WEIGHTED INEQUALITIES FOR THE ONE-SIDED HARDY-LITTLEWOOD MAXIMAL FUNCTIONS

E. SAWYER ${ }^{1}$

Abstract. Let $M^{+} f(x)=\sup _{h>0}(1 / h) \int_{x}^{x+h}|f(t)| d t$ denote the one-sided maximal function of Hardy and Littlewood. For $w(x) \geqslant 0$ on R and $1<p<\infty$, we show that M^{+}is bounded on $L^{p}(w)$ if and only if w satisfies the one-sided A_{p} condition:

$$
\begin{equation*}
\left[\frac{1}{h} \int_{a-h}^{a} w(x) d x\right]\left[\frac{1}{h} \int_{a}^{a+h} w(x)^{-1 /(p-1)} d x\right]^{p-1} \leqslant C \tag{p}
\end{equation*}
$$

for all real a and positive h. If in addition $v(x) \geqslant 0$ and $\sigma=v^{-1 /(p-1)}$, then M^{+}is bounded from $L^{p}(v)$ to $L^{p}(w)$ if and only if

$$
\int_{I}\left[M^{+}\left(\chi_{I} \sigma\right)\right]^{p} w \leqslant C \int_{I} \sigma<\infty
$$

for all intervals $I=(a, b)$ such that $\int_{-\infty}^{a} w>0$. The corresponding weak type inequality is also characterized. Further properties of A_{p}^{+}weights, such as $A_{p}^{+} \Rightarrow$ $A_{p-\varepsilon}^{+}$and $A_{p}^{+}=\left(A_{1}^{+}\right)\left(A_{1}^{-}\right)^{1-p}$, are established.

1. Introduction. For f locally integrable on the real line R, define the maximal function $M f$ at x by

$$
M f(x)=\sup _{a<x<b} \frac{1}{b-a} \int_{a}^{b}|f(t)| d t .
$$

In [9], B. Muckenhoupt characterized, for $1<p<\infty$, the nonnegative functions, or weights, $w(x)$ on R satisfying the weighted norm inequality
$\left(N_{p}\right) \quad \int_{-\infty}^{\infty}[M f(x)]^{p} w(x) d x \leqslant C \int_{-\infty}^{\infty}|f(x)|^{p} w(x) d x$, for all f,
as those weights w satisfying the A_{p} condition
(A_{p})

$$
\left[\frac{1}{h} \int_{a}^{a+h} w(x) d x\right]\left[\frac{1}{h} \int_{a}^{a+h} w(x)^{-1 /(p-1)} d x\right]^{p-1} \leqslant C^{\prime}, \quad a \text { in } R, h>0 .
$$

This leaves open, however, the characterization of the corresponding norm inequalities for the original maximal function of Hardy and Littlewood [5],

$$
M^{-} f(x)=\sup _{h>0} \frac{1}{h} \int_{x-h}^{x}|f(t)| d t
$$

[^0]and its counterpart
$$
M^{+} f(x)=\sup _{h>0} \frac{1}{h} \int_{x}^{x+h}|f(t)| d t
$$
(M^{+}arises in the ergodic maximal function discussed below.) Denote by (N_{p}^{+}) and (N_{p}^{-}) the weighted inequalities corresponding to (N_{p}) with M replaced by M^{+}and M^{-}respectively. Observe that A_{p} is not a necessary condition for either N_{p}^{+}or N_{p}^{-}. In fact, the product of any nondecreasing function with an A_{p} weight satisfies N_{p}^{+}. More generally, if $\left\{w_{\alpha}(x)\right\}_{\alpha \in R}$ is a family of weights uniformly in A_{p}, and if μ is a positive measure on R, then $w(x)=\int \chi_{(\alpha, \infty)}(x) w_{\alpha}(x) d \mu(\alpha)$ satisfies N_{p}^{+}.

