
Weighted Lumpability on Markov Chains

Arpit Sharma � and Joost-Pieter Katoen ��

RWTH Aachen University, Software Modeling and Verification Group, Germany
{arpit.sharma,katoen}@cs.rwth-aachen.de

Abstract. This paper reconsiders Bernardo’s T-lumpability on continuous-time
Markov chains (CTMCs). This notion allows for a more aggressive state-level
aggregation than ordinary lumpability. We provide a novel structural definition
of (what we refer to as) weighted lumpability, prove some elementary properties,
and investigate its compatibility with linear real-time objectives. The main result
is that the probability of satisfying a deterministic timed automaton specification
coincides for a CTMC and its weigthed lumped analogue. The same holds for
metric temporal logic formulas.
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1 Introduction

Continuous-time Markov chains (CTMCs) have a wide applicability ranging from clas-
sical performance evaluation to systems biology. Various branching-time relations on
CTMCs have been defined such as weak and strong variants of bisimulation equiva-
lence and simulation pre-orders. Strong bisimulation coincides with ordinary lumping
equivalence [11]. Their compatibility to (fragments of) stochastic variants of CTL has
been thoroughly investigated, cf. [4]. These relations allow for a state-space reduction
prior to model checking; in particular, bisimulation minimisation yields considerable
reductions and time savings [15] thanks to an efficient minimisation algorithm [13,19].

This paper focuses on a notion of lumpability that allows for a more aggressive
state-space aggregation than ordinary lumpability. It originates by Bernardo [6] who
considered Markovian testing equivalence over sequential Markovian process calcu-
lus (SMPC), and coined the term T-lumpability for the induced state-level aggregation
where T stands for testing. His testing equivalence coincides with ready trace equiv-
alence on CTMCs [20], it is a congruence w.r.t. parallel composition, and preserves
transient as well as steady-state probabilities [6]. A logical characterisation via a vari-
ant of Hennessy-Milner logic has been given in [9,8] establishing the preservation of
expected delays. Bernardo defines T-lumpability using four process-algebraic axioms,
and alternatively, calls two states T-lumpable if their expected delays w.r.t. any testing
process coincide. In this paper, we take a different route and start from a structural def-
inition using first Markov chain principles. As so-called weighted rates are the key to
this definition we baptize it weighted lumpability.
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Whereas ordinary lumpability compares states on the basis of their direct successors
—the cumulative probability to directly move to any equivalence class must be equal—
weighted lumpability (WL, for short) considers a two-step perspective. Before explain-
ing the main principle of WL, let us recall that every transition of a CTMC is labeled
with a positive real number λ. This parameter indicates the rate of the exponential dis-
tribution, i.e., the probability of a λ-labeled transition to be enabled within t time units
equals 1 − e−λ·t. In fact, the average residence time in a state is determined as the re-
ciprocal of the sum of the rates of its outgoing transitions. Roughly speaking, two states
s and s′ are weighted lumpable if for each pair of their direct predecessors the weighted
rate to directly move to any equivalence class via the equivalence class [s] = [s′] co-
incides. The main principle is captured in Fig. 1 where λ1,1 + λ1,2 = λ2,1 + λ2,2,
and λC1 = p1·λ1,1, λC2 = p1·λ1,2 + p2·λ2,1, λC3 = p2·λ2,2 with p1 = λ1

λ1+λ2
and

p2 = λ2
λ1+λ2

. Here states s1 and s2 are weighted lumpable, as the probability to move
from s0 to all the states in the equivalence class Ci (for i=1, 2, 3) via all the states in
[s1] is equal. This allows for the aggregation of s1 and s2, cf. the right CTMC in Fig. 1.
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Fig. 1. CTMC aggregation under weighted lumpability

In this paper we define WL as a structural notion on CTMCs. We define the quotient
under WL, and show that any CTMC is equivalent to its quotient under WL. Our struc-
tural definition allows for a simple proof that WL is (strictly) coarser than bisimulation,
i.e., ordinary lumpability. Our main focus and motivation, however, is to investigate the
preservation of linear real-time objectives under WL. We first show that the probability
of satisfying a deterministic timed automaton (DTA) [1] specification for any CTMC
coincides with that probability for its quotient. This allows for an a priori state-space
reduction in linear real-time CTMC model checking [12,5], and implies the preserva-
tion of “flat” (i.e., unnested) timed reachability properties and CSLTA formulas [14]. In
addition, we study metric temporal logic (MTL) [16], a real-time variant of LTL that is
typically used for timed automata (and not for CTMCs). DTA and MTL have incom-
parable expressiveness [17,3,10]. It is shown that WL-quotienting of CTMCs preserves
the probability to satisfy any MTL formula. As a prerequisite result, we show that MTL
formulas (interpreted on CTMCs) are measurable.

Organisation of the paper. Section 2 briefly recalls the main concepts of CTMCs. Sec-
tion 3 defines weighted lumpability and treats some basic properties. Sections 4 and
5 discuss the preservation of DTA properties and MTL-formulas, respectively. Finally,
Section 6 concludes the paper. All the proofs are contained in the appendix.
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2 Continuous-Time Markov Chains

This section presents the necessary definitions and basic concepts related to continuous-
time Markov chains that are needed for the understanding of the rest of this paper.

Definition 1 (CTMC). A (labeled) continuous-time Markov chain (CTMC) is a tuple
M = (S, R, AP, L, s0) where:

– S is a non-empty finite set of states,
– R : S × S → R≥0 is a rate function,
– AP is a finite set of atomic propositions,
– L : S → 2AP is a labeling function,
– s0 ∈ S is the initial state.

