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Abstract. In this paper the authors study the weighted Lp-boundedness for higher 

order commutators of a class of oscillatory singular integrals with rough kernel. The 

main result in this paper gives a necessary and sufficient condition so that this higher 

order commutator is bounded on the weighted Lp space with certain weight.

1. Introduction. Let us consider the oscillatory singular integral defined by

•¬

where P(x,y) is a real polynomial on Rn•~Rn, and •¬ with 

•¬, where BV(R+) denotes the class of functions of bounded variation on 

R+. In 1987, Ricci and Stein [7] proved that T is bounded on Lp(Rn), 1<p<•‡, if 

K•¸C1(Rn•_0) and h•¬1.In 1992,Lu and Zhang [6] improved the result of Ricci and 

Stein and showed that T is bounded on Lp(Rn), 1<p<•‡, provided ƒ¶•¸Lq(Sn-1),

1<q•¬•‡ and •¬ where Sn-1 denotes the unit sphere in Rn. Moreover,

 the authors of [6] gave a necessary and sufficient condition so that T is bounded on 

Lp(Rn). Recently, the above result in [6] was extended by Jiang and Lu [5] to the case 

of •¬ The purpose of this paper is to study the weighted Lp-boundedness 

for higher order commutators formed by T and a function in BMO(R+). If we restrict 

ourselves to the case where P(x,y)is a nontrivial polynomial, then we shall get a criterion 

on weighted Lp-boundedness for the higher order commutators mentioned above.

Let us first give some definitions.

DEFINITION 1. Let •¬. We say •¬ if

•¬

where •¬
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DEFINITION 2. Suppose that •¬ and •¬. For 1<p<•‡, we say •¬

, if there is a C>0 such that for any I•¼R+,

•¬

Moreover, if there is a C>0 such that

•¬

then we say •¬ where ƒÖ* denotes the Hardy-Littlewood maximal function of 

ƒÖ defined by

•¬

DEFINITION 3. For 1<p<•‡, we denote

•¬

Now,we may formulate our results as follows:

THEOREM 1. Let 1<p<•‡, •¬ homogeneous of degree zero,

 •¬ and •¬

 If the operator

•¬

is bounded on Lp(ƒÖ), then for any m•¸Z+ and any real polynomial P(x,y) on Rn•~Rn, the 

higher order commutator

•¬

is also bounded on Lp(ƒÖ).

The following theorem is the main result of this paper.

THEOREM 2. Let 1<p<•‡. If ƒ¶,h,b,m and ƒÖ are as in Theorem 1,then the 

following three statements are equivalent:

(i) If P(x,y) is a nontrivial polynomial (i.e., P(x,y) does not take the form of 

•¬ ( see [6])), then•¬ is bounded on Lp(ƒÖ).

(ii) If a nontrivial polynomial P(x,y) satisfies

(1.1)

 •¬

where R1 and R2 are real polynomials, then •¬ is bounded on Lp(ƒÖ).

(iii) The truncated operator
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•¬

is bounded on Lp(ƒÖ).

In proving Theorems 1 and 2, the operator Mƒ¶ defined by

•¬

a variant of the Hardy-Littlewood maximal function associated with ƒ¶•¸L1(Sn-1),shall 

play a key role.

In 1993, Duoandikoetxea [3]gave a weighted result for Mƒ¶:

THEOREM A. Let 1<p<•‡ and •¬ where either 

•¬ and is decreasing or •¬,i=1,2. Then Mƒ¶ is bounded on Lp(ƒ¶) and

•¬

In proving Theorem 2, we shall use the following weighted Lp-boundedness of 

•¬ a maximal operator related to higher order commutators, defined by

•¬

where b•¸BMO(R+).

THEOREM 3. Let 1<p<•‡ and ƒ¶•¸L1(Sn-1), homogeneous of degree zero, 

•¬ and •¬ Then •¬ is bounded on 

Lp(ƒÖ) and

•¬

2. Some results on Ap(R+).

LEMMA 1. If 1<p<•‡, then the weights in Ap(R+) have the following properties:

(i) •¬

(ii) For any •¬ there are weights v1,v2 such that •¬ and •¬

(iii) For any •¬ there exists an ƒÃ>0 so that •¬

(iv) For any •¬ there exists an ƒÃ>0 so that p-ƒÃ>1 and •¬

The above facts can be easily deduced from the definition of Ap(R+) and cor-
responding properties of Ap(R+). We omit the details here.

