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Abstract

We investigate markets with a set of students on one side and a set of colleges on
the other. A student and college can be linked by a weighted contract that defines the
student’s wage, while a college’s budget for hiring students is limited. Stability is a crucial
requirement for matching mechanisms to be applied in the real world. A standard stability
requirement is coalitional stability, i.e., no pair of a college and group of students has any
incentive to deviate. We find that a coalitionally stable matching is not guaranteed to exist,
verifying the coalitional stability for a given matching is coNP-complete, and the problem
of finding whether a coalitionally stable matching exists in a given market, is ΣP

2
-complete:

NPNP-complete. Other negative results also hold when blocking coalitions contain at most
two students and one college. Given these computational hardness results, we pursue a
weaker stability requirement called pairwise stability, where no pair of a college and single
student has an incentive to deviate. Unfortunately, a pairwise stable matching is not
guaranteed to exist either. Thus, we consider a restricted market called a typed weighted
market, in which students are partitioned into types that induce their possible wages. We
then design a strategy-proof and Pareto efficient mechanism that works in polynomial-time
for computing a pairwise stable matching in typed weighted markets.

1. Introduction

Investigation into two-sided matchings began with Gale and Shapley (1962), who intro-
duced the college admissions problem. Since then, the theory of two-sided matching and its
applications to real-life problems have been extensively developed in the literature of eco-
nomics (see Roth & Sotomayor, 1990, for a comprehensive survey). This topic has recently
attracted much attention from artificial intelligence and multi-agent systems as well (e.g.
Goto et al., 2016; Kurata et al., 2017; Perrault et al., 2016). The problems of matching stu-
dents to schools (Abdulkadiroğlu, Pathak, & Roth, 2009; Abdulkadiroğlu, Pathak, Roth, &
Sönmez, 2005; Abdulkadiroğlu & Sönmez, 2003), doctors to hospitals (Roth, 1984; Roth &
Peranson, 1999), and military cadets to army branches (Sönmez, 2013; Sönmez & Switzer,
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2013) are important formal settings that have been considered. Central notions are pairwise
and coalitional stability of a matching, which should be immune to deviations by a pair or
group of agents. It is preferable for a mechanism to be student-wise strategy-proof: there
should be no incentives for students1 to misreport their preferences.

The presence of maximum quotas (i.e. capacity limit of a college) is assumed in most
standard models. In real-life examples, different kinds of distributional constraints exist
other than maximum quotas (Biró, Fleiner, Irving, & Manlove, 2010; Kamada & Kojima,
2015), and various types of distributional constraints have recently been addressed and
a series of mechanisms have been introduced to achieve desirable outcomes under such
constraints (Fragiadakis, Iwasaki, Troyan, Ueda, & Yokoo, 2015; Fragiadakis & Troyan,
2017; Goto et al., 2016; Kojima, Tamura, & Yokoo, 2018; Kurata et al., 2017). In this
paper, we revisit the standard distributional constraint of maximum quotas by assuming
that each college has a fixed amount of resource, or budget, that can be distributed among
students and that students may receive a different amount. This amount may differ among
different types of students (e.g., tuition at American state universities is lower for students
who qualify for in-state rates), a student may be allocated a different amount of resource,
depending on the contract she made (e.g., full or partial scholarship) or both. In our
model, we explicitly take into account the total amount of each school’s resources and the
maximum a student may receive. Therefore, we model a weighted matching market with
budget constraints.

Although our model is a natural extension of standard maximum quotas, very little
literature has addressed this issue, possibly due to its intractability; two conditions from
the literature, substitutability and the law of aggregate demand, make analysis tractable
(Hatfield & Milgrom, 2005), but neither is satisfied in our model. The most relevant work
(Abizada, 2016) studies college admissions with budget constraints, in which a student
receives a pair of a college and a stipend, and develops a strategy-proof mechanism that
satisfies a weaker notion of stability. The major differences between this model and ours are
that we deal with general ordinal (instead of quasi-linear) preferences of students, which
becomes possible since we focus on discrete sets of wages (instead of a continuum) and
allow different types of students to exist in a market (instead of assuming all students are
of the same type). Another relevant work (Mongell & Roth, 1986) shows that the core can
be empty in a job market with budget constraints. We cannot apply their result to our
model since they assume the utility of each school/firm is quasi-linear, while in our model,
each school is indifferent about the amount of money it spends as long as it is below the
budget limit. The environment that groups students into types has also been studied in
the literature of school choice problems (Abdulkadiroğlu, 2005; Abdulkadiroğlu & Sönmez,
2003; Ehlers, Hafalir, Yenmez, & Yildirim, 2014; Kojima, 2012; Yenmez, Yildirim, & Hafalir,
2013). Recently, a similar model was considered (Kawase & Iwasaki, 2017, 2018). The goals
of their works (approximate matching) are different from ours. While our model is more
general, they concentrate on additive utilities of colleges. First, they relax feasibility such
that a college is allowed to exceed its budget limit to some extent (Kawase & Iwasaki, 2017).
Second, they relax pairwise stability such that a college does not form a blocking pair unless
its utility increases more than a certain factor α (Kawase & Iwasaki, 2018).

1. The rest of this paper is described in the context of a college-student matching problem.
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Coalitional stability
(any blocking coalition)

Blocking coalitions
with two students

Pairwise
stability

May not exist, even
in typed markets (Th. 1)

May not exist in
general markets (Th. 6)

Verification is coNP-complete,
even in typed markets (Th. 2).

Existence is
NP-hard, In typed markets, Mechanism 1 is:

strategy-proof, pairwise stable
and constrained Pareto efficient.

Existence is NPNP-complete
in general markets (Th. 3).

even in typed
markets (Th. 5).

Table 1: Summary of our contributions

We also address computational issues related to verifying/finding a stable matching. To
the best of our knowledge, we are the first to address these issues in two-sided matching
with budget constraints. We show that coalitional stability in matchings with budget con-
straints involves a larger complexity class than NP in the polynomial hierarchy (Meyer &
Stockmeyer, 1972). According to a compendium of problems (updated in 2008), few ΣP

2 -
complete (that is NPNP-complete) problems involve numbers (Schaefer & Umans, 2002).
The ∀∃SubsetSum problem that we introduce (as a mid-step in our reduction) seems new.
This compendium does not reflect the more recent progress in algorithmic game theory.
The complexity of coalitional stability has been studied in several related models, in which
checking is often coNP-complete and deciding coalitional stability is also ΣP

2 -complete. For
instance, this is the case in additively separable hedonic games (Sung & Dimitrov, 2007;
Woeginger, 2013), for envy freeness (and Pareto efficiency) (Aziz, Brandt, & Seedig, 2013)
and in resource allocation (Bouveret & Lang, 2008). Furthermore, NP-completeness of de-
ciding whether a stable outcome exists was shown in matching problems with couples (Ronn,
1990) and matching problems with minimum quotas (Biró et al., 2010; Huang, 2010).

The contributions of this paper are twofold. First, we investigate the computational
issues regarding the coalitional stability of a matching and find the following negative results.
(1) There may not exist a coalitionally stable outcome. (2) Checking whether a given
matching is coalitionally stable is coNP-complete. (3) It is NPNP-complete to decide whether
there exists a coalitionally stable matching. Assuming that blocking coalitions contain at
most two students, (4) checking becomes polynomial and the existence problem is still NP-
complete. Therefore, the notion of coalitional stability is computationally intractable in
typed weighted markets. Second, following the above results, we focus on pairwise stability,
a weaker notion that involves only a pair of one student and a college. For a student,
finding a profitable deviation in a group involving other students would be difficult, while
finding such a deviation that involves only herself and a college would be much easier.
Thus, we suggest that eliminating such deviation makes sense in practice. Unfortunately,
we show that a pairwise stable matching is not guaranteed to exist in general.2 Thus,
we consider a restricted market called a typed weighted market, in which students are
partitioned into types that induce their possible wages. This result is surprising, since even
in a typed weighted market, substitutability is not guaranteed to hold even for a typed
weighted market. (Substitutability is a sufficient condition for the existence of a stable
matching (Hatfield & Kojima, 2010).) However, we show that there always exists a pairwise

2. This result is stark contrast to the model presented in (Abizada, 2016), in which a pairwise stable
matching is guaranteed to exist.
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stable matching by developing a strategy-proof mechanism that finds such a matching in
polynomial-time in a typed weighted market.

2. Models

Here, we present our two-sided weighted matchings models, where the most general is
weighted markets. Simple weighted markets and typed weighted markets are particular cases.
Our model is based on the framework of matching with contracts (Hatfield & Milgrom,
2005), which is widely used in two-sided matching (Sönmez, 2013; Sönmez & Switzer,
2013; Hatfield & Kojima, 2008, 2010; Hatfield & Kominers, 2009, 2012; Hatfield, Kominers,
Nichifor, Ostrovsky, & Westkamp, 2013; Echenique, 2012; Kominers & Sönmez, 2016).

Definition 1. A weighted market is a tuple π = (S,C,W,X, bC ,≻S , %̃C), where:

• S = {s1, . . . , sn} is a set of students.

• C = {c1, . . . , cm} is a set of colleges.

• W = {w1, . . . , wp} are non-negative integer wages.

• X ⊆ {(s, c, w) | s ∈ S, c ∈ C,w ∈W} is a set of possible contracts where contract
x = (s, c, w) means that student s is assigned to college c with wage w.

• bC = (bc ∈ N+)c∈C is a profile of colleges’ budgets.

• ≻S= (≻s)s∈S is a profile of student preferences ≻s over college-wage tuples C ×W
and an additional tuple (c∅, 0) which means that she stays home with no wage.3 We
assume that w > w′ implies (c, w) ≻s (c, w

′)

• %̃C = (%̃c)c∈C is a profile of college weak preferences over sets S′ ⊆ 2S of the students.