The exit rate E(s) for state s ∈ S is defined by E(s) =
∑

s′∈S R(s, s′). A state s is
called absorbing iff E(s) = 0. The semantics of a CTMC is defined as follows. The

probability of moving from s to s′ in a single step is defined by P (s, s′) = R(s,s′)
E(s) , if

s is non-absorbing and P (s, s′) = 0 otherwise. The probability to exit state s within t
time units is given by 1− e−E(s)·t. The probability to move from a non-absorbing state
s to s′ within t time units equals P (s, s′) · (1 − e−E(s)·t).

Definition 2 (CTMC timed paths). Let M = (S, R, AP, L, s0) be a CTMC. An infi-
nite path π in M is an alternating sequence of states si ∈ S and time instants ti ∈ R>0,
i.e., s0

t0−−→ s1
t1−−→ s2 · · · sn−1

tn−1−−−−→ sn · · · s.t. R(si, si+1) > 0 for all i ∈ N. A finite
path π is an alternating sequence of states si ∈ S and time instants ti ∈ R>0, i.e.,
s0

t0−−→ s1
t1−−→ s2 · · · sn−1

tn−1−−−−→ sn s.t. R(si, si+1) > 0 for all i < n.

Let PathsM = PathsMfin∪PathsMω denote the set of all paths inM, where PathsMfin =
⋃

n∈N
PathsMn is the set of all finite paths in M and PathsMω is the set of all infinite

paths in M. For infinite path π = s0
t0−−→ s1

t1−−→ s2 · · · sn−1
tn−1−−−−→ sn · · · and any

i ∈ N, let π[i] = si, the (i + 1)st state of π. Let δ(π, i) = ti be the time spent in state
si. For any t ∈ R≥0 and i, the smallest index s.t. t ≤ ∑i

j=0 tj , let π@t = π[i], the

state occupied at time t. For finite path s0
t0−−→ s1

t1−−→ s2 · · · sn−1
tn−1−−−−→ sn, which is

either a finite prefix of an infinite path or sn is absorbing, π[i], δ(π, i) are only defined
for i ≤ n, and for i < n defined as in the case of infinite paths. For all t >

∑n−1
j=0 tj , let

π@t = sn; otherwise π@t is defined as in the case of infinite paths. Let δ(π, n) = ∞.
Let α : S → [0, 1], be the intial probability distribution s.t.

∑
s∈S α(s) = 1. Since M

has a single initial state s0, α(s0) = 1, and ∀s ∈ S s.t. s �= s0, α(s) = 0. Let Paths(s0)
denote the set of all paths that start in s0.

Example 1. Consider the CTMC M in Fig. 2(a), where S = {s0, s1, s2, s3, s4, s5, s6,
s7}, AP = {a, b} and s0 is the initial state. The transition rates are associated with the
transitions. An example timed path π is s0

1.3−−−→ s1
1.5−−−→ s3

2−→ s6. Here π[3] = s6 and
π@3 = s3.

Definition 3 (Cylinder set). Let s0, . . . , sk ∈ S with P (si, si+1) > 0 for 0 ≤ i < k
and I0, . . . , Ik−1 be nonempty intervals in R≥0. Cyl(s0, I0, . . . , Ik−1, sk) denotes the
cylinder set consisting of all paths π ∈ Paths(s0) s.t. π[i] = si for i ≤ k, and δ(π, i) ∈
Ii for (i < k).



Weighted Lumpability on Markov Chains 325

The definition of a Borel space on paths of a CTMC follows [2]. Let F(Paths(s0)) be
the smallest σ-algebra on Paths(s0) which contains all sets Cyl(s0, I0, . . . , Ik−1sk)
s.t. s0, . . . , sk is a state sequence with P (si, si+1) > 0 (0 ≤ i < k) and I0, . . . , Ik−1

ranges over all sequences of nonempty intervals in R≥0.

Definition 4. The probability measure Prα on F(Path(s0)) is the unique measure
defined by induction on k in the following way. Let Prα(Cyl(s0)) = α(s0) and for
k > 0:

Pr
α

(Cyl(s0, I0, . . . , sk, I ′, s′)) = Pr
α

(Cyl(s0, I0, . . . , sk)) · P (sk, s′, I ′)

where P (sk, s′, I ′) = P (sk, s′) · (eE(sk)·a − eE(sk)·b) with a = inf I ′ and b = sup I ′.

Assumptions. Throughout this paper we assume that every state of CTMC M has at
least one predecessor, i.e., pred(s) = {s′ ∈ S | P (s′, s) > 0} �= ∅ for any s ∈ S. This
is not a restriction, as any CTMC (S, R, AP, L, s0) can be transformed into an equiv-
alent CTMC (S′, R′, AP ′, L′, s′0) which fulfills this condition. This is done by adding
a new state ŝ to S equipped with a self-loop and which has a transition to each state in
S without predecessors. The transition rates for ŝ are set to some arbitrary value, e.g.,
R(ŝ, ŝ) = 1 and R(ŝ, s) = 1 if pred(s) = ∅ and 0 otherwise. To distinguish this state
from the others we set L′(ŝ) = ⊥ with ⊥ �∈ AP. (All other labels, states and transitions
remain unaffected.) Let s′0 = s0. It follows that all states in S′ = S ∪ {ŝ} have at
least one predecessor. Moreover, the reachable state space of both CTMCs coincides.
We also assume that the initial state s0 of a CTMC is distinguished from all other states
by a unique label, say $. This assumption implies that for any equivalence that groups
equally labeled states, {s0} constitutes a seperate equivalence class. Both assumptions
do not affect the basic properties of the CTMC such as transient or steady-state distri-
butions. For convenience, we neither show the state ŝ nor the label $ in figures.

3 Weighted Lumpability

Before defining weighted lumpability, we first define two auxiliary concepts. All defi-
nitions in this section are relative to a CTMC M = (S, R, AP, L, s0). For C ⊆ S and
s ∈ S, let P (s, C) =

∑
s′∈C P (s, s′) be the cumulative probability to directly move

from state s to some state in C ⊆ S.