Theorem 1. Suppose $w(x) \geqslant 0$ on R and $1<p<\infty$. Then the weighted inequality (N_{p}^{+}) holds if and only if w satisfies the one-sided A_{p} condition (A_{p}^{+})
$\left[\frac{1}{h} \int_{a-h}^{a} w(x) d x\right]\left[\frac{1}{h} \int_{a}^{a+h} w(x)^{-1 /(p-1)} d x\right]^{p-1} \leqslant C^{\prime} \quad$ for all real a, and $h>0$.
Similarly, (N_{p}^{-}) holds if and only if
(A_{p}^{-})
$\left[\frac{1}{h} \int_{a}^{a+h} w(x) d x\right]\left[\frac{1}{h} \int_{a-h}^{a} w(x)^{-1 /(p-1)} d x\right]^{p-1} \leqslant C^{\prime} \quad$ for all real a, and $h>0$.
Remarks. (A) The following "duality" relationship holds: w satisfies A_{p}^{+}if and only if $w^{1-p^{\prime}}$ satisfies $A_{p^{\prime}}^{-}$where $1 / p+1 / p^{\prime}=1$.
(B) If $M^{-} w_{1} \leqslant C w_{1}$ and $M^{+} w_{2} \leqslant C w_{2}$, it is trivially verified that $w=w_{1}\left(w_{2}\right)^{1-p}$ satisfies A_{p}^{+}. Theorem 1 together with Remark A and the argument of Coifman, Jones and Rubio in [4] yields the converse: If w satisfies A_{p}^{+}, then there are w_{1}, w_{2} such that $M^{-} w_{1} \leqslant C w_{1}, M^{+} w_{2} \leqslant C w_{2}$ and $w=w_{1}\left(w_{2}\right)^{1-p}$. In future we say that w satisfies the $A_{1}^{+}\left(A_{1}^{-}\right)$condition if $M^{-} w\left(M^{+} w\right) \leqslant C w$.
(C) A modification of B. Jawerth's proof of the reverse Hölder inequality for A_{1} weights [7] shows that if w satisfies A_{1}^{+}, then $w^{1+\delta}$ also satisfies A_{1}^{+}for some $\delta>0$. (Note however that w cannot in general satisfy a reverse Hölder inequality.) Combining this with the factorization of A_{p}^{+}weights discussed in the previous remark, we obtain the implication $A_{p}^{+} \Rightarrow A_{p-\varepsilon}^{+}$: More precisely, if w satisfies A_{p}^{+}for a given $p, 1<p<\infty$, then w satisfies $A_{p-\varepsilon}^{+}$for some $\varepsilon>0$. Details can be found in §3.
(D) Suppose T is a measure preserving (not necessarily invertible) ergodic transformation on a probability space $(\Omega, \mathscr{M}, \mu)$. Let

$$
f^{*}(x)=\sup _{k \geqslant 0} \frac{1}{k+1} \sum_{j=0}^{k}\left|f\left(T^{j} x\right)\right|
$$

denote the ergodic maximal function of f. It can be shown (see Atencia and De La Torre [3]) that

$$
\int_{\Omega}\left|f^{*}(x)\right|^{p} w(x) d \mu(x) \leqslant C \int_{\Omega}|f(x)|^{p} w(x) d \mu(x)
$$

for all f if and only if for μ-almost every x in Ω,

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left[\sup _{k \geqslant 0} \frac{1}{k+1} \sum_{j=0}^{k}\left|f\left(T^{n+j} x\right)\right|\right]^{p} w\left(T^{n} x\right) \leqslant C \sum_{n=0}^{\infty}\left|f\left(T^{n} x\right)\right|^{p} w\left(T^{n} x\right) \tag{1.1}
\end{equation*}
$$

for all f defined on $\left\{T^{n} x\right\}_{n=0}^{\infty}$. (The ergodic property is needed only for the necessity of (1.1).) A discrete analogue of Theorem 1 together with elementary measure theory shows that (1.1) holds if and only if there is C^{\prime} such that for μ-almost every x in Ω and every $k \geqslant 0$

$$
\left[\frac{1}{k+1} \sum_{j=0}^{k} w\left(T^{j} x\right)\right]\left[\frac{1}{k+1} \sum_{j=k}^{2 k} w\left(T^{j} x\right)^{-1 /(p-1)}\right]^{p-1} \leqslant C^{\prime}
$$

A similar characterization for the two-sided ergodic maximal function corresponding to an invertible measure preserving ergodic transformation T was obtained in [3].

We turn now to the two-weight norm inequality for M^{+}:

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|M^{+} f\right|^{p} w \leqslant C \int_{-\infty}^{\infty}|f|^{p} v \quad \text { for all } f \tag{1.2}
\end{equation*}
$$

It is convenient to set $\sigma=v^{1-p^{\prime}}=v^{-1 /(p-1)}$ and replace f with $f \sigma$ in (1.2). The resulting equivalent inequality reads

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|M^{+}(f \sigma)\right|^{p} w \leqslant C \int_{-\infty}^{\infty}|f|^{p} \sigma \quad \text { for all } f \tag{1.3}
\end{equation*}
$$

The corresponding weak type inequality for M^{+}is

$$
\begin{equation*}
\left|\left\{M^{+}(f \sigma)>\lambda\right\}\right|_{\omega} \leqslant \frac{C}{\lambda^{p}} \int_{-\infty}^{\infty}|f|^{p} \sigma \quad \text { for all } f, \tag{1.4}
\end{equation*}
$$

where the notation $|E|_{w}$ stands for $\int_{E} w(x) d x$. In analogy with results in [11 and 9], we have

Theorem 2. Suppose $w(x), \sigma(x)$ are nonnegative measurable functions on R and $1<p<\infty$. Then the strong type inequality, (1.3), holds if and only if

$$
\begin{equation*}
\int_{I}\left|M^{+}\left(\chi_{I} \sigma\right)\right|^{p} w \leqslant B \int_{I} \sigma<\infty \tag{1.5}
\end{equation*}
$$

for all intervals $I=(a, b)$ such that $\int_{-\infty}^{a} w>0$. If C and B are the best constants in (1.3) and (1.5) then their ratio is bounded between two positive constants depending only on p.

