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Abstract. Weighted averages of Kiefer–Wolfowitz-type procedures, which are driven by larger
step lengths than usual, can achieve the optimal rate of convergence. A priori knowledge of a lower
bound on the smallest eigenvalue of the Hessian matrix is avoided. The asymptotic mean squared
error of the weighted averaging algorithm is the same as would emerge using a Newton-type adaptive
algorithm. Several different gradient estimates are considered; one of them leads to a vanishing
asymptotic bias. This gradient estimate applied with the weighted averaging algorithm usually
yields a better asymptotic mean squared error than applied with the standard algorithm.
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1. Introduction. In stochastic approximation the minimizer ϑ of an unknown
regression function f : Rd → R can be estimated by running the recursion

Xn+1 = Xn − anYn,(1.1)

where Yn is a gradient estimate of f at the point Xn and an are positive step lengths
decreasing to zero. For instance, for d = 1 and decreasing span cn, Kiefer and Wol-
fowitz [11] used divided differences Yn = (Yn,1 − Yn,2)/(2cn) as approximation of
f ′(Xn), where Yn,1 and Yn,2 are error-contaminated observations of f(Xn + cn) and
f(Xn − cn), respectively. If f is p-times differentiable at ϑ, and if the gradient esti-
mates Yn are constructed appropriately, one can obtain

n
α
2 (1− 1

p )(Xn − ϑ) D→ N(µ,K) (n→∞)

with step lengths an = an−α for some a > 0 and α ∈ (0, 1] (see Fabian [8] for p ≥ 3
odd). Hence, for step lengths an = a/n, the convergence rate n(1−1/p)/2 is obtained.
This is the exact minimax order in the problem of estimating the minimizer of f for f
belonging to a certain class of p-times differentiable functions (Polyak and Tsybakov
[18]).

In this paper we investigate weighted means

X̃n,δ = 1+δ
n1+δ

n∑
i=1

iδXi(1.2)

of Kiefer–Wolfowitz-type processes (Xn) generated by recursion (1.1) with some gra-
dient estimates Yn for p-times differentiable regression functions and step lengths
converging slower to zero than 1/n. We obtain

n
1
2 (1− 1

p )
(
X̃n,δ − ϑ

)
D→ N(µ̃, K̃) (n→∞)
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for some weight parameters δ and various types of gradient estimates (Theorems 3.2
and 4.2). The main advantages are the following. First, a priori knowledge of a lower
bound on the smallest eigenvalue λ0 of the Hessian Hf(ϑ) of f at ϑ is avoided. If,
in the standard algorithm with an = a/n, the constant a is chosen too small, i.e.,
a ≤ (1 − 1/p)/(2λ0), convergence can be very slow. To be safe one might choose
a pretty large. But the asymptotic mean squared error (AMSE) produced by the
standard algorithm grows approximately linearly in a. These problems do not arise
when the averaging algorithm is applied. On the other side, if an asymptotic bias is
present, the AMSE of the averaging algorithm cannot be greater than four times the
AMSE of the standard algorithm with the optimal, but usually unknown, constant a.
In this sense the averaging algorithm can be considered to be more stable than the
standard one. Furthermore, the averaging algorithm shows the same limit distribution
as the Newton-type adaptive procedure suggested by Fabian [9] (section 5).

The method proposed in this paper is inspired by an idea of Ruppert [21] and
Polyak [16], who suggested considering the arithmetic mean of the trajectories of a
Robbins–Monro process, which is driven by step lengths slower than 1/n, too. In
this case one obtains the best possible convergence rate and the optimal covariance
of the asymptotic distribution in a certain sense [17]. Since then Yin [27], Pechtl [15],
Kushner and Yang [13], Györfi and Walk [10], Nazin and Shcherbakov [14], and others
have studied this idea.

A further contribution of this paper is a new design to estimate the gradient
which leads to a vanishing asymptotic bias µ̃ (for d = 1 see Renz [19]) regardless
of which method (with or without averaging, or with adaptation) is used. Applying
the weighted averaging algorithm together with this gradient estimate leads to a
second moment of the asymptotic distribution which is minimal within a large class
of procedures (relation (5.4)).

Spall [22] introduced another gradient estimate Yn, the so-called simultaneous
gradient perturbation method. It uses only two observations at each step instead
of 2d observations, as in the standard Kiefer–Wolfowitz method in Rd. This makes
it suitable for certain optimization problems in high-dimensional spaces Rd. Taking
weighted averages of the process generated with Spall’s gradient estimate stabilizes
the performance as discussed below (Theorem 4.2 and section 5).

All these central limit theorems require consistency of the stochastic approxima-
tion method (Propositions 3.1 and 4.1). To prove the central limit theorems we apply
a weak invariance principle stated in Lemma 7.1. Taking weighted averages of the
trajectories leads to an accumulation of terms due to the nonlinearity of the regression
function. To cope with this effect the assumptions of this lemma are partly stronger
than those of a functional central limit theorem for the nonweighted case (see Walk
[24]). But fortunately, the additional conditions can be shown to be fulfilled for many
stochastic approximation procedures. The assertions of both central limit theorems
in this paper can be formulated as invariance principles in the spirit of Lemma 7.1.

As already indicated in Dippon and Renz [4], taking weighted averages of the
trajectories works well with the original gradient estimate of Kiefer and Wolfowitz
(p = 3).

2. Notations. For a d-dimensional Euclidean space the linear space of d × d
matrices is denoted by L(Rd). x∗ is the transposed vector of x ∈ Rd, A∗ is the adjoint
matrix, and trA is the trace of A ∈ L(Rd). The tensor product x ⊗ y : Rd → Rd is
defined by 〈y, ·〉x, where x, y ∈ Rd and 〈·, ·〉 is the usual inner product. The space
C([0, 1],Rd) of Rd-valued continuous functions on [0, 1] is equipped with the maximum
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norm. Hf(ϑ) is the Hessian of a function f : Rd → R at ϑ ∈ Rd. For x ∈ R we use
bxc and dxe, denoting the integer part of x and the least integer greater than or equal
to x, respectively.

Let (Ω,A, P ) be a probability space. Then a sequence (Xn) of Rd-valued random
variables (r.v.’s) is called bounded in probability whenever limR→∞ limnP (‖Xn‖ ≥
R) = 0; (Xn) converges to zero almost in Lr or is bounded almost in Lr (r ∈
(0,∞)) if for each ε > 0 there exists an Ωε ∈ A with P (Ωε) ≥ 1 − ε such that
(
∫

Ωε
‖Xn‖r dP )1/r = o(1) or = O(1), respectively. Convergence almost in Lr implies

convergence in probability, but it is weaker than a.s. convergence or convergence in
the rth mean.

