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Weighted Level Set Evolution Based on Local Edge

Features for Medical Image Segmentation
Alaa Khadidos, Victor Sanchez, Member, IEEE, and Chang-Tsun Li, Senior Member, IEEE

Abstract—Level set methods have been widely used to imple-
ment active contours for image segmentation applications due
to their good boundary detection accuracy. In the context of
medical image segmentation, weak edges and inhomogeneities
remain important issues that may hinder the accuracy of any
segmentation method based on active contours implemented
using level set methods. This paper proposes a method based
on active contours implemented using level set methods for
segmentation of such medical images. The proposed method uses
a level set evolution that is based on the minimization of an
objective energy functional whose energy terms are weighted
according to their relative importance in detecting boundaries.
This relative importance is computed based on local edge features
collected from the adjacent region located inside and outside of
the evolving contour. The local edge features employed are the
edge intensity and the degree of alignment between the image’s
gradient vector flow field and the evolving contour’s normal. We
evaluate the proposed method for segmentation of various regions
in real MRI and CT slices, X-ray images, and ultra sound images.
Evaluation results confirm the advantage of weighting energy
forces using local edge features to reduce leakage. These results
also show that the proposed method leads to more accurate
boundary detection results than state-of-the-art edge-based level
set segmentation methods, particularly around weak edges.

Index Terms—image segmentation, medical images, active
contours, level set methods.

I. INTRODUCTION

Image segmentation is an important analysis tool in many

applications of computer vision, machine learning and image

analysis [1]–[13]. In medical imaging, segmentation helps

extracting local information from the imaging data that can

aid in clinical and diagnosis procedures [14]–[21]. State-of-

the-art segmentation techniques are usually formulated as an

optimization problem, where the segmentation criteria and the

contour characteristics are specified by an objective functional.

Osher et al. [22] propose the level set method which

implicitly represents a curve as the zero level of the level

set, φ, of a high dimensional function. Level set methods

have been successfully used to implement active contours

for segmentation applications. The basic idea is to represent

contours as the level set function and to evolve the level set

function according to a partial differential equation (PDE)

[2], [23], [24]. This approach allows to automatically handle
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the topological changes of the boundary to be detected [25].

The evolution PDE of the level set function can be directly

derived from the problem of minimizing a certain energy

functional defined on the level set function. This type of

variational methods, which are known as variational level

set methods, are highly amenable to incorporating additional

information in the level set evolution (LSE), such as region-

based information [2], [6], shape-prior information [26] and

phase-based information [19], which usually gives rise to very

accurate boundary detection results.

Recently, several authors have proposed segmentation ap-

proaches that employ variational level set methods that in-

corporate different image features into the energy functional.

These methods, which have also been used to develop medical

image segmentation approaches, aim at solving common issues

that hinder segmentation accuracy, such as leakage around

weak edges and high sensitivity to intensity inhomogeneities

[19], [27]–[35], [35]–[42]. For example, Kimmel [29] propose

an active contour that employs a level set method with an

energy functional that combines an alignment term that leads

the curve to the boundary of the desired region. Specifically,

the alignment term attempts to align the normal vector of

the zero level set with the image’s gradient. Although this

alignment term leads to more accurate segmentation results,

the method may fail to accurately drive the zero level set to the

desired boundary around weak edges due to the fact that the

gradient of the image around weak edges is relatively small

[31]. Belaid et al. [19] propose a phase-based level set (PBLS)

method to implement an active contour for segmentation of

medical images with high levels of noise and weak edges.

In their approach, the authors construct a speed term based

on two phase features: local phase, which is derived from

the monogenic signal; and local orientation, which measures

the alignment between the local image orientations and the

contour’s normal direction of movement. PBLS has shown

to perform very well in the presence of weak edges, despite

requiring a careful tuning of the parameters associated with the

edge map used by the method [43]. Estellers et al. [31] propose

a segmentation method based on the geometric representation

of images as 2D manifolds embedded in a higher dimen-

sional space. Their method, termed harmonic active contours

(HAC), aligns the image’s gradient with the gradient of the

level set function for all the level sets. This results in an

objective functional that is able to exploit the alignment of

the neighboring level sets to pull the contour to the right

position. Although HAC has been shown to provide excellent

segmentation results on medical images, it may perform poorly

on images with several intensity inhomogeneities [44]. Zhou



JOURNAL OF LATEX CLASS FILES 2

et al. [21] propose to combine an edge-based active contour

model and region-based active contour model for segmentation

of the left ventricle in cardiac CT images. Based on the image

gradient, their method adjusts the effect of the two models.

Although this method shows good performance around weak

edges, the results are highly dependant on the placement of

the initial contour. Ji et al. [20] propose a local region-based

active contour model for medical image segmentation that uses

the spatially varying mean and variance of local intensities

to construct a local likelihood image fitting (LLIF) energy

functional. Their method performs well in images with low

contrast and intensity inhomogeneities. However, as with other

region-based active contour models, it assumes the existence

of two well-differentiated regions, which may not always be

true in medical images.

Motivated by our previous work [45], we propose a segmen-

tation method that employs an active contour implemented

using a variational level set method that weights the level

set evolution according to local edge features in order to

accurately drive the motion of the zero level set towards

the desired boundary. Specifically, our method controls the

influence of energy terms in the objective functional with

a weighting function that takes into account two local edge

features: edge intensities and edge orientations. We employ

the gradient vector flow (GVF) field of the image [46] as a

measurement of local edge orientations.