The weak type inequality, (1.4), holds if and only if ${ }^{2}$

$$
\begin{equation*}
\left[\frac{1}{h} \int_{a-h}^{a} w\right]\left[\frac{1}{h} \int_{a}^{a+h} \sigma\right]^{p-1} \leqslant A \quad \text { for all } a \in R, h>0 \tag{1.6}
\end{equation*}
$$

Again, the best constants in (1.4) and (1.6) are comparable. Corresponding results hold for M^{-}.

[^1]Theorem 1 follows easily from Theorem 2 using a clever argument of Hunt, Kurtz and Neugebauer [6] as follows. First, N_{p}^{+}implies A_{p}^{+}by a standard argument in [9] that involves testing N_{p}^{+}with $f=\chi_{(a, a+h)} w^{1-p^{\prime}}$. For the converse, it suffices to show that A_{p}^{+}implies (1.5) with $\sigma=w^{1-p^{\prime}}$. Fix an interval $I=(a, b)$ with $\int_{-\infty}^{a} w$ >0 and a point x in I. Choose $h>0$ so that $x+h$ is in I and $h^{-1} \int_{x}^{x+h} \sigma$ $\geqslant \frac{3}{4} M^{+}\left(\chi_{I} \sigma\right)(x)$. Since $h^{-1} \int_{x}^{x+h / 2} \sigma \leqslant \frac{1}{2} M^{+}\left(\chi_{I} \sigma\right)(x)$ by definition, we conclude

$$
\begin{aligned}
M^{+}\left(\chi_{I} \sigma\right)(x) & \leqslant \frac{4}{h} \int_{x+h / 2}^{x+h} \sigma \leqslant C\left[\frac{h}{2} / \int_{x}^{x+h / 2} w\right]^{p^{\prime}-1} \text { by } A_{p}^{+} \\
& =C\left[\int_{x}^{x+h / 2} w^{-1} w / \int_{x}^{x+h / 2} w\right]^{p^{\prime}-1} \leqslant C M_{w}^{+}\left(\chi_{I} w^{-1}\right)(x)^{p^{\prime}-1}
\end{aligned}
$$

where

$$
M_{w}^{+} f(x)=\sup _{h>0}\left[\int_{x}^{x+h}|f| w / \int_{x}^{x+h} w\right]
$$

Now M_{w}^{+}is bounded on $L^{q}(w)$ for any $w \geqslant 0$ on R and $1<q<\infty$, and thus

$$
\int_{I}\left|M^{+}\left(\chi_{I} \sigma\right)\right|^{p} w \leqslant C^{p} \int_{I}\left|M_{w}^{+}\left(\chi_{I} w^{-1}\right)\right|^{p^{\prime}} w \leqslant C \int_{I} \sigma .
$$

Finally, we consider reverse weighted inequalities for M^{+}. For v, w nonnegative and locally integrable on R and $1<p<\infty$, the reverse weighted strong type inequality

$$
\begin{equation*}
\int_{-\infty}^{\infty}|f|^{p} v \leqslant C \int_{-\infty}^{\infty}\left|M^{+} f\right|^{p} w \quad \text { for all } f \tag{1.7}
\end{equation*}
$$

holds only in two trivial cases: either $\int_{-\infty}^{-1} w(x) /|x|^{p} d x=\infty$ or $v(x) \leqslant C^{\prime} w(x)$ for a.e. x. The reverse weighted weak type $(1,1)$ inequality,

$$
\begin{equation*}
\left|\left\{M^{+} f>\lambda\right\}\right|_{w} \geqslant \frac{C}{\lambda} \int_{\{f>\lambda\}} f v \quad \text { for all } f \geqslant 0 \tag{1.8}
\end{equation*}
$$

holds if and only if for almost every a in R,

$$
\begin{equation*}
\inf _{h>0} \frac{1}{h} \int_{a-h}^{a} w(x) d x \geqslant C^{\prime} v(a) \tag{1.9}
\end{equation*}
$$

Proofs of these assertions can be found in $\S 3$. See [2 and 10] concerning the reverse weighted weak-type $(1,1)$ inequality for M and its applications.

Throughout this paper the letter C will denote a positive constant that may vary from line to line but will remain independent of the relevant quantities.
2. Proof of Theorem 2. In proving the analogue of Theorem 2 for the two-sided maximal function, the following key property of M is used: $M f(x) \geqslant(1 /|I|) \int_{I}|f|$ for x in I. This fails for both M^{+}and M^{-}and accounts for the bulk of difficulty in dealing with one-sided maximal operators. We circumvent this obstacle with the aid of the next lemma and some known results on Hardy operators.

