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Abstract

One of the most important challenges in network science is to quantify the information encoded in complex network
structures. Disentangling randomness from organizational principles is even more demanding when networks have a
multiplex nature. Multiplex networks are multilayer systems of N nodes that can be linked in multiple interacting and co-
evolving layers. In these networks, relevant information might not be captured if the single layers were analyzed separately.
Here we demonstrate that such partial analysis of layers fails to capture significant correlations between weights and
topology of complex multiplex networks. To this end, we study two weighted multiplex co-authorship and citation
networks involving the authors included in the American Physical Society. We show that in these networks weights are
strongly correlated with multiplex structure, and provide empirical evidence in favor of the advantage of studying weighted
measures of multiplex networks, such as multistrength and the inverse multiparticipation ratio. Finally, we introduce a
theoretical framework based on the entropy of multiplex ensembles to quantify the information stored in multiplex
networks that would remain undetected if the single layers were analyzed in isolation.
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Introduction

Network theory investigates the global topology and structural

patterns of the interactions among the constituent elements of a

number of complex systems including social groups, infrastructure

and technological systems, the brain and biological networks [1–

4]. Over the last fifteen years, a large body of literature has

attempted to disentangle noise and stochasticity from non-random

patterns and mechanisms, in an attempt to gain a better

understanding of how these systems function and evolve. More

recently, further advances in the study of complex systems have

been spurred by the upsurge of interest in multiplex networks in

which pairs of interacting elements are represented as nodes

connected through multiple types of links, at multiple points in

time, or at multiple scales of resolution [5]. More specifically, a

multiplex network is a set of N nodes interacting in M layers, each

reflecting a distinct type (or time or resolution) of interaction

linking the same pair of nodes. Examples of multiplex networks

include: social networks, where the same individuals can be

connected through different types of social ties originating from

friendship, collaboration, or family relationships [6]; air transpor-

tation networks, where different airports can be connected through

flights of different companies [7]; and the brain, where different

regions can be seen as connected by the functional and structural

neural networks [8].

Most of the studies so far conducted on multiplex networks have

been concerned with the empirical analysis of a wide range of

systems [6,7,9,10], the modeling of their underlying structures

[11–13], and the description of new critical phenomena and

processes occurring on them [14–17]. Despite the growing interest

in multiplex networks, a fundamental question still remains largely

unanswered: What is the advantage of a full-fledged analysis of

complex systems that takes all their interacting layers into account,

over more traditional studies that represent such systems as single

networks with only one layer? To answer this question, one should

demonstrate that novel and relevant information can be uncov-

ered only by taking the multiplex nature of complex systems

directly into account, and would instead remain undetected if

individual layers were analyzed in isolation. In this paper, an

attempt is made to offer a possible solution to this problem within

the context of weighted multiplex networks.

Just as with single networks, links between nodes may have a

different weight, reflecting their intensity, capacity, duration,

intimacy or exchange of services [18]. The role played by the

weights in the functioning of many networks, and especially the

relative benefits of weak and strong ties in social networks, have

been the subject of a longstanding debate [18–20]. Moreover, it

has been shown that, in single networks, the weights can be

distributed in a heterogeneous way, as a result of the non-trivial

effects that the structural properties of the networks have on them

[21–24]. In particular, correlations between weights and structural

properties of single networks can be uncovered by the analysis of

strength-degree correlations [21] and by the distribution of the

weights of the links incident upon the same node [23]. To

characterize weighted networks, it is common practice to measure

the following quantities: i) the average strength of nodes of degree

k, i.e. s~s(k), describing how weights are distributed in the
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network; and ii) the average inverse participation ratio of the

weights of the links incident upon nodes of degree k, i.e. Y~Y (k),

describing how weights are distributed across the links incident

upon nodes of degree k. Here we show that these two quantities do

not capture the full breadth of the information encoded in

multiplex networks. Indeed, a full-fledged analysis of the properties

of multiplex networks is needed that takes the multiple interacting

and co-evolving layers simultaneously into account.

