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SUMMARY Multiple context-free grammar (MCFG) is an extension
of context-free grammar (CFG), which generates tuples of words. The
expressive power of MCFG is between CFG and context-sensitive gram-
mar while MCFG inherits good properties of CFG. In this paper, we intro-
duce weighted multiple context-free grammar (WMCFG) as a quantitative
extension of MCFG. Then we investigate properties of WMCFG such as
polynomial-time computability of basic problems, its closure property and
expressive power.
key words: weighted multiple context-free grammar, weight, formal power
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1. Introduction

Multiple context-free grammar (MCFG) [8] is an extension
of context-free grammar (CFG), which generates tuples of
words. The expressive power of MCFG is between CFG
and context-sensitive grammar; MCFG can generate some
non-context-free languages such as {anbncn | n ≥ 0} and
{ambncmdn | m, n ≥ 0}. MCFG inherits good properties of
CFG such as polynomial-time decidability of basic prob-
lems and the closure property under language operations.
(See [3] for the details.) CFG is also extended to weighted
context-free grammar (WCFG). WCFG has been applied to
syntax analysis of natural languages and structure predic-
tion of biological sequences. In these applications, we can
find the most plausible derivation tree(s) among all deriva-
tion trees of a given word by solving the optimization prob-
lem (minimum or maximum weight problem) for a given
WCFG. On the other hand, there are some structures that
cannot be expressed by CFG such as discontinuous con-
struction in natural language syntax and ‘pseudoknot’ struc-
ture in the secondary structure of an RNA. To deal with these
problems, probability has been incorporated into MCFG in
some analyses [5]–[7]. However, such stochastic extensions
of MCFG have been done in rather an ad hoc way and prop-
erties of MCFG with general weights have not been studied.

In this paper, we propose weighted multiple context-
free grammar and investigate its properties. In Sect. 2, we
give a formal definition of weighted multiple context-free
grammar (WMCFG). WMCFG is a quantitative extension
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of MCFG as well as an extension of WCFG. A WMCFG
defines a formal power series, which is a function that maps
a tuple of words to an element of an assumed semiring. Fur-
thermore, we define multiple algebraic system, which is an
extension of algebraic system [1], [2]. A multiple algebraic
system also defines a formal power series, called a multiple
algebraic power series. In Sect. 3, we first discuss a normal
form of WMCFG. Then, we show the equivalence of WM-
CFG and multiple algebraic system, by translating a given
multiple algebraic system into a WMCFG that defines the
same formal power series and vice versa. In Sect. 4, we
give polynomial-time algorithms for the coefficient problem
and minimum-weight problem. They are function problems
which are natural generalizations of the membership prob-
lem for WMCFG and emptiness problem for WMCFG over
the tropical semiring, respectively. In Sect. 5, we define four
operations on formal power series. These operations are
natural extensions of union, intersection, concatenation and
Kleene star. We discuss the closure property of the class
of multiple algebraic power series under these operations.
In Sect. 6, we show pumping lemmas for multiple algebraic
power series, and discuss the expressive power of WMCFG.

2. Preliminaries

Let N be the set of all positive integers, and let N0 = N∪{0}.
For k ∈ N0, let [k] be the set {1, . . . , k}. The cardinality of a
set X is denoted by |X|.

A semiring (S,⊕,�,0,1) is an algebraic structure
where

• (S,⊕,0) is a commutative monoid,
• (S,�,1) is a monoid,
• � distributes over ⊕,
• 0 is the zero element of �.

A semiring (S,⊕,�,0,1) is called a commutative semiring
if (S,�,1) is commutative. We abbreviate (S,⊕,�,0,1) as
S. The following two are examples of semirings: natural
number semiring N+,× = (N0,+,×, 0, 1) and Boolean semir-
ing B = ({0, 1},∨,∧, 0, 1).

A semiring S is said to be positive if the mapping hS :
S → B defined as hS(x) = 0 ⇔ x = 0 is a homomorphism,
i.e, hS(0) = 0, hS(1) = 1, hS(a ⊕ b) = hS(a) ∨ hS(b) and
hS(a�b) = hS(a)∧hS(b) for all a, b ∈ S. For example, N+,×
is a positive semiring.

Let Σ be a (finite) alphabet. For a word w ∈ Σ∗, the
length of w is denoted by |w|. The empty word is denoted by
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ε, i.e., |ε| = 0.

2.1 Weighted Multiple Context-Free Grammar

Let m be a positive integer and S be a commutative semir-
ing. An m-weighted multiple context-free grammar (m-
WMCFG) over S is a tuple G = (V,Σ, F, P, I,wt), where each
component is given as follows.

• V is a finite set of nonterminals. With each nonterminal
A ∈ V , a positive integer d(A) ∈ [m] called the dimen-
sion of A is associated. I ∈ V is the initial symbol and
d(I) = 1.
• Σ is a finite set of terminals, disjoint from V .
• F is a finite set of m-mcf functions. We say that f

is an m-mcf function if there exist positive integers
d0, d1, . . . , da( f ) ∈ [m] where a( f ) ∈ N0 is the number
of arguments of f , and

f
(
(x11, . . . , x1d1 ), · · · , (xa( f )1, . . . , xa( f )da( f ) )

)
= (α1, . . . , αd0 ) (*1)

where α1, . . . , αd0 are non-empty words over Σ ∪ {xi j |
i ∈ [a( f )], j ∈ [di]}, provided that each xi j ap-
pears exactly once among all of α0, . . . , αd0 . We call
(d0, d1, . . . , da( f )) the signature of f .
• P is a set of rules of the form: p = (A0 →

f [A1, . . . , Aa( f )]) where A0 ∈ V , A1, . . . , Aa( f ) ∈
V \ {I}, f ∈ F and the signature of f is
(d(A0), d(A1), . . . , d(Aa( f ))). If a( f ) = 1 and any ter-
minal symbol does not appear in the right-hand side of
the definition (*1) of f , we call p a unit rule. There are
no unit rules in P, except for the rules whose left-hand
side is I†. If a( f ) = 0, we call p a terminating rule.
Otherwise, p is called a nonterminating rule.
• wt : P→ S is a weight function.

The set of derivation trees of A ∈ V , denoted by DG(A) is
defined as the smallest set satisfying the following condi-
tions.

• If p = (A→ f []) ∈ P, then p ∈ DG(A).
• If p = (A → f [A1, . . . , Aa( f )]) ∈ P and ti ∈ DG(Ai) for

each i ∈ [a( f )], then p(t1, . . . , ta( f )) ∈ DG(A).

We define D(G) = DG(I) for the initial symbol I. For t ∈
DG(A), the tuple of words derived by t, denoted by yield(t) ∈
(Σ∗)d(A), the height of t, denoted by height(t), and the weight
of t, denoted by wt(t) are defined as follows.

• If t = p = (A→ f []), then

– yield(t) = f (),
– height(t) = 1,
– wt(t) = wt(p).

