corollary may scale with n and

K, and need not be bounded away from zero.

We next establish a theorem that characterizes the perfor-

mance limit of all algorithms. The theorem provides a

lower bound on the minimax error probability and is proved

by an information-theoretic argument. It generalizes sim-

ilar lower bounds by Chaudhuri et al. (2012); Chen et al.

(2011) for the uniform uncertainty setting.

Theorem 2. Suppose there are r = 2 clusters with equal

size K = n/2. Let Y := {Y : Y is a cluster matrix} be

the set of all possible cluster matrices. If

E

"

✓

1

2
� Pij

◆2
#

 c0
1

n
, 8(i, j) (10)

for some universal constant c0, then we have

inf
Ŷ

sup
Y ∗2Y

P

h

Ŷ (A,P ) 6= Y ⇤

i

�
1

2
,

where the infimum is over all measurable functions Ŷ that

map (A,P ) to an element of Y , and the probability P [·] is

w.r.t. the randomness of A and P .

Theorem 2 shows that in the case with r = 2 clusters,

any algorithm fails with positive probability if (10) holds.

In this setting, Corollary 1 guarantees that the formula-

tion (2)–(4) with the MLE weights succeeds w.h.p. if

E

h

(1/2� Pij)
2
i

&
log n

n
, 8(i, j).

This matches the condition (10) up to a logarithmic factor,

and thus cannot be substantially improved. This shows that

the MLE weights is order-wise optimal in this case. We

expect this to be true generally. Indeed, our simulations

show that the MLE weights do outperform other weight

schemes in a broad range of settings.

3.3. Consequences

3.3.1. THE POWER OF KNOWLEDGE

The above results characterize the benefit of utilizing the

knowledge of P via a weighted approach as compared to an

unweighted approach that ignores P . Suppose Pij � ✏0 for

some universal constant ✏0 > 0. If we use uniform weights

Bij ⌘ 1 corresponding to an unweighted formulation, then

Theorem 1 shows that the formulation succeeds w.h.p. if

✓

1

2
� E [Pij ]

◆2

&
log2 n

K2
+

n log n

K2
, 8(i, j). (11)

On the other hand, if we have access to knowledge of Pij ,

we may use the optimal MLE weights Bij = BMLE
ij , and

Corollary 1 guarantees that the weighted formulation suc-

ceeds w.h.p. as long as the condition (9) is satisfied. The

RHS of (9) is always no greater than the RHS of (11).

More importantly, the LHS of (9) is strictly larger than the

LHS of (11) whenever Pij is not equal to a constant almost

surely, because E
⇥

P 2

ij

⇤

> (E [Pij ])
2
. The gap is exactly

the variance of Pij , and is large precisely when the error

probability is far from being uniform.

3.3.2. TWO-LEVEL UNCERTAINTY AND PARTIAL

OBSERVATIONS

We consider a more concrete setting where Pij is non-

uniform and can take one of two values. In particular, we

assume that Pij = p1 with probability q and Pij = p2
with probability 1 � q, where p1 < p2. If we use uniform

weighting Bij ⌘ 1, then by applying (11) and computing



Weighted Graph Clustering with Non-Uniform Uncertainties

the expectation, we obtain that the unweighted convex for-

mulation succeeds if

✓

1

2
− p2

◆2

+ 2q

✓

1

2
− p2

◆

(p2 − p1) + q2 (p2 − p1)
2

&
n log2 n

K2
.

If we use the optimal weights BMLE
ij , then (9) in Corollary 1

guarantees that the weighted formulation succeeds if

✓

1

2
− p2

◆2

+ 2q

✓

1

2
− p2

◆

(p2 − p1) + q (p2 − p1)
2

&
n log2 n

K2
.

Note that the left hand side becomes strictly larger as q(p2−
p1)

2 > q2(p2 − p1)
2, and hence the weighted formulation

succeeds for a wider range of the model parameters.

A special case of the above setting is when p2 = 1
2 . This

means that with probability 1 − q, Aij is purely random

and effectively unobserved, and with probability q it is ob-

served but contains an error with probability p1. This co-

incide with the graph clustering with partial observation

problem that has been studied before. In this case the un-

weighted approach and the weighted approach require

q2 (1/2− p1)
2
& n log2 n/K2

and

q (1/2− p1)
2
& n log2 n/K2,

respectively. Therefore, in the case with K = Θ(n) and

p1 = 1
4 , the weighted approach can handle as few as

qn2 = Θ
�

n log2 n
�

observations, whereas the unweighted

approach requires Θ (n
√

n log n) observations, which is

order-wise larger. We note that in this case the MLE

weights is equivalent to assigning zero weight to unob-

served node pairs and uniform positive weight to observe

pairs. Our result matches the best existing bounds for the

partial observation setting given in Jalali et al. (2011); Chen

et al. (2011).