For a multiplex network, a multilink ~mm~(m1,m2, . . . ,mM )

between nodes i and j indicates the set of all links connecting

these nodes in the different layers [25]. In particular, if ma~1,

there is a link between nodes i and j in layer a, whereas if ma~0

nodes i and j are not connected in layer a. Multilink ~mm~~00
between two nodes refers to the case in which no link exists

between the two nodes in all layers of the multiplex network. Thus,

multilinks indicate the most straightforward type of correlation

between layers, and provide a simple generalization of the notion

of overlap. In fact, if nodes i and j are connected by a multilink ~mm,

with ma~ma’~1, it follows that there is an overlap of links

between i and j in layers a and a’. Figure 1 shows a multiplex

network with M~2 layers and N~5 nodes with different types of

multilinks.

Here we will define two new measures, multistrength and the

inverse multiparticipation ratio, which are, respectively, the sum of the

weights of a certain type of multilink incident upon a single node

and a way for characterizing the heterogeneity of the weights of

multilink ~mm incident upon a single node. To provide empirical

evidence that weighted properties of multilinks are fundamental

for properly assessing weighted multiplex networks, we focus on

the networks of the authors of papers published in the journals of

the American Physical Society (APS), and analyze the scientific

collaboration network and the citation network connecting the

same authors. These networks are intrinsically weighted since any

two scientists can co-author more than one paper and can cite

each other’s work several times. A large number of studies have

analyzed similar bibliometric datasets drawing upon network theory

[26–30]. Unlike these studies, here we investigate the APS

bibliometric dataset using the framework of multiplex networks

that allows us to explore novel properties of the collaboration and

citation networks. In particular, we show that multistrength and the

inverse multiparticipation ratio enable new relevant information to

be extracted from the APS dataset and that this information extends

beyond what is encoded in the strength and inverse participation

ratio of single layers. Finally, based on the entropy of multiplex

ensembles, we propose an indicator to evaluate the additional

amount of information that can be extracted from the weighted

properties of multilinks in multiplex networks over the information

encoded in the properties of their individual layers analyzed

separately.

Weighted Multiplex Networks

2.1 Definition
A weighted multiplex network is a set of M weighted networks

Ga~(V ,Ea), with a~1, . . . ,M. The set of nodes V is the same for

each layer and has cardinality DV D~N , whereas the set of links Ea

depends on the layer a. A multiplex network is represented

formally as ~GG~(G1,G2, . . . ,Ga, . . .GM ). Each network Ga is fully

described by the adjacency matrix a
a with elements aaij , where

aaij~wa
ijw0 if there is a link with weight wa

ij between nodes i and j

in layer a, and aaij~0 otherwise. From now on, in order to simplify

the formalization of weighted multiplex networks, we will assume

that the weight of the link between any pair of nodes i and j,

aaij~wa
ij , can only take integer values. This does not represent a

major limitation because in a large number of weighted multiplex

networks the weights of the links can be seen as multiples of a

minimal weight.

2.2 Structural Properties of Individual Layers
We indicate the degree of node i in layer a with kai , defined as

kai ~
XN

j~1
h(aaij), where function h(x)~1 if xw0, and h(x)~0

otherwise. In complex weighted networks, weights can be

distributed across links more or less heterogeneously. A way to

evaluate this heterogeneity is to introduce local properties such as

the strength sai [21] and the inverse participation ratio Y a
i of node i in

layer a [22,23]:

sai ~
X

N

j~1

aaij ,

Y a
i ~

X

N

j~1

aaij

sai

� �2

: ð1Þ

As with single networks, in any given layer a, the strength sai of a

node indicates the sum of the weights of the links incident upon

node i in layer a, whereas the inverse participation ratio Y a
i

indicates how unevenly the weights of the links of node i are

distributed in layer a. The inverse of Y a
i characterizes the effective

number of links of node i in layer a. Indeed, (Y a
i )

{1 is greater than

one and smaller than the degree of node i in layer a, i.e.,

(Y a
i )

{1
[(1,kai ). Moreover, if the weights of the links of node i are

distributed uniformly, i.e., wa
ij~sai =k

a
i , we have (Y a

i )
{1

~kai .

Conversely, if the weight of one link is much larger than the other

weights, i.e., wa
ir&wa

ij for every j=r, then (Y a
i )

{1
~1.

