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WEIGHTED INEQUALITIES FOR THE ONE-SIDED

HARDY-LITTLEWOOD MAXIMAL FUNCTIONS

E. SAWYER1

Abstract. Let M+f(x) = sup/l>0(l//i)/^+* \f(t)\dt denote the one-sided maxi-

mal function of Hardy and Littlewood. For w(x) > 0 on R and 1 < p < oo, we

show that M+ is bounded on Lp(w) if and only if w satisfies the one-sided A.

condition:

^  [U>(H[ir"^i/,pp̂-i
« C

for all real a and positive h. If in addition v(x) > 0 and a = v  1/(p  1), then M+ is

bounded from Lp(v) to Lp(w) if and only if

f[M+(x,a)]pw^cfa < oo

for all intervals / = (a, b) such that f_x w > 0. The corresponding weak type

inequality is also characterized. Further properties of A * weights, such as A* =>

A*, and At = (A^iAf)1'", are established.

1. Introduction. For / locally integrable on the real line R, define the maximal

function Mf at x by

Mf(x) =   sup    -L-fb\f(t)\dt.
a<x<b  u       " Ja

In [9], B. Muckenhoupt characterized, for 1 < p < oo, the nonnegative functions, or

weights, w(x) on R satisfying the weighted norm inequality

(NP) /      [Mf(x)]pw(x)dx^C        \f(x)\w(x)dx,   for all/,

as those weights w satisfying the A  condition

(A,)

-1/(77-1) dx
p-i

< C,        a in R, h > 0.

This leaves open, however, the characterization of the corresponding norm inequali-

ties for the original maximal function of Hardy and Littlewood [5],

A/7(x) = sup J- f    |/(/) | df,
A>0  "Jx-h
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54 E. SAWYER

and its counterpart

M+/(x) = sup T [X+h \f(t)\dt.

(M+ arises in the ergodic maximal function discussed below.) Denote by (Np+) and

(N~) the weighted inequalities corresponding to (N ) with M replaced by M+ and

M respectively. Observe that A is not a necessary condition for either Np or N~.

In fact, the product of any nondecreasing function with an Ap weight satisfies Np .

More generally, if {wa(x)}aeR is a family of weights uniformly in A , and if p is a

positive measure on R, then w(x) = j X(a,œ)(x)wa(x) ^M") satisfies Np .

Theorem 1. Suppose w(x) > 0 on R and 1 < p < oo. Then the weighted inequality

(Np) holds if and only if w satisfies the one-sided A  condition

p-i
< C"   foratireala, and h > 0.

Similarly, (N~) holds if and only if

p-i
< C"   foratireala, and h > 0.

Remarks. (A) The following "duality" relationship holds: w satisfies Ap if and

only if wl~p' satisfies A~, where 1/p + 1/p' = 1.

(B) If M~Wf < Cwf and M+w2 < Cw2, it is trivially verified that w = Wf(w2)l~p

satisfies Ap . Theorem 1 together with Remark A and the argument of Coifman,

Jones and Rubio in [4] yields the converse: If w satisfies Ap , then there are w,, w2

such that M~Wf < Cw,, M+w2 < Cw2 and w = w1(w2)1~p. In future we say that w

satisfies the Af(Af) condition if M~w(M+w) < Cw.

(C) A modification of B. Jawerth's proof of the reverse Holder inequality for Af

weights [7] shows that if w satisfies Af , then w1 + s also satisfies Af for some 8 > 0.

(Note however that w cannot in general satisfy a reverse Holder inequality.)

Combining this with the factorization of Ap weights discussed in the previous

remark, we obtain the imphcation Ap => Ap_y More precisely, if w satisfies Ap for

a given p, 1 < p < oo, then w satisfies Ap_e for some e > 0. Details can be found in

§3.
(D) Suppose T is a measure preserving (not necessarily invertible) ergodic

transformation on a probability space (ß, Jt', p). Let

/•(*)- sup t|tE Wjx)\
k>0  K "*" 1 7 = 0

denote the ergodic maximal function of /. It can be shown (see Atencia and De La

Torre [3]) that

f \f*(x)\Pw(x)dp(x)^c[ \f(x)\"w(x)dp(x)

\r w(x)dx \rhw(xy'Ap-i)dx
h J„-h h J„

\rhw(x)dx    \f    w(x) 1/(7'-1) dx
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HARDY-LITTLEWOOD MAXIMAL FUNCTIONS 55

for all / if and only if for /i-almost every x in ß,

(i-i)   £
n = 0

w-rtrt\f(T'+'x)\
k>0 " "r r j=(j

w(Tnx) < c £ |/(rnx)| w(r"*)
« = 0

for all / defined on {T"x}™=0. (The ergodic property is needed only for the

necessity of (1.1).) A discrete analogue of Theorem 1 together with elementary

measure theory shows that (1.1) holds if and only if there is C" such that for

/x-almost every x in ß and every k > 0

ÏTîE««.)
1

2 A-

ITîZ»™
-!/(/>-!)