Each college weak preference %̃c is based on a weak preference%c over the students and
null student s∅. Weak preference % partitions into asymmetric part ≻ and symmetric
part ∼. Here, s ≻c s

′ means college c strictly prefers s over s′ and s ∼c s
′ means c is

indifferent between students s and s′. College preferences satisfy responsiveness; for
every pair of students s, s′ ∈ S and subset of students S′ ⊆ S \ {s, s′}, it holds that:

s %c s
′ ⇔ S′ ∪ {s} %̃c S

′ ∪ {s′},

which also implies s ≻c s
′ ⇔ S′ ∪ {s} ≻̃c S′ ∪ {s′}, since ≻c and ≻̃c are asymmetric

parts.4 Also, for every subset of students S′ ( S and student s ∈ S \ S′,

s %c s∅ ⇔ S′ ∪ {s}%̃c S
′

holds, which similarly implies s ≻c s∅ ⇔ S′ ∪ {s}≻̃c S
′.

A market is simple weighted if, between every student-college tuple, there exists at
most one possible wage. In this simpler case, the set of contracts can be represented by

3. This definition allows for preference (c, 2) ≻s (c∅, 0) ≻s (c, 1); the wage matters for the feasibility of the
same college.

4. The same holds with symmetric parts ∼c and ∼̃c.
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a bipartite graph between students on one side and colleges on the other side, and each
possible student-college edge is weighted by the corresponding wage. Therefore, in simple
weighted markets, notation w can be abused in a functional manner w : S ×C →W where
w(s, c) ∈W is the wage received by student s for attending college c and function w is only
defined on tuples (s, c) for which there is a contract.

Furthermore, in the general setting, the market can be represented by a bipartite multi-
graph between students and colleges and possibly multiple edges between each student-
college pair, corresponding to their possible contracts. The functional abuse for wages is
then w : S × C → 2W .

Weighted markets also admit typed weighted markets as a particular case in which stu-
dents are partitioned into types.
• Θ = {θ1, . . . , θk} is a finite set of student types.

• Function τ : S → Θ maps each student to its type. We assume for students s, s′ ∈ S
such that θi = τ(s), θj = τ(s′), i < j, if s ≻c s∅ and s′ ≻c s∅ hold, then s ≻c s

′ holds.
In other words, as long as college c thinks both students s and s′ are strictly better
than s∅, c always prefers a student with the higher type.5

• Set W is represented as W =
⋃

c∈C

⋃
θ∈ΘWc,θ, where Wc,θ is the set of wages that

college c can give to type θ students. Formally, for all s ∈ S, for all c ∈ C such that
s ≻c s∅, and for all w ∈ W , (s, c, w) ∈ X holds if and only if w ∈ Wc,τ(s) holds. We
assume types are ordered in the following sense. Given a college c, for every w ∈Wc,θi

and w′ ∈Wc,θi+1
, one has w > w′.

Definition 2. A typed weighted market is defined by a tuple

π = (S, C, Θ, τ, (Wc,θ)c∈C,θ∈Θ, X, bC , ≻S , %̃C).

For instance, one may realistically consider the job market of young researchers in which
student types are graduate, new doctorate and experienced doctorate. Each college c pro-
poses a set of possible wages Wc,θ to each type of student θ. It is easy to see that typed
weighted markets are a particular case of weighted markets, in which we require additional
constraints on possible wages and the preferences of colleges.

For instance, in Fig. 1, there are two colleges c1 and c2, and two types of students: type
θ1 which includes s1, s2 and s3, and type θ2 which includes s4 and s5. Every student has a
preference over his acceptable contracts. The possible wage between (for instance) college
c1 and students of type θ1 are wages set Wc1,θ1 = {3, 2}. This is indeed a typed weighted
market, because every college ranks higher his acceptable students of a higher type. For in-
stance, concerning c2, students s3 and s1 of type θ1, are ranked higher than s4 and s5, of type
θ2. This typed weighted market amounts to a weighted market with possible contracts X =
{(s1, c1, 3), (s1, c1, 2), (s1, c2, 3), (s2, c1, 3), (s2, c1, 2), (s2, c2, 3), (s3, c1, 3), (s3, c1, 2), (s3, c2, 3),
(s4, c1, 1), (s4, c2, 1), (s5, c1, 1), (s5, c2, 1)}.

In our model, to choose an optimal subset of contracts, we need to know %̃c. For
example, assume s1 ≻c s2 ≻c s3 holds and bc = 2. When choosing an optimal subset
within {(s1, c, 2), (s2, c, 1), (s3, c, 1)}, we cannot tell whether college c prefers {(s1, c, 2)} or

5. Students of a higher type can be considered unacceptable to a college, even if students of a lower type
are considered acceptable.
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s1

s2

s3

s4

s5

θ1

θ2

c1

c2

(c2, 3) ≻s1 (c1, 3) ≻s1 (c∅, 0)

(c1, 3) ≻s2 (c1, 2) ≻s2 (c∅, 0)

(c1, 3) ≻s3 (c2, 3) ≻s3 (c∅, 0)

(c1, 1) ≻s4 (c2, 1) ≻s4 (c∅, 0)

(c1, 1) ≻s5 (c2, 1) ≻s5 (c∅, 0)

bc1 = 5

bc2 = 5

s1 ≻c1 s2 ≻c1 s3 ≻c1
s4 ≻c1 s5 ≻c1 s∅

s3 ≻c2 s1 ≻c2 s4 ≻c2
s5 ≻c2 s∅ ≻c2 s2

Wc1,θ1 = {3, 2}

Wc2,θ1 = {3}

Wc1,θ2 = {1}

Wc2,θ2 = {1}

Figure 1: Example of typed-weighted market with two types of students.

{(s2, c, 1), (s3, c, 1)} without %̃c. Obtaining %̃c is difficult since it is a preference over 2n

sets, unless it can be concisely represented.

For instance, for each college c, weak preference %̃c can be represented by an additively
separable utility : utility function uc : S → Z that additively extends to sets S′ ⊆ S of
students by uc(S

′) =
∑

s∈S′ uc(s). Hence, given two sets of students S′, S′′ ∈ 2S , preference
S′≻̃cS

′′ holds if and only if inequality uc(S
′) > uc(S

′′) also holds, and indifference S′∼̃cS
′′

holds if and only if one has equality uc(S
′) = uc(S

′′). This defines weak preference %̃c =
≻̃c ∪ ∼̃c. The null-student has utility uc(s∅) = 0. An additively separable utility satisfies
responsiveness. Also, it is an instance of a simple weighted market.

2.1 Matching

Given contract x ∈ X, let (xS , xC , xW ) respectively denote the student, college, and wage
that are linked by contract x. Given a subset of contracts Y ⊆ X, let us denote the set of
contracts of student s ∈ S as Ys = {x ∈ Y | xS = s} and the set of contracts of college
c ∈ C as Yc = {x ∈ Y | xC = c}.

Definition 3. A matching is a subset of contracts Y ⊆ X where each student s goes to at
most one college: |Ys| ≤ 1.6

Given matching Y ⊆ X, we abuse notation Y in a natural functional manner as follows.
Let Y (s) ∈ (C×W )∪{(c∅, 0)} denote the college (or home c∅) to which student s is assigned
and the corresponding wage. Let Y (c) ⊆ S denote the set of students assigned to college c.
This functional notation maps agents to what they state their preferences on.

Definition 4. Contract (s, c, w) is feasible if (c, w) ≻s (c∅, 0) and s %c s∅. Matching Y is
student-feasible for student s if Ys is feasible. Matching Y is college-feasible for college c if

6. Students without contracts stay home.
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all students in Yc are feasible and if the sum of the wages is budget-feasible:
∑

x∈Yc
xW ≤ bc.

Feasible matching Y ⊆ X is a matching that is student-feasible for each student and college-
feasible for each college.

Without loss of generality, we assume throughout the paper that for each contract
(c, s, w) ∈ X, preference s %c s∅ holds.

2.2 Stability

A pairwise stable matching is immune to pairwise deviations by blocking pairs.

Definition 5. For matching Y , tuple (s, c) ∈ S×C is a blocking pair if there exists w ∈W
and R ⊆ Yc such that (s, c, w) ∈ X \ Y and the following conditions hold:

1. (c, w) ≻s Y (s),

2. (Y (c) \R(c)) ∪ {s} ≻̃c Y (c), and

3.
∑

x∈Yc\R
xW + w ≤ bc.

In other words, (s, c) is a blocking pair if s prefers (c, w) over her current contract, c is
willing to reject the subset of its contracts R to accept s, and it satisfies budget constraints.

Definition 6. Feasible matching Y is pairwise stable if it does not admit any blocking pair.

In standard models, the ”weight” of each student against the capacity limit is the same.
Thus, to define a blocking pair, it is usually sufficient to consider replacing exactly one
student. In our model, the ”weight” of a student can be different; it is determined by its
wage. Thus, it is more natural to assume that a college can replace multiple students to
accept a student in a blocking pair. The meaning of a blocking pair is that the college and
the student in the blocking pair have incentives to deviate. There is no good reason why
the deviation of the college must be restricted to just replacing another student.

Similarly, a coalitionally stable matching is immune to coalitional deviations, since it
does not admit any.

Definition 7. For matching Y , tuple (S′, c) ∈ 2S ×C is a blocking coalition if there exists
ws ∈W for each s ∈ S′ and R ⊆ Yc such that (s, c, ws) ∈ X \ Y and the following hold:

1. ∀s ∈ S′, (c, ws) ≻s Y (s),

2. (Y (c) \R) ∪ S′ ≻̃c Y (c), and

3.
∑

x∈Yc\R
xW +

∑
s∈S′ ws ≤ bc.

In other words, (S′, c) is a blocking coalition if each s ∈ S′ prefers (c, ws) over her current
contract, c is willing to reject the subset of its contracts R in order to accept S′, and doing
so satisfies its budget constraint.

Definition 8. Feasible matching Y is coalitionally stable if it admits no blocking coalition.