Lemma 2.1. Suppose $g \geqslant 0$ is integrable with compact support on R. If $I=(a, b)$ is a component interval of the open set $\left\{M^{+} g>\lambda\right\}, \lambda>0$, then

$$
\begin{equation*}
\frac{1}{b-x} \int_{x}^{b} g \geqslant \lambda \quad \text { for } a \leqslant x<b \tag{2.1}
\end{equation*}
$$

To prove the lemma, fix $a<x<b$ and let r be the largest number such that $(r-x)^{-1} \int_{x}^{r} g \geqslant \lambda$. If $r<b$, then $(s-r)^{-1} \int_{r}^{s} g>\lambda$ for some $s>r$ by definition and this yields $(s-x)^{-1} \int_{x}^{s} g \geqslant \lambda$, contradicting the definition of r. Thus $r \geqslant b$. If $r>b$, then $(r-b)^{-1} \int_{b}^{r} g \leqslant \lambda$ since b is not in $\left\{M^{+} g>\lambda\right\}$. Together with $(r-x)^{-1} \int_{x}^{r} g \geqslant \lambda$, we obtain $(b-x)^{-1} \int_{x}^{b} g \geqslant \lambda$ as required.

To deal with the weak type inequality (1.4) we need the following ([12]: see Theorem 4 and the subsequent note; see also [1]).

Lemma 2.2. Let σ, w be nonnegative weights on $(0, \infty), 1<p<\infty$ and $T_{1} g(x)=$ $x^{-1} \int_{0}^{x} g(t) d t$ for locally integrable g. Then

$$
\left|\left\{T_{1}(f \sigma)>\lambda\right\}\right|_{w} \leqslant C\left[\sup _{0<x \leqslant s<\infty} s^{-p}\left(\int_{x}^{s} w\right)\left(\int_{0}^{x} \sigma\right)^{p-1}\right] \frac{1}{\lambda^{p}} \int_{0}^{\infty}|f|^{p} \sigma .
$$

We now prove the equivalence of (1.4) and (1.6). First, (1.4) implies (1.6) by a standard argument (see e.g. [9]) that involves testing (1.4) with $f=\chi_{I}$ and $\lambda=\frac{1}{2} \int_{I} \sigma$. Conversely, suppose (1.6) holds. It suffices to prove (1.4) for functions $f \geqslant 0$ such that $f \sigma$ is bounded with compact support. So fix such an f and a $\lambda>0$. Let $\left\{I_{j}\right\}_{j}$ be the component intervals of $\left\{M^{+}(f \sigma)>\lambda\right\}$. Applying Lemmas 2.1 and 2.2 (with a linear change of variable) to a fixed interval $I_{j}=(a, b)$, we obtain

$$
\begin{aligned}
\left|I_{j}\right|_{w} & \leqslant\left|\left\{x: \frac{1}{b-x} \int_{x}^{b} \chi_{I_{j}} f \sigma \geqslant \lambda\right\}\right|_{w} \\
& \leqslant C\left[\sup _{a \leqslant s \leqslant x<b}(b-s)^{-p}\left(\int_{s}^{x} w\right)\left(\int_{x}^{b} \sigma\right)^{p-1}\right] \frac{1}{\lambda^{p}} \int_{I_{j}}|f|^{p} \sigma \\
& \leqslant \frac{C A}{\lambda^{p}} \int_{I_{j}}|f|^{p} \sigma \quad \text { by (1.6) with } a=x \text { and } h=b-s .
\end{aligned}
$$

Summing over j yields (1.4).
To deal with the strong type inequality (1.3) we need an apparent strengthening of the usual weighted inequality for the adjoint Hardy operator.

Lemma 2.3. Suppose σ, u are nonnegative weights on R and $1<p<\infty$. Then for all f,

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|\int_{x}^{\infty} f \sigma\right|^{p} u(x) d x \leqslant C_{p} \int_{-\infty}^{\infty}\left[\sup _{r \leqslant x}\left(\int_{-\infty}^{r} u\right)\left(\int_{r}^{\infty} \sigma\right)^{p-1}\right]|f(x)|^{p} \sigma(x) d x \tag{2.2}
\end{equation*}
$$

To see this, rewrite (2.2) as $\int_{-\infty}^{\infty}\left|\int_{x}^{\infty} g\right|^{p} u(x) d x \leqslant C_{p} \int_{-\infty}^{\infty}|g|^{p} \mu v$ where $v=\sigma^{1-p}$, $g=f \sigma$ and $\mu(x)$ denotes the supremum in square brackets on the right side of (2.2). This latter inequality holds since $\left(\int_{-\infty}^{r} u\right)\left(\int_{r}^{\infty}(\mu v)^{1-p^{\prime}}\right)^{p-1} \leqslant 1$ for all $r>0$ (see [8]).