Í-*

<c.

A similar characterization for the two-sided ergodic maximal function corresponding

to an invertible measure preserving ergodic transformation T was obtained in [3].

We turn now to the two-weight norm inequality for M+:

(1.2)
/oo ,p /■«> ,p

\M+f\w^Cf      \f\v   for all/.

It is convenient to set a = v1 p' = v  1/(p X) and replace / with fo in (1.2). The

resulting equivalent inequality reads

(1.3)
/OO n /•OO n

\M+(fa)\w^Cf       \f\a    for all/.

The corresponding weak type inequality for M+ is

(1.4) |{M+(/a)>A)U^/_     |/fa    for all/,

where the notation \E\W stands for fE w(x) dx. In analogy with results in [11 and 9],

we have

Theorem 2. Suppose w(x), o(x) are nonnegative measurable functions on R and

1 < p < oo. Then the strong type inequality, (1.3), holds if and only if

(1.5) ( \M+(x,o)\Pw^BÍa < oo

for all intervals I = (a, b) such that fLxw > 0. If C and B are the best constants in

(1.3) and (1.5) then their ratio is bounded between two positive constants depending

only on p.

The weak type inequality, (1.4), holds if and only if2

\    ta IM    ra + h     ~\P~l

(1.6) TÍ    "Ml      'h3„_h    \\hJ„Ja-h

^A   for all a g R, h > 0.

Again, the best constants in (1.4) and (1.6) are comparable. Corresponding results hold

for M~.

This characterization of the weak type inequality is due to K. Andersen.
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56 E. SAWYER

Theorem 1 follows easily from Theorem 2 using a clever argument of Hunt, Kurtz

and Neugebauer [6] as follows. First, Np   implies Ap by a standard argument in [9]

that involves testing Np+ with /= X(a,a+h)wl p ■ F°r tne converse, it suffices to

show that Ap   implies (1.5) with a = w1_p'. Fix an interval / = (a, b) with f"_ œ w

> 0 and a point x in /. Choose h > 0 so that x + h is in / and h~1f*+ho

> îM+(x,o)(x).Sinceh-1ff-+h/2o < \M+(x{a)(x) by definition, we conclude

M+(x,o)(x)< J£

ÍJC

X + /l

a < C

= C

x + A/2

x + A/2

//:

-A/2

M * + A/2
W

p'-l

by ̂

CM^x^-'K,)'

where

x+/i
wm;/(x)= sup

A>0 L"*

Now M+ is bounded on Lq(w) for any w ^ 0 on R and 1 < a < oo, and thus

f \M+(Xro)\Pw < Cf lACtx/W"1) TV. < CÍ o.jj j, j,

Finally, we consider reverse weighted inequalities for M+. For v, w nonnegative

and locally integrable on R and 1 < p < oo, the reverse weighted strong type

inequality

/OO n |«00 nl/l ü< C        \M+f\w    for all/
- oo •'-oo

holds only in two trivial cases: either fZ.lx w(x)/\x\pdx = oo or v(x) < C'w(x) for

a.e. x. The reverse weighted weak type (1,1) inequality,

\{M+f> \}\w> -f (        fv    for all />0,
A •/i/">Al

(1.8)

holds if and only if for almost every a in R,

(1.9) inf | T    wix)^ > C't;(a).
h>o h Ja_h

Proofs of these assertions can be found in §3. See [2 and 10] concerning the reverse

weighted weak-type (1,1) inequality for M and its applications.

Throughout this paper the letter C will denote a positive constant that may vary

from line to line but will remain independent of the relevant quantities.

2. Proof of Theorem 2. In proving the analogue of Theorem 2 for the two-sided

maximal function, the following key property of M is used: Mf(x) > (1/|^|)//1/|

for x in /. This fails for both M+ and M~ and accounts for the bulk of difficulty in

dealing with one-sided maximal operators. We circumvent this obstacle with the aid

of the next lemma and some known results on Hardy operators.

Lemma 2.1. Suppose g>0is integrable with compact support on R. If I = (a, b) is

a component interval of the open set {M+g > X}, X > 0, then

(2.1) ~— /   S > A    for a ^ x < b.
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HARDY-LITTLEWOOD MAXIMAL FUNCTIONS 57

To prove the lemma, fix a < x < b and let r be the largest number such that

(r - x)~ljf g > X. If r < b, then (s - r)~lJrsg > X for some s > r by definition

and this yields (s — xYlf^.g > X, contradicting the definition of r. Thus r > b. If

r > b, then (r - b)~ljlg < X since b is not in {M+g > X). Together with

(r - x)~ljf g > X, we obtain (b - x)~lj% g > X as required.