399



Ismaili, Hamada, Zhang, Suzuki & Yokoo

From the above definition, if Y is coalitionally stable, it is also pairwise stable, but not
vice versa. Furthermore, one may wonder why coalitional stability is not defined between a
group of colleges and students (instead of one college and students). In fact, with regard to
core stability, both concepts are equivalent. Colleges are indifferent to the other colleges in
the same coalition (and students have preferences on colleges, not co-students). Therefore,
a blocking coalition defined between a group of colleges and a group of students is the union
of blocking coalitions with one college and many students. Consequently, since core stability
asks whether there exists a blocking coalition, both concepts of blocking coalition (with one
or many colleges) are equivalent with regard to core stability.

3. The Complexity of Coalitional Stability in Weighted Markets

In the field of computational complexity, a decision problem is modeled by an infinite set of
instances and a question that maps each instance to yes or no. The answer is the desired
output. In this section, we assume additively separable utilities for colleges, so that condi-
tion 2 in Definitions 5 and 7 are rewritten with sums. First, we observe that a coalitionally
stable matching is not guaranteed to exist in every weighted market. This fundamental ob-
servation lets us introduce the coalitional stability in weighted market (CSWM) problem to
decide whether a given weighted market admits (yes or no) a coalitionally stable matching.

For verifications in the CSWM problem, we then address the CSWM—Y problem to
decide whether in a given weighted market, a given matching is coalitionally stable. We
show that the CSWM—Y problem is coNP-complete. Hence, verification for CSWM does
not seem polynomial-time tractable and CSWM is likely to fall outside of NP and coNP.

Ultimately, we show that (indeed) the CSWM problem is NPNP-complete, even if the
preferences of colleges on students are strict. Therefore, coalitional stability is a computa-
tionally very hard requirement in weighted markets.

3.1 A Coalitionally Stable Matching Is Not Guaranteed to Exist

Theorem 1. In simple weighted typed markets, coalitionally stable matchings may not exist.

Example 1. Consider this simple weighted market in which each possible contract is rep-
resented by a weighted edge.

s1

s2

s3

(c1, 2) ≻s1 (c2, 2) ≻s1 (c∅, 0)

c1

c2

bc1 = 2

bc2 = 1

(c1, 1) ≻s2 (c2, 1) ≻s2 (c∅, 0)

(c2, 1) ≻s3 (c1, 1) ≻s3 (c∅, 0)

2

2
1

1
1

1

The possible contracts areX = {(s1, c1, 2), (s1, c2, 2), (s2, c1, 1), (s2, c2, 1), (s3, c1, 1), (s3, c2, 1)},
and the preference of each college c is s1 ≻c s2 ≻c s3 ≻c s∅ and extends to:

. . . ≻̃c{s2, s3}≻̃c{s1}≻̃c{s2}≻̃c{s3}≻̃c ∅.
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Specifying preference ≻c beyond {s2, s3} is not useful, since further sets of students are not
budget-feasible. Such a college preference could be obtained by additively separable utility
uc(s1) = 4, uc(s2) = 3, uc(s3) = 2.

This example can also be modeled as a typed weighted market, where Θ = {θ1, θ2},
τ(s1) = θ1, τ(s2) = τ(s3) = θ2, and for every college c, one has: Wc,θ1 = {2}, Wc,θ2 = {1}.

Proof. We discuss all possible matchings Y of Example 1, starting by Y (c1), which is either
∅,{s2},{s3},{s2, s3} or {s1}. Due to budget constraint, s1 cannot be assigned to c2.

Case 1: If Y (c1) = ∅, then (s1, c1) or (s2, c1) blocks Y .

Case 2: If Y (c1) = {s2} or Y (c1) = {s3}, then (s1, c1) blocks Y .

Case 3: If Y (c1) = {s2, s3}, then (s3, c2) blocks Y .

Case 4: If Y (c1) = {s1} and Y (c2) 6= {s2}, then (s2, c2) blocks Y .

Case 5: If Y (c1) = {s1} and Y (c2) = {s2}, then ({s2, s3}, c1) blocks Y .

Each matching is blocked by a coalition: Example 1 has no coalitionally stable matching.

3.2 Reminders on Computational Complexity

Class P (polynomial-time) corresponds to the decision problems that can be answered in
polynomial-time. Traditionally, we regard these problems as easy or tractable.

Class NP (non-deterministic polynomial-time) corresponds to the set of decision prob-
lems whose ‘yes’-instances have a certificate verifiable in polynomial-time. For instance,
consider the SubsetSum problem: given a target α ∈ N and a multiset S = {w1, . . . , wn}
of weights, the question asks whether there exists a subset of items T ⊆ S that satisfies the
constraint

∑
w∈T w = α (hits the target). For ‘yes’-instances, providing such a solution is

an easy-to-check yes certificate,7 hence the SubsetSum problem is in NP.
Complementation consists in transposing the yes and no answers, e.g., the coSubset-

Sum problem asks whether ∀T ⊆ S,
∑

w∈T w 6= α. The ‘no’-instances are polynomial-time
verifiable. This defines the problems of class coNP.

Problem SubsetSum is part of the most difficult problems of class NP, where a polynomial-
time algorithm seems inexistent. Indeed, SubsetSum is NP-complete (Karp, 1972):

1. it belongs to NP,
2. it is NP-hard since every problem in NP reduces in polynomial time to SubsetSum.

Hence, the existence of a polynomial-time algorithm for SubsetSum would imply P=NP,
which is widely believed to be false and argues for the intractability of SubsetSum.8

For some decision problems, neither yes nor no certification is polynomial-time tractable.
In such cases, the problem falls outside of NP and coNP. Class NPNP corresponds9 to the
decision problems in which ‘yes’-instances have proofs verifiable in polynomial time by using
a constant-time NP-oracle. Class coNPNP is its complement. For instance, let us introduce
the following new decision problems:

7. Guessing subset T is the non-deterministic part.
8. Similarly, one can show that a problem is coNP-complete by proving that it is in coNP and that it is the

complement of an NP-hard problem, since NP and coNP are symmetric classes.
9. Class ΣP

2 in the second level of the Polynomial Hierarchy.
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P

NP coNP

NPNP coNPNP

CSWM|Y

CSWM

SubsetSum

∀∃SubsetSum

Figure 2: Inclusions of decision problem classes.

Definition 9. Given target α ∈ N and two multi-sets of integers S∀ and S∃, the ∀∃SubsetSum
problem asks whether

∀T ∀ ⊆ S∀, ∃T ∃ ⊆ S∃, s.t.
∑

w∈T ∀

w +
∑

w∈T ∃

w = α.

Conversely, the ∃∀SubsetSum problem asks whether formula

∃T ∀ ⊆ S∀, ∀T ∃ ⊆ S∃,
∑

w∈T ∀

w +
∑

w∈T ∃

w 6= α

is true. The latter is simply the complement of the former.

The ∃∀SubsetSum problem lies in class NPNP. Indeed, by guessing the right set T ∀,
one can use the NP-oracle to solve the remaining coSubsetSum problem and verify the
‘yes’ answer. Similarly, ∀∃SubsetSum is in class coNPNP. Completeness is defined in a
standard manner with polynomial-time reductions. Showing that problem ∀∃SubsetSum
is coNPNP-complete is a middle step in the proof below.

3.3 Complexity of Verification

We now address the complexity of a classical yes verification. The CSWM—Y problem,
given weighted market π = (S,C,W,X, bC ,≻S , %̃C) and feasible matching Y , asks whether
Y is (yes or no) coalitionally stable.

Theorem 2. The CSWM—Y problem is coNP-complete, even for a simple weighted typed
market with only one college that has an additively separable utility.

Proof. First, the CSWM—Y problem is in coNP, since providing a blocking coalition (T, c)
is a no-certificate that can be verified in polynomial-time. Second, the complement of
CSWM—Y (which answers ‘yes’ if there is a blocking coalition) is NP-hard, as we reduce
SubsetSum to co-CSWM—Y.

Let set S = {w1, . . . , wn} and target α ∈ N be an instance of SubsetSum. We construct
in polynomial-time the following CSWM—Y instance that addresses it. In this simple
weighted market, there are students S = {s1, . . . , sn, sα} and one college c. College c has
budget α. The wages and utilities are the same w(c, si) = uc(si) = wi for 1 ≤ i ≤ n and
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s1

s2

sn

sα

(c, w) ≻s (c∅, 0)
c bc = α

w1

w2

wn

α− 1

2

Y

Figure 3: Reducing SubsetSum to co-CSWM—Y.

w(c, sα) = uc(sα) = α − 1/2 for the last student.10 The preferences of students are to go
to college c rather than staying at home. The preference of the college is to maximize its
utility, which here precisely corresponds to maximizing its budget consumption. In the given
matching Y = {(sα, c, α−1/2)}, student sα goes to college c, and all other students go home.
This reduction is depicted in Fig. 3. The college’s budget consumption corresponds to its
utility. Also, since wages and utilities correspond, this market is typed. It is straightforward
that a blocking coalition exists if and only if a subset of items hits target α.

If there is a subset T ⊆ S which hits the target α, then there is the corresponding
blocking coalition (T, c) which would improve the college’s interest from α − 1/2 to α. If
no subset of items hits target α, then no feasible coalition of students is better for college
c than uc(sα) = α− 1/2.

3.4 The Complexity of Coalitional Stability

The previous subsection suggests that certification is hard, and hence that the problem
CSWM falls outside of NP and coNP. Indeed, it is even harder than NP-complete.

Theorem 3. The CSWM problem is NPNP-complete, even for a number of colleges in O(1).

Proof, assuming Lemma 2 and 3. The CSWM problem is in NPNP since ‘yes’-instances can
be certified by this two step meta-algorithm.

1. Guess a coalitionally stable matching Y .
2. By using the NP-oracle on the corresponding CSWM—Y instance, prove that Y is

coalitionally stable.

For completeness in NPNP, we equivalently show that problem coCSWM is coNPNP-
complete. The proof proceeds in two steps. First, we reduce the coNPNP-complete problem
∀∃3CNF to problem ∀∃SubsetSum (Lemma 2). Second, we reduce problem ∀∃SubsetSum
to problem coCSWM (Lemma 3), achieving the proof.