Definition 5. For s, s′ ∈ S and C ⊆ S, the function P : S ×S× 2S → R≥0 is defined
by:

P (s, s′, C) =

{
P (s,s′)
P (s,C) if s′ ∈ C and P (s, C) > 0
0 otherwise.

Intuitively, P (s, s′, C) is the probability to move from state s to s′ under the condition
that s moves to some state in C.

Example 2. Consider the example in Fig. 2(a). Let C = {s3, s4, s5}. Then P (s1, s3, C)
= 1/4, P (s1, s4, C) = 3/4, P (s2, s4, C) = 3/4, and P (s2, s5, C) = 1/4.
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Definition 6 (Weighted rate). For s ∈ S, and C, D ⊆ S, the function wr : S × 2S ×
2S → R≥0 is defined by:

wr(s, C, D) =
∑

s′∈C

P (s, s′, C) · R(s′, D)

where R(s′, D) =
∑

s′′∈D R(s′, s′′).

Intuitively, wr(s, C, D) is the (weighted) rate to move from s to some state in D

in two steps via any state s′ ∈ C. Since P (s′, D) = R(s′,D)
E(s′) , wr(s, C, D) equals

∑
s′∈C P (s, s′, C) · P (s′, D) · E(s′).

Example 3. Consider the example in Fig. 2(a). Let D = {s6}. Then wr(s1, C, D) =
P (s1, s3, C) ·R(s3, D)+ P (s1, s4, C) ·R(s4, D) = 1

2 , wr(s2, C, D) = P (s2, s4, C) ·
R(s4, D)+P (s2, s5, C)·R(s5, D) = 1

2 . Similarly, for D = {s7}, we get wr(s1, C, D)
= P (s1, s3, C)·R(s3, D)+P (s1, s4, C)·R(s4, D) = 3

2 , wr(s2, C, D) = P (s2, s4, C)·
R(s4, D) + P (s2, s5, C) · R(s5, D) = 3

2 .

The above ingredients allow for the following definition of weighted lumpability, the
central notion in this paper. For C ⊆ S, let pred(C) =

⋃
s∈C pred(s).

Definition 7 (WL). Equivalence R on S is a weighted lumping (WL) if we have:

1. ∀(s1, s2) ∈ R it holds: L(s1) = L(s2) and E(s1) = E(s2), and
2. ∀C, D ∈ S/R and ∀s′, s′′ ∈ pred(C) it holds: wr(s′, C, D) = wr(s′′, C, D).

States s1, s2 are weighted lumpable, denoted by s1
∼= s2, if (s1, s2) ∈ R for some WL

R.

The first condition asserts that s1 and s2 are equally labeled and have identical exit
rates. The second condition requires that for any two equivalence classes C, D ∈ S/R,
where S/R denotes the set consisting of all R-equivalence classes, the weighted rate
of going from any two predecessors of C to D via any state in C must be equal. Note
that, by definition, any WL is an equivalence relation. Weighted lumpability coincides
with Bernardo’s notion of T-lumpability [6,7] that is defined in an axiomatic manner for
action-labeled CTMCs. Roughly speaking, two states are T-lumpable if their expected
delays w.r.t. to any test process, put in parallel to the CTMC, coincide for both the
states.

Example 4. For the CTMC in Fig. 2(a), the equivalence relation induced by the parti-
tioning {{s0}, {s1}, {s2}, {s3, s4, s5}, {s6}, {s7}} is a WL relation.

Definition 8 (Quotient CTMC). For WL relation R on M, the quotient CTMC M/R
is defined by M/R = (S/R, R′, AP, L′, s′0) where:

– S/R is the set of all equivalence classes under R,
– R′(C, D) = wr(s′, C, D) where C, D ∈ S/R and s′ ∈ pred(C),
– L′(C) = L(s), where s ∈ C and
– s′0 = C where s0 ∈ C.
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Fig. 2. (a) A CTMC and (b) its quotient under weighted lumpability

Note that R′(C, D) is well-defined as for any predecessors s′, s′′ of C it follows
wr(s′, C, D) = wr(s′′, C, D). Similarly, L′ is well-defined as states in any equivalence
class C are equally labeled.

Example 5. The quotient CTMC for the Fig. 2(a) under the WL relation with partition
{{s0}, {s1}, {s2}, {s3, s4, s5}, {s6}, {s7}} is shown in Fig. 2(b).

Next, we show that any CTMC M and its quotient under WL relation are ∼=-equivalent.

Definition 9. For WL R on M, let M ∼= M/R iff ∀C ∈ S/R, s ∈ C it holds s ∼= C.

Theorem 1. Let M be a CTMC and R be a WL on M. Then M ∼= M/R.

Remark 1. The notion of WL-equivalent states cannot be lifted to WL equivalent time-
abstract paths. That is to say, in general, s ∼= s′ does not imply that for every path π1 of
s, there exists a statewise ∼=-equivalent path π2 in s′, i.e., π1

∼= π2 iff si,1
∼= si,2 for all

i ≥ 0. Consider, e.g., Fig. 2(a). Here s3
∼= s4, but the time-abstract paths from s3, s4

are not ∼=-equivalent, as s3 can move to s6 but there is no direct successor s of s4 with
s ∼= s6. (Note that L(s6) �= L(s7).) As a consequence, ∼= is not finer than probabilistic
trace equivalence [20].

To conclude this section, we investigate the relationship of WL to bisimulation, i.e.,
ordinary lumping [4,11]. This relationship is not novel; it is also given for T-lumpability
in [6], but its proof is now quite simple thanks to the simplicity of the definition of WL.