We will also need
Lemma 2.4. For $1<p<\infty$ and $\sigma, w \geqslant 0$ on R, condition (1.5) implies

$$
\begin{equation*}
\left[\int_{-\infty}^{r} \frac{w(x)}{(b-x)^{p}} d x\right]\left[\int_{r}^{b} \sigma\right]^{p-1} \leqslant C B \quad \text { for all }-\infty<r \leqslant b<\infty . \tag{2.3}
\end{equation*}
$$

To prove this, let $x_{0}=r>x_{1}>x_{2} \cdots$ satisfy $\int_{x_{k}}^{b} \sigma=2^{k} \int_{r}^{b} \sigma$ for $k=0,1,2 \ldots$ Then

$$
\begin{aligned}
{\left[\int_{-\infty}^{r} \frac{w(x)}{(b-x)^{p}} d x\right]\left[\int_{r}^{b} \sigma\right]^{p} } & =\sum_{k=0}^{\infty}\left[\int_{x_{k+1}}^{x_{k}} \frac{w(x)}{(b-x)^{p}} d x\right] 2^{-k p}\left[\int_{x_{k}}^{b} \sigma\right]^{p} \\
& \leqslant \sum_{k=0}^{\infty} 2^{-k p} \int_{x_{k+1}}^{b}\left|M^{+}\left(\chi_{\left(x_{k+1}, b\right)} \sigma\right)\right|^{p} w \\
& \leqslant \sum_{k=0}^{\infty} 2^{-k p} B \int_{x_{k+1}}^{b} \sigma=B \sum_{k=0}^{\infty} 2^{-k p+k+1} \int_{r}^{b} \sigma=C B \int_{r}^{b} \sigma
\end{aligned}
$$

by (1.5) which yields (2.3).
We now prove the equivalence of (1.3) and (1.5). Once again, a standard argument (see e.g. [11]) shows that (1.3) implies (1.5). Conversely, suppose (1.5) holds. It suffices to prove (1.3) for functions $f \geqslant 0$ such that $f \sigma$ is bounded with compact support. So fix such an f and for k in Z, let $I_{j}^{k}=\left(a_{j}^{k}, b_{j}^{k}\right), j$ an integer, be the component intervals of the open set $\Omega_{k}=\left\{M^{+} f \sigma>2^{k}\right\}$. With $E_{j}^{k}=I_{j}^{k}-\Omega_{k+1}$ we have

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|M^{+}(f \sigma)\right|^{p} w \leqslant 2^{p} \sum_{k} 2^{k p}\left|\Omega_{k}-\Omega_{k+1}\right|_{w} \leqslant C \sum_{k, j} 2^{k p}\left|E_{j}^{k}\right|_{w} \tag{2.4}
\end{equation*}
$$

For future reference, let

$$
\mu_{j}^{k}(x)=\sup _{a_{j}^{k} \leqslant r \leqslant x}\left[\int_{a_{j}^{k}}^{r} \frac{\chi_{E_{j}^{k}} w(t) d t}{\left(b_{j}^{k}-t\right)^{p}}\right]\left[\int_{r}^{b_{j}^{k}} \sigma\right]^{p-1} \quad \text { for } x \text { in } I_{j}^{k}
$$

We now fix k, j momentarily and estimate $2^{k p}\left|E_{j}^{k}\right|_{w}$. For convenience in writing let $I=(a, b)=I_{j}^{k}, E=E_{j}^{k}, \mu=\mu_{j}^{k}$ and for those I_{i}^{k+1} contained in I_{j}^{k}, let $J_{i}=I_{i}^{k+1}$. Define $g=\chi_{E} f$ and $h=\sum_{i}\left(\left|J_{i}\right|_{\sigma}^{-1} \int_{J_{i}} f \sigma\right) \chi_{J_{i}}$. For x in E we have

$$
2^{k} \leqslant \frac{1}{b-x} \int_{x}^{b} f \sigma=\frac{1}{b-x} \int_{x}^{b}(g+h) \sigma
$$

by Lemma 2.1 and so

$$
\begin{align*}
2^{k p}|E|_{w} & \leqslant \int_{E} \frac{w(x)}{(b-x)^{p}}\left(\int_{x}^{b}(g+h) \sigma\right)^{p} d x \tag{2.5}\\
& \leqslant C \int \mu(x)\left[g(x)^{p}+h(x)^{p}\right] \sigma(x) d x \quad \text { by Lemma } 2.3 \\
& \leqslant C B \int g(x)^{p} \sigma(x) d x+C \int \mu(x) h(x)^{p} \sigma(x) d x
\end{align*}
$$

by Lemma 2.4. Reverting to our previous notation (2.5) becomes

$$
\begin{align*}
2^{k p}\left|E_{j}^{k}\right|_{w} \leqslant & C B \int_{E_{j}^{k}} f^{p} \sigma \tag{2.6}\\
& +C \sum_{I_{i}^{k+1} \subset I_{j}^{k}} \mu_{j}^{k}\left(a_{i}^{k+1}\right)\left|I_{i}^{k+1}\right|_{\sigma}\left(\frac{1}{\left|I_{i}^{k+1}\right|_{\sigma}} \int_{I_{i}^{k+1}} f \sigma\right)^{p}
\end{align*}
$$