• If t = p(t1, . . . , ta( f )) and p = (A → f [A1, . . . , Aa( f )]),
then
†The restriction is along the same line as the definition of

LCFRS [9].

– yield(t) = f
(
yield(t1), . . . , yield(ta( f ))

)
,

– height(t) = max{height(t1), . . . , height(ta( f ))} + 1,

– wt(t) = wt(p) �
⊙

i∈[a( f )]

wt(ti).

For t ∈ DG(A), we say that A derives yield(t) with weight
wt(t). Furthermore, the weight of w ∈ Σ∗ is defined by

[[G]](w) =
⊕

yield(t)=w

wt(t) .

Note that [[G]](ε) is always 0 because there is no tree which
derives ε. The function [[G]] : Σ∗ → S is called the formal
power series defined by m-WMCFG G.

Example 2.1. Let V = {I, A}, Σ = {a, b, c}, F =

{ f0, f1, f2}, P = {p0, p1, p2}, wt(p0) = wt(p1) = wt(p2) = 1
and

p0 = I → f0[A], f0((x1, x2, x3)) = x1x2x3,
p1 = A→ f1[A, A], f1((x1, x2, x3), (y1, y2, y3))

= (x1y1, x2y2, x3y3),
p2 = A→ f2[], f2() = (a, b, c).

G1 = (V,Σ, F, P, I,wt) is a 3-WMCFG over N+,×, and the
formal power series [[G1]] is

[[G1]](w) =

⎧⎪⎪⎨⎪⎪⎩Cn−1 (w = anbncn, n ∈ N) ,

0 (otherwise) ,

where Cn is Catalan number (2n)!
(n+1)!n! .

Example 2.2. Let V = {I, B}, Σ = {a, b, c}, F =

{g0, g1, g2}, P = {p′0, p′1, p′2}, wt(p′0) = wt(p′1) = wt(p′2) = 1
and

p′0 = I → g0[B], g0((x1, x2)) = x1x2,
p′1 = B→ g1[B], g1((x1, x2)) = (ax1b, cx2),
p′2 = B→ g2[], g2() = (ab, c).

G2 = (V,Σ, F, P, I,wt) is a 2-WMCFG over B, and the for-
mal power series [[G2]] is

[[G2]](w) =

⎧⎪⎪⎨⎪⎪⎩1 (w = anbncn, n ∈ N) ,

0 (otherwise) .

2.2 Multiple Algebraic System

In this subsection, we define m-multiple algebraic system as
a natural extension of algebraic system [1], [2]. First, we
discuss functions from (Σ∗)m to an element of the semiring.
These are traditionally formalized as ‘power series’ (rather
than ‘functions’), in order to utilize algebraic (symbolical)
manipulations such as multiplication over power series (in-
finite sums).

Let S be a commutative semiring and Σ be a finite set
of terminals. An m-formal power series over S is a function
S : (Σ∗)m → S. We write S (w) as (S , w) and S as

S =
⊕
w∈(Σ∗)m

(S , w)w .
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(S , w) is called the coefficient of w in S . For simplicity, we
omit a term (S , w)w if (S , w) = 0, and if (S , w) = 0 for all
w ∈ (Σ∗)m, then we just write 0 to express such S . The
support of S is defined by

supp(S ) = {w ∈ (Σ∗)m | (S , w) � 0} .
For example, the support of [[G1]] in Example 2.1 is equal to
the support of [[G2]] in Example 2.2.

Remark 2.3. Let G = (V,Σ, F, P, I,wt) be a WMCFG over
a positive semiring. The support of [[G]] is equal to the lan-
guage L(G′) generated by MCFG G′ = (V,Σ, F, P, I) in the
standard definition.

If supp(S ) is finite, then S is called an m-polynomial.
Let S〈〈Σ〉〉m and S〈Σ〉m be the set of all m-formal power series
and all m-polynomials over S, respectively. Furthermore,
we define

S〈〈Σ〉〉<ω =
⋃
m∈N

S〈〈Σ〉〉m , S〈Σ〉<ω =
⋃
m∈N

S〈Σ〉m .

Let m be a positive integer and S be a commutative
semiring. An m-multiple algebraic system over S is a tuple
A = (V,Σ, X,Nt, α, I), where each component is given as
follows.

• V is a finite set of nonterminals. With each nonterminal
A ∈ V , a positive integer d(A) ∈ [m] called the dimen-
sion of A is associated. I ∈ V is the initial symbol and
d(I) = 1.
• Σ is a finite set of terminals, disjoint from V .
• X is a finite or countable set of variables. Each variable
�x ∈ X has dimension d(�x) ∈ N. We write �x ∈ X as
�x = (x1, . . . , xd(�x)). For X′ ⊆ X, let C(�x) and C(X′) be
the sets {x1, . . . , xd(�x)} and

⋃
�x∈X′ C(�x), respectively. For

w ∈ ((C(X) ∪ Σ)∗)k with some k ∈ [m], let X(w) = {�x |
some x ∈ C(�x) appears in w}.
• Nt is a mapping X → V \ {I}.
• α is a system of simultaneous equations α : V →

S〈C(X)∪Σ〉<ω. For each A ∈ V , α(A) ∈ S〈C(X)∪Σ〉d(A).
Furthermore, for every w ∈ ((C(X) ∪ Σ)∗)d(A) such that
(α(A), w) � 0,

– if A � I, then |X(w)| � 1 or some terminal symbol
appears in w,

– ε does not appear in any component of w, and
– each x ∈ C(X(w)) appears in w exactly once.

For A ∈ V , we write A = α(A) and call it the equation
of A in α.

Example 2.4. Let V = {I, A}, Σ = {a, b}, X = {(x1, x2)},
Nt((x1, x2)) = A and

α =

⎧⎪⎪⎨⎪⎪⎩I = x1x2 ,

A = (ax1, ax2) + 2(bx1, bx2) + (a, a) + 2(b, b) .

A = (V,Σ, X,Nt, α, I) is a 2-multiple algebraic system over
N+,×. �

For an m-multiple algebraic system A = (V,Σ, X,Nt, α, I),
let Sub(X′,Σ) be the set of substitutions s whose domain is
X′ ⊆ X such that s(�x) ∈ (Σ∗)d(�x) for each �x ∈ X′.

For a nonterminal A ∈ V , we define the j-th approxi-
mate solution of A, denoted by S j(A) as

S 0(A) = 0, and

S j(A) = S j−1(α(A)) for j > 0 ,

where S j(α(A)) is the evaluation of the polynomial α(A) by
S j, and it is defined as follows. First, we define the evalua-
tion of w ∈ ((Σ ∪ C(X))∗)k with k ∈ [m] by S j as

S j(w) =
⊕

s∈Sub(X(w),Σ)

(( ⊙
�x∈X(w)

(
S j(Nt(�x)), s(�x)

))
s(w)

)
.