Definition 10 (Bisimulation [4]). Equivalence R on S is a bisimulation on M if for
any (s1, s2) ∈ R we have: L(s1) = L(s2), and R(s1, C) = R(s2, C) for all C in S/R.
s1 and s2 are bisimilar, denoted s1 ∼ s2, if (s1, s2) ∈ R for some bisimulation R.

These conditions require that any two bisimilar states are equally labeled and have
identical cumulative rates to move to any equivalence class C. Note that as R(s, C) =
P (s, C)·E(s), the condition on the cumulative rates can be reformulated as P (s1, C) =
P (s2, C) for all C ∈ S/R and E(s1) = E(s2).



328 A. Sharma and J.-P. Katoen

Lemma 1. ∼ is strictly finer than ∼=.

The proof that ∼ is finer than ∼= is in the appendix. It follows from Fig. 2 that s1
∼=

s2 � s1 ∼ s2. Consider the equivalence class C = {s3, s4, s5} in Fig. 2(a). Here
s3 �∼ s4 since s3 can reach an a-state while s4 cannot.

4 Preservation of DTA Specifications

Bisimulation equivalence coincides with the logical equivalence of the branching-time
logic CSL [4], a probabilistic real-time variant of CTL [2]. This implies that bisimilar
states satisfy the same CSL formulas, a property that—thanks to efficient minimisation
algorithms [13]— is exploited by model checkers to minimise the state space prior to
verification. In order to investigate the kind of real-time properties for CTMCs that are
preserved by WL, we study in this section linear real-time objectives that are given
by Deterministic Timed Automata (DTA) [1]. These include, e.g., properties of the
form: what is the probability to reach a given target state within the deadline, while
avoiding “forbidden” states and not staying too long in any of the “dangerous” states on
the way. Such properties can neither be expressed in CSL nor in dialects thereof [14].
A model-checking algorithm that verifies a CTMC against a DTA specification has
recently been developed [12]; first experimental results are provided in [5]. The key
issue is to compute the probability of all CTMC paths that are accepted by a DTA.
In this section, we will deal with finite acceptance conditions, i.e., a DTA accepts the
timed path if one of its final locations is reached. The results, however, also carry over
to Muller acceptance conditions.

Deterministic timed automata. A DTA is a finite-state automaton equipped with a finite
set of real-valued variables, called clocks. Clocks increase implicitly, all at the same
pace, they can be inspected (in guards) and can be reset to the value zero. Let X be a
finite set of clocks ranged over by x and y. A clock constraint g over set X is either
of the form x �� c with c ∈ N and ��∈ {<,≤, >,≥}, or of the form x − y �� c, or a
conjunction of clock constraints. Let CC(X ) denote the set of clock constraints over X .

Definition 11 (DTA). A deterministic timed automaton (DTA) is a tupleA = (Σ,X , Q,
q0, F,→) where:

– Σ is a finite alphabet,
– X is a finite set of clocks,
– Q is a nonempty finite set of locations with the initial location q0 ∈ Q,
– F ⊆ Q is a set of accepting (or final) locations,
– → ⊆ Q × Σ × CC(X ) × 2X × Q is the edge relation satisfying:

(
q a,g,X−−−−→ q′ and q a,g′,X′−−−−−→ q′′ with g �= g′

)
implies g ∩ g′ = ∅.

Intuitively, the edge q a,g,X−−−−→ q′ asserts that the DTA A can move from location q to q′

when the input symbol is a and the guard g holds, while the clocks in X should be reset
when entering q′ (all other clocks keep their value). DTA are deterministic as they have
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a single initial location, and outgoing edges of a location labeled with the same input
symbol are required to have disjoint guards. In this way, the next location is uniquely
determined for a given location and a given set of clock values. In case no guard is
satisfied in a location for a given clock valuation, time can progress. If the advance
of time will never reach a situation in which a guard holds, the DTA will stay in that
location ad infinitum. Note that DTA do not have location invariants.

The semantics of a DTA is given by an infinite-state transition system. We do not
provide the full semantics, cf. [1], but we define the notion of paths, i.e., runs or exe-
cutions of a DTA. This is done using some auxiliary notions. A clock valuation η for
a set X of clocks is a function η : X → R≥0, assigning to each clock x ∈ X its cur-
rent value η(x). The clock valuation η over X satisfies the clock constraint g, denoted
η |= g, iff the values of the clocks under η fulfill g. For instance, η |= x − y > c iff
η(x) − η(y) > c. Other cases are defined analogously. For d ∈ R≥0, η+d denotes the
clock valuation where all clocks of η are increased by d. That is, (η+d)(x) = η(x)+d
for all clocks x ∈ X . Clock reset for a subset X ⊆ X , denoted by η[X := 0], is the
valuation η′ defined by: ∀x ∈ X.η′(x) := 0 and ∀x /∈ X.η′(x) := η(x). We denote
the valuation that assigns 0 to all the clocks by 0. An (infinite) path of DTA A has the
form ρ = q0

a0,t0−−−−→ q1
a1,t1−−−−→ . . . such that η0 = 0, and for all j � 0, it holds tj > 0,

ηj+tj |= gj , ηj+1 = (ηj+tj)[Xj := 0], where ηj is the clock evaluation on entering
qj . Here, gj is the guard of the j-th edge taken in the DTA and Xj the set of clock to be
reset on that edge. A path ρ is accepted by A if qi ∈ F for some i � 0. Since the DTA is
deterministic, the successor location is uniquely determined; for convenience we write
q′ = succ(q, a, g). A path in a CTMC M can be “matched” by a path through DTA
A by regarding sets of atomic propositions in M as input symbols of A. Such path is
accepted, if at some point an accepting location in the DTA is reached:

Definition 12 (CTMC paths accepted by a DTA). Let CTMC M = (S, R, AP, L, s0)
and DTA A = (2AP,X , Q, q0, F,→). The CTMC path π = s0

t0−−→ s1
t1−−→ s2 · · · is

accepted by A if there exists a corresponding DTA path

q0
L(s0),t0−−−−−−→ succ

(
q0, L(s0), g0

)

︸ ︷︷ ︸
=q1

L(s1),t1−−−−−−→ succ
(
q1, L(s1), g1

)

︸ ︷︷ ︸
=q2

· · ·

such that qj ∈ F for some j � 0. Here, η0 = 0, gi is the (unique) guard in qi such that
ηi+ti |= gi and ηi+1 = (ηi+ti)[Xi := 0], and ηi is the clock evaluation on entering
qi, for i � 0. Let PathsM(A) = {π ∈ PathsM | π is accepted by DTA A}.

Theorem 2 ([12]). For any CTMC M and DTA A, the set PathsM(A) is measurable.

The main result of this theorem is that PathsM(A) can be rewritten as the combination
of cylinder sets of the form Cyl = (s0, I0, . . . ., In−1, sn) (Cyl for short) which are
all accepted by DTA A. A cylinder set (Cyl) is accepted by DTA A if all its paths are
accepted by A. That is

PathsM(A) =
⋃

n∈N

⋃

π∈PathsM
n (A)

Cylπ, (1)
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where PathsMn (A) is the set of accepting paths by A of length n and Cylπ is the
cylinder set that contains π.

Definition 13 (WL equivalent cylinder sets). Cylinder sets Cyl = (s0, I0, . . . , In−1,
sn) and Cyl′ = (s′0, I0, . . . , In−1, s

′
n) are WL equivalent, denoted Cyl ∼= Cyl′, if they

are statewise WL equivalent: Cyl ∼= Cyl′ iff si
∼= s′i for all 0 � i � n.

Definition 14 (WL-closed set). The set Π of cylinder sets is WL-closed if ∀Cyl ∈ Π ,
and Cyl′ with Cyl′ ∼= Cyl implies Cyl′ ∈ Π .

A finite path π in the CTMC M is compatible with Π if the cylinder set for this path
Cylπ ∈ Π . Since the cylinder sets contained in Π are disjoint, we have Prs(Π) =
Prs(

⋃
Cyl∈Π Cyl) =

∑

Cyl∈Π

Prs(Cyl), where Prs(Π) is the probability of all the paths

starting in s which are compatible with Π . For paths compatible with Π but not starting
from s, the probability equals 0. We denote WL-closed set of cylinder sets of length n
by Πn. If n = 0, Πn is the set of states and Prs(Πn) = α(s) if s ∈ Πn, 0 otherwise,
where α(s) is the probability of s being the initial state of CTMC M.

Example 6. Consider the example given in Fig. 3, where we have the CTMC M (left)
and its quotient M/R (right). If Π = {Cyl(s0, I0, s1, I1, s3), Cyl(s′0, I0, s

′
1, I1, s

′
2)}

is a WL closed set of cylinder sets in M, and M/R that are accepted by DTA A, then:

Pr
s0

(Π) = Pr
s0

(Cyl(s0, I0, s1, I1, s3)) + Pr
s0

(Cyl(s′0, I0, s
′
1, I1, s

′
2))

= 1/2 · (e−E(s0)·inf I0 − e−E(s0)·sup I0) · (e−E(s1)·inf I1 − e−E(s1)·sup I1) + 0.

The second term is 0 as the cylinder set does not start from s0. Similarly,

Pr
s′
0

(Π) = Pr
s′
0

(Cyl(s0, I0, s1, I1, s3)) + Pr
s′
0

(Cyl(s′0, I0, s
′
1, I1, s

′
2))

= 0 + (e−E(s′
0)·inf I0 − e−E(s′

0)·sup I0) · 1/2 · (e−E(s′
1)·inf I1 − e−E(s′

1)·sup I1).

Definition 15. For CTMC M and DTA A, let Pr(M |= A) = Pr
(
PathsM(A)

)
.

Stated in words, Pr(M |= A) denotes the probability of all the paths in CTMC M that
are accepted by DTA A. Note that we slightly abuse notation, since Pr on the right-hand
side is the probability measure on the Borel space of infinite paths in the CTMC. This
brings us to one of the main results of this paper:

Theorem 3 (Preservation of DTA specifications). For any CTMC M, a WL R on M
and DTA A:

Pr(M |= A) = Pr(M/R |= A).

The detailed proof is in the appendix and consists of two main steps:

1. We prove that for any cylinder set Cyl in the quotient CTMC M/R which is ac-
cepted by the DTA A, there is a corresponding set of cylinder sets in the CTMC M
that are acccepted by the DTA A and that jointly have the same probability as Cyl,
cf. Lemma 2 below.
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2. We show that the sum of probabilities of all the cylinder sets in M/R that are
accepted by DTA A equals the sum of probabilities of all the corresponding sets of
cylinder sets in M.

Lemma 2. Let M = (S, R, AP, L, s0) be a CTMC and R be a WL on M. If Π is a
WL-closed set of cylinder sets which are accepted by DTA A, then for any D ∈ S/R
and s′0 ∈ pred(D):

∑

s1∈D

P (s′0, s1, D) · Pr
s1

(Π) = Pr
D

(Π).

From Lemma 2 we conclude

∑

D∈S/R

∑

s1∈D

P (s′0, s1, D) · Pr
s1

(Π) =
∑

D∈S/R

Pr
D

(Π). (2)

s0 {a}

s1 {b} s2 {b}

s3 {a} s4 {b}

1
1

4 4

(a) M

s′0 {a}

s′1 {b}

s′2 {a} s′3 {b}

2

2
2

(b) M/R

Fig. 3. WL equivalent cylinder sets

Corollary 1. WL preserves transient state probabilities.