Although previously proposed methods also employ local

features to control the contour’s evolution [8], [21], [47], [48],

they usually achieve this by incorporating additional energy

terms and employing a set of empirically selected parameters

to specify the influence of these terms. This may lead to

inaccurate segmentation results, especially around weak edges.

Other methods not based on level set methods employ edge

information to balance the linear combination of energy terms

in graph cut segmentation, as in [49]. In this work, instead of

incorporating additional energy terms, our method employs

a weighting approach to determine the effect of the two

basic energy terms usually employed in edge-based active

contours implemented using level-set methods: the area and

length terms. Specifically, the novelties of our approach are as

follows:

1) Our method measures the alignment between the evolv-

ing contour’s normal direction of movement and the

image’s gradient in the adjacent region located inside

and outside of the evolving contour. Other methods that

also measure this alignment, e.g., [29], [31], usually do

this only in the adjacent region of the evolving contour in

the direction of movement. Moreover, this measurement

is often used as an additional energy term in the energy

functional.

2) Our method also considers the average edge intensity

in the adjacent region located inside and outside of the

evolving contour. This allows to minimize the negative

effect of weak edges on the segmentation accuracy.

3) Our method uses all of the collected local edge informa-

tion to compute a single value that serves as a weight to

control the influence of forces associated with two basic

energy terms: the area and length terms. This minimizes

leakage in areas where weak edges exist.

We test the performance of the proposed method on a great

variety of challenging medical images from MRI and CT

sequences featuring weak edges and intensity inhomogeneities,

as well as X-ray and ultra sound images. We compare our

method’s performance to that of state-of-the-art edge-based

level-set approaches, specifically, reinitialization-free level set

evolution via reaction diffusion (RD) [32], active contours

based on gradient vector interaction and constrained level set

diffusion (LSD) [8], distance regularized level set evolution

(DRLSE) [13]. We also compare our method to PBLS [19]

and Kimmel’s method [29]. Results show that our proposed

method attains a high boundary detection accuracy, particu-

larly in areas prone to leakage.

The rest of the paper is organized as follows. Section II

details our proposed method. Extensive experimental results

for segmentation of real medical images are presented Section

III. Section IV concludes this paper.

II. WEIGHTED LEVEL SET EVOLUTION

For medical image segmentation applications based on ac-

tive contours implemented using variational level set methods,

a variety of image information, such as intensity, edge or

texture, can be used to define an objective functional. Here,

we employ edge information as the main image feature that

drives the evolving contour to the desired boundary. We use

the following edge indicator function to acquire information

about the intensities of edges:

g ,
1

1 + |∇Gσ ∗ I|
2 (1)

where g ∈ [0, 1], I is an image on a domain Ω, Gσ is a

Gaussian kernel with a standard deviation σ, and ∗ denotes a

convolution operation. Function g usually takes smaller values

at object boundaries than at smooth regions. Based on g, we

define the following basic energy functional for an Level Set

Function (LSF), φ:

E(φ) = R(φ) + Length(φ) +Area(φ) (2)

where R(φ) is a distance regularization term as introduced

in [13], and Length(φ) and Area(φ) are the length and area

energy terms, respectively. Term R(φ) is employed to maintain

a desired shape of the LSF, as it has been previously shown

that the LSF usually becomes too flat or too steep near the zero

level set, resulting in numerical errors which may eventually

affect the stability of the evolution [13], [32], [50], [51]. Term

Length(φ) is related to the energy along the length of the

evolving contour C, i.e., for the case where φ =0; while term

Area(φ) is related to the energy of the area inside of C, i.e.,

for the case where φ >=0. These two energy terms can be

defined so that the overall energy is minimized at the desired

boundaries according to the edge indicator in Eq. (1):

Length{φ = 0} =

∫

Ω

gδ(φ) |∇φ| dx (3)
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and

Area{φ ≥ 0} =

∫

Ω

gH(φ)dx (4)

where H is the Heaviside function. Note that according to

Eq. (3)-(4), the minimization of the these two energy terms

depends heavily on the amount of edge information in the

image. The Dirac delta function δ in Eq. (3) is used to compute

a line integral of the edge indicator function g along the zero

level set of φ. The Heaviside function in Eq. (4), on the

other hand, is used to compute the energy of the area inside

the evolving contour, C. Length(φ) is then minimized when

the zero level set of φ is located at the object’s boundary,

while Area(φ) serves as a way to control the evolution speed

of the zero level set. In smooth regions, Area(φ) speeds

up the evolution. In regions with a high number of edges,

Area(φ) slows down the evolution, which helps the contour

to conform to the desired boundary. For cases in which the

image comprises smooth regions delimited by strong edges,

the minimization of the energy functional in Eq. (2) provides

excellent boundary detection results. However, for cases where

the image comprises regions with intensity inhomogeneities

or delimited by weak edges, such as in medical images,

the evolution process may result in an inaccurate boundary

detection or leakages. In this work, we are interested in

improving the accuracy of the evolution process in conforming

to the desired boundaries in cases where edges are weak, and

regions contain intensity inhomogeneities. To this end, we

propose a weighting function to assign different priorities to

the area and length terms according to the image features of

the adjacent region located inside and outside of C. These

features are the average edge intensity, denoted by I, and

average difference between the direction of the image’s GVF

and the normal direction of movement of C, denoted by γ.