Note that (S j(Nt(�x)), s(�x)) is the coefficient of s(�x) in the
approximate solution S j(Nt(�x)). Then, we define S j(p) for
a polynomial p ∈ S〈Σ〉k with k ∈ [m] as

S j(p) =
⊕

w∈((Σ∪C(X))∗)k

(
(p, w) � S j(w)

)
.

Example 2.4 (continued). We compute approximate solu-
tions ofA. By the definition, 0-th approximate solutions are

S 0(I) = 0, S 0(A) = 0 .

Next, S 1(I) = S 0(α(I)) = S 0(x1x2) = 0. This is because
S 0(x1x2) is the sum of (S 0(A), s((x1, x2))) · s(x1x2) for each
s and the coefficients of s((x1, x2)) in S 0(A) are all 0. Fur-
thermore,

S 1(A) = S 0(α(A))

= S 0((ax1, ax2) + 2(bx1, bx2) + (a, a) + 2(b, b))

= 1 · S 0((ax1, ax2)) + 2 · S 0((bx1, bx2))

+ 1 · S 0((a, a)) + 2 · S 0((b, b)) .

Note that S 0((ax1, ax2)) is the sum of (S 0(A), s(x1, x2)) ·
s(ax1, ax2) for each s and the coefficients of s((x1, x2)) in
S 0(A) are all 0. Hence, S 0((ax1, ax2)) = 0, and in the same
way, S 0((bx1, bx2)) = 0. Because X((a, a)) = X((b, b)) = ∅,
1 · S 0((a, a)) = (a, a) and 2 · S 0((b, b)) = 2(b, b) by the
definition of S j(w). Therefore, we obtain that S 1(A) =
(a, a) + 2(b, b). Then, S 2(I) = S 1(α(I)) = S 1(x1x2) is the
sum of (S 1(A), s((x1, x2))) · s(x1x2) for each s. Therefore,
S 2(I) = aa + 2bb. Similarly, each solution can be computed
as follows.

S 2(A) = (a, a) + 2(b, b) + (aa, aa)
+ 2(ab, ab) + 2(ba, ba) + 4(bb, bb) ,

S 3(I) = aa + 2bb + aaaa + 2abab + 2baba + 4bbbb ,
S 3(A) = (a, a) + 2(b, b) + (aa, aa) + 2(ab, ab)

+ 2(ba, ba) + 4(bb, bb) + (aaa, aaa)
+ 2(aab, aab) + 2(aba, aba) + 2(baa, baa)
+ 4(abb, abb) + 4(bab, bab) + 4(bba, bba)
+ 8(bbb, bbb), · · · �

The limit of approximate solution lim
j→∞ S j(A) is called
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the strong solution of A. For an m-multiple algebraic system
A = (V,Σ, X,Nt, α, I), the strong solution of I, denoted by
[[A]] is called the formal power series defined byA. If there
exists an m-multiple algebraic systemA such that S = [[A]],
then S is called an m-multiple algebraic power series.

Example 2.4 (continued). The strong solutions ofA are

S k(I) = aa + 2bb + aaaa + 2abab + 2baba + 4bbbb

+ aaaaaa + 2aabaab + 2abaaba + 2baabaa + · · ·
S k(A) = (a, a) + 2(b, b) + (aa, aa) + 2(ab, ab)

+ 2(ba, ba) + 4(bb, bb) + (aaa, aaa)

+ 2(aab, aab) + 2(aba, aba) + 2(baa, baa) + · · · .
Therefore, the formal power series defined byA is

[[A]] = aa + 2bb + aaaa + 2abab + 2baba

+ 4bbbb + aaaaaa + 2aabaab + 2abaaba

+ 2baabaa + · · · .
Furthermore, supp([[A]]) = {ww | w ∈ Σ∗} and the coeffi-
cient of each word ww is 2n where n is the number of occur-
rences of letter b in w.

3. Basic Properties

3.1 Normal Forms

We have assumed the following restrictions in the definition
of WMCFG.

• There are no unit rules, except for the rules whose left-
hand side is the initial symbol.
• For any f ∈ F, ε does not appear in the function value

of f . That is, there are no ε-rules.
• Each component of each argument of f ∈ F is used

‘exactly once’, not ‘at most once’. This restriction is
called information lossless condition in [8] and non-
erasing condition in [9].

It is shown in [8] that these restrictions do not affect the
expressive power of (unweighted) MCFG, except for the
derivation of ε. However, we do not know whether these
restrictions weaken the expressive power of WMCFG. For
weighted models, it is not easy to remove these restrictions.
The difficulty lies in the fact that the weight of w in a WM-
CFG G is the sum of the weights of all derivation trees of w
and unit rules and ε-rules may admit infinite derivation trees
without deriving any terminals. In fact, similar restrictions
are assumed in the discussion for WCFG in [2].

On the other hand, there are some restrictions that do
not affect the expressive power of WMCFG as stated in the
next theorem. We regard WMCFG satisfying these restric-
tions as a normal form and use it for later discussion.

Theorem 3.1. For a given m-WMCFG G= (V,Σ, F, P, I,wt),
we can construct an m-WMCFG G′ = (V ′,Σ, F′, P′, I′,wt′)

such that [[G′]] = [[G]] and the following (A1), (A2) and (A3)
hold.

(A1) For any nonterminating rule A → f [A1, . . . , Aa( f )] ∈
P′, any terminal in Σ does not appear in the right-hand
side (i.e., (α1, . . . , αd0 ) in (*1)) of the definition of f .

(A2) For any terminating rule A → f [] ∈ P′, d(A) = 1
and the function value of f is a terminal symbol, i.e.,
f () = a for some a ∈ Σ.

(A3) For all p ∈ P′, p is not a unit rule, including rules
whose left-hand side is I′.

Proof. For a given WMCFG G = (V,Σ, F, P, I,wt), we can
construct G′ = (V ′,Σ, F′, P′, I′,wt′) which satisfies the con-
ditions as follows. We set V ′ = V , F′ = F, P′ = P, I′ = I,
and wt′ = wt as initial values.
(A1) Do the following until this condition is satisfied. Let
p = (A → f [A1, . . . , Aa( f )]) ∈ P be a nonterminating rule
such that a terminal symbol b appears in the function value
of the definition (*1) of f .

• Introduce a new nonterminal B to V ′, a new function
fb() = b to F′, and a new rule pb = (B → fb[]) with
wt′(pb) = 1 to P′, and
• replace p by p′ = (A → f ′[A1, . . . , Aa( f ), B]) ∈ P′ with

wt′(p′) = wt′(p) where f ′ is obtained from f by adding
xb as the last argument of f ′ and replacing b by xb in
the function value of the definition (*1) of f .