5 Preservation of MTL Specifications

In this section we show that the quotient CTMC obtained under WL can be used for ver-
ifying Metric Temporal Logic (MTL) formulae [16,18,10]. It is interesting to note that
the expressive power of MTL is different from that of DTA. Temporal properties like
(��a) cannot be expressed using deterministic timed automata, since nondeterminism
is needed to compensate for the non causality [17]. On the other hand, DTA expressible
languages that involve counting [3], e.g., a should only occur at even positions, cannot
be expressed using MTL. We now recall the syntax and semantics of Metric Temporal
Logic [18,10].

Definition 16 (Syntax of MTL). Let AP be a set of atomic propositions, then the
formulas of MTL are built from AP using Boolean connectives, and time-constrained
versions of the until operator U as follows:

ϕ ::= tt
∣
∣ a
∣
∣ ¬ϕ

∣
∣ ϕ ∧ ϕ

∣
∣ ϕUI ϕ

where I ⊆ R≥0 is a nonempty interval with rational bounds, and a ∈ AP .
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Whereas, typically, the semantics of MTL is defined over timed paths of timed au-
tomata, we take a similar approach by interpreting MTL formulas over CTMC paths.

Definition 17 (Semantics of MTL formulas). The meaning of MTL formulas is de-
fined by means of a satisfaction relation, denoted by |=, between a CTMC M, one of its

paths π, MTL formula ϕ, and time t ∈ R≥0. Let π = s0
t0−−→ s1 · · · sn−1

tn−1−−−−→ sn · · ·
be a finite or infinite path of M, then (π, t) |= ϕ is defined inductively by:

(π, t) |= tt
(π, t) |= a iff a ∈ L(π@t)
(π, t) |= ¬ϕ iff not (π, t) |= ϕ
(π, t) |= ϕ1 ∧ ϕ2 iff (π, t) |= ϕ1 and (π, t) |= ϕ2

(π, t) |= ϕ1 UI ϕ2 iff ∃t′ ∈ t+I. ((π, t′) |= ϕ2 ∧ ∀t ≤ t′′ < t′. (π, t′′) |= ϕ1) .

The semantics for the propositional fragment is straightforward. Recall that π@t de-
notes the state occupied along path π at time t. Path π at time t satisfies ϕ1 UI ϕ2

whenever for some time point t′ in the interval I+t, defined as [a, b]+t = [a+t, b+t]
(and similarly for open intervals), ϕ2 holds, and at all time points between t and t′,
path π satisfies ϕ1. Let π |= ϕ if and only if (π, 0) |= ϕ. The standard temporal oper-
ators like � (“eventually”) and its timed variant �I are derived in the following way:
�Iϕ = tt UI ϕ and�ϕ = tt Uϕ. Similarly, � (“globally”) and its timed variant are
derived as follows:

�Iϕ = ¬(�I¬ϕ) and �ϕ = ¬(�¬ϕ).
Example 7. Using MTL, various interesting properties can be specified such as:

– �(down → �[0,5]up), which asserts that whenever the system is down, it should
be up again within 5 time units.

– �(down → alarm U[0,10] up), which states that whenever the system is down, an
alarm should ring until it is up again within 10 time units.

More complex properties can be specified by nesting of until path formulas.

Theorem 4 ([2]). The probability measure of the set of converging paths is zero.

As a next result, we address the measurability of a set of CTMC paths satisfying an
MTL formula ϕ.

Theorem 5. For each MTL formula ϕ and state s of CTMC M, the set {π ∈ Paths(s) |
π |= ϕ} is measurable.

Definition 18 (Probability of MTL formulas). The probability that state s satisfies
MTL formula ϕ refers to the probability for the sets of paths for which that formula
holds as follows:

Pr(s |= ϕ) = Pr
s

(π ∈ Paths(s) | π |= ϕ).

Since M has a single initial state, i.e., s0, the probability of all the paths in M that
satisfy MTL formula ϕ is given by Pr(M |= ϕ) = Pr(s0 |= ϕ).

Theorem 6. Let M be a CTMC and R be a WL on M. Then for any MTL formula ϕ:

Pr(M |= ϕ) = Pr(M/R |= ϕ).
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6 Conclusions

This paper considered weighted lumpability (WL), a structural notion that coincides
with Bernardo’s T-lumpability [6] defined in a process-algebraic setting. Whereas Ber-
nardo defines T-lumpability in an axiomatic manner, our starting point is a structural
definition using first CTMC principles. The main contribution of this paper is the preser-
vation of DTA and MTL specifications under WL quotienting. We note that this implies
the preservation of transient probabilities as well as timed reachability probabilities.
Future work is to develop an efficient quotienting algorithm for WL; we hope that
our structural definition facilitates a reduction algorithm along the partition-refinement
paradigm.

Acknowledgements. We thank Marco Bernardo for his constructive comments on a
draft version of this paper.
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Appendix

Proof of Theorem 1

Proof. Let M = (S, R, AP, L, s0) be a CTMC and M/R = (S/R, R′, AP, L′, s′0) be
its quotient under WL. Since we have defined the WL relation on a single state space,
to prove this theorem we take the disjoint union S ∪ S/R. Let us define an equivalence
relation R∗ ⊆ (S∪S/R)×(S∪S/R) with {(s, C)|s ∈ C} ⊆ R∗. The exit rate E′(C)
for C ∈ S/R is defined by

∑

x∈(S∪S/R)

R′(C, x).

Now we prove that R∗ is a WL relation. This is done by checking both conditions of
Def. 7. Let (s, C) ∈ R∗. The proofs for pairs (s, s′), (C, s), and (C, C) are similar and
omitted.