3. A Kiefer–Wolfowitz procedure with an improved gradient estimate.
The Kiefer–Wolfowitz procedure, which finds the minimizer ϑ of a regression function
f : Rd → R, has been modified by Fabian [6] in such a way that the rate of convergence
nearly reaches the rate of a Robbins–Monro procedure if f is assumed to be sufficiently
smooth in a neighborhood of ϑ. The method uses multiple observations per step.

We consider here, including the Fabian procedure, a modified Kiefer–Wolfowitz
procedure which is given by recursion (1.1). There Yn is an estimate of the gradient
∇f(Xn) based on error-contaminated observations of f . It is defined by

Yn = c−1
n

m∑
j=1

vj

(
{f(Xn+cnujei)− V (i)

n,2j−1} − {f(Xn−cnujei)− V (i)
n,2j}

)
i=1,...,d

,(3.1)

where the following definitions and relations are used throughout section 3: m ∈N,
0<u1 < · · ·<um≤ 1, v1, . . . , vm are real numbers with

∑m
j=1 vju

2i−1
j = (1/2)δ1i for

all i= 1, . . . ,m (as to the existence, compare Fabian [6]), and cn = cn−γ with c > 0
and 0<γ<1/2. The unit vectors in Rd are denoted by e1, . . . , ed.

For future reference, we state the following additional conditions:
(A) ∇f exists on Rd with ∇f(ϑ) = 0.

Concerning the local differentiability of f at ϑ we consider two cases. In the first
case (p = 2) we assume that there exists ε>0, τ ∈(0, 1], K1 and K2 such that
(B1a) Hf(ϑ) exists with ‖∇f(x)−Hf(ϑ)(x− ϑ)‖ ≤ K1‖x− ϑ‖1+τ for all x∈Uε(ϑ),
(B1b) ‖∇f(x)−∇f(y)‖ ≤ K2‖x− y‖ for all x, y ∈ Uε(ϑ).

(B1b) holds, for instance, if all second partial derivatives of f exist and are
bounded on Uε(ϑ). For the second case (p ≥ 3), we assume that there exist ε>0 and
L such that
(B2a) derivatives of f up to order p− 1 exist on Uε(ϑ),
(B2b) the pth derivative of f at ϑ exists,
(B2c) ‖Hf(x)−Hf(y)‖ ≤ L‖x− y‖ for all x, y ∈ Uε(ϑ).

A sufficient condition for (B2c) to hold is that all third partial derivatives of f
exist and are bounded on Uε(ϑ).

For brevity, (B1) stands for (B1a) and (B1b), and (B2) for (B2a), (B2b), and
(B2c). We use (B) to indicate that either (B1) or (B2) holds.

So far, m has not been specified. The number m must be adapted to the particular
value of p given by (B1) or (B2). Fabian [6] considers in this connection the case
(C1) m := bp/2c = (p− 1)/2 for an odd p ≥ 3, γ := 1/(2p).

We will consider in addition the following case (for d = 1 see Renz [19]):
(C2) m := dp/2e for p ≥ 2 (p not necessarily odd), γ := 1/(2p),
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which will result in an unbiased limit distribution, whereas (C1) generally leads to a
nonzero bias (Theorem 3.2).

Similarly as above, (C) means that either (C1) or (C2) holds. We note here that
the assumptions (B1) and (C1) do not occur together.

The sequence (Wn) of random variables Wn :=
∑m
j=1 vj

(
V

(i)
n,2j−1−V

(i)
n,2j

)
i=1,...,d

satisfies
(D) ∀

n≥m
‖EWm ⊗Wn‖ ≤ %n−m(E‖Wm‖2E‖Wn‖2)

1
2

with
∞∑
l=0

%l <∞ and E‖Wn‖2 = O(1).

Regarding assumption (B2b) it is worthwhile to note that this condition is in-
variant under rotation of coordinates (compare Fabian [8]). As a further comparison
with related work (Fabian [8], Spall [23]), we remark that our results, Theorems 3.2
and 4.2, do not assume continuity of the highest-order partial derivatives.

Results about asymptotic normality in stochastic approximation usually rely on
local smoothness of the regression function f around ϑ and on the consistency of the
procedure. The next proposition shows consistency of the modified procedure. The
assumptions imposed on f allow us to decouple the influence of the r.v.’s Wn and to
use the weak dependence condition (D).

PROPOSITION 3.1. Let an = a/nα with α ∈ (max{1/2 + 1/(2p), 1 − 1/p}, 1) or
an = (a lnn)/n, a > 0. For recursion (1.1) with gradient estimate (3.1), assume that
conditions (A) and (D) hold, f is bounded from below and has a Lipschitz continuous
derivative with ∇f(x) 6= 0 for all x 6= ϑ, and sup{‖x‖ : f(x) ≤ λ} < ∞ for all
λ > inf{f(x) : x ∈ Rd}. Then Xn → ϑ (n→∞) a.s.

Under condition (C1) a nonweighted analogue of the next theorem can be found
in Fabian [8].

THEOREM 3.2. Let an=(a lnn)/n for p=2 and an=a/nα with α∈(1/2+1/(2p), 1)
for p ≥ 3. For recursion (1.1) with gradient estimate (3.1), assume that conditions
(A)–(D) hold, A := Hf(ϑ) is positive definite, and Xn → ϑ a.s. Let Bn(t) :=
n−1/2

{∑bntc
i=1 Wi + (nt− bntc)Wbntc+1

}
. Suppose the existence of a Brownian mo-

tion B with covariance matrix S of B(1) and

Bn
D→ B in C([0, 1],Rd) (n→∞).

Then, for all δ > −(p+1)/(2p),

n
1
2 (1− 1

p )
(
X̃n,δ − ϑ

)
D→ N

(
2p(1+δ)
p+1+2pδ c

p−1A−1b, p(1+δ)2

p+1+2pδ c
−2A−1SA−1

)
(n→∞),

where b = − 1
p !

(∑m
j=1 vju

p
j (1 + (−1)p+1) ∂p

(∂xi)p
f(ϑ)

)
i=1,...,d

and X̃n,δ is defined in

(1.2). In particular, under condition (C2), b = 0.
REMARK 3.3. The choices δ = 0 and δ = −2γ = −1/p are of special interest.