Let (B = {0, 1},∨,∧,¬) denote the usual Boolean algebra. Given a set of variables V ,
an instantiation I : V → B maps each variable v ∈ V to a Boolean value I(v) ∈ B. Given
a Boolean variable v, the literals it induces are {v,¬v}. A 3-clause is the disjunction of 3

10. To have only integers, as in the model, one might multiply all the numbers by 2 and obtain a strategically
equivalent market, or allow for half integers in the model.
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literals. A Boolean formula is in 3 conjunctive normal form (3CNF) if it is the conjunction
of a set of 3-clauses.

Definition 10. An instance of the ∀∃3CNF problem is defined by two sets of Boolean
variables V ∀, V ∃ (V ∀ ∩ V ∃ = ∅) and by a 3CNF formula φ defined as the conjunction of a
set of 3-clauses C on the literals induced by V ∀ ∪ V ∃. It asks if

∀I∀ : V ∀ → B, ∃I∃ : V ∃ → B,
∧

c∈C

c(I∀, I∃).

Example 2. Let V ∀ = {v1, v2}, V
∃ = {v3, v4} and φ =

(v1 ∨ ¬v2 ∨ ¬v3)︸ ︷︷ ︸
c1

∧ (¬v1 ∨ v3 ∨ ¬v4)︸ ︷︷ ︸
c2

∧ (v2 ∨ v3 ∨ v4)︸ ︷︷ ︸
c3

.

Does there, for every instantiation of {v1, v2}, exists an instantiation of {v3, v4}, such that
formula φ is true?

Lemma 1. Problem ∀∃3CNF is coNPNP-complete (Meyer & Stockmeyer, 1972).

Problem ∀∃3CNF is prototypical for the second level of the polynomial hierarchy, be-
cause it uses two groups of quantifiers.

Lemma 2. Problem ∀∃SubsetSum is coNPNP-complete.

Proof of Lemma 2. We encode a given instance of problem ∀∃3CNF into the numerical
weights and target of a ∀∃SubsetSum instance. It helps to represent the reduction as in
Table 2 where each line represents a weight and each column is a component of the weight
in a base B large enough in some sense below. The idea is that the weights/lines will act as
decision variables, and the components/columns will act as constraints on the “variables”.
For instance, in Table 2, we have wv1 = 1B6 + 1B2 and wv3 = 1B4 + 1B1 + 1B0. Each
variable and each 3-clause indexes a column; so there are |V ∀ ∪ V ∃| + |C| columns. To
never have remainders in any addition of weights, the numbers are represented in a base B
which is large enough: each column can be seen as one constraint which has to precisely
sum to the target’s same column content, in order to satisfy

∑
wi∈T ∀ wi +

∑
wj∈T ∃ wj = α

from Definition 9. It is largely sufficient to take B = 2(|V ∀ ∪ V ∃|+ |C|) + 1, since it largely
surpasses the number of lines.

Intuitively, the quantified Boolean variables and their instantiations are precisely mod-
eled by the following 2|V ∀| + 2|V ∃| weights and their quantifications. Two weights are
associated to each variable v, one per induced literal: wv and w¬v. Both have their variable-
columns v that equal 1 and the other variable-columns that equal 0. Also, for column v,
the target is set to 1; so that exactly one literal-weight per-variable will be in T ∀ ∪T ∃. For
universally quantified variables v ∈ V ∀, exactly one weight (for instance wv) goes in the
universally quantified set of items S∀ and the other (for instance w¬v) goes in the existen-
tially quantified set of items S∃, so that selecting a subset T ∀ ⊆ S∀ is equivalent to choosing
an instantiation of V ∀ and the same universal quantification is modeled. For existentially
quantified variables v ∈ V ∃, both weights go to the set of items S∃.
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Weights: v1 v2 v3 v4 c1 c2 c3 goes in:

wv1 1 0 0 0 1 0 0 S∀

V ∀ w¬v1 1 0 0 0 0 1 0 S∃

wv2 0 1 0 0 0 0 1 S∀

w¬v2 0 1 0 0 1 0 0 S∃

wv3 0 0 1 0 0 1 1 S∃

V ∃ w¬v3 0 0 1 0 1 0 0 S∃

wv4 0 0 0 1 0 0 1 S∃

w¬v4 0 0 0 1 0 1 0 S∃

wc1 0 0 0 0 1 0 0 S∃

wc′1
0 0 0 0 1 0 0 S∃

slack wc2 0 0 0 0 0 1 0 S∃

wc′2
0 0 0 0 0 1 0 S∃

wc3 0 0 0 0 0 0 1 S∃

wc′3
0 0 0 0 0 0 1 S∃

α 1 1 1 1 3 3 3 Target

Table 2: Reducing Example 2 to ∀∃SubsetSum: each line represents a weight; last line is
the target. Every column amounts to a constraint on the weights we pick.

For the clause columns, each clause that literal v (or ¬v) makes true is set to 1 and the
others to 0. Then, in the column of clause c, the target would be that the clause is made true
at least once. Note also that a clause cannot be made true more than 3 times. Consequently,
we introduce slack-weights to reach target 3: for each clause c, we add 2 weights wc and
wc′ with a 1 on clause-column c. By construction, the reduction is polynomial. Let us
show that the ∀∃3CNF instance is a ‘yes’ one if and only if this ∀∃SubsetSum instance is
also a ‘yes’ one. The main idea is that a weight wvi (respectively w¬vi) is equivalent to an
instantiation of vi to true (respectively false).

(yes⇒ yes) Assume that for every instantiation I∀ : V ∀ → B there exists an instantiation
∃I∃ : V ∃ → B such that

∧
c∈C c(I∀, I∃) (i.e. every clause is true), and let us show that in

our construction, for every subset T ∀ ⊆ S∀, there exists a subset T ∃ ⊆ S∃, such that∑
w∈T ∀ w +

∑
w∈T ∃ w = α.

Let T ∀ be any subset of S∀. Recall that every weight wvi in S
∀ is equivalent to instanti-

ating a variable vi ∈ V ∀ to true. We build a set T ∃ that satisfies
∑

w∈T ∀ w+
∑

w∈T ∃ w = α
from instantiation I∃, which satisfies

∧
c∈C c(I∀, I∃). First, if wvi is not in T

∀, we put w¬vi in
T ∃; hence all column-constraints vi ∈ V ∀ are satisfied. Second, for every vj ∈ V ∃, if instan-
tiation I∃(vj) is true, we put weight wvj in T ∃, otherwise we put weight w¬vj in T ∃; hence
all column-constraints vj ∈ V ∃ are satisfied. And more importantly, since

∧
c∈C c(I∀, I∃) is

satisfied, every clause-column constraint ci is too (by using slack weights if necessary).

(yes ⇐ yes) Assume that in our construction, for every subset T ∀ ⊆ S∀, there exists a
subset T ∃ ⊆ S∃, such that

∑
w∈T ∀ w +

∑
w∈T ∃ w = α, and let us show that for every in-

stantiation I∀ : V ∀ → B there exists an instantiation ∃I∃ : V ∃ → B such that
∧

c∈C c(I∀, I∃)
(i.e. every clause is true).
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Let I∀ : V ∀ → B be any instantiation of V ∀ and let us build an instantiation I∃ : V ∃ → B

that satisfies
∧

c∈C c(I∀, I∃). From instantiation I∀, our interest goes to T ∀ = {wvi ∈ S
∀ |

I(vi) = true}. Then, the corresponding set T ∃ which satisfies
∑

w∈T ∀ w +
∑

w∈T ∃ w = α
shows us how to build I∃, as follows: for every variable vj ∈ V ∃, instantiation I∃(vj) is set
to true if and only if wvj is in set T ∃. From constraint-columns vi, it follows that it is indeed
an instantiation; and from constraint-columns ci, since we must hit a target three and there
are only two slack-weights per clause, clause ci is satisfied by at least one variable.

Lemma 3. Problem ∀∃SubsetSum reduces to coCSWM.

Proof of Lemma 3. Let integer multisets S∀ = {. . . , wi, . . .} and S∃ = {. . . , wj , . . .}, and
integer target α ∈ N define an instance of ∀∃SubsetSum that we reduce to the following
instance of coCSWM. Recall that problem coCSWM asks whether for all matchings there
exists a blocking coalition.

Without loss of generality, we rule out the case in which
∑

wi∈S∀ wi > α. We introduce

a number M that is large enough, e.g., M =
∑

w∈S∀∪S∃ w. From multisets S∀, S∃ of the
∀∃SubsetSum instance, we make two sets of students S∀ and S∃ in the coCSWM instance:
for each item wi ∈ S

∀, we introduce a student si ∈ S∀; and for each item wj ∈ S
∃, we

introduce a student sj ∈ S∃. Then, we define three colleges: c∀∅, c∀∃ and c∃∅. The budgets
of the colleges are: bc∀∅ = M , bc∀∃ = α and bc∃∅ = M . Finally, we append Example 1, by
allowing student s1 to go to college c∀∃ with wage w(s1, c∀∃) = 1/2 and giving to college c∀∃
additional utility uc∀∃(s1) = 1/2. Crucially, if student s1 is matched to college c∀∃, then

11

there is a coalitionally stable matching in Example 1; and otherwise, if s1 is not matched to
c∀∃, then there is no coalitionally stable matching in Example 1, nor in the whole coCSWM
instance, which is then a ‘yes’ instance.