Plugging (2.6) into (2.4) we obtain

$$
\begin{align*}
\int_{-\infty}^{\infty}\left|M^{+}(f \sigma)\right|^{p} w \leqslant & C B \int f^{p} \sigma \tag{2.7}\\
& +C \sum_{k, j} \sum_{I_{i}^{k+1} \subset I_{j}^{k}} \mu_{j}^{k}\left(a_{i}^{k+1}\right)\left|I_{i}^{k+1}\right|_{\sigma}\left(\frac{1}{\left|I_{i}^{k+1}\right|_{\sigma}} \int_{I_{i}^{k+1}} f \sigma\right)^{p}
\end{align*}
$$

since the E_{j}^{k} are pairwise disjoint.
Since the I_{j}^{k} are nested $\left(k<l \Rightarrow\right.$ either $I_{i}^{l} \subset I_{j}^{k}$ or $I_{i}^{l} \cap I_{j}^{k}=\varnothing$ for all $\left.i, j\right)$, a standard interpolation argument (see [11]) shows that the second term on the right side of (2.7) is dominated by $C B \int f^{p} \sigma$ provided the following Carleson condition holds:

$$
\begin{equation*}
\sum_{I_{j}^{k} \subset I_{s}^{t}} \gamma_{j}^{k}\left|I_{j}^{k}\right|_{\sigma} \leqslant C B\left|I_{s}^{t}\right|_{\sigma}, \quad \text { for all } t, s \tag{2.8}
\end{equation*}
$$

where $\gamma_{j}^{k}=\mu_{l}^{k-1}\left(a_{j}^{k}\right)$ and where l is such that $I_{j}^{k} \subset I_{l}^{k-1}$. It will be convenient to denote this "predecessor" of I_{j}^{k}, namely I_{l}^{k-1}, by $\left(c_{j}^{k}, d_{j}^{k}\right)$. Since $\gamma_{s}^{t} \leqslant C B\left|I_{s}^{t}\right|_{\sigma}$ by Lemma 2.4, we need only estimate the sum in (2.8) over intervals I_{j}^{k} properly contained in I_{s}^{t}. For each k, j let r_{j}^{k} satisfy $c_{j}^{k} \leqslant r_{j}^{k} \leqslant a_{j}^{k}$ and

$$
\left[\int_{c_{j}^{k}}^{r_{j}^{k}} \frac{\chi_{E_{i}^{k-1}} w(t)}{\left(d_{j}^{k}-t\right)^{p}} d t\right]\left[\int_{r_{j}^{k}}^{d_{j}^{k}} \sigma\right]^{p-1} \geqslant \frac{\gamma_{j}^{k}}{2}
$$

Then, for fixed I_{l}^{k-1} contained in I_{s}^{t} we have

$$
\begin{align*}
\sum_{I_{j}^{k} \subset I_{l}^{k-1}} \gamma_{j}^{k}\left|I_{j}^{k}\right|_{\sigma} & \leqslant \sum_{I_{j}^{k} \subset I_{l}^{k-1}} \int \frac{\chi_{E_{-}^{k-1}} w(t)}{\left(d_{j}^{k}-t\right)^{p}}\left[\int_{r_{j}^{k}}^{d_{j}^{k}} \sigma\right]^{p-1} \chi_{\left(c_{j}^{k}, r_{j}^{k}\right)}(t)\left|I_{j}^{k}\right|_{\sigma} d t \tag{2.9}\\
& =\int_{E_{l}^{k-1}} \frac{w(t)}{\left(b_{l}^{k-1}-t\right)^{p}}\left\{\sum_{I_{j}^{k} \subset I_{l}^{k-1}} \chi_{\left(c_{j}^{k}, r_{j}^{k}\right)}(t)\left(\int_{r_{j}^{k}}^{b_{l}^{k-1}} \sigma\right)^{p-1}\left|I_{j}^{k}\right|_{\sigma}\right\} d t \\
& \leqslant \int_{E_{l}^{k-1}} \frac{w(t)}{\left(b_{l}^{k-1}-t\right)^{p}}\left(\int_{t}^{b_{l}^{k-1}} \sigma\right)^{p} d t \\
& \leqslant \int_{E_{l}^{k-1}}\left|M^{+}\left(\chi_{I_{s}^{\prime}} \sigma\right)\right|^{p} w .
\end{align*}
$$