(A2) For each terminating rule p = (A → fc[]) ∈ P′ where
fc() = (α1, . . . , αd(A)),

• If d(A) ≥ 2, replace p by p′ = (A →
id[A1, . . . , Ad(A)]) with new nonterminals A1, . . . , Ad(A)

where d(A1), . . . , d(Ad(A)) = 1, id(x1, . . . , xd(A)) =
(x1, . . . , xd(A)) and wt′(p′) = wt′(p). Next, for each
i ∈ [d(A)], do the following steps (*2).

– If |αi| = 1, introduce a new rule qi = Ai → fi[]
where fi() = αi and wt(qi) = 1.

– If |αi| ≥ 2, introduce new rules qi = (Ai →
fi[B1 . . . , B|αi |]) and r j = (Bj → g j[]) with new
nonterminals B, B1, . . . , B|αi | for each j ∈ [|αi|],
where fi(x1, . . . , x|αi |) = x1 · · · x|αi |, g j() = a j for
αi = a1 · · · a|αi | and wt′(qi) = wt′(r j) = 1.

• If d(A) = 1, regarding A as Ai and α1 as αi, do the same
as (*2).

(A3) By the definition of WMCFG, we only need to con-
sider rules whose left-hand side is I′. For each unit rule
p = (I′ → f [A]) ∈ P′, let q be a rule whose left-hand side
is A. For each q = (A → g[A1, . . . , Aa(g)]) ∈ P′, introduce
a new rule p′ = (I′ → f ′[A1, . . . , Aa(g)]) with wt′(p′) =
wt′(p) � wt′(q) where f ′(�x1, . . . , �xa(g)) = f (g(�x1, . . . , �xa(g))).
Note that p′ is not a unit rule because q is not a unit rule.
Finally, the condition is satisfied by deleting p. �

3.2 Equivalence with Multiple Algebraic System

As stated in Theorem 3.2 and Theorem 3.4, WMCFG and
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multiple algebraic system have the same expressive power,
that is, a formal power series S is defined by some m-
WMCFG iff S is an m-multiple algebraic power series.

Theorem 3.2. For a given m-WMCFG G= (V,Σ, F, P, I,wt),
we can construct an m-multiple algebraic system A such
that [[A]] = [[G]].

Proof. Assume that G satisfies the conditions (A1) and
(A2) in Theorem 3.1 without loss of generality. For each
A ∈ V , define polynomial α(A) ∈ S 〈Σ〉d(A) as follows.
If there exists a rule p = (A → f [A1, . . . , Aa( f )]) ∈ P
such that f ( (x11, . . . , x1d(A1)), . . . , (xa( f )1, . . . , xa( f )d(Aa( f ))) ) =
(w1, . . . , wd(A)), then let (α(A), (w1, . . . , wd(A))) = wt(p),
(xi1, . . . , xid(Ai)) ∈ X and Nt((xi1, . . . , xid(Ai))) = Ai for each
i ∈ [a( f )]. Otherwise, let (α(A), (w1, . . . , wd(A))) = 0. We
construct a multiple algebraic system A = (V,Σ, X,Nt, α, I)
for X, Nt and α obtained by the above construction. Then,
for every i ∈ N0 and A ∈ N, we claim that the following
equation holds.

S i(A) =
⊕

t∈DG(A),height(t)≤i

(
wt(t) yield(t)

)
(A-1)

We prove the Eq. (A-1) holds by induction on i. For i = 0,
(A-1) holds because S 0(A) = 0 by the definition and there
are no tree t such that height(t) = 0. For a given k ∈ N0, we
assume that

S k(A) =
⊕

t∈DG(A),height(t)≤k

(
wt(t) yield(t)

)
,

that is,

(S k(A), w) =
⊕

t∈DG(A),height(t)≤k
yield(t)=w

wt(t)

holds as the inductive hypothesis. Then,

S k+1(A) = S k(α(A))

=
⊕

w∈((Σ∪C(X))∗)d(A)

(α(A), w) � S k(w)

=
⊕

w∈((Σ∪C(X))∗)d(A)

(
(α(A), w)�

⊕
s∈Sub(X(w),Σ)

( ⊙
�x∈X(w)

(
S k(Nt(�x)), s(�x)

)
s(w)

))

=
⊕

w∈((Σ∪C(X))∗)d(A)

(α(A),w)�0

( ⊕
s∈Sub(X(w),Σ)

(
(α(A), w) �

⊙
�x∈X(w)

(
S k(Nt(�x)), s(�x)

)
s(w)

))

where every word w such that (α(A), w) � 0 corresponds
with every rule whose left-hand side is A, and every sub-
stitution s corresponds with ever derivation tree of A in G.
Furthermore, by the definition of α(A) and Nt,

S k+1(A)

=
⊕

p=A→ f [A1,...,Aa( f )]∈P

( ⊕
t=p(t1,...,ta( f ))∈DG(A)(

wt(p)
⊙

j∈[a( f )]

(
S k(Aj), yield(t j)

)
yield(t)

))
,

and by the inductive hypothesis,

=
⊕

p=A→ f [A1,...,Aa( f )]∈P

( ⊕
t=p(t1,...,ta( f ))∈DG(A)(

wt(p)
⊙

j∈[a( f )]

( ⊕
t j∈DG(Aj)

height(t j)≤k

wt(t j)
)

yield(t j)
))

=
⊕

p=A→ f [A1,...,Aa( f )]∈P

( ⊕
t=p(t1,...,ta( f ))∈DG(A)

height(t1),...,height(ta( f ))≤k(
wt(p)

⊙
j∈[a( f )]

(
wt(t j) yield(t)

))

=
⊕

p=A→ f [A1,...,Aa( f )]∈P( ⊕
t=p(t1,...,ta( f ))∈DG(A)

height(t)≤k+1

(
wt(t) yield(t)

))

=
⊕

t∈DG(A),height(t)≤k+1

(
wt(t) yield(t)

)
.

Therefore, (A-1) holds when i = k + 1. Because the coeffi-
cient of w in the strong solution ofA is equal to [[G]](w),A
satisfies [[A]] = [[G]]. �

Example 3.3. For 3-WMCFG G = (V,Σ, F, P, I,wt) in Ex-
ample 2.1, we can construct 3-multiple algebraic system A
such that [[A]] = [[G]] as follows: A = (V,Σ, X,Nt, α, I)
where X = {(x1, x2, x3), (y1, y2, y3)}, Nt((x1, x2, x3)) =
Nt((y1, y2, y3)) = A,

α =

⎧⎪⎪⎨⎪⎪⎩I = x1x2x3

A = (x1y1, x2y2, x3y3) + (a, b, c)
.

Theorem 3.4. For a given m-multiple algebraic systemA =
(V,Σ, X,Nt, α, I), we can construct an m-WMCFG G such
that [[G]] = [[A]].