For college c∀∅, hiring a student from S∀ costs 0 and adds utility 0. For college c∃∅,
hiring a student from S∃ costs 0 and adds utility 0. Hence colleges c∀∅ and c∃∅ can hire
any subset of students from S∀ (resp. S∃), but are indifferent to the sets of students that
they receive. For college c∀∃, hiring student si from S∀ costs wi (the corresponding weight
in the ∀∃SubsetSum instance) and adds utility M . Also, hiring student sj from S∃ costs
wj and adds utility wj . As a consequence, the preference of college c∀∃ is lexicographically to:

1. Take all the students from S∀ who come,

2. Maximize budget consumption with students from S∃, while trying to hit budget α.

3. If budget consumption does not hit α, hire student s1.

For every student si in S∀, her preference (c∀∅, 0) ≻si (c∀∃, wi) ≻si (c∅, 0) means that
her first choice is to go to college c∀∅, while c∀∅ is indifferent between hiring her or not. In
a matching, let T ∀ denote the subset of students from S∀ matched to c∀∃, and let S∀ \ T ∀

denote those matched to college c∀∅. Note that no student from S∀ may form a blocking
coalition: First, students in T ∀ will not provide a strict interest to college c∀∅ by deviating
to it. Second, students in S∀ \ T ∀ are not interested in deviating to c∀∃.

For every student sj in S∃, her preference (c∀∃, wj) ≻sj (c∃∅, 0) ≻sj (c∅, 0) means that
her first choice is to go to college c∀∃, which enthusiastically welcomes her. Similarly, let

11. because s1 prefers (c∀∃, 1/2) on top of his preference in Example 1
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S∀
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bc∀∃
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0

0

)
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M
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)
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wj
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)

(
0

0
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(
1/2
1/2

)

T ∀

S∀ \ T ∀

S∃ \ T ∃

T ∃

≻si (c∅, 0)

≻sj (c∅, 0)

(c∀∃, 1/2) ≻s1 Example 1

Figure 4: Reducing ∀∃SubsetSum to coCSWM.

T ∃ denote the subset of students from S∃ matched to college c∀∃, and let S∃ \ T ∃ denote
those matched to c∃∅.

(no ⇒ no.) Assume that the ∀∃SubsetSum instance is a ‘no’-instance, which means

∃T ∀ ⊆ S∀, ∀T ∃ ⊆ S∃,
∑

wi∈T ∀

wi +
∑

wj∈T ∃

wj 6= α

and let us show that there exists a coalitionally stable matching. We construct this matching
as follows. The set of students T ∀ given by T ∀ in the above formula goes to college c∀∃.
Then, college c∀∃ hires the subset of students T ∃ that maximizes its budget consumption,
but it does not hit target α, because of the conditions on isomorphic sets T ∃ in the above
formula. Finally, college c∀∃ hires student s1, and there is a coalitionally stable matching in
Example 1. This matching is coalitionally stable: Since college c∀∅ is universally indifferent,
no blocking coalition can form with it. The same holds for c∃∅. Since college c∀∃ already
maximizes budget consumption, no blocking coalition can form with it either. Finally,
without s1, Example 1 can be made stable.

(yes ⇒ yes.) Assume that the ∀∃SubsetSum instance is a ‘yes’-instance, which means

∀T ∀ ⊆ S∀, ∃T ∃ ⊆ S∃,
∑

wi∈T ∀

wi +
∑

wj∈T ∃

wj = α.

Let us show that every matching admits a blocking coalition. Assume for the sake of
contradiction that there exists a coalitionally stable matching. Then college c∀∃ necessarily
hired student s1 and achieves at best budget consumption α − 1/2. However, college c∀∃
could achieve budget consumption α, since students from S∃ prefer a contract with c∀∃ on
top of everything.
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Indeed, let T 0 be the set of students corresponding to T ∃ in formula above and let
T ⊆ T 0 those who are not yet matched with c∀∃. Then (T, c∀∃) is a blocking coalition, which
contradicts coalitional stability. Therefore, every matching admits a blocking coalition.

Theorem 1 extends to typed weighted markets, since both colleges rank students the
same (hence one type per student proves it). Theorem 2 also extends to typed weighted
markets, since there is only one college (again, one type per student). Concerning Theorem
3, it is yet an open question.

3.5 Extension to Strict Preferences

Having college preferences that place strict orders on individual students, is often a funda-
mental requirement. However, Theorems 2 and 3 involve weak orders %c for the preferences
of colleges over individual students. In this subsection, we extend our complexity results to
strict preferences ≻c over individual students and show the following:

Theorem 4 (On strict preferences for colleges over individual students).
(i) Theorem 2 holds, even if the college has a strict preference.
(ii) Lemma 2 holds, even if all the weights are distinct.
(iii) Lemma 3 holds, even if each college c has distinct utilities (uc(s) | s ∈ S).
(iv) Theorem 3 holds, even if each college has a strict preference.

We show all four points by extending the above proofs.

Proof of (i). Problem SubsetSum is still NP-complete when all the weights are different
(Karp, 1972). Consequently, the same reduction as in Theorem 2 holds.

Proof of (ii). Lemma 2 reduces problem ∀∃3CNF to problem ∀∃SubsetSum as depicted
in Table 2. In order to extend this reduction to weights all distinct, observe in Table 2
that the only weights being equal (which we do not want) are weights wc and wc′ , for every
clause c. Consequently, we add two columns c(1) and c(2) to differentiate weights wc and
wc′ : we put a one on the first new column c(1) for wc and a one on the second new column
c(2) for wc′ , as depicted in Table 3. For these two new columns, the target is one. Also,
to retain the freedom to either pick or refuse weights wc and wc′ , we add two new slack
weights (one per new column) with one 1 on the new column. For every clause c, we add
two such new columns and the corresponding two new slack variables. The reduction still
works and all the weights are different.

Weights: (variables) c c(1) c(2) goes in:
...

slack wc 0 . . . 1 1 0 S∃

wc′ 0 . . . 1 0 1 S∃

new slack wc(1) 0 . . . 0 1 0 S∃

wc(2) 0 . . . 0 0 1 S∃

α . . . 3 1 1 Target

Table 3: Extension of Lemma 2’s proof: zoom on weights wc and wc′ .
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Proof of (iii). Here, we extend the proof of Theorem 3 to having for each college c distinct
utilities uc(s) on every feasible student s (in order to get strict preferences for each college).
In the former reduction which is depicted in Figure 4, observe that colleges c∀∅ and c∃∅ have
identical utilities uc∀∅ ≡ 0 and uc∃∅ ≡ 0. Also, observe that for college c∀∃, utilities M from
students in S∀ are identical. In this extension, we introduce distinct utilities as follows.

To be distinct, utilities M are modified to M plus Borda scores. That is, college c∀∃
values students si ∈ S∀ by uc∀∃(si) = M+i. This does not change the strategical interactions
of college c∀∃ with the students in S∀, or the reduction’s validity.

Assume that the indices i of students si in S∀ start from zero; and recall that in the
binary representation of 2i there are only zeros but a one in the ith position (starting from
zero). For college c∀∅, the utility and cost of each student si in S∀ become 22i+22i+1 (that is
ones only in position 2i and 2i+1) and we modify the budget to bc∀∅ =

∑
si∈S∀(22i+22i+1).

Also, for each student si in S∀, we introduce two new students s′i and s′′i , whose utility
and cost are 22i for s′i and 22i+1 for s′′i ; so that college c∀∅ is indifferent between hiring
student si or students s′i and s′′i (as long as budget bc∀∅ is entirely consumed). Also, we
apply the same extension for college c∃∅. Letting colleges c∀∅ and c∃∅ hit there maximal
budget consumption, the same proof holds.

Proof of (iv). Combining Theorem 4, parts (ii) and (iii), one obtains Claim (iv).

3.6 On Blocking Coalitions with Bounded Size

In this subsection, we constrain the size of blocking coalitions to at most a fixed number
σ of students (and one college). For instance, this can be the consequence of limited
communications between students and colleges before deviating. Let σ-CSWM be the new
corresponding problem on existence of a coalitionally stable matching. A coalitionally stable
matching still isn’t guaranteed to exist since Example 1 only involves coalitions of up to
two students. Below, we show that σ-CSWM is NP-hard for σ = 2 (even in typed markets),
which closes the gap with pairwise stability (σ = 1).

Theorem 5. If blocking coalitions are constrained to at most two students, then the corre-
sponding 2-CSWM problem is strongly NP-hard, even in simple weighted typed markets.

Proof. Since Example 1 still holds, the σ-CSWM problem remains a decision problem. For
strong hardness, let any instance of Numerical Matching with Target Sums (NMTS)
be defined by two disjoint sets S and T , each containing m elements, a size v(a) ∈ N>0 for
each element a ∈ S∪T , and a target vector (B1, B2, . . . , Bm) withm positive integer entries.
The problem asks whether S ∪ T can be partitioned into m disjoint subsets A1, . . . , Am,
each Ai containing exactly one element from each S and T (that is: |Ai∩S| = |Ai∩T | = 1),
such that for 1 ≤ i ≤ m,

∑
a∈Ai

v(a) = Bi holds.
From this instance, we construct in polynomial-time the following instance of σ-CSWM

with σ = 2. Let M =
∑m

i=1Bi be a number larger than any other. There are two sets
of students S and resp. T in correspondence with S and resp. T ; hence a total of 2m
students. There are m colleges, in correspondence with vector (B1, . . . , Bm). Each student
has preference c1 ≻ c2 ≻ . . . ≻ cm ≻ c∅. Each college ci has budget M2 +M + Bi. Also,
college ci, for any student a ∈ S has additive utility and wage uci(a) = w(ci, a) = M2+v(a),
but for any student b ∈ T has additive utility and wage uci(b) = w(ci, b) = M + v(b). Since
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utilities and wages are the same, each college wants to maximize its budget consumption.
Finally, we also insert Example 1. We also introduce one student sπ who prefers to be
with colleges c1, . . . , cm rather than the first college of Example 1, which in turn would hire
student sπ over anyone else, for wage 2. Colleges c1, . . . , cm would hire student sπ for wage
and utility uci(sπ) = w(ci, sπ) = 1/2. This is a typed market because wages and utilities
are the same.