REMARK 1. By (ii) in Lemma 1 and Theorem A, we see that if •¬,

 1<p<•‡, then Mƒ¶ is bounded on Lp(ƒÖ) and
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•¬

LEMMA 2. Let 1<p<•‡. If b(r)•¸BMO(R+), then there is a ƒÉ>0 such that •¬

PROOF. From the John-Nirenberg inequality for BMO and the reverse Holder 

inequality for the weights in Ap(R+), it follows that there is a ƒÉ0>0 such that 

•¬(see, e.g., [4]). Now we take ƒÉ=ƒÉ0/2. Then (eƒÉb)2•¸Ap(R+), i.e., eƒÉb•¸

Ap(R+) by the definition of Ap(R+).

LEMMA 3. For 1<p<•‡ and ƒÉ>0, there exists an ƒÅ=ƒÅ(ƒÉ,p)>0 such that if 

b(r)•¸BMO(R+) and •¬ then •¬

PROOF. If we take •¬ where c is the absolute constant in 

the John-Nirenberg inequality, then when •¬ we have •¬

 Now we let ƒÅ=ƒÅ0/2. Obviously, if •¬ then

•¬

By the definition of Ap(R+), we have •¬

3. Proof of Theorem 3. Let us first give the proof of Theorem 3 by induction 

on m. By Theorem A, we see that Theorem 3 holds for m=0. Now we assume that the 

conclusion of Theorem 3 holds for m- 1, and prove the conclusion for m. Since 

ƒÖ•¸Ap(R+), we can choose an ƒÃ>0 so that ƒÖ1+ƒÃ•¸Ap by Lemma 1. Then by the assumption 

of induction, •¬ is bounded on •¬ and

(3.1)

 •¬

On the other hand, by taking •¬ and Lemma 3, we see that there exists 

an ƒÅ>0 such that

•¬

Since b•¸BMO implies that tb •¬ BMO for |t|•¬1 with a smaller BMO norm, we have

(3.2)

 •¬

Without loss of generality we may assume that •¬ Indeed, otherwise we take 

0<ƒÂ0<ƒÅ and set •¬ Thus, •¬ and

•¬

Therefore, it suffices to consider •¬. By the assumption of induction and (3.2), we 

see that for any •¬ and •¬
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(3.3)

 •¬

where C2 depends on p,b and ƒÖ , but not on ƒÆ.Applying the Stein-Weiss interpolation 

theorem (see [8]or[2])between(3.1) and (3 .3), we obtain that for any ƒÆ•¸[0,2ƒÎ] and •¬

(3.4)

 •¬

where C=max{C1,C2} and depends only on p, b and ƒÖ, but not on ƒÆ . In the following,

 we shall use the equality

(3.5)

 •¬

In fact, let •¬, z•¸C. Then by the analyticity of g(z) on C and the Cauchy 

integration formula, we have

•¬

And this is just (3.5). Moreover, if we denote •¬ for any •¬ ,

 then it follows from •¬ that

(3.6)

 •¬

Hence, by (3.5) and (3.6), we have

•¬•¬•¬

Using Minkowski's inequality, (3.4), (3.6) and the above, we get

•¬
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•¬•¬

This finishes the proof of Theorem 3.

4. Some lemmas. Before proving Theorems 1 and 2, we give some lemmas. Let

•¬

and

•¬

LEMMA 4. Let •¬ and •¬. If G0 is bounded on Lp(ƒÖ), then the inequality

(4.1)

 •¬

holds for any ƒÃ>0, where CƒÃ is independent of t and f. Conversely, if (4.1) holds for 

certain ƒÃ>0,then G0 is bounded on LP(ƒÖ).

See [5] for the proof.

LEMMA 5. Let 1<p<•‡, •¬

 homogeneous of degree zero, •¬

 and G is bounded on Lp(ƒÖ), then so is G0.

PROOF. By Lemma 4, it will suffice to prove

•¬

Now, we split f into three parts f=f1+f2+f3 for given t, where

•¬•¬

and
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•¬

Note that |x-t|<1/4 and |y-t|<1/2 imply |x-y|<1. Thus, we have

•¬

Since G is bounded on Lp(ƒÖ), we get

•¬•¬

By the assumption on K(x,y), we have

•¬•¬

Thus, it follows from Theorem 3 and the above that

•¬

Finally, we notice that |x-t|<1/4 and |y-t|>5/4 imply |x-y|>1. Thus, •¬ 

if •¬ This completes the proof of Lemma 5.

LEMMA 6. Let 1<p<•‡, •¬ and •¬ If •¬,

 homogeneous of degree zero and T, defined in Theorem 1, is bounded on Lp(ƒÖ), then for 

any b(x)=b(|x|)•¸BMO(R+), m•¸Z+ and any real polynomial P(x,y), the operator

•¬

is bounded on Lp(ƒÖ).