To deal with the weak type inequality (1.4) we need the following ([12]: see

Theorem 4 and the subsequent note; see also [1]).

Lemma 2.2. Let a, w be nonnegative weights on (0, oo), 1 < p < oo and Tfg(x) =

x-1/0x g(t) dtfor locally integrable g. Then

\{Tf(fo)>X}\w^C sup     s
0<x<j<oo is>uru l/|V

We now prove the equivalence of (1.4) and (1.6). First, (1.4) implies (1.6) by a

standard argument (see e.g. [9]) that involves testing (1.4) with f=Xi and A = \ii a-

Conversely, suppose (1.6) holds. It suffices to prove (1.4) for functions /> 0 such

that fo is bounded with compact support. So fix such an / and a X > 0. Let { J }

be the component intervals of {M+(fo) > X}. Applying Lemmas 2.1 and 2.2 (with

a linear change of variable) to a fixed interval JT — (a, ft), we obtain

^^j4-s)iH/>r];Hi/r°
^ TV /  l/l a    by (1.6) with a = x and h = b — s.

Xp J i
j

Summing over j yields (1.4).

To deal with the strong type inequality (1.3) we need an apparent strengthening of

the usual weighted inequality for the adjoint Hardy operator.

Lemma 2.3. Suppose a, u are nonnegative weights on R and 1 < p < oo. 77ien for

all/,

(2.2)

/oo      I    /*oo P 7-00 {   Cr \ (   C°

\       fa   u(x)dx^ C sup   /      u     /
-oo   \Jx •'-oo   L/-<;t \J-°o      l\Jr

\f(x)\ o(x)dx.

To see this, rewrite (2.2) as /?„ I/» g\pu(x)dx *s Cpj™x \g\ppv where v = o1~p,

g = fo and p(x) denotes the supremum in square brackets on the right side of (2.2).

This latter inequality holds since (/!«, «)(/r°° (pv)1~p')p~1 < 1 for all r > 0 (see

[8])-
We will also need

Lemma 2.4. For 1 < p < oo and a, w > 0 on R, condition (1.5) implies

(2.3) /'

w(*)

oo  (b-x)>
dx f-

p-i
< CB   for all -oo < r ^ b < oo.
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58 E. SAWYER

To prove this, let x0 = r > jc, > x2 ■ ■ ■  satisfy /x* a = 2kjf a for k = 0,1,2_

Then

/:.

w(x)

(b-x)'
dx r =   y     fXk       w(x)

¿=o|_ **+i  (b - x)p
dx 2~kp r°

< E2-*'f   |A/*(X(wj.)|»
00 OO

< D2*Tb/      o = BZ^-kp+k + lí  o = CB¡  a
A = 0 *4 + l *: = 0 ' r

by (1.5) which yields (2.3).

We now prove the equivalence of (1.3) and (1.5). Once again, a standard argument

(see e.g. [11]) shows that (1.3) implies (1.5). Conversely, suppose (1.5) holds. It

suffices to prove (1.3) for functions f>0 such that fo is bounded with compact

support. So fix such an / and for k in Z, let Ik = (ak, bk), j an integer, be the

component intervals of the open set ß^ = {M+fo > 2k). With Ek = Ik — ßfc+1 we

have

(2.4) T   \M+(fo)\Pw*í2'>li2kp\ak-ük+f\w^CZ2kp\Ekl.
-°° k k,j

For future reference, let

M*) sup
rr   Xe/MO*

k    (bj-tY f
p-1

for x in /,*.

We now fix k, j momentarily and estimate 2kp\Ek\w. For convenience in writing let

/ = (a, b) = //, E = Ek, p = pk and for those I,k+1 contained in //, let J¡ = I,k+1.

Define g = XeÍ and h = £«(14107./, f°)Xjr For x in E we have

by Lemma 2.1 and so

< CJ p(x)[g(x)p + h(x)p]o(x) dx   by Lemma 2.3

< CBJ g(x)"a(x) dx + CJ p(x)h(x)pa(x) dx

by Lemma 2.4. Reverting to our previous notation (2.5) becomes

(2.6)         2kp\Ek\   ^CBÍ  fa

+ C
/*+1c// \ 11¡ \,    '• /
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HARDY-LITTLEWOOD MAXIMAL FUNCTIONS 59

Plugging (2.6) into (2.4) we obtain

(2.7)      r   \M+(fa)\"w^CBÍ fa
* — rvi *

+ ci i /A°r)\iri[-!—fjS
k,j 7*+>c/* \   A-        a   7' ;

since the Ek are pairwise disjoint.