In network theory, it is common practice to evaluate the

conditional means of the strength and of the inverse participation

ratio of the weights of links against the degree of nodes [21–23]. In

a multiplex network, we will then consider the quantities

sa(k)~Ssai d(k
a
i ,k)T and Y a(k)~SY a

i d(k
a
i ,k)T, where the average

is calculated over all nodes with degree k in layer a, and d(a,b)

indicates the Kronecker delta. As in single networks [21], sak is

expected to scale as

Figure 1. Example of all possible multilinks in a multiplex
network with M~2 layers and N~5 nodes. Nodes i and j are
linked by one multilink ~mm~(ma,ma’).
doi:10.1371/journal.pone.0097857.g001
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sa(k)!kba , ð2Þ

with ba§1. We can distinguish between two scenarios. In the first

one, the average strength of nodes with degree k increases linearly

with k, i.e., ba~1. This indicates that, on average, the weights of

the links incident upon the hubs do not differ from the weights of

the links of less connected nodes. In the second scenario, the

strength of the nodes with degree k increases super-linearly with k,

i.e., baw1, thus indicating that, on average, the weights of the

links incident upon the hubs are larger than the weights of the links

of less connected nodes. In a multiplex network, it may be the case

that weights are distributed in different ways across the layers. For

instance, some layers may be characterized by a super-linear

growth of sak, while other layers may show a linear dependence.

Finally, the inverse participation ratio can be used in order to

characterize the heterogeneity of the weights of the links incident

upon nodes with a certain degree. In particular, it has been

observed that, in many single weighted networks, the inverse

participation ratio scales as an inverse power-law function of the

degree of nodes. In a multiplex network, this would imply

Y a(k)!
1

kla
, ð3Þ

where exponent laƒ1 is layer-dependent.

Figure 2. Average multistrength and average inverse multiparticipation ratio versus multidegree in the CoCo-PRE/PRL multiplex
network. The average multistrengths and the average inverse multiparticipation ratios are fitted by a power-law distribution of the type described in
Eq. (8) (fitted distributions are here indicated by black dashed lines). Statistical tests for the collaboration network of PRL suggest that the exponents
b~mm,1 defined in Eq. (8) are the same, while exponents l~mm,PRL are significantly different. Similar results can be obtained for the exponents in the PRE

collaboration layer. Nevertheless, multistrengths s(1,1),a are always larger than multistrengths s(1,0),PRL and s(0,1),PRE , when multistrengths are
calculated over the same number of multilinks, i.e., k(1,1)~k(1,0)~k(0,1) (see Text S1 for the statistical test on this hypothesis).
doi:10.1371/journal.pone.0097857.g002
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2.3 Multilink, Multistrength, and Inverse
Multiparticipation Ratio

A number of multiplex networks are characterized by a

significant overlap of links across the different layers [6,7]. In

order to generalize the notion of overlap to weighted multiplex

networks, in what follows we will draw on the concept of multilink

[25]. Let us consider the vector ~mm~(m1,m2, . . . ,ma, . . . ,mM ), in

which every element ma can take only two values ma~0,1. We

define a multilink ~mm as the set of links connecting a given pair of

nodes in the different layers of a multiplex network, and

connecting them in the generic layer a only if ma~1. In

particular, any two nodes i and j are always linked by a single

multilink of type ~mm~~mmij
~(h(a1ij),h(a

2
ij), . . . ,h(aMij )), where

h(x)~1 if xw0, and h(x)~0 otherwise. The multilink ~mm~~00
between two nodes represents the situation in which in all the

layers of the multiplex network the two nodes are not directly

linked.

We can now introduce the multiadjacency matrices A
~mm with

elements A~mm
ij equal to 1 if there is a multilink ~mm between node i

and node j and zero otherwise. In terms of the weighted adjacency

matrices a
a of the multiplex network, the elements A~mm

ij of the

multiadjacency matrix A
~mm are given by

A~mm
ij ~ P

M

a~1
½h(aaij)maz(1{h(aaij))(1{ma)�, ð4Þ

where h(x)~1 if xw0, otherwise h(x)~0. Even though there are

2M multiadjacency matrices, only 2M{1 of them are independent

because the normalization condition,
P

~mm A~mm
ij ~1, must be satisfied

for any pair of nodes i and j. Based on multi-adjacency matrices,

we can define the multidegree k~mm
i of node i as

Figure 3. Properties of multilinks in the weighted CoCi-PRE multiplex network. In the case of the collaboration network, the distributions
of multistrengths versus multidegrees always have the same exponent, but the average weight of multilinks (1,1) is larger than the average weight of
multilinks (1,0). Moreover, the exponents l(1,0),col,in, l(1,0),col,out are larger than exponents l(1,1),col,in,l(1,1),col,out . In the case of the citation layer, both the
incoming multistrengths and the outgoing multistrengths have a functional behavior that varies depending on the type of multilink. Conversely, the
average inverse multiparticipation ratio in the citation layer does not show any significant change of behavior when compared across different
multilinks.
doi:10.1371/journal.pone.0097857.g003
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k~mm
i ~

X

N

j~1

A~mm
ij , ð5Þ

which indicates how many multilinks ~mm are incident upon node i.