Proof. Let P and F be the sets of all p and f defined by
the following steps: For each A ∈ V and for each (α(A), w)
which is not 0, if X1, . . . , Xn ∈ X(w), then let p = (A →
f [Nt(X1), . . . ,Nt(Xn)]), f (X1, . . . , Xn) = w and wt(p) =
(α(A), w). We construct a WMCFG G = (V,Σ, F, P, I,wt).
Then for every i ∈ N0 and A ∈ N, the following holds:⊕

t∈DG(A),height(t)≤i

(
wt(t) yield(t)

)
= S i(A) .

This can be proved in the same way as Theorem 3.2. There-
fore, G satisfies [[G]] = [[A]]. �

Example 3.5. For 2-multiple algebraic system A =

(V,Σ, X,Nt, α, I) in Example 2.4, we can construct 2-
WMCFG G such that [[G]] = [[A]] as follows: G =
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(V,Σ, F, P, I,wt) where P = {p0, p1, p2, p3, p4}, F =

{ f0, f1, f2, f3, f4} and

p0 = I → f0[A] f0((x1, x2)) = x1x2 wt(p0) = 1
p1 = A→ f1[A] f1((x1, x2)) = (ax1, ax2) wt(p1) = 1
p2 = A→ f2[A] f2((x1, x2)) = (bx1, bx2) wt(p2) = 2
p3 = A→ f3[] f3() = (a, a) wt(p3) = 1
p4 = A→ f4[] f4() = (b, b) wt(p4) = 2 .

By Theorems 3.2 and 3.4, we often refer to an m-
multiple algebraic power series S to mean that S is a formal
power series defined by an m-WMCFG. We define the class
m-WMCF and WMCF of formal power series as

m-WMCF = {S | S is an m-multiple algebraic

power series.}
WMCF =

⋃
m∈N

m-WMCF .

4. Function Problems

In this section, we assume that a single operation of a semir-
ing can be performed in constant time.

4.1 Coefficient Problem

Let G = (V,Σ, F, P, I,wt) be a WMCFG. The coefficient
problem is the function problem of computing [[G]](w) for
an input w ∈ Σ∗. For a WMCFG over N+,× or B, or more
generally, over positive semirings, the coefficient problem
is a generalization of the membership problem. This is be-
cause for a positive semiring, [[G]](w) � 0 iff there exists at
least one derivation tree such that yield(t) = w and wt(t) � 0.

Theorem 4.1. The coefficient problem for a given word w ∈
Σ∗ can be computed in O(|w|e+1) time where e =

max{
∑

i∈{0}∪[k]

d(Ai) | p = A0 → f [A1, . . . , Ak] ∈ P} .

Proof. Assume that G satisfies the conditions (A1) and (A2)
in Theorem 3.1 without loss of generality. We will search
all trees t ∈ D(G) such that yield(t) = w, using dynamic
programming.

Let w = a1a2 · · · an where a1, . . . , an ∈ Σ. For a tuple
u = (l1, r1, . . . , lk, rk) ∈ [n]2k for some k ∈ [n] such that
li ≤ ri for all i ∈ [k] and either ri < l j or r j < li for all i � j ∈
[k], we call u a position vector of w. For a position vector
u ∈ [n]2k, let w[u] = (al1 · · · ar1 , . . . , alk · · · ark ) ∈ (Σ∗)k and
len(u) =

∑
i∈[k](ri−li+1). We say that (A, u, z) is a derivation

triple if a nonterminal A ∈ V derives w[u] ∈ (Σ∗)k with
weight z ∈ S. We will search derivation triples (A, u, z) for
each A ∈ V in the increasing order of len(u), and add them to
the set Z as follows. Let Z = ∅ as the initial value. For each
triple (A, u, z) found, update Z to Z ∪ {(A, u, z)} if (A, u, z′) �
Z for any z′, and update z′ to z′ ⊕ z if (A, u, z′) ∈ Z for some
z′. We denote this procedure as add(Z, (A, u, z)). Finally, we
can obtain the value [[G]](w) as z′ such that (I, (1, n), z′) ∈ Z.

Algorithm 1 Coefficient
input : w = a1 · · · an ∈ Σ∗ (where a1, . . . , an ∈ Σ)

1: Z := ∅
2: for each terminating rule p = (A→ f []) ∈ P where f () = a do
3: for each i ∈ [n] do
4: if ai = a then
5: add(Z, (A, (i, i),wt(p))
6: end if
7: end for
8: end for
9: for len := 1 to n do

10: for each nonterminating rule p = (A→ f [A1, . . . , Ak])
where f

(
(x11, . . . , x1d(A1)), · · · , (xk1, . . . , xkd(Ak))

)
= (y11 · · · y1t1 , y21 · · · y2t2 , . . . , yd1 · · · ydtd ) do

11: for each (l11, l12, . . . , l1t1 , r1, l21, l22, . . . , l2t2 , r2, · · · , ld1,
ld2, . . . , ldtd , rd) ∈ [n]ep where ep =

∑
j∈[d](t j + 1) (= d +∑

i∈[k] d(Ai) ) such that
∑

j∈[d](r j − l j1) = len do
12: let θ be the mapping as: for each j ∈ [d], h ∈ [t j],

θ(y jh) =

⎧⎪⎪⎨⎪⎪⎩al jh · · · ar j (h = t j)

al jh · · · al j(h+1)−1 (h < t j)
13: if (Ai, ui, zi) ∈ Z where w[ui] = (θ(xi1), · · · , θ(xid(Ai))) for

each i ∈ [k] then
14: add(Z, (A, u′, z′)) where z′ = wt(p) �⊙

i∈[k] zi and u′ =
(l11, r1, l21, r2, . . . , ld1, rd) is a position vector.

15: end if
16: end for
17: end for
18: end for
19: return z′ such that (I, (1, n), z′) ∈ Z.

(See Algorithm 1.)
First, we search derivation triples (A, u, z) such that

len(u) = 1. Because G satisfies the conditions (A1)
and (A2), we only need to examine rules of the form
p = (A → f []) where f () = a for some a ∈ Σ.
For such a rule p, nonterminal A derives a with weight
wt(p). Hence, we add derivation triples (A, (i, i),wt(p))
such that ai = a to Z. Next, we search derivation triples
(A, u, z) such that len(u) ≥ 2 by examining nontermi-
nating rules to combine derivation triples already found.
Let p = (A → f [A1, · · · , Ak]) be a nonterminating
rule such that f

(
(x11, . . . , x1d(A1)), · · · , (xk1, . . . , xkd(Ak))