Provided b 6= 0, the pair (δ, c) = (0, c0) with c0 as given in (5.1) minimizes the second
moment of the limit distribution. However, for fixed c > 0, the limit’s covariance is
minimized by δ = −2γ = −1/p. In particular, Theorem 3.2 yields for n→∞

n
1
2 (1− 1

p )
(
n−1

n∑
k=1

Xk − ϑ
)
D→ N

(
2p
p+1 c

p−1A−1b, p
p+1 c

−2A−1SA−1
)
,

n
1
2 (1− 1

p )
(
p−1
p n−

p−1
p

n∑
k=1

k−
1
pXk − ϑ

)
D→ N

(
2 cp−1A−1b, p−1

p c−2A−1SA−1
)
.
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4. A Kiefer–Wolfowitz procedure with simultaneous perturbation gra-
dient approximation. The classical Kiefer–Wolfowitz (finite difference) stochastic
approximation method (FDSA) needs 2d observations to obtain a finite difference
approximation of the gradient belonging to the function f : Rd → R of which the
minimizer ϑ is sought. To reduce the number of observations in each step, random-
ized gradient approximation methods have been considered in the literature. Two
examples are random direction stochastic approximation (RDSA), suggested by Kush-
ner and Clark [12], and simultaneous perturbation stochastic approximation (SPSA),
suggested by Spall [22]. Both methods are based on only two observations in each
iteration. Depending on the dimension d and the third derivatives of the regres-
sion function f the AMSE of the SPSA method can be better or worse than that of
the FDSA and RDSA methods. At least for second-order polynomials f , the FDSA
method needs d times more observations than the SPSA method to achieve the same
level of mean squared error asymptotically, when the same span cn = cn−γ is used
(Spall [23]).

Before the idea of weighted averages is applied to the SPSA method, we will
describe this algorithm in more detail. Again recursion (1.1) is used, but with step
lengths an = an−α and with the following so-called simultaneous perturbation gradient
estimate of ∇f(Xn):

Yn =
1

2cn

 (∆(1)
n )−1

...
(∆(d)

n )−1

 ([f(Xn + cn∆n)−Wn,1]− [f(Xn − cn∆n)−Wn,2])(4.1)

consisting of (artificially generated) random vectors ∆n ∈ M(Ω,Rd), observation
errors Wn,1, Wn,2 ∈M(Ω,R), and span cn.

We consider the following set of conditions.

(E) The components ∆(i)
n of ∆n, i = 1, . . . , d, for n ∈ N fixed, form a set

of independent, identically and symmetrically distributed r.v.’s with |∆(l)
n |

having values between fixed positive numbers α0 < α1. The r.v. ∆n is as-
sumed to be independent of {X1, . . . , Xn,∆1, . . . ,∆n−1}. Furthermore, we
use ξ2 = E|∆(l)

n |2 and ρ2 = E|∆(l)
n |−2. For simplicity, the column vector

appearing in (4.1) is denoted by ∆−1
n .

(F) The difference Wn = Wn,1 −Wn,2 of the observation errors satisfies E(Wn |
Fn) = 0 and supnE

(
W 2
n | Gn

)
<∞ a.s., where Fn and Gn denote the σ-fields

generated by {X1, . . . , Xn, ∆1, . . . ,∆n} and {X1, . . . , Xn, ∆1, . . . ,∆n−1},
respectively.

(G) ∞ > E(W 2
n | Fn) → σ2 a.s. and E(W 2

n1[W 2
n≥rn] | Fn) → 0 a.s. for every

r > 0.
(H) (B2) holds for p = 3, and A = Hf(ϑ) is a positive definite matrix.

The proposition below presents conditions for the recursion’s consistency. It is
related to Blum’s result [2] on multivariate Kiefer–Wolfowitz procedures. Under dif-
ferent and less intuitive assumptions and with a different method of proof, Spall [23]
asserts consistency as well.

PROPOSITION 4.1. Let an = a/nα with α ∈ (max{γ + 1/2, 1− 2γ}, 1] and γ > 0.
For recursion (1.1) with gradient estimate (4.1), assume that conditions (A), (E), and
(F) hold, and that f is bounded from below and has a Lipschitz continuous gradient.

(a) If sup{‖x‖ : f(x) ≤ λ} <∞ for all λ > inf{f(x) : x ∈ Rd}, then supn ‖Xn‖ <
∞ a.s.
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(b) Assume ∇f(x) 6= 0 and f(x) > f(ϑ) for all x 6= ϑ. If supn ‖Xn‖ < ∞ a.s.,
then Xn → ϑ (n→∞) a.s.

A nonweighted analogue of the following theorem is stated in Spall [23].
THEOREM 4.2. Let α ∈ (2/3, 1) and γ = 1/6. For recursion (1.1) with gradient

estimate (4.1), assume conditions (A), (E)–(H), and Xn → ϑ a.s. Then, for all
δ > −2/3,

n
1
3

(
X̃n,δ − ϑ

)
D→ N

(
1+δ

2/3+δ c
2A−1b, (1+δ)2

4/3+2δ c
−2A−1SA−1

)
(n→∞),

where

S =
σ2ρ2

4
I, b = −1

6
ξ2

 ∂3

(∂xi)3 f(ϑ) + 3
d∑

j=1, j 6=i

∂3

∂xi(∂xj)2 f(ϑ)


i=1,...,d

,

and X̃n,δ is as defined in (1.2).

5. Comparison of stochastic approximation procedures with respect
to their asymptotic mean squared error and further comments. Based on
recursion (1.1) with any of the gradient estimates Yn discussed in this paper, we
consider the following three variants of algorithms:

(i) the basic recursion with an = a/n,
(ii) an adaptive variant obtained from the basic recursion with an = (a/n)Mn

and random matrices Mn converging to M = Hf(ϑ)−1 a.s.,
(iii) the basic recursion with an converging to zero slower than 1/n combined with

averaging of the trajectories
and compare the corresponding estimators with regard to their asymptotic behavior.
Some of these estimators have been treated in the literature (Fabian [6], [9], Spall [22],
[23]). The adaptive procedure has been introduced by Fabian [9] to improve the limit
distribution. There the auxiliary sequence Mn is built up from information available
up to stage n. For both algorithms (i) and (ii), with any gradient estimate considered
in this paper, the limit distribution can be obtained by Theorem 1 in Walk [24] and
by the representations derived in the proofs of Theorems 3.2 and 4.2.