Summing (2.9) over all I_{l}^{k-1} contained in a fixed I_{s}^{t}, we obtain

$$
\begin{aligned}
\sum_{I_{j}^{k} \subsetneq I_{s}^{\prime}} \gamma_{j}^{k}\left|I_{j}^{k}\right|_{\sigma} & \leqslant \sum_{I_{l}^{k-1} \subset I_{s}^{t}} \int_{E_{l}^{k-1}}\left|M^{+}\left(\chi_{I_{s}^{\prime}} \sigma\right)\right|^{p} w \\
& \leqslant \int_{I_{s}^{\prime}}\left|M^{+}\left(\chi_{I_{s}^{\prime}} \sigma\right)\right|^{p} w \leqslant B\left|I_{s}^{t}\right| \sigma
\end{aligned}
$$

by (1.5). This establishes (2.8) and completes the proof of Theorem 2.
3. Appendix. We now complete the proof of Remark (C). Suppose w satisfies A_{1}^{+}, i.e. $M^{-} w \leqslant C w$. Fix an interval $I=(a, b)$. If $\lambda>M^{-} w(b)$, then $\Omega_{\lambda}=\left\{M^{-}\left(\chi_{I^{w}}\right)\right.$ $>\lambda\}$ is contained in I. If $\left\{I_{j}\right\}_{j}$ are the component intervals of Ω_{λ}, then $\left(1 /\left|I_{j}\right|\right) \int_{I_{j}} w$ $\geqslant \lambda$ for all j by Lemma 2.1. But $\left(1 /\left|I_{j}\right|\right) \int_{I_{j}} w \leqslant \lambda$ since the right endpoint of I_{j} is not in Ω_{λ}. Thus we have

$$
\begin{align*}
\left|\Omega_{\lambda}\right|_{w} & =\sum_{j} \int_{I_{j}} w=\lambda \sum_{j}\left|I_{j}\right|=\lambda\left|\Omega_{\lambda}\right| \tag{3.1}\\
& \leqslant \lambda|I \cap\{w>\lambda / C\}| \quad \text { since } M^{-} w \leqslant C w .
\end{align*}
$$

The argument of B. Jawerth in §5 of [7] now applies as follows.

$$
\begin{aligned}
\int_{I \cap\left\{w>M^{-} w(b)\right\}} w^{1+\delta}= & \left|I \cap\left\{w>M^{-} w(b)\right\}\right|\left(M^{-} w(b)\right)^{1+\delta} \\
& +\delta \int_{M^{-} w(b)}^{\infty} \lambda^{\delta-1}|I \cap\{w>\lambda\}|_{w} d \lambda \\
\leqslant & |I|\left(M^{-} w(b)\right)^{1+\delta}+\delta \int_{M^{-} w(b)}^{\infty} \lambda^{\delta}\left|I \cap\left\{w>\frac{\lambda}{C}\right\}\right| d \lambda
\end{aligned}
$$

(using $|I \cap\{w>\lambda\}|_{w} \leqslant\left|\Omega_{\lambda}\right|_{w}$ and then (3.1))

$$
\leqslant|I|\left(M^{-} w(b)\right)^{1+\delta}+C \frac{\delta}{1+\delta} \int_{I \cap\left\{w>M^{-} w(b)\right\}} w^{1+\delta} .
$$

Choosing $\delta>0$ sufficiently small we get

$$
\int_{I} w^{1+\delta} \leqslant C|I|\left(M^{-} w(b)\right)^{1+\delta} \leqslant C|I| w^{1+\delta}(b)
$$

since $M^{-} w \leqslant C w$, and this shows that $M^{-}\left(w^{1+\delta}\right) \leqslant C w^{1+\delta}$ as required.
We now prove the assertions made in the introduction concerning reverse weighted inequalities for M^{+}. Suppose $1<p<\infty$ and v, w are nonnegative locally integrable weights satisfying the reverse weighted inequality (1.7). Suppose further that $\int_{-\infty}^{-1} w(x) /|x|^{p} d x<\infty$. We must show that $v(x) \leqslant C^{\prime} w(x)$ for a.e. x. Fix x, a Lebesgue point of both v and w, and let $\varepsilon>0$ be given. Choose $R>0$ so that $r^{-1} \int_{x-r}^{x} w \leqslant w(x)+\varepsilon$ for $0<r \leqslant R$. For $k \geqslant 1$, set $r_{k}=2^{-k} R$. With $f=\chi_{\left(x-r_{k}, x\right)}$ in (1.7) we obtain

$$
\begin{aligned}
\frac{1}{r_{k}} \int_{x-r_{k}}^{x} v & \leqslant C \sum_{j=0}^{k}\left(\frac{1}{2^{j}}\right)^{p-1}\left(\frac{1}{2^{j} r_{k}} \int_{x-2^{j} r_{k}}^{x} w\right)+C r_{k}^{p-1} \int_{-\infty}^{x-R} \frac{w(y)}{\left(r_{k}+|y|\right)^{p}} d y \\
& \leqslant C_{p}(w(x)+\varepsilon)+C\left(\frac{R}{2^{k}}\right)^{p-1} \int_{-\infty}^{x-R} \frac{w(y)}{|x-y|^{p}} d y .
\end{aligned}
$$

The integral in the second term on the right above is finite since $\int_{-\infty}^{-1} w(x) /|x|^{p} d x$ $<\infty$. Thus, if $k \rightarrow \infty$, we get $v(x) \leqslant C_{p}(w(x)+\varepsilon)$ and since $\varepsilon>0$ is arbitrary, $v(x) \leqslant C_{p} w(x)$.