4. Resource Allocation in Graph Clustering

Our results in the previous section show that given a graph

with known uncertainties, one could achieve better per-

formance guarantee by employing appropriate weights in

solving the optimization problem. Here, we look at a com-

plementary problem: Suppose we have the ability to con-

trol the uncertainties by spending some available resource

(e.g., performing queries or measurements) to build the

graph, how should one allocate this limited amount of re-

source in order to optimize the performance guarantee for

the cluster recovery procedure? We show that our theoreti-

cal results can provide a principled solution to this resource

allocation problem.

Suppose that we wish to recover the underlying clusters by

first assigning the probability distribution Pij for each pair

of nodes and then using our proposed weighted scheme.

The required amount of resource Mij should naturally be

higher if the error probability Pij is small, and vice versa.

The exact relationship between Mij and Pij depends on

the particular setup being considered. By Corollary 1, in

order to maximize the probability of successful recovery,

we should aim to maximize E[( 12 − Pij)
2] over all possi-

ble distributions on Pij , subject to our resource constraint.

We examine several different scenarios for the relationship

between Pij and Mij .

Model 1: We first consider a linear model Mij = γ( 12 −

Pij) or equivalently Pij = 1
2 −

Mij

γ
, where γ > 0. Note

that Mij = 0 implies Pij = 1
2 , which is equivalent to an

unobserved pair. Let M = E
P

i<j Mij be the expected

total amount of available resource. This implies that in our

probabilistic model, the expected Pij for each error prob-

ability for each node pair E[Pij ] =
1
2 −

2M
n(n−1)γ = c is

a constant. Note that the expectation is with respect to the

distribution Q(Pij) on Pij which is supported on [0, 1/2].
By Corollary 1, we therefore wish to maximize the LHS

of (9) subject to the resource constraint. This is equivalent

to solving the following variational problem:

max
Q

EQ[P
2
ij ]

s.t. EQ[Pij ] = c.

(We note again that expressions like the one above are inde-

pendent of i and j, since the Pij’s are assumed to be identi-

cally distributed.) The problem has a simple solution. Due

to the convexity of the function P 2
ij , it is easy to show that

the optimal distribution is to place all the probability mass

on Pij = 0 and Pij = 1/2 such that the expectation is c, in

other words Q(0) = 1− 2c and Q(1/2) = 2c. This shows

that instead of spending the resource uniformly to obtain

many “moderately certain” observations, one should spend

all the resource on a small number of accurate observations.

We summarize the above with the following corollary:

Corollary 2. For the resource allocation problem with

Mij = γ( 12 − Pij) and per-pair resource EMij = α, the

order-wise optimal distribution on Pij is Q(0) = 1 − 2c
and Q(1/2) = 2c where c = 1

2 −
α

γ
.

Model 2: Another natural model assumes that Mij is in-

versely proportional to Pij . This model is motivated by

the central limit theorem which asserts that the variance of

the mean of independent observations decreases with the

inverse of the number of observations. More precisely, we
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assume Mij =
1

Pij
�2, so Pij = 1/2 corresponds to no ob-

servation at all and Mij = 0 resource is needed. Again, by

Corollary 1 we seek to maximize E[( 12 � Pij)
2] subject to

the constraint E
P

i<j Mij = M . The general optimal dis-

tribution is complicated and we therefore consider a sim-

plified scenario where the resource will be spent uniformly

on a random subset S of all n(n � 1)/2 pairs, such that

each pair (i, j) is in S with probability β. Let α = 2M
n(n−1)

be the amount of per-pair resource. In this case, Mij = α
β

with probability β and Mij = 0 otherwise. Equivalently,

Pij = β

α+2β with probability β and Pij = 1
2 otherwise.

Given α, the objective is then to maximize

E

"

✓

1

2
� Pij

◆2
#

= β

✓

1

2
� β

α+ 2β

◆2

by choosing the fraction β of selected pairs. A little calcu-

lus reveals that the maximum is attained at β = α
2 when

α  2 and β = 1 otherwise. We therefore have the follow-

ing:

Corollary 3. For the resource allocation problem with

Mij = 1
Pij

� 2, suppose that we select each node pair

with probability β and allocate the total resource M uni-

formly to the selected pairs to achieve the same uncertainty

Pij = β

α+2β where α = M
n2 . The optimal performance is

achieved with β = α
2 if α  2 and β = 1 otherwise.

5. Empirical Results

To empirically evaluate our theoretic findings in Section 3,

we follow Chen et al. (2012) to adapt the Augmented La-

grangian Multiplier algorithm by Lin et al. (2009) to solve

our weighted program (2)–(5). In particular, we may re-

place the constraint kY k∗  n by a regularization term in

the objective function and solve the following program:

min
Y ∈Rn×n

kY k∗ + λ
X

ij

Bij |Aij � Yij |

s.t. 0  Yij  1, 8i, j,

where λ is chosen to be small enough (usually around

1/
p
n) such that the solution satisfies kY k∗  n.