)
=

(y11 · · · y1t1 , . . . , yd1 · · · ydtd ) with k = a( f ), d = d(A) and
yi′ j′ ∈ {xi j | i ∈ [k], j ∈ [d(Ai)]} for each i′ ∈ [d], j′ ∈ [td].
For each position vector u′ ∈ [n]2d, we check whether or not
there is a derivation tree t = p(t1, . . . , tk) ∈ DG(A) for some
ti ∈ DG(Ai) for i ∈ [k] such that yield(t) = w[u′] as follows.
Let w[u′] = (α1, . . . , αd). For each j ∈ [d], we partition
α j into non-empty subwords α j1, . . . , α jt j such that α jh � ε
for h ∈ [t j] and α j = α j1 · · ·α jt j . Let θ be the mapping
from {xi1, . . . , xid(Ai) | i ∈ [k]} to Σ+ such that θ(y jh) = α jh

for each j ∈ [d] and h ∈ [t j]. By the definition of m-mcf
function, θ is well-defined, i.e., for each xi�, there is exactly
one j ∈ [d] and h ∈ [t j] such that y jh = xi� and vice versa.
Then, check whether (Ai, ui, zi) ∈ Z for all i ∈ [k] where
ui satisfies w[ui] = (θ(xi1), . . . , θ(xid(Ai))). We can find all
derivation trees of w, doing this steps until len(u′) = n, i.e.,
w[u′] = w. Note that the number of different u′ associated
with possible partitions of α j ( j ∈ [d]) is at most nep where
ep = d+

∑
i∈[k] d(Ai). This is because w[u′] and its partition is



INOUE et al.: WEIGHTED MULTIPLE CONTEXT-FREE GRAMMARS
315

determined by the left end position of each y jh and the right
end position of each y jt j where j ∈ [d], h ∈ [t j]. Therefore,
the coefficient problem can be computed in O(n × ne) time
where e = max{ep | p ∈ P}. �

Example 4.2. Let G = ({I, A,Ta,Tb,Tc}, {a, b, c}, F, P, I,wt)
be WMCFG over N+,×, where F and P consist of the follow-
ing:

p0 = I → f0[A, A], f0((x1, x2, x3), (y1, y2, y3))
= x1y1x2y2x3y3,

p1 = A→ f1[A, A], f1((x1, x2, x3), (y1, y2, y3))
= (x1y1, x2y2, x3y3),

p2 = A→ f2[Ta,Tb,Tc], f2(x1, x2, x3) = (x1, x2, x3),
pa = Ta → fa[] fa() = a,
pb = Tb → fb[] fb() = b,
pc = Tc → fc[] fc() = c,

and wt(p) = 1 for each p ∈ P. Note that G is equivalent
to G1 in Example 2.1. Now, we compute [[G]](w) for input
w = a3b3c3 using Algorithm 1.

First, by rules pa, pb and pc, we add derivation triples
(Ta, (ia, ia), 1), (Tb, (ib, ib), 1) and (Tc, (ic, ic), 1) for each ia ∈
{1, 2, 3}, ib ∈ {4, 5, 6}, ic ∈ {7, 8, 9}.

Next, we add triples (A, (ia, ia, ib, ib, ic, ic), 1) for each
ia ∈ {1, 2, 3}, ib ∈ {4, 5, 6}, ic ∈ {7, 8, 9} by rule p2. For
example, (A, (1, 1, 4, 4, 8, 8), 1) is added to Z and this means
that nonterminal A can derive w[(1, 1, 4, 4, 8, 8)] = (a, b, c)
with weight 1. On the other hand, (A, (1, 1, 7, 7, 8, 8), 1) is
not added to Z. This is because (Tb, (7, 7), 1) is not in Z and
the condition in line 13 cannot be satisfied, and in fact A
cannot derive w[(1, 1, 7, 7, 8, 8)] = (a, c, c).

Then, we add triple (A, (1, 2, 4, 5, 7, 8), 1) to Z combin-
ing (A, (1, 1, 4, 4, 7, 7), 1) and (A, (2, 2, 5, 5, 8, 8), 1) by p1.
This triple means that A can derive w[(1, 2, 4, 5, 7, 8)] =
(aa, bb, cc) with weight 1. Similarly, we add (A, (iaa, iaa +

1, ibb, ibb + 1, icc, icc + 1), 1) for each iaa ∈ {1, 2}, ibb ∈
{4, 5} and icc ∈ {7, 8}. Finally, we add (I, (1, 9), 1)
twice by p0. One is combined from (A, (1, 2, 4, 5, 7, 8), 1)
and (A, (3, 3, 6, 6, 9, 9), 1), and the other is combined from
(A, (1, 1, 4, 4, 7, 7), 1) and (A, (2, 3, 5, 6, 8, 9), 1). Because no
other triples of the form (I, (1, 9), z) are added, we can con-
clude that the weight of w is 2.

4.2 Minimum-Weight Problem

The emptiness problem is the decision problem of deter-
mining whether or not supp([[G]]) = ∅ for a WMCFG
G = (V,Σ, F, P, I,wt) such that wt(p) � 0 for each p ∈ P. If
the semiring is positive, the emptiness problem for a given
WMCFG G can be solved in polynomial time of the de-
scription length of G as the standard emptiness problem for
MCFG (see Remark 2.3). In particular, a stronger problem
can be solved in the same complexity for WMCFG over the
positive semiring Nmin,+ = (N0 ∪ {∞},min,+,∞, 0), which
is known as the tropical semiring.

The minimum-weight problem is the function prob-
lem of computing the minimum weight of all words, i.e.,

computing min{[[G]](w) | w ∈ Σ∗} for a given WMCFG
G = (V,Σ, F, P, I,wt) over the tropical semiring. Note
that the minimum-weight problem is a generalization of the
emptiness problem because the minimum weight is ∞ iff
supp([[G]]) = ∅.
Theorem 4.3. The minimum-weight problem for a given
WMCFG G = (V,Σ, F, P, I,wt) over the tropical semiring
can be computed in O(n2) time where

n = |V | +
∑

p=(A→ f [A1 ,...,Aa( f )])∈P
(1 + a( f )) .

Proof. For each A ∈ V , let min A = min{wt(t) | t ∈ DG(A)},
and call it the minimum weight of A. Note that the minimum
weight of all words is equal to min I. We can simultaneously
compute min A for each A ∈ V by computing the greatest
fixpoint of the following equations iteratively.