1. L′(C) = L(s) by definition of M/R. We prove that E′(C) = E(s) as follows:

E′(C) =
∑

x∈(S∪S/R)

R′(C, x) =
∑

D∈S/R

R′(C, D)

=
∑

D∈S/R

wr(s′0, C, D) for some s′0 ∈ pred(C)

=
∑

D∈S/R

∑

s∈C

P (s′0, s, C) · R(s, D)

=
∑

s∈C

⎛

⎝P (s′0, s, C) ·
∑

D∈S/R

R(s, D)

⎞

⎠

=
∑

s∈C

⎛

⎝P (s′0, s, C) ·
∑

D∈S/R

∑

s′∈D

R(s, s′)

⎞

⎠

=
∑

s∈C

(

P (s′0, s, C) ·
∑

s′∈S

R(s, s′)

)
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=
∑

s∈C

(P (s′0, s, C) · E(s))

=

(
∑

s∈C

P (s′0, s, C)

)

· E(s), since for all s′ ∈ C, E(s′) = E(s)

= E(s).

2. Finally we prove that ∀E, F ∈ (S ∪ S/R)/R∗ and ∀x′
0, x

′′
0 ∈ pred(E) it holds

wr(x′
0, E, F ) = wr(x′′

0 , E, F ). Let x′
0, x

′′
0 ∈ pred(E). Consider the following

three cases based on the successors of x′
0, x

′′
0 such that these successors are in E.

a) The successors of both x′
0, x

′′
0 belong to S. Since we know that R is a WL, it

follows wr(x′
0, E, F ) = wr(x′′

0 , E, F ).
b) The successors of both x′

0, x
′′
0 belong to S/R. In this case, wr(x′

0 , E, F )
= wr(x′

0, {E1}, F ) where E1 ∈ E ∩ S/R, which equals

∑

x′∈{E1}

P (x′
0, x

′)
P (x′

0, E1)
· R′(x′, F ) = R′(E1, F ).

Similarily wr(x′′
0 , E, F ) = wr(x′′

0 , {E1}, F ) = R′(E1, F ).
c) The successors of x′

0, x
′′
0 belong to S and S/R respectively. In this case we get,

wr(x′′
0 , E, F ) = wr(x′′

0 , {E1}, F ) = R′(E1, F ).
We know that the successors of E1 ∈ S/R, hence using Def. 8 we conclude:

R′(E1, F ) = wr(x′
0, E1, F ) = wr(x′

0 , E, F ).

Since all the conditions of Def. 7 are satisfied by the relation R∗, it is a WL relation. ��

Proof of Lemma 1

Proof. Let s1 ∼ s2. We prove that both conditions for ∼= are satisfied.

– L(s1) = L(s2), follows directly from s1 ∼ s2.
– E(s1) = E(s2), since we know that

E(s1) =
∑

s∈S

R(s1, s) =
∑

C∈S/∼

∑

s∈C

R(s1, s) =
∑

C∈S/∼

R(s1, C).

If s1 ∼ s2, then R(s1, C) = R(s2, C). Therefore:

E(s1) =
∑

C∈S/∼

R(s1, C) =
∑

C∈S/∼

R(s2, C) = E(s2).
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– Let C, D ∈ S/∼ and s′0, s
′′
0 ∈ pred(C). Since R(s1, D) = R(s2, D) for all

s1, s2 ∈ C, then for all s∗ ∈ C:

wr(s′0, C, D) =
∑

s∈C

P (s′0, s)
P (s′0, C)

· R(s, D)

= R(s∗, D) ·
∑

s∈C

P (s′0, s)
P (s′0, C)

= R(s∗, D)

= R(s∗, D) ·
∑

s∈C

P (s′′0 , s)
P (s′′0 , C)

=
∑

s∈C

P (s′′0 , s)
P (s′′0 , C)

· R(s, D)

= wr(s′′0 , C, D).

Thus s1
∼= s2. ��

Proof of Lemma 2

Proof. We will prove this lemma by induction over the length of the cylinder set Cyl ∈
Π . That is, we will prove for any n ∈ N :

∑

s1∈D

P (s′0, s1, D) · Pr
s1

(Πn) = Pr
D

(Πn).

– Base Case: In this case, n = 0 and

∑

s1∈D

P (s′0, s1, D) · Pr
s1

(Π0) = 1 = Pr
D

(Π0),

if s0 ∈ D, Π0, and 0, otherwise.
– Induction Hypothesis: Assume that for cylinder sets of length n ∈ N, it holds:

∑

s1∈D

P (s′0, s1, D) · Pr
s1

(Πn) = Pr
D

(Πn).

– Induction Step: Consider the case n + 1:

∑

s1∈D

P (s′0, s1, D) · Pr
s1

(Πn+1)

=
∑

s1∈D

P (s′0, s1, D) ·
∑

s2∈S

P (s1, s2) · (e−E(s1)·inf I0 − e−E(s1)·sup I0) · Pr
s2

(Πn)
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Let (e−E(s1)·inf I0 − e−E(s1)·sup I0) = δ(s1, I0), then the above expression is equal
to:

∑

s1∈D

P (s′0, s1, D) ·
∑

s2∈S

P (s1, s2) · δ(s1, I0) · Pr
s2

(Πn)

=
∑

s1∈D

P (s′0, s1, D) ·
∑

C∈S/R

∑

s2∈C

P (s1, s2) · δ(s1, I0) · Pr
s2

(Πn)

=
∑

C∈S/R

∑

s1∈D

P (s′0, s1, D) ·
∑

s2∈C

P (s1, s2) · δ(s1, I0) · Pr
s2

(Πn).