Assuming that A = Hf(ϑ) is a positive definite matrix, the related second mo-
ments of the asymptotic distributions turn out to be

E(a, c) :=
(
2cp−1a‖(2aA− β)−1b‖

)2
+
a2

c2
tr
(

(2aA− β)−1
S
)
, a > β/(2λ0),

Ê(a, c) :=
(

2cp−1a

2a− β ‖A
−1b‖

)2

+
a2

c2(2a− β)
tr
(
A−1SA−1) , a > β/2,

Ẽ(δ, c) :=
(

2cp−1(1 + δ)
2− β + 2δ

‖A−1b‖
)2

+
(1 + δ)2

c2(2− β + 2δ)
tr
(
A−1SA−1) , δ > β/2− 1,

respectively, where β = 1− 1/p, λ0 = min{λ : λ ∈ specA}, and c > 0 (concerning E
and Ê, use Theorem 5.8 and Remark 5.9 of [25]). Under appropriate assumptions these
quantities are equal to the AMSEs limnE‖n

1
2 (1− 1

p )(Xn − ϑ)‖2 shown by algorithm
(i) or (ii), and limnE‖n

1
2 (1− 1

p )(X̃n,δ − ϑ)‖2 shown by algorithm (iii). Apparently it
holds that Ê(a, c) = Ẽ(a− 1, c).
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If b 6= 0, the asymptotic distribution is biased. In this case Ê and Ẽ are minimized
by (a, c) = (1, c0) and (δ, c) = (0, c0), respectively, with

c0 =
(

(2− β)
4(p− 1)

tr(A−1SA−1)
‖A−1b‖2

) 1
2p

,(5.1)

which is usually unknown. At the end of section 6 we show that

∀c > 0
1
4
<

(
p+ 1

2p

)2

< min
a>β/(2λ0)

E(a, c)

Ẽ(0, c)
< sup

a>β/(2λ0)

E(a, c)

Ẽ(0, c)
= ∞(5.2)

and

1
4
<

(
p+ 1

2p

)2

< min
a>β/(2λ0)

min
c>0

E(a, c)

Ẽ(0, c0)
< sup

a>β/(2λ0)
min
c>0

E(a, c)

Ẽ(0, c0)
= ∞.(5.3)

Noticing the last equation of the preceding paragraph, these relations can be rewritten
in terms of Ê instead of Ẽ. Thus the AMSE of the adaptive algorithm (ii) and the
averaging algorithm (iii) is less than four times the AMSE of the standard algorithm (i)
for any admissible a, no matter whether a common c is used or the optimal values
of c are chosen. On the opposite side, a bad choice of a (a close to β/(2λ0) or a too
large) results in an arbitrarily large AMSE of the standard algorithm (i), whereas
this difficulty does not arise when the adaptive or averaging method is used. In this
sense one may say that the averaging and adaptive algorithms are more stable than
the standard algorithm.

In the one-dimensional case the AMSE of the standard algorithm (i) is minimized
by a′0 = 1/A and c′0 = ( 2−β

4(p−1)
S
b2 )1/(2p). Hence, for d = 1, the second relation in (5.3)

can be sharpened to E(a′0, c
′
0)/Ẽ(0, c0) = 1.

In section 3 the design (u1, . . . , um) was fixed. If condition (C1) holds, the gra-
dient estimate (3.1) usually produces an asymptotic bias. In this case Fabian [7] and
Erickson, Fabian, and Mařik [5] investigated how the AMSE can be further reduced
by the choice of an optimal design.

If the gradient estimate (3.1) is constructed under condition (C2), the bias is
vanishing (since b = 0). Then, for a fixed positive c, the AMSEs Ê and Ẽ attain their
minimum c−2(1− 1/p) tr(A−1SA−1) for a = 1− 1/p and δ = −1/p, respectively. We
get

∀c > 0 1 ≤ min
a>β/(2λ0)

E(a, c)

Ẽ(−1/p, c)
< sup

a>β/(2λ0)

E(a, c)

Ẽ(−1/p, c)
= ∞.(5.4)

Assume that a0 (> β/(2λ0)) minimizes E(a, c) for a fixed c. Then, only in special
cases can E(a0, c) = Ẽ(−1/p, c) be achieved. In any of the three variants the related
AMSE can be made arbitrarily small by choosing c sufficiently large. Hence, with
respect to the AMSE criterion, the procedures using the gradient estimate leading to
b = 0 are superior to those leading to b 6= 0, although they need 2d more observations
per step.

It must be emphasized that in the case b 6= 0 the adaptive recursion employing
consistent estimators (Mn) of M = A−1 instead of some other matrix M is, due to
(5.2) and (5.3), a fairly good choice but not the best one with respect to the optimal
AMSE. For fixed c > 0, a better choice would require consistent estimators Mn of
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a matrix M which minimizes c2p−2‖(MA − β
2 I)−1Mb‖2 + c−2 trZ where min{reλ :

λ ∈ spec(MA − β
2 I)} > 0 and Z is the unique solution of (MA − β

2 I)Z + Z(MA −
β
2 I)∗ = MSM∗. Hence, averaging applied in the Kiefer–Wolfowitz situation with
nonvanishing asymptotic bias does not optimize the AMSE. This is in contrast to the
Robbins–Monro situation. Minimizing the expression above in both M and c would
lead to an even better AMSE, but we do not pursue this possibility here.

Let ϑn(f) be an estimator of the minimum ϑ(f) of a p-times differentiable regres-
sion function f on R using n observations. Consider, for fixed c > 0,

sup
f
P [n

p−1
2p |ϑn(f)− ϑ(f)| > c],

where the supremum is taken over all regression functions f satisfying conditions (A)
and (B) and some further boundedness conditions. Then, according to results by
Chen [3] and by Polyak and Tsybakov [18], this supremum as a function of n has a
universal positive lower bound independent of the choice of ϑn(f). This raises the
interesting problem of determining which type of algorithm, together with which type
of gradient estimate, leads to the smallest supremum above.

The condition sup{‖x‖ : f(x) ≤ λ} <∞ for all λ > inf{f(x) : x ∈ Rd} appearing
in Propositions 3.1 and 4.1 is equivalent to inf{f(x) : ‖x‖ ≥ K} → ∞ as K → ∞.
In applications this condition can be satisfied by adding the function values of an
appropriate increasing and differentiable function to the basic observations taken at
x. A possible choice is x 7→ ‖x− d x

‖x‖‖21[‖x‖≥d] for a fixed d large enough.