Note that analyzing the adjacent region located both inside

and outside of C, provides an accurate insight of the location

of edges, which helps the zero level set to accurately conform

to the desired boundary [45].

Our proposed length and area terms then include a weight-

ing factor, ω, that determines their importance in locating the

desired boundary according to local edge features. These terms

are defined as:

Length2{φ = 0} =

∫

Ω

g(1− ω(φ, k))δ(φ) |∇φ| dx (5)

and

Area2{φ ≥ 0} =

∫

Ω

gω(φ, k)H(φ)dx (6)

where k is a constant that determines the size of the region

adjacent to C from where local edge features are obtained.

Weight ω(φ, k) is given by:

ω(φ, k) = I(φ, k)
(1−γ(φ,k))

(7)

where I ∈ [0, 1] is the average intensity of the edge indicator

along 2k contours adjacent to C; γ ∈ [−1, 1] is the inner

product between the normal of C, denoted by ~N = ∇φ/ |∇φ|,
and the GVF field along 2k contours adjacent to C. A contour

adjacent to C is defined as follows:

ψ(φ,m) = δ(φ) |∇φ|+m ~N (8)

where m ∈ Z and its sign denotes if the adjacent contour is

located outside (+) or inside (−) of C. Note that with the Dirac

delta function, the term m ~N in Eq. (8) results in a contour

displaced from the zero level set of φ by m units in its normal

direction. This is illustrated in Fig. 1.

 

m ~N ;m = 1

m ~N ;m = 2

ψ(φ,−2)

ψ(φ,−1)

ψ(φ, 0)

ψ(φ, 1)

ψ(φ, 2)

~N

~N

~N

~N

Fig. 1. The green line represents the evolving contour C, i.e., the zero level set
ψ(φ, 0). The blue lines represent the adjacent contours for m = 1, m = −1,
m = 2 and m = −2, as specified in Eq. (8)

The average intensity of the edge indicator along the 2k
adjacent contours is calculated as follows:

I(φ, k) =
1

2k

k
∑

m=1

[

∫

Ω

(1− g)ψ(φ,m)dx

+

∫

Ω

(1− g)ψ(φ,−m)dx

]

(9)

Similarly to the length term in Eq. (3), the integral in Eq.

(9) computes the line integral of the function (1−g) along two

contours adjacent to C; the first one located k units from C
in its outside region, and the second one located k units from

C in its inside region. Note that in Eq. (9), we use the inverse

value of the edge indicator g, i.e., (1−g), as we are interested

in determining if the 2k adjacent contours are located in areas

with strong edge information.

We observe that the direction of the image’s GVF field is a

good estimator of the orientation and direction of edges [29].

Based on this observation, we calculate the alignment between

the normal vector of C and the GVF field along the 2k adjacent

contours, as illustrated in Fig. 2. The average inner product γ
is then calculated as follows:

γ(φ, k) =
1

2k

k
∑

m=1

[

∫

Ω

〈

~N, ~V
〉

ψ(φ,m)dx

+

∫

Ω

〈

~N, ~V
〉

ψ(φ,−m)dx

]

(10)
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where ~V denotes the image’s GVF field. In this case, the

integral in Eq. (10) computes the line integral of the inner

product between ~N and ~V along the contours adjacent to C.

Note that γ results in values close to 1 when the normal vector

of C aligns with ~V .
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
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ψ(φ,−2)

ψ(φ,−1)

ψ(φ, 0)

ψ(φ, 1)

ψ(φ, 2)

~N

~N

~N

~N

Fig. 2. The red arrow represents the normal direction of movement of the

evolving contour C. Gray arrows represent the GVF field vectors, ~V . The
figure shows the case of k = 2.

By replacing Length(φ) and Area(φ) in Eq. (2) with

Length2(φ) and Area2(φ) as formulated in Eq. (5) and (6),

respectively, our proposed energy functional is then defined

as:

E(φ) = µ

∫

Ω

p(|∇φ|)dx+ (1− ω(φ, k))

∫

Ω

gδ(φ) |∇φ| dx

+(ω(φ, k))

∫

Ω

gH(φ)dx

(11)

where µ > 0 is a constant, and p(s) , 1
2 (s− 1)

2
is a potential

(or energy density) function with a minimum point s = 1 that

minimizes the distance regularization term R when |∇φ| = 1
[13]. The energy functional in Eq. (11) can then be minimized

by solving a gradient flow as follows:

∂φ

∂t
= µdiv(dp(|∇φ|)∇φ)

+(1− ω(φ, k))δ(φ)div(g
∇φ

|∇φ|
) + ω(φ, k)gδ(φ)

(12)

where dp is a function defined using the first derivative of

p(s) as dp(s) ,
p′(s)
s

[13]. It is important to mention that

in Eq. (12), the weighting term ω(φ, k), although expressed

as a function of φ and k, results in a constant value in the

range [0, 1]. Consequently, it is regarded as a constant when

computing the partial derivative with respect to time t. The

weighting function ω(φ, k) assigns different priorities to the

length and area terms according to local edge features. These

features are the edge intensity, I, and the degree of alignment,

γ, between ~V and C’s normal direction of movement. Fig. 3

shows the plot of ω(φ, k) for various values of I and γ. It can

be seen that ω approaches 0 for large I values regardless of

the value of γ, i.e., when the zero level set is located in a non-

smooth region. In this case, the Length2 term acts as the main
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Fig. 3. Value of ω for different values of I and γ.