PROOF. By Lemma 5 for m=0, we see that the truncated operator of T defined by

•¬

is bounded on Lp(ƒÖ). By Theorem A (or Remark 1) and Lemma 3 in [5], we see that 

Lemma 6 holds for m=0. On the other hand, it follows from Lemmas 1-3 that the 

results on commutators of linear operators given in [1] also hold if we use BMO(R+) 

and AP(R+) instead of BMO(Rn) and Ap(Rn) respectively. Thus, we see that the m-th 

commutator of T and b•¸BMO(R+), defined by
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•¬

is bounded on Lp(ƒÖ). Using Lemma 5 again, we get that the truncated operator of •¬

•¬

is also bounded on Lp(ƒÖ). By the above result, Theorem 3 and Lemma 4, and using 

the method proving Lemma 3 in [5], one can prove that the truncated operator •¬ 

is bounded on Lp(ƒÖ). We omit the details.

LEMMA 7. Let 1<p<•‡. If ƒ¶, h, m and ƒÖ are as in Theorem 1, then the operator

•¬

is bounded on Lp(ƒÖ)for any real nontrivial polynomial P(x,y)on Rn•~Rn.

PROOF. We split •¬ as follows:

•¬

where

•¬•¬

and

•¬

Now,if we can prove the following two inequalities:

(4.2)

 •¬

and

(4.3)

 •¬

where j=1,2,...,k=0,1,..., and ƒÂ>0 is independent of k, f and ƒ¶, then we shall 

deduce the conclusion of Lemma 7.Indeed,we choose a positive integer M>1/ƒÂ. Then
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•¬

Using (4.2), we get

•¬

and

•¬•¬

By (4.3), we have

•¬•¬

Thus, we obtain

•¬

This confirms the above assertion. It remains to prove (4.2) and (4.3). Let us first prove 

(4.3). Since

•¬•¬

we get

•¬

by Theorem 3. This proves (4.3).
Let us now turn to the proof of (4.2). The proof is completed by induction on m .

Since h•¸BV(R+) and P(x,y) is a real nontrivial polynomial, by a method similar to 

that in [6],we can prove that there exists an ƒÅ>0 such that
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(4.4)

 •¬

where C is independent of j and k. On the other hand, we have

•¬

From (iii) in Lemma 1 and Remark 1, it follows that

•¬

Combining the above with (4.4), and using the Stein-Weiss theorem of interpolation 
with change of measure [8], we get

•¬

where ƒÅ1>0 is independent of j,k,f and ƒ¶. This shows that (4.2) holds for m=0. We 

now assume that (4.2) holds for m-1, i.e., for any •¬ with •¬ we have

(4.5)

 •¬

By •¬ and Lemma 1, there exists an ƒÃ>0 so that •¬. Therefore, for 

any •¬

(4.6)

 •¬

Repeating the proof of Theorem 3, we can obtain the following results: For any ƒÆ•¸

[0,2ƒÎ] and •¬

(4.7)

 •¬

where C and •¬ depend on p, b and ƒÖ, but not on j, k and ƒÆ. By interpolating with 

change measure between (4.6) and (4.7), we see that for any •¬ and •¬

(4.8)

 •¬

where C and ƒÂ>0 are independent of j,k and ƒÆ. Moreover, if we let •¬

 then it is easy to check that for any •¬

(4.9)

 •¬

For simplicity, we denote

•¬

Thus, by (3.5) and the above notation, we have
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•¬•¬•¬•¬

Hence, by Minkowski's inequality, we get

•¬•¬

From (4.8) and (4.9), it follows that

•¬

Thus, we proved (4.2) for m and the proof of Lemma 7 is completed.

5. Proofs of Theorems 1 and 2. Theorem 1 can be directly deduced from Lemmas 

6 and 7. Let us now give the proof of Theorem 2.

(i)•Ë(ii). This step is obvious.

(ii)•Ë(iii). Set

•¬•¬•¬

From Lemma 7, it follows that •¬ is bounded on Lp(ƒÖ). So •¬ is a bounded opera-

tor on Lp(ƒÖ). We take a t•¸Rn. For|x-t|<1, we have

•¬
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Thus, by Lemma 4, we have

(5.1)

 •¬

where C is independent of t and f. By (1.1), we write

•¬

for t•¸Rn, where

•¬

Express •¬ into the Taylor series:

•¬

Thus, we have

•¬•¬•¬

where •¬ we obtain

•¬•¬•¬•¬
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•¬•¬

where ƒÅ=(2,2,...,2). By Lemma 4, we see that the above implies (iii).

(iii)•Ë(i). This step is just a direct result of Lemmas 6 and 7.This completes the 

proof of Theorem 2.
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