For k ∈ N0, A ∈ V and p ∈ P, let us define m(A, k) and
m(p, k) as follows.

m(A, 0) = ∞,
m(A, k) = min{m(p, k) | p ∈ P

and the left-hand side of p is A} (k ∈ N)

where

m(p, k) = wt(p) +
∑

i∈[a( f )]

m(Ai, k − 1)

for a rule p = (A → f [A1, . . . , Aa( f )]) ∈ P. (See Algo-
rithm 2.) These values can be computed in O(n) time for
each k ∈ N. By the definition, m(A, k′) ≤ m(A, k) and
m(p, k′) ≤ m(p, k) hold for all A ∈ V , p ∈ P and k′ > k.
At the end of the k-th iteration, let zk = min{m(A, k) |
A ∈ ΔVk} and Zk = {A ∈ ΔVk | zk = m(A, k)} where
ΔV1 = V, ΔVk+1 = ΔVk \ Zk for each k ∈ N. Because
zk′ ≥ zk and m(A, k′) = m(A, k) = min A hold for all

Algorithm 2 Minimum-weight
input : WMCFG G = (V,Σ, F, P, I,wt) over Nmin,+

1: for each A ∈ V do
2: m(A) := ∞
3: end for
4: ΔV := V
5: while I ∈ ΔV do
6: Z := ∅, z := ∞
7: for each p = (A→ f [A1, . . . , Ad]) ∈ P such that A ∈ ΔV do
8: m(p) := wt(p) +

∑
i∈[d] m(Ai)

9: if m(p) < m(A) then
10: m(A) := m(p)
11: end if
12: if m(p) < z then
13: z := m(p),Z := {A}
14: else if m(p) = z then
15: Z := Z ∪ {A}
16: end if
17: end for
18: ΔV := ΔV \ Z
19: end while
20: return m(I)
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A ∈ Zk and k′ > k, we can determine min A as zk for each
A ∈ Zk. Therefore, k ≤ |V | when the fixpoint is obtained,
and the minimum-weight problem can be computed in O(n2)
time. �

Note that this algorithm cannot be applied to computing the
minimum weight of a given WMCFG over other semirings
in general. In particular, the algorithm does not compute
the minimum weight for WMCFG over the natural num-
ber semiring N+,×. In fact, min{[[G]](w) | w ∈ Σ∗} for
WMCFG G over N+,× is not computable for the following
reason. Because for N+,×, min{[[G]](w) | w ∈ Σ∗} � 0 iff each
w ∈ Σ∗ has at least one parse tree, we could decide whether
L(G) = Σ∗ or not for an (M)CFG G if we could compute
the minimum weight. However, this contradicts the fact that
the problem of deciding L(G) = Σ∗ for an (M)CFG G is
undecidable.

5. Closure Properties

In this section, we define some operations on formal power
series and we discuss closure properties of WMCF under
the operations. Each of these operations corresponds to
union, intersection, concatenation and Kleene star, respec-
tively, and we show that multiple algebraic power series in-
herit the closure properties from CFL and MCFL in this re-
spect.

For formal power series S 1, S 2 : Σ∗ → S, we define the
sum S 1 ⊕ S 2, Cauchy product S 1 � S 2, and the convolution
S 1S 2 as

S 1 ⊕ S 2 =
⊕
w∈Σ∗

(
S 1(w) ⊕ S 2(w)

)
w ,

S 1 � S 2 =
⊕
w∈Σ∗

(
S 1(w) � S 2(w)

)
w , and

S 1S 2 =
⊕
w∈Σ∗

⊕
w=w1w2

(
S 1(w1) � S 2(w2)

)
w ,

respectively. For a formal power series S : Σ∗ → S, we
define the quasi-inverse S + as

S + =
⊕
i∈N

S i ,

where S 1 = S and S i+1 = S S i for i ∈ N. Note that S ∗ can
naturally be defined as S ∗ = S + ⊕ 1ε.

Theorem 5.1. For each m ∈ N, the class m-WMCF is closed
under sum and convolution.

Proof. Let G1 = (V1,Σ, F1, P1, I1,wt1) and G2 =

(V2,Σ, F2, P2, I2,wt2) be m-WMCFGs. We can assume that
G1 and G2 satisfy the condition (A3) in Theorem 3.1, and
V1 is disjoint from V2, without loss of generality.

Let G = (V1 ∪ V2 ∪ {I′},Σ, F1 ∪ F2 ∪ {id}, P1 ∪
P2 ∪ {p1, p2}, I′,wt1 ∪ wt2 ∪ {p1 �→ 1, p2 �→ 1}†) be
the m-WMCFG where p1 = (I′ → id[I1]), p2 = (I′ →
id[I2]), d(I′) = 1 and id is defined as id(x) = x. Then, G
defines the sum of [[G1]] and [[G2]].

Let G = (V1 ∪ V2 ∪ {I′},Σ, F1 ∪ F2 ∪ {conc}, P1 ∪ P2 ∪
{p′}, I′,wt1 ∪ wt2 ∪ {p′ �→ 1}) be the m-WMCFG where
p′ = (I′ → conc[I1, I2]), d(I′) = 1 and conc is defined as
conc(x, y) = xy. Then, G defines the convolution of [[G1]]
and [[G2]]. �

Theorem 5.2. For each m ∈ N, the class m-WMCF is closed
under quasi-inverse.

Proof. Let G1 = (V1,Σ, F1, P1, I1,wt1) be an m-WMCFG.
We can assume that G1 satisfies the condition (A3) in Theo-
rem 3.1, without loss of generality. First, we introduce new
nonterminals I′, I′′ � V1 and new rules p1 = (I′ → id[I′′])
and p+ = (I′′ → conc[I1, I′′]) with d(I′) = d(I′′) = 1.
Next, for each rule q = (I1 → f [A1, . . . , Aa( f )]) ∈ P1, we
introduce new rules pq = (I′′ → f [A1, . . . , Aa( f )]). Then,
G = (V1 ∪ {I′, I′′},Σ, F1 ∪ {id, conc}, P1 ∪ {p1, p+} ∪ {pq |
q = (I1 → · · · ) ∈ P1}, I′,wt1 ∪ {p1 �→ 1, p+ �→ 1} ∪ {pq �→
wt1(q) | q = (I1 → · · · ) ∈ P1}) defines the quasi-inverse of
[[G1]]. �

Theorem 5.3. There exist WMCFGs G1 and G2 such that
[[G1]]� [[G2]] can not be constructible from G1 and G2. That
is, the class WMCF is not effectively closed under Cauchy
product.

Proof. We suppose that for any WMCFGs G1 and G2, we
can construct G such that [[G]] = [[G1]]�[[G2]]. For given two
CFGs G1,G2, we can consider G1 and G2 as 1-WMCFGs
over Nmin,+ such that the weight of every rule is 0. Then, we
construct a WMCFG G that defines [[G1]] � [[G2]]. Because
supp([[G]]) = L(G1)∩L(G2), we can decide the emptiness of
L(G1) ∩ L(G2) from Theorem 4.3. This contradicts the fact
that the emptiness problem for the intersection of two CFLs
is undecidable. �

6. Pumping Lemma for Multiple Algebraic Power Se-
ries

Finally, we give a pumping lemma for WMCFG. The gram-
matical iteration property of WMCFG has no difference
from that of MCFG, but we can show more detailed expres-
sive power focusing on the weights.

Let G = (V,Σ, F, P, I,wt) be a WMCFG. For nontermi-
nals A, B ∈ V , the set of contexts CG(A, B) is defined as the
smallest set such that if t′ ∈ DG(B) is a subtree of t ∈ DG(A),
then C[�] ∈ CG(A, B) where C[�] is obtained by replacing t′
by �. For a tree t′ ∈ DG(B) and a context C[�] ∈ CG(A, B),
the tree obtained by substituting t′ for � is denoted by C[t′].