energy driving the zero level set to the object’s boundary. It can

also be seen that ω approaches 1 for small I values regardless

of the value of γ. In this case, the Area2 term acts as the main

energy driving the zero level set towards the object’s boundary

within a smooth region. For values of γ close to 1, the value

of ω slowly decreases as I increases. In this case, the normal

direction of movement of C aligns with the direction of the

image’s GVF field, therefore the Area2 term acts as the main

energy term. For values of γ close to -1, the value of ω slowly

decreases as I increases. In this case, the normal direction of

movement of C is opposite to the direction of the image’s GVF

field, therefore the Length2 term acts as the main energy term

helping C to conform to the object’s boundary.

Weight ω allows C to deform in relatively smooth areas

even if its normal direction of movement is opposite to

the GVF field surrounding C. This is particularly useful to

initialize the contour far from the desired boundary, even in

regions with intensity inhomogeneities. Fig. 4(a)-(b) illustrate

this case, where ω approaches 1. Weight ω also minimizes

leakages around weak edges by determining the influence

of the energy terms in the evolution process according to

the average intensities of edge information and the average

direction of the GVF field in the inside and outside regions

adjacent to C. This is illustrated in Fig. 4(c), where the value

of ω slowly approaches 0. Finally, weight ω allows C to

conform to the desired boundary by assigning a larger weight

to the Length2 term where strong edges are encountered in

the inside and outside regions adjacent to C. This is illustrated

in Fig. 4(d), where the value of ω approaches 1.

III. EXPERIMENTAL RESULTS

In this section, we apply our proposed method to segment

different regions on various types of real medical images, in-

cluding a number of synthetic images. The proposed method is

compared to state-of-the-art edge-based level-set approaches,

specifically RD, LSD, and DRLSE. The proposed method is

also compared to PBLS, which is proposed for segmentation

applications of very noisy images, such as ultra sound images.

Finally, we also compare our method to Kimmel’s method

[29], since this method, despite of being region-based, shares

many similarities with our method. It is important to note that
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(d)

Fig. 4. The normal direction of movement of C for different cases,
represented by the red vector. Gray vectors represent the direction of the
image’s GVF field. Contour C is represented in green, weak edge information
is represented by gray pixels and strong edge information is represented by
black pixels. (a) The direction of the GVF field is similar to the normal
direction of movement of C in a smooth region. (b) The direction of the GVF
field is opposite to the normal direction of movement of C in a smooth region.
(c) The direction of the GVF field around weak edges. (d) The direction of
the GVF field around strong edges.

the compared methods have been tested not only on natural

images but also on various medical images [33], [34], [52],

[53]. It is also important to note that the energy functional

employed in DRLSE comprises the same energy terms as

those in our method. The difference is that our method assigns

a weight to the length and area terms according to local

edge features. Therefore, by comparing our method against

DRLSE, we are also confirming the advantages of dynamically

weighting these two energy terms during the evolution process

according to local edge features.

Five sets of experiments are conducted to evaluate the

performance of our proposed method. In all experiments, we

set the initial LSF to be a binary function whose values

have positive and negative signs inside and outside the initial

contour, respectively. Table I shows the parameters used for

the edge-based methods evaluated in this work, including our

method. Parameters µ, α and λ are constants that determine

the influence of the regularization term, area and length terms,

respectively. Let us recall that in our proposed method, the

influence of the area and length terms is determined by weight

w(φ, k). Note that the sign of α is responsible for inflation (+)

or deflation (-) of the contour. Also note that the regularization

term used by PBLS differs from the one used by DRLSE,

LSD and our method, thus, the value of µ for PBLS is set to

1, following the author’s suggestion in [19].

TABLE I
PARAMETERS USED IN EVALUATED EDGE-BASED METHODS

µ α λ ∆t ∆t2
LSD 0.2 ±1 1 0.5 -

RD - ±1 1 0.8 0.1

DRLSE 0.2 ±3 5 1 -

PBLS 1 ±2 1 - -

Proposed

Method
0.2 - - 1 -

In all experiments, the detection accuracy of the evaluated

methods is measured by the Dice similarity coefficient (DSC)

[54] using manually annotated ground truth. The DSC repre-

sents the ratio between the intersectional area of A and B and

their summation area, i.e.,

DSC =
2 |A ∩B|

|A|+ |B|
(13)

where A and B represent the segmented region and the ground

truth, respectively, and | · | denotes the cardinal of a set. The

value of DSC is within the range [0, 1], where 1 indicates

perfect overlap and 0 indicates no overlap between A and B.

A. Implementation considerations

The proposed method is implemented using the narrowband

approach in order to reduce the computational cost associated

with the LSE [2]. This narrowband implementation only

requires updating the LSF for each iteration by using a finite

difference equation that discretizes the LSE [13]. This is done

by defining the LSF, φ, on a grid and updating the LSF for

each iteration. This update is done on the narrowband, which

is also defined on the grid. The narrowband comprises a band

of grid points surrounding the evolving contour in both, the

outside and inside regions. Specifically, we use a narrowband

with a width of k grid points, for both the inside and outside

regions of the evolving contour C, in order to be able to define

the contours adjacent to C according to the k value in Eq. (9)

and Eq. (10). This width remains constant for all iterations,

but as C evolves, the area of the narrowband is expected to

increase or decrease, if C expands or shrinks, respectively.