To study weighted multiplex networks, we now introduce two

new measures. For layer a associated to multilinks ~mm, such that

maw0, we define the multistrength s~mmi,a and the inverse multi-

participation ratio Y~mm
i,a of node i, respectively, as

s~mmi,a~
X

N

j~1

aaijA
~mm
ij , ð6Þ

Y~mm
i,a~

X

N

j~1

aaijA
~mm
ij

P

r

aairA
~mm
ir

0

B

@

1

C

A

2

: ð7Þ

Since multistrength s~mmi,a can be non-zero only if ma~1, for each

layer a the number of non-trivial multistrengths is 2M{1, and

therefore the number of multistrengths that can be defined in a

multiplex network of M layers is K~M2M{1. Similarly, the

number of inverse multiparticipation ratios Y~mm
ia is given by

K~M2M{1. The average multistrength of nodes with a given

multidegree, i.e., s~mm,a(k~mm)~Ss
~mm,a
i d(k~mm

i ,k
~mm)T, and the average

inverse multiparticipation ratio of nodes with a given multidegree,

i.e., Y~mm,a(k~mm)~SY~mm,a
i d(k~mm

i ,k
~mm)T, are expected to scale as

s~mm,a(k~mm)!(k~mm)
b~mm,a

Y~mm,a(k~mm)!
1

(k~mm)
l~mm,a

, ð8Þ

with exponents b~mm,a§1 and l~mm,aƒ1. The use of multilinks ~mm to

describe multiplex properties is numerically feasible if the number

of layers is smaller than the number of nodes, i.e., M% log (N). If

this condition is not satisfied, then the following quantities can be

measured: the overlap multiplicity, n(~mm)~
X

a
ma, which indicates

that multilink ~mm connects two nodes through n(~mm) links;

sa(n)~Ss~mmi,aTn(~mm)~n; and Y a(n)~SY~mm
i,aTn(~mm)~n, where n~1,2 . . . ,

M.

Empirical Evidence of Weighted Properties of Multilinks
In this section, we will draw on the measures introduced above

and provide empirical evidence that, in weighted multiplex

networks, weights can be correlated with the multiplex structure

in a non-trivial way. To this end, we analyze the bibliographic

dataset that includes all articles published in the APS journals (i.e.,

Physical Review Letters, Physical Review, and Reviews of Modern

Physics) from 1893 to 2009. Of these articles, the dataset includes

their citations as well as the authors. Here, we restrict our study

only to articles published either in Physical Review Letters (PRL)

Figure 4. (A) Value of the indicator Y defined in Eq. (10) indicating the amount of information carried by the correlated and the uncorrelated
multiplex ensembles of N nodes with respect to a null model in which the weights are distributed uniformly over the multiplex network. (B) Value of
the indicator defined in Eq. (12) indicating the additional amount of information encoded in the properties of multilinks in the correlated multiplex
ensemble with respect to the corresponding uncorrelated multiplex ensemble. The solid line refers to the average value of over the different
multiplex network sizes.
doi:10.1371/journal.pone.0097857.g004
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or in Physical Review E (PRE) and written by ten or fewer authors,

npƒ10. We constructed multiplex networks in which the nodes

are the authors and links between them have a two-fold nature:

scientific collaborations with weights defined as in [28] (see Text

S1), and citations with weights indicating how many times author i

cited author j.

In particular, we created the following two duplex networks (i.e.,

multiplex networks with M~2):

1. CoCo-PRL/PRE: collaborations among PRL and PRE authors.

The nodes of this multiplex network are the authors with

articles published both in PRL and PRE (i.e., 16,207 authors).

These nodes are connected in layer 1 through weighted

undirected links indicating the strength of their collaboration in

PRL (i.e., co-authorship of PRL articles). The same nodes are

connected in layer 2 through weighted undirected links

indicating the strength of their collaboration in PRE (i.e., co-

authorship of PRE articles).