Finally, it is worth mentioning that the weighted means X̃n,δ can easily be recur-
sified by(

Xn+1

X̃n+1,δ

)
=

(
1 0

1+δ
n+1

(
n
n+1

)1+δ

)(
Xn

X̃n,δ

)
− an

(
Yn

1+δ
n+1Yn

)
, X̃1,δ = (1 + δ)X1.

6. Proofs.
Proof of Proposition 3.1. For x ∈ Rd and h > 0 define

g(x, h) :=
(
g(i)(x, h)

)
i=1,...,d

:=
m∑
j=1

vj(f(x+hujei)− f(x−hujei))i=1,...,d.

Then, with Vn := c−1Wn and Hn := ∇f(Xn)− c−1
n g(Xn, cn), we obtain

Xn+1 = Xn − an(∇f(Xn)− nγVn −Hn).(6.1)

By Lipschitz continuity of ∇f we have f ∈ C1(Rd). This leads, with a Lipschitz
constant K, to

∣∣∣h−1g(i)(x, h)− ∂
∂xi

f(x)
∣∣∣ =

∣∣∣∣∣∣
m∑
j=1

vjuj

∫ 1

−1
( ∂
∂xi

f(x+ shujei)− ∂
∂xi

f(x)) ds

∣∣∣∣∣∣
≤

m∑
j=1

|vj |uj
∫ 1

−1
‖∇f(x+ shujei)−∇f(x)‖ ds ≤ K

m∑
j=1

|vj |u2
jh.

Therefore ‖Hn‖ ≤
√
dK

∑m
j=1 |vj |u2

jcn. Our assumptions yield
∑
a2
nn

1/p(logn)2 <

∞ and
∑
ann

−1/p < ∞. Proposition 4.1 in Dippon and Renz [4] implies the as-
sertion.
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Proof of Theorem 3.2. First step: Expansions for h−1g(x, h). In what follows, we
assume x ∈ Uε/2(ϑ) and h ∈ (0, ε/2). As a consequence we have x + shei, ϑ + t(x −
ϑ)± hujei ∈ Uε(ϑ) for all t ∈ [0, 1] and s ∈ [−1, 1].

First we consider the case of an at least three-times differentiable function f
(p ≥ 3). Using (B2c), we obtain f ∈ C2(Uε(ϑ)), and therefore, according to Taylor’s
formula,

g(i)(x, h) =
m∑
j=1

vj(f(x+ hujei)− f(x− hujei))(6.2)

=
m∑
j=1

vj(f(ϑ+ hujei)− f(ϑ− hujei))

+
m∑
j=1

vj(∇f(ϑ+ hujei)−∇f(ϑ− hujei))∗ (x− ϑ)

+ (x− ϑ)∗
∫ 1

0
(1− t)

m∑
j=1

vj(Hf(ϑ+ t(x− ϑ) + hujei)

−Hf(ϑ+ t(x− ϑ)− hujei)) dt (x−ϑ) .

Let us denote the first term of this sum by t(i)(h) (i = 1, . . . , d). (B2a) implies

dl

(dh)l t
(i)(h) =

m∑
j=1

vju
l
j

(
∂l

(∂xi)l
f(ϑ+hujei) + (−1)l+1 ∂l

(∂xi)l
f(ϑ−hujei)

)
for l = 0, . . . , p−1. Then dl

(dh)l t
(i)(0) = 0 for all l = 0, . . . , p−1. This is obvious for l

even. For l odd with 1 ≤ l ≤ 2m−1, this follows from (A) and the choice of the vk. In
the case m := dp/2e, we have p−1 ≤ 2m−1, and in the case m := bp/2c = (p−1)/2,
p odd, we have 2m− 1 = p− 2 and p− 1 is even. (B2b) implies

dp

(dh)p t
(i)(0) =

m∑
j=1

vju
p
j

(
1 + (−1)p+1) ∂p

(∂xi)p
f(ϑ).

In the case m := dp/2e we obtain dp

(dh)p t
(i)(0) = 0. For p even, this is again obvious,

and for p odd, it follows from 2m − 1 = p and from the choice of the vk. Taylor’s
formula yields

t(i)(h) = hp

p!

(
dp

(dh)p t
(i)(0) + o(1)

)
(h→ 0).(6.3)

For the discussion of the second term of the sum on the right-hand side (r.h.s.)
in (6.2) we define

s(i,k)(h) :=
m∑
j=1

vj

(
∂
∂xk

f(ϑ+hujei)− ∂
∂xk

f(ϑ−hujei)
)

(i, k = 1, . . . , d).

Using (B2a) we obtain by a consideration analogous to that above

dl

(dh)l s
(i,k)(h) =

m∑
j=1

vju
l
j

(
∂l

(∂xi)l
∂
∂xk

f(ϑ+hujei) + (−1)l+1 ∂l

(∂xi)l
∂
∂xk

f(ϑ−hujei)
)
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for l = 0, . . . , p−2, where s(i,k)(0) = 0, d
dhs

(i,k)(0) = ∂
∂xi

∂
∂xk

f(ϑ) and dl

(dh)l s
(i,k)(0) = 0

for all l = 2, . . . , p − 2. (B2b) implies, by reasoning similar to that in the case of
dp

(dh)p t
(i)(0),

dp−1

(dh)p−1 s
(i,k)(0) =

m∑
j=1

vju
p−1
j (1 + (−1)p) ∂p−1

(∂xi)p−1
∂
∂xk

f(ϑ) = 0.

Again, by using Taylor’s formula, we obtain

s(i,k)(h) = h ∂
∂xi

∂
∂xk

f(ϑ) + hp−1o(1) (h→ 0).(6.4)

Finally, for every i = 1, . . . , d, the expression

q(i)(x, h) :=

(x− ϑ)∗
∫ 1

0
(1− t)

m∑
j=1

vj(Hf(ϑ+ t(x−ϑ) + hujei)−Hf(ϑ+ t(x−ϑ)− hujei)) dt

can be bounded in the following way by using (B2c):

‖q(i)(x, h)‖ ≤ h
m∑
j=1

|vj |uj L‖x− ϑ‖.(6.5)

Because of (6.2), (6.3), (6.4), and (6.5) we obtain the following representation:

h−1g(x, h) =
(
Hf(ϑ) + hp−2P (h) +Q(x, h)

)
(x− ϑ)− hp−1

cp−1 T (h)(6.6)

with matrices P (h), Q(x, h) and a vector T (h) satisfying the relations ‖P (h)‖ = o(1)
(h→ 0), ‖Q(x, h)‖ ≤

√
dL
∑m
j=1 |vj |uj ‖x − ϑ‖, and T (h) → T = cp−1b (h → 0).