The narrowband, thus, moves with the evolving contour in

each iteration.

Let us denote the discretized form of a time-dependent LSF

φ(x, y, t) by φτi,j , where (i, j) denotes the spatial position

within a grid and τ denotes a discrete time instant. The finite

difference equation that implements the LSE is then:

φτ+1
i,j = φτi,j +∆tL(φτi,j), τ=0,1,2, . . . (14)

where ∆t denotes a time step, and L is an approximation of

the gradient flow in Eq. (12) [55]. As previously stated in Sec.

II, term ω(φ, k) is regarded as a constant value with respect to

time. The computation of I(ψ(φ, k)) and γ(ψ(φ, k)) is also

done in a discretized manner within a grid. Let us denote the
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Fig. 5. Example of an LSF defined on a grid. The green line represents the
evolving contour C, i.e., the zero level set ψ(φ, 0). The blue lines represent
the contours adjacent to C according to the k value in Eq. (8); in this figure
k = 1. Edge intensity and GVF field values at the the black points along the
adjacent contours are used to compute weighting factor ω in Eq. (7).

discretized zero level set of φ(x, y, t) at time instant τ by

Cτ . The location of Cτ within a grid is used to compute the

location of the 2k adjacent contours. The line integrals in Eq.

(9) and Eq.(10) are then computed in discretized form as a

summation over all grid points along the 2k adjacent to Cτ ,

as exemplified in Fig. 5. The resulting value of ω(φ, k) at time

instant τ is then used to update the LSF for the next iteration,

i.e., time instant τ + 1, according to Eq. (14).

B. Analysis of parameter k

The first set of experiments is designed to characterize the

effect of parameter k in the boundary detection results and

to provide an intuitive interpretation to the tuning of this

parameter. Fig. 6 shows the boundary detection results on

a synthetic image for different values of k, which results in

different values for the weighting term ω(φ, k), as the number

of contours adjacent to C increases as k increases. It is clear

that there is a trade-off between the value of k and the strength

of the energy terms, i.e., the area and length terms in Eq. (11).

A large value of k implies collecting local edge features in a

larger region adjacent to C, which may result in an inaccurate

description of this region and thus leakage (see Fig. 6(c)).

Smaller values of k may lead to more accurate segmentation

results, as this implies collecting local edge features in a region

very close to contour C (see Fig. 6(a)). We observe the same

behavior when the contour is initialized at different positions,

and when the number of iterations varies. Although k = 1
usually provides similar results to the ones obtained by using

k = 2, a value of k = 1 may result in a less accurate

segmentation than that obtained with a value of k = 2 for

regions delimited by mostly weak edges. This is due to the

fact that a value of k = 2 increases the analysis region around

the zero level-set. Therefore, in order to increase performance

on medical images with weak edges, we set k = 2 in the

remaining experiments to avoid leakages while increasing the

analysis region around the zero level-set.

(a) (b) (c)

Fig. 6. Boundary detection results of the proposed method on a synthetic
image with 120 iterations and different values for parameter k. (a) k = 2
(DSC=0.9802). (b) k = 3 (DSC=0.9798). (c) k = 6 (DSC=0.8057). White
curves denote the initial contour; red curves denote the final contour, and
green curves denotes the ground truth.

C. Results on real medical images

The second set of experiments evaluates the proposed

method on real medical images and compares it with LSD,

RD and DRLSE. This experiment is divided in two parts.

In Part 1, the number of iterations for all evaluated methods

is set to the number required to achieve convergence by our

method. In Part 2, we increase the number of iterations used

in Part 1 in order to evaluate the accuracy of LSD, RD and

DRLSE as the number of iterations in Part 1 increases. Table

II tabulates the DSC values for different regions of MRI and

CT slices. Experiments 1-15 represent different regions of

different MRI slices of a spinal cord (vertebral body, sagittal

view), Experiments 16 represents a region of an MRI slice of

a brain (the caudate nucleus is the object to be segmented),

Experiments 17 and 18 represent two regions of an MRI slice

of a pelvis; Experiments 19 and 20 represent two regions of

a CT slice of a skull, Experiments 21-28 represent different

regions of MRI slices of lumbar discs, and Experiments 29-

30 represent different regions of two different MRI slices of a

spinal cord (spinous process, sagittal view). Experiments 21-

28 represent very challenging cases where the target regions

have intensities very similar to those of the surrounding

regions, thus making it difficult to clearly delineate the objects’

boundaries.