In our simulations, we repeat each test 100 times and report

the success rate, which is the fraction of attempts where the

true clustering is recovered. Error bars show 95% confi-

dence interval. In all our experiments, we choose to report

results from parameter regions where the problem is neither

too hard nor too easy to solve. We note that qualitatively

the results are similar across a wide range of distributions.

We test our theory by comparing three different weighting

schemes for graph clustering with non-uniform uncertain-

ties. In particular, we compare the weighted formulation

with the MLE weights with the unweighted formulation.

The third candidate is a step weighting schemes where the

different observation uncertainties are quantized into 3 lev-

els, each with a different weight, with higher weights on

the more certain observations.

The ground truth consists of n nodes divided into 4 equal-

size clusters. We tested with n = 200 and n = 1000. The

following stochastic model is used: for each pair of nodes,

with probability q it is unobserved (i.e., Pij = 0.5), oth-

erwise the uncertainties vary uniformly at random between

0.26�∆ and 0.26+∆. The graph is then generated accord-

ing to the model in Section 2.1 with error probability Pij .

For n = 200 we use q = 0.6 while for n = 1000 we use

q = 0.7 since the problem is easier for larger n. For step

weights, we split the range (0.26�∆, 0.26+∆) to 3 equal

intervals (0.26�∆, 0.26� ∆

3 ), (0.26� ∆

3 , 0.26+
∆

3 ) and

(0.26+ ∆

3 , 0.26+∆). All Pij in the same interval receives

the same weight, which is is based on the MLE weight of

the largest Pij in the interval.

Note that the expected total number of errors is the same

for all ∆ while the range of uncertainties increases with ∆.

Figures 1 and 2 show the results for n = 200 and 1000.
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Figure 1. Success rates of different weighting schemes (n = 200)
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Figure 2. Success rates of different weighting schemes (n =

1000)

The results show that the success rate is higher when
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weighting is used, especially when the uncertainties in the

observations are non-uniform. Furthermore, it shows that

the MLE weights outperforms the step/quantized weights.

This shows that not all weighting schemes are equal, and

the largest performance gain is achieved when the uncer-

tainties are most non-uniform. This is consistent with our

theoretical prediction.

Also, recall that in the resource allocation problem with

the linear model Mij = α − βPij , we showed that the

optimal choice of Pij subject to the constraint that E(Pij)
is a constant would be to maximize the variance. The re-

sults in Figures 1 and 2 confirm this choice since E(Pij)
is the same for all ∆ and the best recovery performance is

achieved when ∆ is the largest.

To test the clustering performance under various cluster

size K, we run another set of experiments on 200 nodes

with a fix uncertainty distribution but with different clus-

ter sizes. Figure 3 shows the results of 4 different weight-

ing schemes. The distribution of Pij is such that 20% of

the pairs are unobserved, and among the rest, Pij is either

0.1 or 0.4, each with 0.5 probability. The MLE weight is

again Bij = log
1−Pij

Pij
. “Weight A” reduces the weight for

Pij = 0.1 and increases the weight for Pij = 0.4 such that

their relative strength is only half compared to that of the

MLE weights. On the other hand, “Weight B” increases

the relative strength such that it is double that of the MLE

weights. The results in Fig. 3 show that the MLE weights

indeed achieves the best performance across various cluster

sizes while the unweighted solution performs worst.
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Figure 3. Success rates with respect to changing cluster sizes

Our last experiment concerns the analysis regarding re-

source allocation under Model 2. Figure 4 shows results

for α = 1.6 on 100 nodes, with a wide range of β. In-

deed, with the same resource constraint, the best success

rate in recovering the underlying graph is achieved around

β = 0.8 as predicted by Corollary 3. It is interesting to note

that observing 80% of the data with error rate 0.25 (overall

error rate 0.3) actually results in a better success rate than

observing all the data with error rate 0.28. This result is not

obvious a priori and demonstrates the predictive power of

our theoretical results.
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Figure 4. Verifying the predicted optimal resource allocation un-

der Model 2.

6. Conclusion

We studied the graph clustering problem where observa-

tions have different levels of confidence. We proposed

an (computationally tractable) approach based on optimiz-

ing an appropriate weighted objective. Our analysis estab-

lishes a general theoretical guarantee for correct recovery

of the clustering structure, which applies to any weighting

scheme and any uncertainty distribution. The general the-

orem leads to a provably optimal weighting scheme, and

applies to several specific settings including partial obser-

vation and resource allocation.

Our approach and analysis highlight the “power of knowl-

edge” and the “concentration gain”: using prior knowl-

edge of the uncertainty levels improves performance, and

a few accurate measurements are better than many inaccu-

rate measurements.

This paper focuses on graph clustering. The stepping stone

of our approach is low-rank-and-sparse matrix decomposi-

tion based on nuclear norm relaxations. It is of interest to

extend our methods and analysis to general matrix decom-

position problems with non-uniform priors.
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