Notice that Q is a measurable function (x ∈ Uε/2(ϑ), h ∈ (0, ε/2)).
Now we are going to consider the case of a twice differentiable function f (p = 2).

(B1a) implies the existence of a measurable matrix-valued function R with

∇f(x) = (Hf(ϑ) +R(x)) (x− ϑ) , where ‖R(x)‖ ≤ K1‖x− ϑ‖τ for x ∈ Uε(ϑ).

Because of p = 2 we have m = 1. Without loss of generality, we may assume that
u1 = 1. Then we have v1 = 1/2. By (B1b) we obtain f ∈ C1(Uε(ϑ)), and therefore

g(i)(x, h)= 1
2 (f(x+ hei)− f(x− hei)) = 1

2 h

∫ 1

−1

∂
∂xi

f(x+ shei) ds

= 1
2 h

∫ 1

−1
( ∂
∂xi

f(x+ shei)− ∂
∂xi

f(x)) ds+ h ∂
∂xi

f(x).

Putting the last two relations together gives the following representation:

h−1g(x, h) = (Hf(ϑ) +R(x)) (x− ϑ) + s(x, h)(6.7)

with vector s(x, h) satisfying ‖s(x, h)‖ ≤ 0.5
√
dK2 h. Notice that s is also a measur-

able function (x ∈ Uε/2(ϑ), h ∈ (0, ε/2)).
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While the last representation and Lemma 7.1(b) yield a rate of convergence, we
will need a second representation to apply Lemma 7.1(a). We obtain

g(i)(x, h) = 1
2 h

∫ 1

−1

(
∂
∂xi

f(x+ shei)− (∇ ∂
∂xi

f(ϑ))∗(x− ϑ+ shei)
)
ds

+h (∇ ∂
∂xi

f(ϑ))∗(x− ϑ).

For r(i)(x, h) := 1
2

∫ 1
−1( ∂

∂xi
f(x+shei)−(∇ ∂

∂xi
f(ϑ))∗(x−ϑ+shei)) ds, our assumptions

imply

|r(i)(x, h)|

≤ 1
2

∫ 1

−1
‖∇f(x+ shei)−Hf(ϑ)(x− ϑ+ shei)‖ ds ≤ 1

2

∫ 1

−1
K1 ‖x− ϑ+ shei‖1+τ ds

≤ 2τ−1K1

∫ 1

−1

(
‖x− ϑ‖1+τ + |s|1+τh1+τ) ds ≤ 2τK1

(
‖x− ϑ‖1+τ + h1+τ

2+τ

)
.

As a consequence of the last two relations we obtain the following representation:

h−1g(x, h) = Hf(ϑ)(x− ϑ) + r(x, h),(6.8)

where the vector r(x, h) = (r(i)(x, h)) is bounded by ‖r(x, h)‖ ≤ 2τ
√
dK1(‖x−ϑ‖1+τ

+ h1+τ/(2 + τ)). Again, r is a measurable function (x ∈ Uε/2(ϑ), h ∈ (0, ε/2)).
Second step: Rate of convergence for Xn → ϑ and proof of asymptotic normality.

Let us define Un := Xn − ϑ, Vn := c−1Wn, and Ω(n) := [‖Un‖ < ε/2 and cn < ε/2].
First we consider the case p ≥ 3. We define An := (Hf(ϑ) + cp−2

n P (cn) +
Q(Xn, cn))1Ω(n) and Tn := T (cn)1Ω(n)−n1/2c−1g(Xn, cn)1Ω(n)c . In the case p = 2 we
defineAn := (Hf(ϑ)+R(Xn))1Ω(n) and Tn := −n1/4s(Xn, cn)1Ω(n)−n1/2c−1g(Xn, cn)
·1Ω(n)c . Regarding properties (6.1), (6.6), and (6.7), the so-defined quantities fulfill re-
cursion (7.2) and satisfy An → A = Hf(ϑ) a.s. and Tn = O(1) almost in L2. Condition
(7.12) holds by assumption (D). Therefore, Lemma 7.1(b) yields Un = O(a1/2

n n1/(2p))
almost in L2.

For p ≥ 3 the above quantities satisfy Tn → T a.s. and ‖An−A‖ ≤ C1 n
−(p−2)/(2p)

+C2 ‖Un‖+C31Ω(n)c . In the case p = 2 we have to alter the definition of An and Tn.
Let An := Hf(ϑ)1Ω(n) and Tn := −n1/4r(Xn, cn)1Ω(n)−n1/2c−1g(Xn, cn)1Ω(n)c . Due
to (6.8) recursion (7.2) holds. Note that ‖n1/4r(Xn, cn)1Ω(n)‖ ≤ C4 n

1/4‖Un‖1+τ +
C5 n

−τ/4.
In both cases we get Tn−T = o(1) almost in L1 and An−A = o(1/

√
nan) almost

in L2 , where we have used 2/p ≤ 1/2+1/(2p) < α for p ≥ 3. Thus the assertion
follows from Lemma 7.1 (a).

Proof of Proposition 4.1. We may assume ϑ = 0 and f(ϑ) = 0. Lipschitz conti-
nuity of ∇f implies

|f(x+ h)− f(x− h)− 〈2h,∇f(x)〉| =
∣∣∣∣∫ 1

−1
〈h,∇f(x+ sh)−∇f(x)〉 ds

∣∣∣∣(6.9)

≤ ‖h‖
∫ 1

−1
K|s| ‖h‖ ds = K‖h‖2,

where K is, here and in the following inequalities, a constant that may vary from
formula to formula. The last inequality, together with

E
(

∆(k)
n

∆(l)
n

∂
∂xk

f(Xn) | Gn
)

= δkl
∂
∂xk

f(Xn) a.s.,
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proves

‖E (Yn | Gn)−∇f(Xn)‖ ≤ Kcn a.s.(6.10)

Due to (6.9), (6.10), and assumption (F), we obtain

E(‖Yn‖2 | Gn) ≤ Kc2n +K ‖∇f(Xn)‖2 +K c−2
n E(W 2

n | Gn) a.s.(6.11)

and

〈∇f(Xn), E (Yn | Gn)〉 ≥ ‖∇f(Xn)‖2 −Kcn ‖∇f(Xn)‖ a.s.(6.12)

Lipschitz continuity of ∇f implies, as above,

f(Xn+1) ≤ f(Xn)− an〈∇f(Xn), Yn〉+Ka2
n ‖Yn‖2.