Results in Table II show that our approach achieves the

highest accuracy for the majority of experiments. The methods

whose results are underlined in Table II, Part 1, achieve con-

vergence before the proposed method and thus remain stable as

the algorithms iterate further. In Experiments 2, 14-17, Part 1,

and Experiments 11, 13, 15, 17, Part 2, the other evaluated

methods achieve higher DSC values than our method. In

the case of Experiment 2, Part 1, RD does not converge in

the tabulated number of iterations, and more iterations cause

significant leakage in Part 2. In the case of Experiments 14-

17, Part 1, DRLSE achieves convergence before our proposed

method (underlined results), thus resulting in higher DSC

values. For the case of Experiments 14 and 16, after increasing

the number of iterations in Part 2, our method achieves higher

DSC values. Our method, in these two cases, requires a larger

number of iterations than DRLSE to accurately detect the

desired boundary. In the case of Experiments 15 and 17,

Part 2, DRLSE outperforms our method by only 0.670%. For

Experiments 11,13, Part 2, RD also outperforms our method

by only 0.004%. It is also important to note that RD and LSD
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Fig. 7. Visual results attained by LSD, RD, DRLSE and our proposed method, for Part 1 experiments.The white curves denote the initial contours, the red
curves represent the final contour, and the green curves represent the ground truth. For Experiments 27 & 28, the first line of DSC values is for the cecum
region (upper region - Experiment 27), while the second line is for the sacrum region (bottom region - Experiment 28).
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Fig. 8. Visual results attained by LSD, RD, DRLSE and our proposed method, for Part 2 experiments. The white curves denote the initial contours, the red
curves represent the final contour, and the green curves represent the ground truth. For Experiments 27 & 28, the first line of DSC values is for the cecum
region (upper region - Experiment 27), while the second line is for the sacrum region (bottom region - Experiment 28).
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TABLE II
SEGMENTATION ACCURACY OF VARIOUS LEVEL SET METHODS FOR REAL MEDICAL IMAGES.

Exp.

Part 1 Part 2

DSC No.

iterations

DSC No.

iterationsLSD RD DRLSE Proposed approach LSD RD DRLSE Proposed approach

1 0.9262 0.9468 0.9432 0.9549 50 0.7246 0.9203 0.8438 0.9551 80

2 0.9370 0.9437 0.9016 0.9315 50 0.7868 0.5297 0.8913 0.9247 100

3 0.9451 0.9679 0.9501 0.9686 50 0.6873 0.5651 0.6082 0.9686 100

4 0.9391 0.9560 0.9311 0.9595 50 0.7638 0.8676 0.8741 0.9590 60

5 0.9368 0.9603 0.9552 0.9636 50 0.5563 0.9277 0.9544 0.9617 100

6 0.8814 0.9254 0.9166 0.9340 50 0.7695 0.8940 0.8205 0.9352 100

7 0.9085 0.9330 0.9412 0.9589 50 0.7233 0.4730 0.9397 0.9582 100

8 0.9417 0.8375 0.9165 0.9543 50 0.7041 0.8200 0.7235 0.9538 100

9 0.8128 0.8234 0.9445 0.9472 50 0.9364 0.9422 0.9461 0.9479 100

10 0.9070 0.8745 0.9332 0.9468 50 0.8609 0.9067 0.9335 0.9468 100

11 0.8821 0.8944 0.9420 0.9484 50 0.9218 0.9541 0.9434 0.9487 100

12 0.7934 0.8006 0.8123 0.9565 50 0.9055 0.8176 0.8152 0.9569 100

13 0.7150 0.7081 0.9526 0.9674 50 0.7392 0.9560 0.9252 0.9538 100

14 0.8875 0.9058 0.9463 0.9443 50 0.9015 0.9437 0.9466 0.9500 100

15 0.8496 0.7589 0.9577 0.9444 50 0.9466 0.9527 0.9571 0.9482 100

16 0.9584 0.7747 0.9764 0.9670 50 0.7848 0.9507 0.9776 0.9791 100

17 0.9397 0.7643 0.9641 0.9516 50 0.6591 0.9294 0.9767 0.9727 100

18 0.8643 0.8794 0.8510 0.9157 50 0.8076 0.8379 0.8510 0.9157 100

19 0.6376 0.6416 0.7355 0.9565 100 0.6844 0.7267 0.9480 0.9648 140

20 0.7095 0.7388 0.9273 0.9632 100 0.7971 0.8418 0.8680 0.9632 140

21 0.6792 0.7703 0.8874 0.9216 60 0.7812 0.8837 0.8314 0.9183 80

22 0.8504 0.8371 0.9032 0.9290 60 0.8603 0.8581 0.8877 0.9270 80

23 0.6527 0.7080 0.9182 0.9389 60 0.7004 0.8524 0.8968 0.9372 80

24 0.9057 0.8907 0.8920 0.9406 60 0.8852 0.8697 0.8816 0.9361 80

25 0.5701 0.6172 0.8365 0.9385 60 0.6122 0.6472 0.9099 0.9319 80

26 0.6824 0.7349 0.8174 0.9598 70 0.7014 0.8119 0.8331 0.9462 90

27 0.8605 0.9119 0.8475 0.9555 50 0.9009 0.8400 0.7280 0.9545 80

28 0.7588 0.7512 0.8280 0.8864 100 0.7714 0.6939 0.8345 0.8844 130

29 0.8631 0.8419 0.8287 0.9013 60 0.8148 0.7332 0.7557 0.9135 100

30 0.7625 0.8727 0.8732 0.9165 60 0.8919 0.8739 0.8219 0.9209 100

tend to result in leakage as the number of iteration increases;

see for example Experiments 2, 3 and 4, Part 2. For the

challenging cases (Experiments 21-28), our method achieves

convergence before the other evaluated methods and results

in higher DSC values. For Experiments 29-30, the regions we

intend to delineate are delimited by weak edges. LSD, RD and

DRLSE do not converge in the tabulated number of iterations

in Part 1 and consequently, tend to result in significant leakage

as the number of iteration increases in Part 2. The DSC values

attained for these experiments show that the proposed method

is also capable to outperform the other methods for these

images.