Since the Ik are nested (/:</=> either // c /y* or // n // = 0 for all i, y), a

standard interpolation argument (see [11]) shows that the second term on the right

side of (2.7) is dominated by CBj fa provided the following Carleson condition

holds:

(2.8) I   y/|//|o<CR|//|a,   for allí, s
Per'

where yk = pk~1(ak) and where / is such that Ik c Ik~x. It will be convenient to

denote this "predecessor" of /,*, namely Ik~l, by (ck,dk). Since y's < CR|//|0 by

Lemma 2.4, we need only estimate the sum in (2.8) over intervals Ik properly

contained in I's. For each k, j let rk satisfy ck < rk < ak and

/

rf  Xe*-1'At)
dt

7..*

p-1

4 (V-'Y
Then, for fixed if'1 contained in I's we have

(2.9)

v      fclrtl v-     rX£*-'w(0 [/•</*
E y/|//|.<   E j-rrr—y  ; °    x^iOltfl.*

/*c//-' //c/*-1    vay- - o  L o

p-i

< r, iw+(x/io)r^.

aï

Summing (2.9) over all /*     contained in a fixed I', we obtain

Tic/; ;,l-'c/; £'

Vf

< /  \M+(xi;°)\Pw<B\i;\o

by (1.5). This establishes (2.8) and completes the proof of Theorem 2.
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60 E. SAWYER

3. Appendix. We now complete the proof of Remark (C). Suppose w satisfies Af ,

i.e. M~w < Cw. Fix an interval /. = (a, b). If X > M~w(b), then ßx = {Aí"(x/w)

> X} is contained in /. If {Ij}j are the component intervals of ßx, then (l/l/l)// w

> X for all j by Lemma 2.1. But (l/|/y-|)//. w < X since the right endpoint of L is

not in ßx. Thus we have

(3.1) |üxL-E/" = *l|/y|«A|ax|
7 - h i

< X|/n{w > X/C} I    since M~w < Cw.

The argument of B. Jawerth in §5 of [7] now applies as follows.

f wl+s =\I n{w> M-w(b)}\(M-w(b))1+S
JIn{w>M~w(b))

/•OO

■81        Xs-1\m{w>X}\wdX
JM~w(b)

^\i\(M-W(b))i+s+sr   x
JM~w(b)

Inlw >
c,

dX

\{w>M  w(b)}

(using \I n {w > X}\w < |0X|W and then (3.1))

1  i" 0 J[n(w>1

Choosing 8 > 0 sufficiently small we get

( wl+s < C|/|(M->v(è))1+S < C\l\wl+S(b)
Ji

since M~w < Cw, and this shows that M~(w1 + S) < Cw1 + S as required.

We now prove the assertions made in the introduction concerning reverse weighted

inequalities for M+. Suppose 1 < p < oo and v, w are nonnegative locally integrable

weights satisfying the reverse weighted inequality (1.7). Suppose further that

/-» w(x)/\x\pdx < oo. We must show that v(x) < C'w(x) for a.e. x. Fix x, a

Lebesgue point of both v and w, and let e > 0 be given. Choose R > 0 so that

r-1//-, w < w(x) + e for 0 < r < R. For k > 1, set r* = 2"*R. With /= X(x-rk,x)

in (1.7) we obtain

** /x-fi y-oV2-'/        \2%-^2^      / ■'-oo

'W
*

/>-!

— aV
-oo   (/-, + lyir

The integral in the second term on the right above is finite since /l^ w(x)/|x|''a,7c

< oo. Thus, if k -» oo, we get í;(jc) < Cp(w(x) + e) and since e > 0 is arbitrary,

v(x) < Cpw(x).

We now prove the equivalence of the reverse weighted weak type (1,1) inequality,

(1.8), and condition (1.9). Fix a, a Lebesgue point of v, and h > 0. For 0 < e < h,
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HARDY-LITTLEWOOD MAXIMAL FUNCTIONS 61

let / = e-1x(a-E,a)- Then {M+fe > \/h) = (a - h, a) and (1.8) yields jaa_h w >

Che~lfZ_cv. Letting £-»0we obtain (1.9) with C = C. Conversely, fix /> 0

bounded with compact support and X > 0. Let (Ij)j be the component intervals of

the open set ßx = {M+f > X}. We claim

(3.2) \ljl>jffv    for ally.
j

To see (3.2), suppose (for convenience) that / = (0,1). Then

Tf/<2¿Í/<2','7(0)<2X

forO < t < l.Thus

£w>à£[iCf{x)dx

1    I*1 n   \\ fx     w{t)   j

»si'«!/*»  « *

> 4jrf f(x)v(x)dx

w(t)dt

dx

by (1.9) as required. Summing (3.2) over j yields

\     =   Y.\l-\     >   T  f fi >   T"  / fo.I Oxl- =
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