Taking conditional expectations and using inequalities (6.11) and (6.12), we obtain

E (f(Xn+1) | Gn)
≤ f(Xn)− an

(
‖∇f(Xn)‖2 −Kcn ‖∇f(Xn)‖

)
+Ka2

n ‖∇f(Xn)‖2 +Ka2
n/c

2
n

(
E(W 2

n | Gn) + 1
)

≤ f(Xn)− an/2 (‖∇f(Xn)‖ −Kcn)2 +K2/2 anc2n +Ka2
n/c

2
n

(
E(W 2

n | Gn) + 1
)

a.s.

for all n with Kan < 1/2. Let An := an/2 (‖∇f(Xn)‖ −Kcn)2 and Bn := K2/2 anc2n
+Ka2

n/c
2
n

(
E(W 2

n | Gn) + 1
)
. For n large enough

E (f(Xn+1) | Gn) ≤ f(Xn)−An +Bn a.s.,

where An ≥ 0, Bn ≥ 0, and
∑∞
n=1Bn < ∞ a.s. On a set Ω0 of measure 1 we have

convergence of f(Xn) and
∑∞
n=1An according to a theorem of Robbins and Siegmund

[20] for nonnegative almost-supermartingales.
Fix ω ∈ Ω0 and denote xn := Xn(ω). Then for almost all n the relation f(xn) ≤

λ := lim f(xn) + 1 holds. Since {x : f(x) ≤ λ} is bounded, (xn) is bounded as well.
To prove (b) fix ω ∈ Ω0 with supn ‖xn‖ < ∞. Select a subsequence (xn′) with

∇f(xn′) → 0. Then there exists a convergent subsequence (xn′′) of (xn′). Since
∇f(xn′′) → 0 and ∇f is continuous, (xn′′) converges to zero. Hence f(xn′′) → 0 and
f(xn) → 0. Choose ε > 0 such that ‖xn‖ < 1/ε for all n. For n sufficiently large we
have f(xn) < inf {f(x) : ε < ‖x‖ < 1/ε}. This proves xn → 0.

Proof of Theorem 4.2. We will verify the assumptions of Lemma 7.1. For this
purpose let us define Un := Xn − ϑ, Dn := (2cn)−1∆−1

n (f(Xn + cn∆n) − f(Xn −
cn∆n)), Vn,1 := (2c)−1∆−1

n Wn, Ω(n) := [‖Un‖ < ε/2 and cn < ε/(2d1/2α1)], Vn,2 :=
−n−1/6(Dn1Ω(n) − E(Dn1Ω(n) | Gn)), Vn := Vn,1 + Vn,2, and T := c2b.

For x, z ∈ Rd and h > 0 with x, x±hz, ϑ±hz ∈ Uε(ϑ), we obtain by condition (H)

f(x+ hz)− f(x− hz)
= f(ϑ+ hz)− f(ϑ− hz) + 〈∇f(ϑ+ hz)−∇f(ϑ− hz), x− ϑ〉

+(x− ϑ)∗
∫ 1

0
(1−t)(Hf(ϑ+ t(x− ϑ) + hz)−Hf(ϑ+ t(x− ϑ)− hz))dt (x− ϑ)

where

f(ϑ+ hz)− f(ϑ− hz) =
2h3

6

∑
i,j,k

∂3

∂xi∂xj∂xk
f(ϑ) zizjzk + o(h3‖z‖3),

∇f(ϑ+ hz)−∇f(ϑ− hz) = 2hHf(ϑ)z + o(h2‖z‖2),
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and ∥∥∥∥∫ 1

0
(1−t)(Hf(ϑ+ t(x− ϑ) + hz)−Hf(ϑ+ t(x− ϑ)− hz))dt

∥∥∥∥ ≤ Lh ‖z‖.
This expansion, together with condition (E), leads to the following representation:

E
(
Dn1Ω(n) | Gn

)
= (Hf(ϑ) + o(cn) +O(‖Un‖))Un1Ω(n) − n−

1
3 (T + o(1)) 1Ω(n).

With An := (Hf(ϑ)+o(cn)+O(‖Un‖))1Ω(n), Tn := (T+o(1))1Ω(n)−n1/3Dn1Ω(n)c ,
and the quantities defined at the beginning of the proof, recursion (1.1) can be rewrit-
ten in the form of recursion (7.2).

Let Bn,j(t) := 1/
√
n (
∑bntc
i=1 Vi,j + (nt − bntc)Vbntc+1,j), t ∈ [0, 1], j ∈ {1, 2}. To

show that Bn,1 converges in distribution to a Brownian motion B, and that Bn,2 con-
verges to zero in probability, we apply an invariance principle for martingale difference
sequences of Berger [1].

We first consider the case j = 1. Since

E(Vn,1 | Fn) = 1
2c∆

−1
n E(Wn | Fn) = 0 a.s.

and Vn,1 is Fn+1-measurable, (Vn,1) is a martingale difference sequence with respect
to (Fn+1). Similarly, we get from the assumptions,

1
n

n∑
i=1

E(Vi,1 ⊗ Vi,1 | Fi)

= 1
4c2

1
n

n∑
i=1

∆−1
i ⊗∆−1

i E(W 2
i | Fi)

= σ2

4c2
1
n

n∑
i=1

∆−1
i ⊗∆−1

i + 1
4c2

1
n

n∑
i=1

∆−1
i ⊗∆−1

i

(
E(W 2

i | Fi)− σ2)
→ σ2ρ2

4c2
I (n→∞) a.s.

according to Kolmogorov’s strong law of large numbers. Further, we obtain

1
n

n∑
i=1

E(‖Vi,1‖21[‖Vi,1‖2≥ri] | Fi) ≤ 1
n

n∑
i=1

E( d
4c2α2

0
W 2
i 1

[W 2
i ≥

4c2α2
0r

d i]
| Fi)