It is important to mention that leakage in DRLSE may be the

result of the distance regularization term and area term forcing

the zero level set to continue to evolve when the zero level set

is already at the desired boundary. Even though our proposed

method also employs the distance regularization employed

by DRLSE, it prevents leakage and achieves convergence by

weighting the Length2 and Area2 terms according to local

edge features. This confirms the advantage of our weighting

approach.

Visual results for Part 1 experiments are shown in Fig.

7. Note that the images in the depicted experiments contain

several intensity inhomogeneities. The third and fourth rows

represent challenging cases where the target objects have

intensities very similar to the surrounding regions. It can be

seen that our method is capable of detecting regions delineated

by weak edges. The other evaluated methods (see Columns 1-

3 of Fig. 7), fail to correctly segment the regions for the same

number of iterations required by our method. Although RD

and DRLSE attain an accuracy similar to that obtained by our

method for Experiment 1, these methods fail when they are

allowed to iterate further, as shown in Fig. 8. Among the most

challenging regions are those in Experiment 27 and 28 (fourth

row of Fig. 7). In this case, our method successfully detects

the cecum region (Experiment 27). This region is characterized

by very weak edges. Note that all methods fail to correctly

detect the upper edge of the sacrum region (Experiment 28).

However, our method is the one that results in the least amount

of leakage and thus, the highest DCS value.

Visual results for Part 2 experiments are shown in Fig. 8.

Note that the other evaluated methods results in significant

leakage when they iterate further. These visual results confirm

that taking into account the amount of edge information

and the direction of the image’s GVF field in the adjacent

region located inside and outside of the evolving contour to
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control the influence of various energy terms, can improve

segmentation accuracy and minimize leakage.

D. Comparisons to PBLS

(a) (b)

Fig. 9. (a) Synthetic phantom. The three circles in each column, from top
to bottom, have a radius of 17, 20, and 23 pixels, respectively. (b) Contours
obtained by PBLS (yellow) and our proposed method (red). The white curves
denote the initial contours.

(a) (b)

Fig. 10. (a) Ultrasound image of the left ventricle of the heart. (b) Contours
obtained by PBLS (yellow) and our proposed method (red). The white curve
denotes the initial contour.

The third set of experiments compares our method to PBLS

on synthetic images and real ultra sound images. PBLS has

been shown to perform very well in the presence of weak

edges. PBLS uses a similar alignment term as the one proposed

by Kimmel’s method. Fig. 9 and Fig. 10 show visual results

attained by PBLS and the proposed method on a synthetic

and ultra sound image, respectively. Note that both of these

images depict very weak edges and high levels of noise. For

the case of PBLS, we use the parameters that provide the best

edge map for each image. From Fig. 9, we observe that the

contours produced by PBLS tend to cover more area of the

synthetic circles than the proposed method. This is due to the

phase-based edge indicator used by PBLS to detect the edges.

However, the proposed method attains very competitive results

in the ultra sound image depicted in Fig. 10. It is interesting

to note that our proposed method tends to stop at the very

weak edge depicted in the lower right part of the ventricle of

Fig. 10,while PBLS tends to stop at the stronger edge. This

is expected, as our proposed method averages edge features

over k contours adjacent to the evolving contour, which helps

evolving contour to conform to very weak edges.

Fig. 11 shows visual results and DSC values attained by

PBLS and our proposed method in more challenging ultra-

sound images. Note that our method attains very competitive

results for the regions of Fig. 11 (a)-(d), while it outperforms

PBLS for the regions of Fig. 11 (e)-(h).

PBLS Proposed

(a) DSC=0.9227 (b) DSC=0.9268

(c) DSC=0.9445 (d) DSC=0.9593

(e) DSC=0.8666 (f) DSC=0.9298

(g) DSC=0.8394 (h) DSC=0.9498

Fig. 11. Visual results and DSC values attained by PBLS and the proposed
method in ultra sound images of the heart. Each row corresponds to a region.
The white curves denote the initial contours, the red curves represent the final
contour and the green curves represent the ground truth.

E. Comparisons to region-based active contours

The fourth set of experiments compares our method to

Kimmel’s method on synthetic images and real medical im-

ages. Let us recall that Kimmel’s method is a region-based

method. It is important to mention that region-based methods

are usually based on the Mumford-Shah functional [56]. For

example, the method of active contours without edges (Chan-

Vese model) solves the piecewise constant Mumford-Shah

model but restricts the solution to be a piecewise constant

solution with only two constants [6]. Other proposals have

successfully solved the energy minimization problem proposed

by Mumford and Shah by convex optimization, such as those

by Cai, Chan et al. [57], [58].