(Yes⇒ Yes) Assume the NMTS instance has a solution A1, . . . , Am, and let us construct
a coalitionally stable matching. For each Ai = {a, b}, we match the two corresponding
students to college ci, who pays M2 + v(a) + M + v(b) = M2 + M + Bi, hits his budget
Bi and is not interested in any deviation. Then, student sπ is hired by the first college of
Example 1. Consequently, the remainder of Example 1 is stable.

(Yes ⇐ Yes) Assume that there exists a coalitionally stable matching Y , and let us
construct a solution to the NMTS instance. The only way for matching Y to be stable, is
that Example 1 is disabled by its first college hiring student sπ. Then, every college ci did
hit its budget consumption Bi. (Otherwise, student sπ going to a college that still has some
money in its budget would be a blocking coalition.) Because every college did hit budget
consumption, exactly one student a from set S goes in every college. (Otherwise, some
college would be missing value/budget-consumption M2.) Then, for similar reasons, also
exactly one student b from set T goes in every college. (Otherwise, some college would be
missing value/budget-consumption M .) And since M2 + v(a) +M + v(b) = M2 +M +Bi

implies v(a) + v(b) = Bi, it follows that A1 ≡ Y (c1), . . . , Am ≡ Y (cm) is a solution to the
NMTS instance. To conclude, since NMTS is strongly NP-hard, so is problem σ-CSWM.

4. Mechanism Design in Typed Weighted Markets

The previous section suggests that requiring coalitional stability is hopeless, even in typed
markets. In this section, we discuss a strategy-proof and pairwise stable mechanism for
typed weighted markets called the sequential deferred acceptance (SDA) mechanism. When
each college has a strict preference over individual students, SDA also satisfies a property
called constrained Pareto efficiency; SDA’s outcome is Pareto efficient among pairwise stable
outcomes.

4.1 Pairwise Stable Matching Might Not Exist in General

We first show that a pairwise stable matching is not guaranteed to exist in general. We
utilize the following example.

Example 3. Consider a simple weighted market with three students s1, s2, and s3, and
two colleges c1 and c2, whose budgets are 2 and 1, respectively. Possible contracts are
X = {(s1, c1, 2), (s2, c1, 1), (s2, c2, 1), (s3, c1, 1), (s3, c2, 1)}. The preference of c1 is:

{s2, s3}≻̃c1{s2}≻̃c1{s1}≻̃c1{s3}≻̃c1 ∅.

Such a college preference can be obtained by additively separable utility uc1(s1) = 3,
uc1(s2) = 4, uc1(s3) = 2. The preference of c2 is:

{s3}≻̃c2{s2}≻̃c2 ∅.
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Here, we show the preferences only on feasible contracts. The preference of s1, s2, s3 are:

s1 : (c1, 2) ≻s1 (c∅, 0),

s2 : (c2, 1) ≻s2 (c1, 1) ≻s2 (c∅, 0)

s3 : (c1, 1) ≻s3 (c2, 1) ≻s3 (c∅, 0)

This example is depicted in the following figure:

s1(c1, 2) ≻s1 (c∅, 0)

s2(c2, 1) ≻s2 (c1, 1) ≻s2 (c∅, 0)

s3(c1, 1) ≻s3 (c2, 1) ≻s3 (c∅, 0)

c1 {s2, s3}≻̃c1{s2}≻̃c1{s1}≻̃c1{s3}≻̃c1 ∅

bc1 = 2

c2 {s3}≻̃c2{s2}≻̃c2 ∅

bc2 = 1

(s1, c1, 2)

(s2, c1, 1)

(s3, c2, 1)

(s2, c2, 1)

(s3, c1, 1)

Theorem 6. There exists a case in which no pairwise stable matching exists.

Proof. In Example 3, due to budget constraints, s1 cannot be matched to c2. Thus, s1 is
either (a) matched to c1, or (b) not matched to any college (i.e., she stays home).

First, let us examine case (a). Due to budget constraints, only s1 is matched to c1, and
at most one student can be matched to c2. Within the remaining students, s3, who is the
most preferred student for c2, must be matched to c2; otherwise, (s3, c2) will be a blocking
pair. Thus, s2 stays home. However, then (s2, c1) will be a blocking pair.

In case (b), both s2 and s3 must be matched to some college; otherwise, the unmatched
student and c1 will be a blocking pair (since c1 can accept both students). Furthermore, s3,
who prefers c1 over c2, must be matched to c1; otherwise, (s3, c1) will be a blocking pair.
Thus, there are two cases: (i) both are matched to c1, or (ii) s2 is matched to c2, and s3
is matched to c1. In case (i), (s2, c2) will be a blocking pair. In case (ii), (s1, c1) will be a
blocking pair. Since every possible matching admits a blocking pair, there is no pairwise
stable matching in Example 3.

This result highlights the difference between our model and the model used in (Abizada,
2016), in which a pairwise-stable matching is guaranteed to exist. In our model, we allow
different types of students to be in a market. In Example 3, we can assume s2 and s3 have
the same type, while s1 has a different type, thus s1 should be hired by a different wage.

Note that this example cannot be modeled as a typed weighted market, since c1 prefers
s2 over s1, while the wage for s1 is larger than that for s2. Theorem 1 and Theorem 6 are
disjoint, neither implies the other. Theorem 1 holds even in typed markets, which Theorem
6 precisely does not assume. As we show later in this paper, for a typed weighted market,
we can guarantee that a pairwise stable matching always exists.

4.2 Strategy-Proof Mechanism for Typed Weighted Markets

Let us formally define a mechanism and strategy-proofness. Mechanism ϕ is a function
that takes a profile of the preferences of students ≻S as input and returns matching Y .
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Let ≻S\{s} denote a profile of the preferences of the students except s, and let (≻s,≻S\{s})
denote a profile of the preferences of all the students, where s’s preference is ≻s and the
profile of the preferences of the other students is ≻S\{s}.

Definition 11. Mechanism ϕ is strategy-proof for students if it holds that Y (s) ≻s Y ′(s)
or Y (s) = Y ′(s) for every s, ≻s, ≻

′
s and ≻S\{s}, where Y = ϕ((≻s,≻S\{s})) and Y ′ = ϕ((≻′

s

,≻S\{s})).

Definition 12. For two feasible matchings Y and Y ′, matching Y Pareto dominates match-
ing Y ′ if (i) ∀s ∈ S, Y (s) ≻s Y

′(s) or Y ′(s) = Y (s) holds, and (ii) ∃s ∈ S, s.t. Y (s) ≻s Y
′(s).

Matching Y is constrained Pareto efficient if Y is pairwise stable and no other pairwise sta-
ble matching Pareto dominates Y . Mechanism ϕ is constrained Pareto efficient if it always
obtains a constrained Pareto efficient matching.

The SDA mechanism sequentially applies the (student-proposing) deferred acceptance
mechanism (DA) (Gale & Shapley, 1962), from highest type θ1 to lowest type θk. The DA
mechanism exploits the following crafted choice functions.

Definition 13 (Choice function of students). For each student s, her choice function Chs
maps any subset of contracts X ′ ⊆ X to contract {x}, which is the most preferred contract
in X ′

s based on ≻s if one exists; otherwise ∅ if no feasible contract exists. The choice
function of set of students Ŝ, denoted as Ch

Ŝ
, is defined as Ch

Ŝ
(X ′) =

⋃
s∈Ŝ Chs(X

′), i.e.,

the union of choice functions of Ŝ.

Definition 14 (Choice function of colleges). For every college c, choice function Chc(X
′)

is defined as follows:
1. Z ← ∅, Y ← X ′

c.
2. Repeat the following procedure: If Y = ∅, return Z. Otherwise, remove (s, c, w) ∈ Y

with the highest priority ranking from Y , s.t. s ≻c s∅, based on preference %c on
students (ties are broken in some deterministic way, e.g., based on the alphabetical
order of the student identifiers). If

∑
x∈Z xW + w ≤ bc, add (s, c, w) to Z.

The choice function of all colleges is defined as ChC(X
′) =

⋃
c∈C Chc(X

′).

Note that the choice function for each college c is crafted such that it does not exactly
reflect %̃c. Actually, it is defined based on preference %c over individual students. This

fact is considered an advantage, since as discussed in Section 2, obtaining %̃c is difficult
in general. As we show, we can guarantee strategy-proofness for students and pairwise
stability using choice functions defined this way.

We use the following (student-proposing) DA as a component of our SDA mechanism.
For a given set of students Ŝ, DA is defined as follows, where X

Ŝ
=

⋃
s∈Ŝ Xs.

Definition 15 (Deferred Acceptance mechanism (DA)).
1. Re← ∅.
2. Y ← Ch

Ŝ
(X

Ŝ
\Re), Z ← ChC(Y ).

3. If Y = Z, then return Y , otherwise:
Re← Re ∪ (Y \ Z), go to Step 2.

Here Re represents the set of rejected contracts, Y represents the contracts proposed by
students Ŝ within X

Ŝ
\Re, and Z represents the contracts in Y accepted by colleges. Thus,

Y \ Z represents a set of newly rejected contracts.
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Mechanism 1 (Sequential Deferred Acceptance)

Let Y ← ∅ and i← 1.
Round i :

1. Let Ŝ ← {s ∈ S | τ(s) = θi}, i.e., the set of all type θi students, and run the DA.
2. Let Y i be the obtained matching. Y ← Y ∪ Y i.
3. If i = k then return Y , otherwise:
∀c ∈ C, bc ← bc −

∑
x∈Y i

c
xW ;

i← i+ 1; Go to Round i.

SDA is defined in Mechanism 1. It repeatedly applies DA for each type from θ1 to θk.

Example 4. Let us describe the execution of SDA on the market illustrated in Fig. 1.

Round 1. We run DA for Ŝ = {s1, s2, s3}, i.e., all type θ1 students, under original bud-
gets bC = (5, 5). The iterations in DA are as follows:

1. Y = {(s1, c2, 3), (s2, c1, 3), (s3, c1, 3)} and
Z = {(s1, c2, 3), (s2, c1, 3)}; c1 rejects (s3, c1, 3) because s2 ≻c1 s3 and its budget is 5.