Multiplying the above expression by
R(s1, C)
R(s1, C)

and using P (s1, s2) =
R(s1, s2)

E(s1)
yields:

∑

C∈S/R

∑

s1∈D

P (s′0, s1, D) ·
∑

s2∈D

R(s1, C)
R(s1, C)

· R(s1, s2)
E(s1)

· δ(s1, I0) · Pr
s2

(Πn).

Since ∀s1, s
′
1 ∈ D, E(s1) = E(s′1), we have δ(s1, I0) = δ(s′1, I0). We get:

δ(s1, I0)
E(s1)

∑

C∈S/R

∑

s1∈D

P (s′0, s1, D) · R(s1, C) ·
∑

s2∈C

R(s1, s2)
R(s1, C)

· Pr
s2

(Πn)

=
δ(s1, I0)
E(s1)

∑

C∈S/R

∑

s1∈D

P (s′0, s1, D) · R(s1, C) ·
∑

s2∈C

P (s1, s2, C) · Pr
s2

(Πn).

We have already proved that ∀s ∈ D, E(s) = E(D), cf. Theorem 1. From the
induction hypothesis we have:

∑

s2∈C

P (s1, s2, C) · Pr
s2

(Πn) = Pr
C

(Πn).

Also from Def. 6 and Def. 8 we know that:
∑

C∈S/R

∑

s1∈D

P (s′0, s1, D) · R(s1, C) =
∑

C∈S/R

R′(D, C),

since
∑

s1∈D P (s′0, s1, D) · R(s1, C) = wr(s′0, D, C) = R′(D, C). Therefore we
get:

δ(D, I0)
E(D)

∑

C∈S/R

R′(D, C) · Pr
C

(Πn) = Pr
D

(Πn+1).

��
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Proof of Theorem 3

Proof. Let Cn be the set of all the cylinder sets in M, and M/R of length n that
are accepted by DTA A and Cn/Π be the set of subsets of Cn grouped according to
WL-closed set of cylinder sets. Let Cylπ be the cylinder set that contains π. Since the
cylinder sets in Eq. (1) are disjoint, we have:

Pr(M |= A) = Pr

⎛

⎝
⋃

n∈N

⋃

π∈PathsM
n (A)

Cylπ

⎞

⎠

=
∑

n∈N

∑

Cyl∈Cn

Pr(Cyl)

=
∑

n∈N

∑

Π∈Cn/Π

∑

D∈S/R

∑

s1∈D

P (s′0, s1, D) · Pr
s1

(Π).

Then we get using Eq. (2):

Pr(M |= A) =
∑

n∈N

∑

Π∈Cn/Π

∑

D∈S/R

∑

s1∈D

P (s′0, s1, D) · Pr
s1

(Π)

=
∑

n∈N

∑

Π∈Cn/Π

∑

D∈S/R

Pr
D

(Π)

= Pr(M/R |= A).

��
Proof of Theorem 5

Proof. We prove the measurability by showing that for any path π = s0
t0−−→ s1

t1−−→ s2

· · · sn−1
tn−1−−−−→ sn ∈ PathsMn (s0 |= ϕ) where PathsMn (s0 |= ϕ) is the set of paths of

length n starting from s0 that satisfy ϕ, there exists a cylinder set Cyl(s0, I0, ...., In−1, sn

(Cyl for short) s.t. π ∈ Cyl and Cyl ⊆ PathsMn (s0 |= ϕ). Since the only interest-
ing case is time-bounded “until“, we consider ϕ = ϕ1U[a,b]ϕ2, where a, b ∈ Q. Let
∑n−1

i=0 ti − Δ > a and
∑n−2

i=0 ti + Δ < b, where Δ =
2n

10k
, and k is large enough. We

construct Cyl by considering intervals Ii with rational bounds that are based on ti. Let
Ii = [t−i , t+i ] s.t. t−i = ti = t+i if ti ∈ Q, and otherwise:

t−i < ti < t+i , t−i > ti − Δ

2n
and t+i < ti +

Δ

2n
.

We have to show for ti /∈ Q, Eq. (3) and Eq. (4) hold:

n−1∑

i=0

t−i > a. (3)

Proof. We know that
n−1∑

i=0

ti − Δ > a =⇒
n−1∑

i=0

t−i + n · Δ

2n
− Δ > a

=⇒
n−1∑

i=0

t−i +
Δ

2
− Δ > a =⇒

n−1∑

i=0

t−i − Δ

2
> a =⇒

n−1∑

i=0

t−i > a.
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n−2∑

i=0

t+i < b. (4)

Proof. We know that
n−2∑

i=0

ti + Δ < b =⇒
n−2∑

i=0

t+i − (n − 1) · Δ

2n
+ Δ < b

=⇒
n−2∑

i=0

t+i +
(n + 1) · Δ

2n
< b =⇒

n−2∑

i=0

t+i < b.

One way is to pick t−i , t+i as follows:

t−i = �ti� +
�{ti} · 10k�

10k
,

t+i = �ti� +
�{ti} · 10k� + 1

10k
,

where {ti} represents the fractional part of the irrational number ti. It can be checked
that picking t−i , t+i this way satisfies the above mentioned constraints.

From this derivation we conclude that {π ∈ Paths(s0)|π |= ϕ} can be rewritten as
the combination of cylinder sets of the form Cyl = (s0, I0, ...., In−1, sn). That is,

{π ∈ Paths(s0)|π |= ϕ} =
⋃

n∈N

⋃

π∈PathsMn (s0�ϕ)

Cylπ, (5)

where PathsMn (s0 � ϕ) is the set of paths of length n starting from s0 which satisfy
ϕ. ��
Proof of Theorem 6

Proof. The proof is similar to that of Theorem 3. We consider the WL-closed set of
cylinder sets of length n in M, M/R such that this set satisfies ϕ. The rest of the proof
remains the same. ��
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