Visual results and DSC values for Kimmel’s method and

the proposed method are shown in Fig. 12. These results
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(a) DSC=0.9629 (b) DSC=0.5780 (c) DSC=0.6392 (d) DSC=0.0001

(e) DSC=0.9530 (f) DSC=0.9746 (g) DSC=0.8954 (h) DSC=0.9305

Fig. 12. Visual results and DSC values for synthetic images (columns 1 and
2) and real medical images (columns 3 and 4). The first row corresponds to
Kimmel’s method, while the second row corresponds to our method. Column
3 depicts a X-ray vessel image, and column 4 depicts an MRI slice of an
abdominal axial cross sectional view of the human body. The white curves
denote the initial contours, the red curves represent the final contour and the
green curves represent the ground truth.

show that Kimmel’s method outperforms ours for the synthetic

image in Fig. 12 (a). This is mainly due to the fact that

Kimmel’s method incorporates a region-based force into the

model, which increases accuracy when two regions can be

easily detected in the image. Our method, however, attains

a very similar DSC value to that attained by Kimmel’s in

this image. For cases where no two regions can be easily

detected, Kimmel’s method is outperformed by ours. This is

evidenced in the synthetic image in Fig. 12 (b), where it is

difficult to delineate two regions due to the weak edges and

the intensity inhomogeneities. Similar results are obtained for

the real medical images in Fig. 12 (c) and (d). Our method

achieves higher DCS values for these images. It is interesting

to note the performance of Kimmel’s method on the image

in Fig. 12 (d). As mentioned before, this method attempts to

detect two homogeneous regions. Therefore, the detected two

regions in this case correspond to those that appear to be the

most similar regions in terms of intensities.

F. Sensitivity to position of initial contour

The last set of experiments evaluates the sensitivity to the

initial contour’s position of the edge-based methods tabulated

in Table II. To this end, we employ different positions for

the initial contour on synthetic images and real medical

images. Visual results and DSC values are shown in Fig.

13 and 14. All methods have been evaluated with the same

number of iterations. In Fig. 13, we show results for a

noisy synthetic image. In this case, we tested the case of

initializing the contour inside and outside the target regions.

These results show that our method successfully detects the

objects’ boundary even when the position of the initial contour

is located outside the target regions. Our method also achieves

the highest DSC values. Fig. 14 demonstrates the robustness

of the proposed method with different initial contours on a

real medical image. In this case, RD performs better than LSD

and DRLSE, as it is capable to conform to most of the desired

boundary regardless of the position of the initial contour. LSD

particularly fails when the initial contour is located close

to a weak boundary. Our method successfully conforms to

the desired boundary with high accuracy for all initialization

positions. It is interesting to see that the proposed method

results in very similar DSC values for this medical image

regardless the position of the initial contour. This confirms

the effectiveness of weight ω in our method to control the

influence of forces according to local features.

LSD RD DRLSE Proposed method

(a) DSC=0.8621 (b) DSC=0.9364 (c) DSC=0.9518 (d) DSC=0.9746

(e) DSC=0.9183 (f) DSC=0.9472 (g) DSC=0.9781 (h) DSC=0.9800

Fig. 13. Segmentation results on a synthetic image after 100 iterations using
different positions for the initial contour. The white curves denote the initial
contours, the red curves represent the final contour and the green curves
represent the ground truth. Each row shows results for a different initial
position.

LSD RD DRLSE Proposed method

(a) DSC=0.7780 (b) DSC=0.9284 (c) DSC=0.8938 (d) DSC=0.9562

(e) DSC=0.7677 (f) DSC=0.8842 (g) DSC=0.7303 (h) DSC=0.9577

(i) DSC=0.7199 (j) DSC=0.7670 (k) DSC=0.8791 (l) DSC=0.9565

Fig. 14. Segmentation results on a MRI slice of a spinal cord (vertebral
body, sagittal view) after 50 iterations using different positions for the initial
contour. The white curves denote the initial contours, the red curves represent
the final contour and the green curves represent the ground truth. Each row
shows results for a different initial position.

G. Computational complexity

We finish this section with some comments about the

computational complexity of the proposed method. Despite
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the advantages of the narrowband implementation, the com-

putational cost of our method increases with respect to that

of the other evaluated methods. This is mainly due to the fact

that the proposed method collects local edge features from a

number of contours adjacent to the evolving contour C, at

each iteration.

We record the CPU time during the experiments. All meth-

ods are implemented in Matlab 8.4 and run on a computer

with Intel (R) Core (TM) i5 CPU, 3.20 GHz, 16 GB RAM,

with Windows 7. The average CPU time of the 30 experiments

tabulated in Part 1 of Table II, are 10.41 seconds, 9.57 seconds,

19.55 seconds and 27.12 seconds for LSD, RD, DRLSE and

the proposed method, respectively. Although LSD and RD

attain lower average CPU times than those attained by DRLSE,

the accuracy of these methods is, overall, lower than that of

DRLSE. As expected, the proposed method takes longer CPU

times to detect boundaries. However, these times may be easily

reduced by introducing optimizations to the implementation

code.

IV. CONCLUSIONS

In this paper we proposed a novel medical image seg-

mentation method based on a level set active contour model

that provides improved boundary detection accuracy around

weak edges. The method uses a weighting factor to leverage

the advantages of incorporating local edge features into the

objective energy functional. Specifically, the method combines

edge intensity information with edge directional information

collected from the adjacent region located inside and outside

of the evolving contour. This information is then used to

determine the importance of various energy terms in an energy

functional. As a consequence, the proposed method is able

to accurately drive the contour to the desired boundary even

around weak edges, thus minimizing leakages in medical

images. The performance of the proposed method was demon-

strated on various real medical images and compared with the

performance of various edge-based and region-based methods.

Experimental results showed that the proposed method outper-

forms other state-of-the-art edge-based level-set approaches, in

terms of segmentation accuracy, and is capable to converge to

the desired boundary in less iterations. Our future work will

focus on extending the proposed method to 3D images.
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