2. CoCi-PRE: collaborations among PRE authors and citations to PRE

articles. The nodes of this multiplex network are the authors of

articles published in PRE (i.e., 35,205 authors). These nodes

are connected in layer 1 through weighted undirected links

indicating the strength of their collaboration in PRE (i.e., co-

authorship of PRE articles). The same nodes are connected in

layer 2 through weighted directed links indicating how many

times an author (with articles in PRE) cited another author’s

work, where citations are limited to those made to PRE articles.

Both these multiplex networks show a significant overlap of links

and a significant correlation between degrees of nodes as captured

by the Pearson correlation coefficient r (see Text S1). This finding

supports the hypothesis that the two layers in each of the multiplex

networks are correlated. That is, the existence of a link between

two authors in one layer is correlated with the existence of a link

between the same authors in the other layer. Moreover, the

multidegrees of the multiplex networks are broadly distributed,

and the hubs in the scientific collaboration network tend to be also

the hubs in the citation network (see Text S1).

In the case of the CoCo–PRL/PRE network, multilinks

~mm~(1,0), ~mm~(0,1) and ~mm~(1,1) refer to collaborations only in

PRL, only in PRE, and in both PRL and PRE, respectively.

Moreover, to distinguish between the weights used when

evaluating multistrength, we have a~PRL or a~PRE. Results

indicate that multistrength and the inverse multiparticipation ratio

behave according to Eq. (8) (see Fig. 2). The difference between

exponents b~mm,PRL for ~mm~(1,0) and ~mm~(1,1) is not statistically

significant. Nevertheless, there is a statistically significant differ-

ence between the average weights of multilinks (1,0) and (1,1) in

the PRL layer. As to the inverse multiparticipation ratio, there is a

significant variation in the exponents, l(1,0),PRL~0:84+0:03 and

l(1,1),PRL~0:74+0:05 (see Fig. 2, bottom left panel). This suggests

that the weights of the collaborative links between co-authors of

both PRL and PRE articles are distributed more heterogeneously

than the weights of collaborative links between co-authors of

articles published only in PRL (see Text S1 for details on the

statistical tests). Similar results were found for multistrengths

evaluated in the PRE layer (see Fig. 2, right panels).

These findings clearly indicate that the partial analysis of

individual layers would fail to uncover the fact that the average

weight of the link between authors that collaborated both on PRL

and PRE articles is significantly larger than the average weight of

the link between authors that collaborated only on articles

published in one journal. Moreover, the difference in functional

behavior of the multipartition ratio across layers could not be

captured if layers were analyzed separately.

In the case of the CoCi-PRE network, there are even more

significant differences between the properties of the multilinks than

in the previous network. In the CoCi-PRE network the functional

behavior of multistrength also depends on the type of multilink.

Figure 3 shows the average multistrength in the CoCi-PRE

network. To distinguish between the weights used to measure

multistrength, we have layer a~col, which refers to the

collaboration network constructed on PRE articles, and layer

a~cit, which refers to the citation network between PRE articles,

where a distinction is also made between incoming (in) and

outgoing (out) links. First, in the scientific collaboration network,

exponents b~mm,col are not statistically different, but the average

weight of multilink (1,1) is larger than the average weight of

multilinks (1,0),in and (1,0)out. Moreover, exponents l(1,0),col,in
and l(1,0),col,out are larger than exponents l(1,1),col,in,l(1,1),col,out,

indicating that the weights of authors’ collaborative links with

other cited/citing authors are distributed more heterogeneously

than the weights of authors’ collaborative links with other authors

with whom there are no links in the citation network. Second, in

the citation network multistrengths follow a distinct functional

behavior depending on the different type of multilink, and are

characterized by different b~mm,cit,in=out exponents. In fact the fitted

values of these exponents are given by b(1,1)cit,,in~

1:30+0:07,b(1,1),cit,out~1:32+0:08,b(0,1,)cit,in~1:11+0:01, and

b(0,1),cit,out~1:10+0:02. This implies that, on average, highly

cited authors are cited by their co-authors to a much greater extent

than is the case with poorly cited authors. A similar, though much

weaker effect was also found for the citations connecting authors

that are not collaborators. Furthermore, in the citation layer the

inverse multiparticipation ratio for multilink (1,1) is always larger

than the inverse multiparticipation ratio for multilinks (1,0) and

(0,1) (see Text S1 for details on the statistical test). Finally, when

single layers were analyzed separately, we found bcol~1:03+0:04
in the collaboration network, and bcit,in~1:13+0:02 and

bcit,out~1:14+0:03 in the citation network. This indicates that

in the citation network strength grows super-linearly as a function

of degree, i.e., weights are not distributed uniformly. Nevertheless,

correlations between weights and types of multilinks cannot be

captured if the two individual layers are studied separately.