P→ 0 (n→∞)

since E(W 2
i 1[W 2

i ≥r̃i] | Fi) is converging to zero a.s.
To get (7.4) for the sequence (Vn,1), we check that

sup
n
E
(
‖Vn,1‖2 | Fn

)
≤ 1

4c2 sup
n
‖∆−1

n ‖2 sup
n
E
(
W 2
n | Fn

)
< ∞ a.s.,

which holds in view of the assumptions.
Likewise, we treat the case j = 2. Note that Vn,2 is Gn+1-measurable, and E(Vn,2 |

Gn) = 0 a.s. Condition (H) implies

‖E (Vn,2 ⊗ Vn,2 | Gn) ‖ ≤ d
4c2α2

0
E
(
|f(Xn + cn∆n)− f(Xn − cn∆n)|2 1Ω(n) | Gn

)
≤ (dLα1/α0)2n−2γ → 0 (n→∞) a.s.
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This implies supnE(‖Vn,2‖2 | Gn) <∞ a.s., and thus validity of (7.4) for the sequence
(Vn,2). Additionally

E
(
‖Vn,2‖21[‖Vn,2‖2≥rn] | Gn

)
→ 0 (n→∞) a.s.

Once more, the invariance principle in Berger [1] can be applied to prove the desired
result.

Since Xn → ϑ a.s., we obtain An → A and Tn → T = c2b a.s. The latter is
sufficient for (7.5) and (7.9). Furthermore, the sequence (Vn) fulfills (7.10) and (7.11)
with respect to (Gn+1). Now Lemma 7.1(b) asserts Un = O(n(1/6)−(α/2)) almost in
L2. To obtain An − A = o(n(α−1)/2) almost in L2, one has to choose α > 2/3. This
completes the proof.

Proof of relations (5.2)–(5.4). Since spec(2aA− β) ⊂ (0,∞) we obtain

a‖(2aA− β)−1b‖ = 1
2

∥∥∥∥( 2a
β A− I

)−1 (
2a
β A− I

)
A−1b+

(
2a
β A− I

)−1
A−1b

∥∥∥∥
= 1

2

∥∥∥∥(I +
(

2a
β A− I

)−1
)
A−1b

∥∥∥∥
≥ 1

2 min
{
λ ∈ spec

(
I +

(
2a
β A− I

)−1
)}
‖A−1b‖

≥ 1
2 ‖A

−1b‖

and, by Theorem 1 in Wei [26],

tr
(
a2(2aA− β)−1S

)
≥ tr

(
βA−1SA−1) .(6.13)

Noticing that 4β/(2− β) > 1 and (2− β)/2 > 1/2, this yields

E(a, c) ≥ c2p−2‖A−1b‖2 + β
c2 tr(A−1SA−1) >

(
2−β

2

)2
Ẽ(0, c) > 1

4 Ẽ(0, c).

The last relation of (5.2) is obvious.
The first two relations of (5.3) follow from (5.2). To prove the last one, we find

for a given admissible a that

c0(a) =
(

tr((2aA− β)−1S)
4(p− 1)‖(2aA− β)−1b‖2

) 1
2p

minimizes E(a, c). Now observe that E(a, c0(a))→∞ as a→∞ or a↘ β/(2λ0).
The first relation of (5.4) follows from (6.13), and the third one is as shown

above.

7. Appendix: A weak invariance principle for weighted means in sto-
chastic approximation. For the following lemma, which is a consequence of The-
orems 3.1 and 4.1 in Dippon and Renz [4], let (an) be a sequence decreasing to 0
with

nan ↗∞ (n→∞)(7.1)

and satisfying the relation an − an+1 = ona
2
n with

∞∑
n=1

|on − on+1| <∞.
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Note that under (7.1) on ≤ 1/(nan) → 0 as n → ∞. Examples for sequences having
all these properties are (a/nα) and (a logn/n) with α ∈ (0, 1), a > 0.

LEMMA 7.1. Let γ ∈ [0, 1/2) and δ > −1/2− γ. For Rd-valued random variables
Un, Vn, Tn and L(Rd)-valued random variables An, assume the following recursion:

Un+1 = (I − anAn)Un + ann
γ
(
Vn + n−

1
2Tn

)
.(7.2)

Suppose that A ∈ L(Rd) satisfies

min{reλ : λ ∈ specA} > 0.

(a) Let Bn(t) := n−1/2
{∑bntc

i=1 Vi + (nt− bntc)Vbntc+1

}
, t ∈ [0, 1], n ∈ N. As-

sume the existence of a centered Brownian motion B with covariance matrix S of
B(1) and with

Bn
D→ B in C([0, 1],Rd) (n→∞),(7.3)

Bn(1) = O(1) almost in L1.(7.4)

If there exists T ∈ Rd such that

Tn − T = o(1) almost in L1,(7.5)
Un = O (nγ

√
an) almost in L2,(7.6)

An −A = o (1/
√
nan) almost in L2,(7.7)

then

n1/2−γ t−min{1,γ+δ} 1+δ
n1+δ

 bntc∑
k=1

kδUk + (nt− bntc)(bntc+ 1)δUbntc+1


D→ G(t) := (1 + δ) tmax{0,γ+δ−1}A−1

(∫
(0,1]

uγ+δ dB(tu) + t1/2

1/2+γ+δT

)
in C([0, 1],Rd) for n→∞, where G(1) is a Gaussian distributed random variable in
Rd with expectation 2(1+δ)/(1+2γ+2δ)A−1T and covariance matrix (1+δ)2/(1+2γ+2δ)
A−1SA−1∗.

(b) Assume

An → A a.s. (n→∞),(7.8)
Tn = O(1) almost in L2,(7.9)

and

E(Vn | Fn−1) = 0 a.s.,(7.10)
sup
n
E(‖Vn‖2 | Fn−1) <∞ a.s. or E‖Vn‖2 = O(1),(7.11)

where (Fn) is a filtration and (Vn) is adapted to (Fn), or, instead of (7.10) and (7.11),
alternatively:

∀
n≥m

‖EVm ⊗ Vn‖ ≤ %n−m(E‖Vm‖2E‖Vn‖2)
1
2(7.12)

with
∞∑
l=0

%l <∞ and E‖Vn‖2 = O(1).

Then condition (7.6) holds.
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REMARK 7.2. (a) For conditions implying (7.3) in case of a martingale difference
sequence (Vn), see Theorem 5.1 in Berger [1].

(b) Condition (7.4) is implied by (7.10) and (7.11), or by (7.12).
(c) In applications, (7.6) can often be used to show (7.7). Usually, (7.8) follows

from the consistency of the stochastic approximation procedure.
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