2. Y = {(s1, c2, 3), (s2, c1, 3), (s3, c2, 3)} and
Z = {(s2, c1, 3), (s3, c2, 3)}; c2 rejects (s1, c2, 3) because s3 ≻c2 s1 and its budget is 5.

3. Y = {(s1, c1, 3), (s2, c1, 3), (s3, c2, 3)} and
Z = {(s1, c1, 3), (s3, c2, 3)}; c1 rejects (s2, c1, 3) because s1 ≻c1 s2 and its budget is 5.

4. Y = Z = {(s1, c1, 3), (s2, c1, 2), (s3, c2, 3)}. All colleges satisfy their budget con-
straints. Therefore, we obtain Y 1 = {(s1, c1, 3), (s2, c1, 2), (s3, c2, 3)}.

Round 2. We run DA for Ŝ = {s4, s5} with the remaining budget, i.e., bc1 = 5− 5 = 0
and bc2 = 5− 3 = 2. The iterations in DA are as follows:

1. Y = {(s4, c1, 1), (s5, c1, 1)} and Z = ∅, because c1 has no budget to accept any student.

2. Y = Z = {(s4, c2, 1), (s5, c2, 1)}. All colleges satisfy their budget constraints. There-
fore, we obtain Y 2 = {(s4, c2, 1), (s5, c2, 1)}.

To conclude, SDA returns the following matching:

Y 1 ∪ Y 2 = {(s1, c1, 3), (s2, c1, 2), (s3, c2, 3), (s4, c2, 1), (s5, c2, 1)}.

Abizada (2016) presented a strategy-proof mechanism that works for a different model
as described in Section 1, where each college c has its budget limit bc and maximum wage
mc, and all students are the same type θ. The mechanism proposed by Abizada (2016) can
be considered as a special case of our component DA mechanism, where possible wages Wc,θ

is restricted to {wc
1, w

c
2, 0} where wc

1 = mc, w
c
2 = bc mod mc.

4.3 The Pairwise Stability of SDA

In the following, we show that mechanism SDA outputs a pairwise stable matching.
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Theorem 7. SDA always returns a pairwise stable matching.

To prove this theorem, we use the following lemmas.

Lemma 4. Let s ∈ S, S′ ⊆ S \ {s} s.t. s′ %c s∅ holds for all s′ ∈ S′ ∪ {s}. Assume there
exists S′′ ⊆ S′ s.t. S′ \ S′′ ∪ {s} ≻̃c S′ holds. Then s ≻c s

′ holds for all s′ ∈ S′′.

In other words, if college c, which currently has S′, prefers adding s by removing S′′,
then c prefers s over any student s′ ∈ S′′. This is intuitively natural; if s can defeat coalition
S′′, she can also defeat each individual in it. We formally prove this from the fact that %̃c

is responsive.

Proof of Lemma 4. Assume by way of contradiction that there exists ŝ ∈ S′′ such that
ŝ %c s holds. Since we assume ŝ %c s holds, from responsiveness, when we add either ŝ
or s to S′ \ {ŝ}, we have S′ %̃c S′ \ {ŝ} ∪ {s}. From the assumption, s′ %c s∅ holds for
all s′ ∈ S′ ∪ {s}. Thus, from responsiveness, by adding students in S′′ \ {ŝ} one by one
to S′ \ S′′ ∪ {s}, we have S′ \ {ŝ} ∪ {s} %̃c S′ \ S′′ ∪ {s}. From these facts, we obtain

S′ %̃c S
′ \ S′′ ∪ {s}. However, this contradicts assumption S′ \ S′′ ∪ {s} ≻̃c S

′.

Lemma 5. Assume Y is the obtained matching of SDA, where for student s, where s ≻c s∅,
contract (s, c, w) is rejected. Let Z = {(s′, c, w′) ∈ Yc | w

′ ≥ w}. Then bc−
∑

(s′,c,w′)∈Z w′ <
w holds.

In other words, if contract (s, c, w) is rejected although college c prefers to have student
s, then c does not have enough money in its budget to accept the contract even when c
rejects all of the contracts whose weights are less than w (note that bc −

∑
(s′,c,w′)∈Z w′ is

the remaining money when only contracts whose weights are more than or equal to w are
accepted, i.e., the rest of contracts are rejected).

Proof of Lemma 5. Each student s′, whose type is θ, proposes (s′, c, w′) only after she has
proposed (s′, c, w′′) (and it is rejected) for all w′′ ∈ Wc,θ such that w′′ > w′ holds. Thus
the fact that (s, c, w) is rejected implies that there exists contract (s′, c, w) where s′ ≻c s∅
that was rejected while no contract whose weight is less than w has been proposed yet by
a student whom college c prefers to s∅ (here, s′ can be s, i.e., (s, c, w) is the first contract
rejected with weight w, or s′ can be different from s, i.e., (s′, c, w) is rejected before (s, c, w)).

Thus all of the contracts accepted so far have weights larger than or equal to w. Then
bc −

∑
(s′,c,w′)∈Z w′ < w must hold.

Proof of Theorem 7. Assume by way of contradiction that blocking pair (s, c) exists for
obtained matching Y . More precisely, we assume R ⊆ Yc and w ∈ Wc,τ(s) exist such that
(i) (c, w) ≻s Y (s), (ii) (Y (c) \ R(c)) ∪ {s}≻̃cY (c), and (iii)

∑
x∈Yc\R

xW + w ≤ bc hold.
From (i), s must have proposed (s, c, w), which was rejected. Then by Lemma 5, we have
bc −

∑
(s′,c,w′)∈Z w′ < w, where Z = {(s′, c, w′) ∈ Yc | w

′ ≥ w} and we obtain:

bc <
∑

(s′,c,w′)∈Z

w′ + w. (1)
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From (ii) and Lemma 4, we have ∀s′ ∈ R(c), s ≻c s′. Then for all s′ ∈ R(c), where
(s′, c, w′) ∈ Yc, w

′ < w holds (otherwise, (s, c, w) must be accepted instead of (s′, c, w′)).
Thus

∑
x∈Yc\R

xW ≥
∑

(s′,c,w′)∈Z w′ holds, since Yc \R ⊇ Z. Combined with (iii), we obtain

bc ≥
∑

x∈Yc\R

xW + w

≥
∑

(s′,c,w′)∈Z

w′ + w,

which contradicts (1).

4.4 Strategy-Proofness of SDA

Theorem 8. SDA is strategy-proof for students.

Proof. Assume student s is a type θi student, i.e., she is assigned in Round i. Student s
clearly has no influence on the outcomes of Round j, where j < i. Also, the outcome of the
later rounds is irrelevant to i. Thus, to show the strategy-proofness of SDA, it is sufficient
to show the strategy-proofness of DA used for each round. To show this fact, we introduce
an alternative market in which each (sub-)college has its maximum quota/capacity limit
(but no budget constraints). In this market, DA is guaranteed to be strategy-proof. We
show the equivalence of the outcomes in these markets.

The alternative market is defined as follows. Assume Wc,θi , i.e., the possible set of c’s
weights for type θi students, is given as {w1

c , w
2
c , . . . , w

ℓc
c }, where w1

c > . . . > wℓc
c for all

c ∈ C. We divide college c into ℓc sub-colleges, i.e., c1, c2, . . . , cℓc . Maximum quota qci for
each sub-college ci is recursively defined as follows, where r1 = bc (more precisely, bc is the
budget amount obtained in each round of SDA):

qci = ⌊ri/w
i
c⌋, ri+1 = ri − qci × wi

c.

Contract (s, c, wi
c) in the original market is translated into contract (s, ci) in the alter-

native market. The preference of each student in the alternative market is identical to the
original market based on the above translation. The preference of each sub-college ci is de-
fined based on %c; i.e., c

i will accept students according to %c until satisfying its maximum
quota qci , using the same tie-breaking method as Chc.

In the original market, c can accept at most qc1 contracts with weight w1
c due to its

budget constraints. Also, each student s proposes contract (s, c, w2
c ) only after (s, c, w1

c )
is rejected. This implies that c already accepts qc1 contracts with weight w1

c . Then c can
accept at most qc2 contracts with weight w2

c due to its budget constraints. Also, each student
s proposes contract (s, c, w3

c ) only after (s, c, w2
c ) is rejected. This implies that c accepts qc2

contracts with weight w2
c , and so on. From these facts, the outcomes in both the alternative

and original markets must be identical. Then from the fact that the standard DA in the
alternative market is strategy-proof, the DA (Definition 15) in the original market must be
strategy-proof.

Let us show an example of the alternative market using the original market illustrated
in Fig. 1. In Round 1, we create two sub-colleges for c1, i.e., c

1
1 and c21, whose maximum
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quotas are 1. Only one sub-college exists for c2, which we denote as c12, whose maximum
quota is also 1. Then s1 is accepted for c11, s2 is accepted for c21, and s3 is accepted for c12.
In Round 2, since the sub-college for c1 has no capacity, its maximum quota is 0. There
exists one sub-college for c2, which we denote as c12, whose maximum quota is 2. Then, s4
and s5 are accepted for c12.

From Theorem 7, we immediately obtain the following.

Theorem 9. In a typed weighted market, a pairwise stable matching is guaranteed to exist
and can be calculated in time linear in |X|, assuming ChC and Ch

Ŝ
can be calculated in

constant time.

Proof. We can always find a pairwise stable matching using SDA. Also, during the iteration
of DA in Definition 15, at least one contract must be rejected; otherwise, the procedure
is terminated. Thus, assuming ChC and Ch

Ŝ
can be calculated in a constant time, the

run-time of SDA is linear in |X|.