†wt1 ∪ wt2 ∪ {p1 �→ 1, p2 �→ 1} denotes the function wt′ :
P1 ∪ P2 ∪ {p1, p2} → S defined as:

wt′(p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
wt1(p) (p ∈ P1),
wt2(p) (p ∈ P2),
1 (p = p1, p2).
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In particular, if A = B, the tree C[C[· · ·C[︸�������︷︷�������︸
i

t′] · · · ]] is denoted

by Ci[t′].

Lemma 6.1. Let G = (V,Σ, F, P, I,wt) be an m-WMCFG
over a positive semiring S. If supp([[G]]) is infinite, then
there exists a derivation tree t ∈ D(G) such that

• wt(t) � 0,
• there exist A ∈ V,C1[�] ∈ CG(I, A),C2[�] ∈ CG(A, A)

and t′ ∈ DG(A) such that t = C1[C2[t′]],
• there exist words u1, u2, . . . , u2m+1 ∈ Σ∗ and
v1, v2, . . . , v2m ∈ Σ∗ such that yield(C1[Ci

2[t′]]) =
u1v1

iu2v2
iu3 · · · u2mv2m

iu2m+1 for all i ∈ N0, and
• ∑2m

j=1 |v j| > 0.

Proof. Assume that G satisfies the conditions (A1) and (A2)
in Theorem 3.1 without loss of generality. Then, the lemma
can be proved in the same way as a pumping lemma for
MCFL (Lemma 3.2 in [8]). �

Lemma 6.1 is essentially the same as the pumping
lemma for MCFL in [8], and it is known that a stronger
pumping lemma as the one for CFL does not always hold
for MCFL. (See [4] for detail.)

Next, using the above discussion, we show pumping
lemmas for WMCFG over N+,× and Nmin,+.

Theorem 6.2. Let S be an m-multiple algebraic power se-
ries over N+,×. If supp(S ) is infinite, then there exist some
words u1, u2, . . . , u2m+1 ∈ Σ∗, v1, v2, . . . , v2m ∈ Σ∗ and con-
stants c, d ∈ N such that

(1)
∑2m

j=1 |v j| > 0, and
(2) S (wi) ≥ ci · d for all i ∈ N0

where wi = u1v1
iu2v2

iu3 · · · u2mv2m
iu2m+1.

Proof. Let G = (V,Σ, F, P, I,wt) be an m-WMCFG over
N+,× that defines S . By applying Lemma 6.1, we obtain
a tree t = C1[C2[t′]] ∈ D(G) such that wt(t) > 0 and
words wi = yield(C1[Ci

2[t′]]) that can be decomposed as re-
quired in the claim. We show that the words wi satisfy the
condition for the weight. Let c1 = wt(t)/wt([C2[t′]]) and
c2 = wt([C2[t′]])/wt(t′). Note that c1 and c2 are positive
integers because the weight of a tree must be the multiples
of the weights of their proper subtrees. Then, wt(C1[Ci

2[t′]])
can be represented as ci

2 · c1 ·wt(t′) > 0. Therefore, S (wi) =∑
yield(T )=wi

wt(T ) ≥ wt(C1[Ci
2[t′]]) = ci

2 · c1 · wt(t′) > 0 for
all i ∈ N0, and (2) holds by letting c = c2, d = c1 ·wt(t′). �

Theorem 6.3. Let S be an m-multiple algebraic power se-
ries over Nmin,+. If supp(S ) is infinite, then there exist some
words u1, u2, . . . , u2m+1 ∈ Σ∗, v1, v2, . . . , v2m ∈ Σ∗ and con-
stants c, d ∈ N0 such that

(1)
∑2m

j=1 |v j| > 0, and
(2) S (wi) ≤ c · i + d for all i ∈ N0

where wi = u1v1
iu2v2

iu3 · · · u2mv2m
iu2m+1.

Proof. Let G = (V,Σ, F, P, I,wt) be an m-WMCFG over
Nmin,+ that defines S . By applying Lemma 6.1, we obtain

a tree t = C1[C2[t′]] ∈ D(G) such that wt(t) � ∞ and
words wi = yield(C1[Ci

2[t′]]) that can be decomposed as
required in the claim. We show that the words wi satisfy
the condition for the weight. Let c1 = wt(t) − wt([C2[t′]])
and c2 = wt([C2[t′]]) − wt(t′). Then, wt(C1[Ci

2[t′]]) can
be represented as (c2 · i) + c1 + wt(t′). Therefore, S (wi) =
minyield(T )=wi {wt(T )} ≤ wt(C1[Ci

2[t′]]) = (c2 · i) + c1 + wt(t′)
for all i ∈ N0, and (2) holds by letting c = c2, d =
c1 + wt(t′). �

Example 6.4. Let Σ = {a1, a2, · · · , a2m} be an alphabet.
Formal power series

S (w) =

⎧⎪⎪⎨⎪⎪⎩2n (w = an
1an

2 · · · an
2m, n ∈ N)

∞ (otherwise)

is not an m-multiple algebraic power series over Nmin,+ for
any m ∈ N.

Proof. Assume that S is an m-multiple algebraic power
series over Nmin,+. By Theorem 6.3, there exist
u1, . . . , u2m+1, v1, . . . , v2m ∈ Σ∗, c, d ∈ N0 such that∑2m

j=1 |v j| > 0 and S (wi) ≤ c · i + d for all i ∈ N0 where
wi = u1v

i
1u2v

i
2u3 · · · u2mv

i
2mu2m+1. By the definition of S , for

each i ∈ N0 there is ki ∈ N0 such that wi = aki

1 aki

2 · · · aki

2m. Be-
cause

∑2m
j=1 |v j| > 0 and wi = u1v

i
1u2v

i
2u3 · · · u2mv

i
2mu2m+1 =

aki

1 aki

2 · · · aki

2m for all i ∈ N0, there exists k′ ∈ N such that
v j = ak′

j for all j ∈ [2m]. Then, we have ki = k0 + k′ · i
and hence S (wi) = 2k0+k′·i. However, it contradicts the fact
that S (wi) ≤ c · i + d for all i ∈ N0. Therefore, S is not an
m-multiple algebraic power series over Nmin,+. �

7. Conclusion

In this paper, we defined WMCFG and multiple algebraic
system. We proved that the class of formal power series de-
fined by WMCFG coincides with the class of multiple alge-
braic power series. We also showed properties of WMCFG
such as polynomial-time computability of basic function
problems, closure properties and the expressive power.

As mentioned in Sect. 3, it is not easy to remove some
restrictions such as no unit rules and no ε-rules. It is an
open problem whether the restrictions are removable or not,
without changing the expressive power. In the discussion of
the emptiness problem and pumping lemmas, we assumed
that a semiring is positive. Generalizing these observations
from positive semirings to general semirings is also left as
future work.
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