We now prove the equivalence of the reverse weighted weak type $(1,1)$ inequality, (1.8), and condition (1.9). Fix a, a Lebesgue point of v, and $h>0$. For $0<\varepsilon<h$,
let $f_{\varepsilon}=\varepsilon^{-1} \chi_{(a-\varepsilon, a)}$. Then $\left\{M^{+} f_{\varepsilon}>1 / h\right\}=(a-h, a)$ and (1.8) yields $\int_{a-h}^{a} w \geqslant$ Ch $\varepsilon^{-1} \int_{a-\varepsilon}^{a} v$. Letting $\varepsilon \rightarrow 0$ we obtain (1.9) with $C^{\prime}=C$. Conversely, fix $f \geqslant 0$ bounded with compact support and $\lambda>0$. Let $\left(I_{j}\right)_{j}$ be the component intervals of the open set $\Omega_{\lambda}=\left\{M^{+} f>\lambda\right\}$. We claim

$$
\begin{equation*}
\left|I_{j}\right|_{w} \geqslant \frac{C}{\lambda} \int_{I_{j}} f v \quad \text { for all } j \tag{3.2}
\end{equation*}
$$

To see (3.2), suppose (for convenience) that $I_{j}=(0,1)$. Then

$$
\frac{1}{t} \int_{t}^{2 t} f \leqslant 2 \frac{1}{2 t} \int_{0}^{2 t} f \leqslant 2 M^{+} f(0) \leqslant 2 \lambda
$$

for $0<t<1$. Thus

$$
\begin{aligned}
\int_{0}^{1} w & \geqslant \frac{1}{2 \lambda} \int_{0}^{1}\left[\frac{1}{t} \int_{t}^{2 t} f(x) d x\right] w(t) d t \\
& \geqslant \frac{1}{2 \lambda} \int_{0}^{1} f(x)\left[\int_{x / 2}^{x} \frac{w(t)}{t} d t\right] d x \\
& \geqslant \frac{C^{\prime}}{4 \lambda} \int_{0}^{1} f(x) v(x) d x
\end{aligned}
$$

by (1.9) as required. Summing (3.2) over j yields

$$
\left|\Omega_{\lambda}\right|_{w}=\sum_{j}\left|I_{j}\right|_{w} \geqslant \frac{C}{\lambda} \int_{\left\{M^{+} f>\lambda\right\}} f v \geqslant \frac{C}{\lambda} \int_{\{f>\lambda\}} f v .
$$

References

1. K. Andersen and B. Muckenhoupt, Weighted weak type inequalities with applications to Hilbert transforms and maximal functions, Studia Math. 72 (1982), 9-26.
2. K. Andersen and W.-S. Young, On the reverse weak type inequality for the Hardy maximal function and the weighted classes $L(\log L)^{k}$, Pacific J. Math. 112 (1984), 257-264.
3. E. Atencia and A. De La Torre, A dominated ergodic estimate for L_{p} spaces with weights, Studia Math. 74 (1982), 35-47.
4. R. Coifman, P. Jones and J. Rubio de Francia, Constructive decomposition of BMO functions and factorization of A_{p} weights, Proc. Amer. Math. Soc. 87 (1983), 675-676.
5. G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math. 54 (1930), 81-116.
6. R. Hunt, D. Kurtz and C. Neugebauer, A note on the equivalence of A_{p} and Sawyer's condition for equal weights, Proc. Conf. on Harmonic Analysis in honor of A. Zygmund, Wadsworth Math. Ser., vol. 1, 1983, pp. 156-158.
7. B. Jawerth, Weighted inequalities for maximal operators: linearization, localization and factorization, preprint.
8. B. Muckenhoupt, Hardy's inequality with weights, Studia Math. 34 (1972), 31-38.
9. \qquad , Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
10. \qquad , Weighted reverse weak type inequalities for the Hardy-Littlewood maximal function, preprint.
11. E. Sawyer, A characterization of a two-weight norm inequuality for maximal operators, Studia Math. 75 (1982), 1-11.
12. \qquad , Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc. 281 (1984), 329-337.

Department of Mathematical Sciences, McMáster University, Hamilton, Ontario, Canada L8S 4K1

[^0]: Received by the editors April 4, 1985.
 1980 Mathematics Subject Classification (1985 Revision). Primary 42B25.
 ${ }^{1}$ Research supported in part by NSERC grant A5149.

[^1]: ${ }^{2}$ This characterization of the weak type inequality is due to K . Andersen.