A standard way to prove the fact that a DA-based mechanism is strategy-proofness is
to utilize the result obtained by (Hatfield & Milgrom, 2005). More specifically, Hatfield &
Milgrom (2005) show that when the choice functions of all colleges satisfy the following three
properties, DA is guaranteed to be strategy-proof for students. Informally, the irrelevance
of rejected contracts means if contract x is rejected when it is added to X ′, it does not affect
the outcomes of the other contracts in X ′. Also, substitutability means if some contract x is
rejected when x ∈ X ′, it is also rejected when another contract is added to X ′. Furthermore,
the law of aggregate demand means if the set of contracts expands, the number of accepted
contracts weakly increases.

Note that we cannot apply this result to SDA. Although our choice functions satisfy the
irrelevance of rejected contracts, they fail to satisfy the remainder. For example, assume four
students, s.t. s1 ≻c s2 ≻c s3 ≻c s4, and bc = 5. From {(s2, c, 2), (s3, c, 3), (s4, c, 1)}, contract
(s4, c, 1) is rejected. However, from {(s1, c, 2), (s2, c, 2), (s3, c, 3), (s4, c, 1)}, (s4, c, 1) is ac-
cepted. Thus, substitutability is violated. Also, from contracts {(s2, c, 2), (s3, c, 2), (s4, c, 1)},
all three contracts are accepted. However, from {(s1, c, 3), (s2, c, 2), (s3, c, 2), (s4, c, 1)}, only
the first two contracts are accepted. Thus, the law of aggregated demand is violated.

In (Fleiner & Jankó, 2014), it is shown that even if the choice function does not satisfy
the irrelevance of rejected contracts (which they call path-independence), a pairwise stable
matching is guaranteed to exist in some cases. The cases discussed in (Fleiner & Jankó,
2014) include the weighted scoring choice function, which might look similar to our choice
function, but they are completely different. The weighted scoring choice function satisfies
substitutability, while it violates the irrelevance of rejected contracts. Our choice function
satisfies the irrelevance of rejected contracts, while it violates the substitutability. This
difference comes from the fact that in the weighted scoring choice function, a college cannot
skip some contracts and accept a lower ranked contract with a lower wage. For example,
from {(s1, c, 2), (s2, c, 2), (s3, c, 3), (s4, c, 1)}, the weighted scoring choice function can accept
(s1, c, 2) and (s2, c, 2), while it cannot accept (s3, c, 3) due to the budget constraint. Then,
it is not allowed to accept (s4, c, 1), even though the college can afford to accept it. Thus,
our results are logically independent from the results obtained in (Fleiner & Jankó, 2014).
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4.5 Constrained Pareto Efficiency

In this subsection, we consider the class of typed weighted markets where the preference of
each college over the students is strict, that is, %̂c is based on a strict preference ≻c over
the individual students and s∅ for each c. In this class of markets, we show that SDA is
constrained Pareto efficient. That is, its outcome is Pareto efficient among the pairwise
stable matchings.

First, let us introduce several notations. For 1 ≤ ℓ < k, let Θ−ℓ denote {θi | θi ∈ Θ, ℓ <
i ≤ k}, S−ℓ denote {s | s ∈ S, τ(s) ∈ Θ−ℓ}, and XS−ℓ denote {x | x ∈ X,xS ∈ S−ℓ}. For
typed weighted market π = (S,C,Θ, τ, (Wc,θ)c∈C,θ∈Θ, X, bC ,≻S , %̃C) and matching Y , let

π−ℓ,Y =
(
S−ℓ, C, Θ−ℓ, τ, (Wc,θ)c∈C,θ∈Θ−ℓ , XS−ℓ , (b−ℓ,Y

c )c∈C , (≻s)s∈S−ℓ , %̃C

)

denote the reduced market of π by Y until ℓ, where

b−ℓ,Y
c = bc −

∑

(s,c,w)∈Y | τ(s)∈Θ\Θ−ℓ

w.

In other words, the reduced market of π by Y until ℓ is a market where all the students
higher than or equal to type θℓ are removed and the budget of each college is reduced by the
wages of the removed students in Y . Finally, for a given set of contracts Y and 1 ≤ i ≤ k,
let Y i = {x ∈ Y | τ(xS) = θi}, i.e., the set of contracts of students with type θi in Y .

First, we show that we can safely combine a subset of the matching obtained by SDA
and the matching for the reduced market.

Lemma 6. Let Y =
⋃

1≤i≤k Y
i be the matching obtained by SDA for a typed weighted

market π, and for some 1 ≤ ℓ < k, assume Z−ℓ is a pairwise stable matching for reduced
market π−ℓ,Y . Then

⋃
1≤i≤ℓ Y

i ∪ Z−ℓ is feasible and pairwise stable for π.

Proof. Set of contracts
⋃

1≤i≤ℓ Y
i ∪ Z−ℓ is feasible for π because (i) clearly every student

is matched with at most one contract and (ii) the budget of each college c is satisfied due

to the fact that
∑

1≤i≤ℓ

∑
(s,c,w)∈Y i

c
w = bc − b−ℓ,Y

c and
∑

(s,c,w)∈Z−ℓ
c

w ≤ b−ℓ,Y
c . Regarding

pairwise stability, suppose there is a blocking pair (s, c) with τ(s) = θi. First, assume ℓ < i.
From the assumption of the typed weighted market, a college will never form a blocking
pair with a lower-typed student to reject a higher-typed student. Thus c must prefer to
reject some contracts in Z−ℓ

c in order to accept s, which contradicts that Z−ℓ is pairwise
stable for π−ℓ,Y . Next, assume ℓ ≥ i. From Lemma 5, c cannot save enough money to
accept s even if c rejects all students in Z−ℓ

c . Thus c must prefer to reject some contracts
in

⋃
1≤i≤ℓ Y

i
c in order to accept s, which contradicts that Y is pairwise stable for π.

We use the following lemmas to prove that SDA is constrained Pareto efficient. We
proceed by induction on ℓ: Lemma 7 is the induction base, Lemma 8 is the induction step.

Lemma 7. Let π be a typed weighted market where the preference of each college over the
individual students is strict. Let Y =

⋃
1≤i≤k Y

i be the matching obtained by SDA for π,

and let Z−1 be any constrained Pareto efficient matching for reduced market π−1,Y . Then
matching Y 1 ∪ Z−1 is constrained Pareto efficient for π.
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Proof. From Lemma 6, it follows that Y 1∪Z−1 is pairwise stable. By way of contradiction,
assume that another pairwise stable matching Ẑ =

⋃
1≤i≤k Ẑ

i Pareto dominates Y 1 ∪ Z−1.

Let S′ denote the set of students who strictly prefer Ẑ over Y 1 ∪Z−1. Assume
⋃

c∈C Y 1(c)

intersects with S′. This implies that Ẑ1 Pareto dominates Y 1 and there is no blocking
pair (s, c) with τ(s) = θ1 for Ẑ1. However, since Y 1 is identical to the outcome of the
standard DA for type θ1 students and preferences of both students and colleges are strict,
this contradicts the student-optimality of the standard DA (Gale & Shapley, 1962). Thus
S′ ⊆ S−1 holds. Then Y 1 and Ẑ1 must be identical. Thus Ẑ−1 Pareto dominates Z−1.
However, this is a contradiction to the assumption that Z−1 is constrained Pareto efficient.

Lemma 8. Let π be a typed weighted market where the preference of each college over the
individual students is strict. Let Y =

⋃
1≤i≤k Y

i be the matching obtained by SDA for π.

For any ℓ s.t. 1 ≤ ℓ < k, assume for any Z−ℓ, which is a constrained Pareto efficient
matching for reduced market π−ℓ,Y , that

⋃
1≤i≤ℓ Y

i ∪ Z−ℓ is constrained Pareto efficient

for market π. Then for any Z−(ℓ+1), which is a constrained Pareto efficient matching for
reduced market π−(ℓ+1),Y ,

⋃
1≤i≤ℓ+1 Y

i ∪ Z−(ℓ+1) is also constrained Pareto efficient.

Proof. Assume the assumption is true, i.e., for any Z−ℓ, which is a constrained Pareto
efficient matching for reduced market π−ℓ,Y ,

⋃
1≤i≤ℓ Y

i∪Z−ℓ is constrained Pareto efficient.

Then as for Lemma 7, for any Z−(ℓ+1), which is a constrained Pareto efficient matching for
reduced market π−(ℓ+1),Y , we can show that Y ℓ+1∪Z−(ℓ+1) is a constrained Pareto efficient
matching for reduced market π−ℓ,Y . Thus, from the assumption,

⋃
1≤i≤ℓ Y

i∪Y ℓ+1∪Z−(ℓ+1),

which equals
⋃

1≤i≤ℓ+1 Y
i ∪ Z−(ℓ+1), is constrained Pareto efficient.

Theorem 10. Let π be a typed weighted market where the preference of each college over
the individual students is strict. SDA obtains a constrained Pareto efficient matching for π.

Proof. Let Y =
⋃

1≤i≤k Y
i be the matching obtained by SDA. From Lemma 7, it holds that

Y 1 ∪Z−1 is constrained Pareto efficient for any Z−1, which is a constrained Pareto efficient
matching for π−1,Y . Then by repeatedly applying Lemma 8, we obtain Y 1∪Y 2∪. . .∪Y k = Y
is constrained Pareto efficient.

If the preference of each college over the individual students is not strict, SDA uses
some tie-breaking method to determine the order among indifferent students as described
in Definition 14. According to this tie-breaking method, there is a chance that another
pairwise stable matching Pareto dominates the outcome of SDA. A similar situation also
occurs in a standard two-sided matching problem when the preference of a college is not
strict (Abdulkadiroğlu et al., 2009).

5. Conclusion

This paper examined two-sided matchings with budget constraints and showed several com-
putational hardness results for problems related to coalitional stability. Then, we designed a
strategy-proof mechanism, which is pairwise stable and Pareto efficient among the pairwise
stable outcomes.
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Our future work include examining the complexity when the number of types is limited
(we suspect problem CSWM to be easier for a constant number of types), examining a
broader market than a typed market, in which we can guarantee the existence of some
stability requirement and obtain a strategy-proof mechanism. It would also be interesting
to study the case where a wage can be determined via negotiation between students and
colleges.
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