3.1 Assessing the Informational Content of Weighted
Multilinks

Recent research on single networks has shown that the entropy

of network ensembles provides a very powerful tool for quantifying

their complexity [31–34]. Here, we propose a theoretical

framework based on the entropy of multiplex ensembles for

assessing the amount of information encoded in the weighted

properties of multilinks. Multiplex weighted network ensembles

can be defined as the set of all weighted multiplex networks

satisfying a given set of constraints, such as the expected degree

sequence and the expected strength sequence in every layer of the

multiplex network, or the expected multidegree sequence and the

expected multistrength sequence. A set of constraints imposed

upon the multiplex network ensemble uniquely determines the

probability P(~GG) of the multiplex networks in the ensemble (see

Materials and Methods). The entropy of the multiplex ensemble

can be defined in terms of P(~GG) as

~{

X

~GG

P(~GG) logP(~GG), ð9Þ

Weighted Multiplex Networks
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where indicates the logarithm of the typical number of multiplex

networks in the ensemble. The smaller the entropy, the larger the

amount of information stored in the constraints imposed on the

network. The entropy can be regarded as an unbiased way to

evaluate the informational value of these constraints.

In order to gauge the information encoded in a weighted

multiplex network with respect to a null model, we define the

indicator Y, which quantifies how much information is carried by

the weight distributions of a weighted multiplex ensemble. In

particular, Y compares the entropy of a weighted multiplex

ensemble with the entropy of a weighted multiplex ensemble in

which the weights are distributed homogeneously. Therefore, Y

can be defined as

Y~
D {S Tp(w)D

S(d )2Tp(w)
, ð10Þ

where S(d )2Tp(w) is the standard deviation, and the average

S . . . Tp(w) is calculated over multiplex networks with the same

structural properties but with weights distributed homogeneously.

In particular, when the weight distribution is randomized, the

multiplex networks are constrained in such a way that each link

must have a minimal weight (i.e., wij§1), while the remaining of

the total weight is distributed randomly over the links. In all the

considered network ensembles we have assumed that the weights

of the links can only take values that are multiple of a minimal

weight. This assumption is by no means a limitation of this

approach because for every finite network, there is always a

minimal weight in the network such that this hypothesis is verified.

In order to evaluate the amount of information encoded in the

weight of links in single layers and compare it to the information

supplied by multistrength, we consider the following undirected

multiplex ensembles:

N Correlated weighted multiplex ensemble. 

ensemble we fix t, he expected multidegree sequence

fk~mm
i g, and we set the expected multistrength sequence fs~mm,a

i g to be

s~mm,a
i ~c~mm,a(k

~mm,a)
l~mm,a ð11Þ

for every layer a. We call Y
corr the Y calculated from this

ensemble.

N Uncorrelated weighted multiplex ensemble. In this

ensemble, we set the expected degree ka
i of every node i

in every layer a~1,2 to be equal to the sum of the multidegrees

(with ma~1) in the correlated weighted multiplex ensemble. We

set the expected strengths sai of every node i in every layer a to be

equal to the sum of the multistrengths of node i in layer a in the

correlated weighted multiplex ensemble. We call corr the

calculated from this ensemble.

In the correlated weighted multiplex ensemble the properties of

the multilinks are accounted for, while in the uncorrelated

weighted multiplex ensemble the different layers of the multiplex

networks are analyzed separately (see Text S1 for the details).

Finally, to quantify the additional amount of information carried

by the correlated multiplex ensemble with respect to the

uncorrelated multiplex ensemble, we define the indicator as

J~
Y

corr

Y
uncorr : ð12Þ

As an example of a possible application of the indicator , we

focus on a case inspired by the CoCi-PRE multiplex network,

where we consider different exponents b~mm,a,in=out for different

multilinks. First, we created the correlated multiplex ensemble

with power-law multidegree distributions P(k~mm)~C(k~mm){c~mm with

exponents c(1,m2)
~2:6 for m2~0,1 and c(0,1),(in=out)~1:9 (where

for multidegree (0,1) we imposed a structural cut-off). Multi-

strengths satisfy Eq. (11), with c~mm,a~1 and b(1,m2),1
~1, for

m2~0,1; b(1,1),2~1:3, and b(0,1),2~1:1. Second, for the second

layer, we created the uncorrelated version of the multiplex

ensemble which is characterized by a super-linear dependence of

the average strength on the degree of the nodes. We then

measured Y as a function of network size N for these different

ensembles. Numerically, the average S . . .Tp(w) was evaluated from

100 randomizations. Figure 4 shows that Y increases with network

size N as a power law, and that J fluctuates around an average

value of 1:256. These findings indicate that a significant amount of

information is contained in multistrength and cannot be extracted

from individual layers separately. Similar results, not shown here,

were obtained with a correlated weighted multiplex ensemble

characterized by non-trivial inverse multiparticipation ratios.

In this paper, we have shown that weighted multiplex networks

are characterized by significant correlations across layers, and in

particular that weights are closely correlated with the multiplex

network structure. To properly detect these correlations, we

introduced and defined two novel weighted properties of multiplex

networks, namely multistrength and the inverse multiparticipation

ratio, that cannot be reduced to the properties of single layers.

These weighted multiplex properties capture the crucial role

played by multilinks in the distribution of weights, i.e., the extent

to which there is a link connecting each pair of nodes in every

layer of the multiplex network. To illustrate an example of

weighted multiplex networks displaying non-trivial correlations

between weights and topology, we analyzed the weighted

properties of multilinks in two multiplex networks constructed by

combining the co-authorship and citation networks involving the

authors included in the APS dataset. Finally, based on the entropy

of multiplex ensembles, we developed a theoretical framework for

evaluating the information encoded in weighted multiplex

networks, and proposed the indicator for quantifying the

information that can be extracted from a given dataset with

respect to a null model in which weights are randomly distributed

across links. Moreover, we proposed a new indicator that can be

used to evaluate the additional amount of information that the

weighted properties of multilinks provide over the information

contained in the properties of single layers. In summary, in this

paper we have provided compelling evidence that the analysis of

multiplex networks cannot be simplified to the partial analysis of

single layers, and in particular that non-trivial information can be

uncovered only by shifting emphasis on a number of weighted

properties of multilinks.

Materials and Methods

We can build a multiplex ensemble by maximizing the entropy

of the ensemble given by Eq. (9) under the condition that the

constraints imposed upon the multiplex networks are satisfied on

average over the ensemble (soft constraints). We assume there are
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J

J

J

Y

Y Y



K of such constraints determined by the conditions.

X

~GG

P(~GG)Fm(~GG)~Cm, ð13Þ

for m~1,2 . . . ,K , where Fm(~GG) determines one of the structural

constraints that we want to impose on average on the multiplex

network. The most unbiased multiplex ensemble satisfying the

constraints given by Eqs. (13) maximizes the entropy under

these constraints. In this ensemble, the probability P(~GG) for a

multiplex network ~GG of the ensemble is given by

P(~GG)~
1

Z
exp {

X

m

vmFm(~GG)

" #

, ð14Þ

where the normalization constant Z is called the ‘‘partition

function’’ of the canonical multiplex ensemble, and is fixed by the

normalization condition imposed on P(~GG), whereas vm are the

Lagrangian multipliers enforcing the constraints in Eq. (13). The

values of the Lagrangian multipliers vm are determined by

imposing the constraints given by Eq. (13), while for the

probability P(~GG) the structural form given by Eq. (14) is assumed.

We refer to the entropy given by Eq. 9 calculated using the

probability P(~GG) given by Eq. (14) as the Shannon entropy of the

multiplex ensemble. For all the details on the derivation of the

entropy for these ensembles, we refer the interested reader to the

Text S1.

Supporting Information

Text S1 Supporting Information Text.

(PDF)
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disassortativity in complex networks. Phys. Rev. Lett. 104: 108702.

33. Bianconi G, Pin P, Marsili M (2009) Assessing the relevance of node features for

network structure. PNAS 106: 11433–11438.

34. Sagarra O, Vicente CP, Dı́az-Guilera A (2013) Statistical mechanics of

multiedge networks Phys. Rev. E 88: 062806.

Weighted Multiplex Networks

PLOS ONE | www.plosone.org 8 June 2014 | Volume 9 | Issue 6 | e97857


